
Package ‘clusteval’
August 29, 2016

Title Evaluation of Clustering Algorithms

Version 0.1

Date 2012-08-30

Author John A. Ramey

Maintainer John A. Ramey <johnramey@gmail.com>

Description An R package that provides a suite of tools to evaluate
clustering algorithms, clusterings, and individual clusters.

Depends R (>= 2.15)

Imports parallel, mvtnorm, Rcpp (>= 0.9.13)

LinkingTo Rcpp

License MIT

Collate 'similarity.r' 'sim_normal.r' 'sim_unif.r' 'sim_student.r'
'clustomit.r' 'sim_data.r' 'helper-boot.r' 'clusteval.r'
'random_clustering.r' 'comembership.r'

Repository CRAN

Date/Publication 2012-08-31 17:17:52

NeedsCompilation yes

R topics documented:
boot_stratified_omit . 2
cluster_similarity . 3
clusteval . 4
clustomit . 4
comembership . 6
comembership_table . 7
intraclass_cov . 9
jaccard_indep . 9
random_clustering . 11
rand_indep . 12
sim_data . 13

1

2 boot_stratified_omit

sim_normal . 14
sim_student . 15
sim_unif . 17

Index 19

boot_stratified_omit Creates a list of indices for a stratified nonparametric bootstrap.

Description

This function creates a list of indices for a stratified nonparametric bootstrap. Corresponding to
our Cluster Omission Stability statistic implemented in clustomit, we omit each group in turn and
perform a stratified bootstrap without the group. We denote the number of groups as num_clusters,
which is equal to nlevels(factor(y)). Specifically, suppose that we omit the kth group. That
is, we ignore all of the observations corresponding to group k. Then, we sample with replacement
from each of the remaining groups (i.e., every group except for group k), yielding a set of bootstrap
indices.

Usage

boot_stratified_omit(y, num_reps = 50)

Arguments

y a vector that denotes the grouping of each observation. It must be coercible with
as.factor.

num_reps the number of bootstrap replications to use for each group

Details

The returned list contains K × numreps elements.

Value

named list containing indices for each bootstrap replication

Examples

set.seed(42)
We use 4 clusters, each with up to 10 observations. The sample sizes are
randomly chosen.
num_clusters <- 4
sample_sizes <- sample(10, num_clusters, replace = TRUE)

Create the cluster labels, y.
y <- unlist(sapply(seq_len(num_clusters), function(k) {
rep(k, sample_sizes[k])
}))

cluster_similarity 3

Use 20 reps per group.
boot_stratified_omit(y, num_reps = 20)

Use the default number of reps per group.
boot_stratified_omit(y)

cluster_similarity Computes the similarity between two clusterings of the same data set.

Description

For two clusterings of the same data set, this function calculates the similarity statistic specified of
the clusterings from the comemberships of the observations. Basically, the comembership is defined
as the pairs of observations that are clustered together.

Usage

cluster_similarity(labels1, labels2,
similarity = c("jaccard", "rand"),
method = "independence")

Arguments

labels1 a vector of n clustering labels

labels2 a vector of n clustering labels

similarity the similarity statistic to calculate

method the model under which the statistic was derived

Details

To calculate the similarity, we compute the 2x2 contingency table, consisting of the following four
cells:

n_11 the number of observation pairs where both observations are comembers in both clusterings

n_10 the number of observation pairs where the observations are comembers in the first clustering
but not the second

n_01 the number of observation pairs where the observations are comembers in the second cluster-
ing but not the first

n_00 the number of observation pairs where neither pair are comembers in either clustering

Currently, we have implemented the following similarity statistics:

• Rand index

• Jaccard coefficient

To compute the contingency table, we use the comembership_table function.

4 clustomit

Value

the similarity between the two clusterings

Examples

Notice that the number of comemberships is 'n choose 2'.
iris_kmeans <- kmeans(iris[, -5], centers = 3)$cluster
iris_hclust <- cutree(hclust(dist(iris[, -5])), k = 3)
cluster_similarity(iris_kmeans, iris_hclust)

clusteval Evaluation of Clustering Algorithms

Description

An R package that provides a suite of tools to evaluate clustering algorithms, clusterings, and indi-
vidual clusters.

clustomit ClustOmit - Cluster Stability Evaluation via Cluster Omission

Description

We provide an implementation of the ClustOmit statistic, which is an approach to evaluating the
stability of a clustering determined by a clustering algorithm. As discussed by Hennig (2007), ar-
guably a stable clustering is one in which a perturbation of the original data should yield a similar
clustering. However, if a perturbation of the data yields a large change in the clustering, the original
clustering is considered unstable. The ClustOmit statistic provides an approach to detecting insta-
bility via a stratified, nonparametric resampling scheme. We determine the stability of the clustering
via the similarity statistic specified (by default, the Jaccard coefficient).

Usage

clustomit(x, num_clusters, cluster_method,
similarity = c("jaccard", "rand"),
weighted_mean = TRUE, num_reps = 50,
num_cores = getOption("mc.cores", 2), ...)

clustomit 5

Arguments

x data matrix with n observations (rows) and p features (columns)

num_clusters the number of clusters to find with the clustering algorithm specified in cluster_method

cluster_method a character string or a function specifying the clustering algorithm that will be
used. The method specified is matched with the match.fun function. The func-
tion given should return only clustering labels for each observation in the matrix
x.

similarity the similarity statistic that is used to compare the original clustering (after a sin-
gle cluster and its observations have been omitted) to its resampled counterpart.
Currently, we have implemented the Jaccard and Rand similarity statistics and
use the Jaccard statistic by default.

weighted_mean logical value. Should the aggregate similarity score for each bootstrap replica-
tion be weighted by the number of observations in each of the observed clusters?
By default, yes (i.e., TRUE).

num_reps the number of bootstrap replicates to draw for each omitted cluster

num_cores the number of coures to use. If 1 core is specified, then lapply is used without
parallelization. See the mc.cores argument in mclapply for more details.

... additional arguments passed to the function specified in cluster_method

Details

To compute the ClustOmit statistic, we first cluster the data given in x into num_clusters clusters
with the clustering algorithm specified in cluster_method. We then omit each cluster in turn and
all of the observations in that cluster. For the omitted cluster, we resample from the remaining
observations and cluster the resampled observations into num_clusters - 1 clusters again using
the clustering algorithm specified in cluster_method. Next, we compute the similarity between
the cluster labels of the original data set and the cluster labels of the bootstrapped sample. We
approximate the sampling distribution of the ClustOmit statistic using a stratified, nonparametric
bootstrapping scheme and use the apparent variability in the approximated sampling distribution as
a diagnostic tool for further evaluation of the proposed clusters. By default, we utilize the Jaccard
similarity coefficient in the calculation of the ClustOmit statistic to provide a clear interpretation of
cluster assessment. The technical details of the ClustOmit statistic can be found in our forthcoming
publication entitled "Cluster Stability Evaluation of Gene Expression Data."

The ClustOmit cluster stability statistic is based on the cluster omission admissibility condition
from Fisher and Van Ness (1971), who provide decision-theoretic admissibility conditions that a
reasonable clustering algorithm should satisfy. The guidelines from Fisher and Van Ness (1971)
establish a systematic foundation that is often lacking in the evaluation of clustering algorithms.
The ClustOmit statistic is our proposed methodology to evaluate the cluster omission admissibility
condition from Fisher and Van Ness (1971).

We require a clustering algorithm function to be specified in the argument cluster_method. The
function given should accept at least two arguments:

x matrix of observations to cluster

num_clusters the number of clusters to find

... additional arguments that can be passed on

6 comembership

Also, the function given should return only clustering labels for each observation in the matrix x.
The additional arguments specified in ... are useful if a wrapper function is used: see the example
below for an illustration.

Value

object of class clustomit, which contains a named list with elements

boot_aggregate: vector of the aggregated similarity statistics for each bootstrap replicate

boot_similarity: list containing the bootstrapped similarity scores for each cluster omitted

obs_clusters: the clustering labels determined for the observations in x

num_clusters: the number of clusters found

similarity: the similarity statistic used for comparison between the original clustering and the re-
sampled clusterings

References

Fisher, L. and Van Ness, J. (1971), Admissible Clustering Procedures, _Biometrika_, 58, 1, 91-104.

Hennic, C. (2007), Cluster-wise assessment of cluster stability, _Computational Statistics and Data
Analysis_, 52, 258-271. http://www.jstor.org/stable/2334320

Examples

First, we create a wrapper function for the K-means clustering algorithm
that returns only the clustering labels for each observation (row) in
\code{x}.
kmeans_wrapper <- function(x, num_clusters, num_starts = 10, ...) {

kmeans(x = x, centers = num_clusters, nstart = num_starts, ...)$cluster
}

For this example, we generate five multivariate normal populations with the
\code{sim_data} function.
x <- sim_data("normal", delta = 1.5, seed = 42)$x

clustomit_out <- clustomit(x = x, num_clusters = 4,
cluster_method = "kmeans_wrapper", num_cores = 1)

clustomit_out2 <- clustomit(x = x, num_clusters = 5,
cluster_method = kmeans_wrapper, num_cores = 1)

comembership Calculates the comemberships of all pairs of a vector of clustering
labels.

Description

For a set of clustering labels, this function computes the comembership of all pairs of observations.
Basically, two observations are said to be comembers if they are clustered together.

http://www.jstor.org/stable/2334320

comembership_table 7

Usage

comembership(labels)

Arguments

labels a vector of n clustering labels

Details

Tibshirani and Walther (2005) use the term ’co-membership’, which we shorten to ’comembership’.
Some authors instead use the terms ’connectivity’ or ’co-occurrence’.

We use the Rcpp package to improve the runtime speed of this function.

Value

a vector of choose(n, 2) comembership bits

References

Tibshirani, R. and Walther, G. (2005), Cluster Validation by Prediction Strength, _Journal of Com-
putational and Graphical Statistics_, 14, 3, 511-528. http://amstat.tandfonline.com/doi/
abs/10.1198/106186005X59243.

Examples

We generate K = 3 labels for each of n = 10 observations and compute the
comembership for all 'n choose 2' pairs.
set.seed(42)
K <- 3
n <- 10
labels <- sample.int(K, n, replace = TRUE)
comembership_out <- comembership(labels)
comembership_out

Notice that the number of comemberships is 'n choose 2'.
length(comembership_out) == choose(n, 2)

comembership_table Calculates the 2x2 contingency table of agreements and disagreements
of comemberships from two vectors of clustering labels.

Description

For two clusterings of the same data set, this function calculates the 2x2 contingency table of
agreements and disagreements of the corresponding two vectors of comemberships. Basically, the
comembership is defined as the pairs of observations that are clustered together.

http://amstat.tandfonline.com/doi/abs/10.1198/106186005X59243
http://amstat.tandfonline.com/doi/abs/10.1198/106186005X59243

8 comembership_table

Usage

comembership_table(labels1, labels2)

Arguments

labels1 a vector of n clustering labels

labels2 a vector of n clustering labels

Details

The contingency table calculated is typically utilized in the calculation of a similarity statistic (e.g.,
Rand index, Jaccard index) between the two clusterings. The 2x2 contingency table consists of the
following four cells:

n_11 the number of observation pairs where both observations are comembers in both clusterings

n_10 the number of observation pairs where the observations are comembers in the first clustering
but not the second

n_01 the number of observation pairs where the observations are comembers in the second cluster-
ing but not the first

n_00 the number of observation pairs where neither pair are comembers in either clustering

Tibshirani and Walther (2005) use the term ’co-membership’, which we shorten to ’comembership’.
Some authors instead use the terms ’connectivity’ or ’co-occurrence’.

We use the Rcpp package to improve the runtime speed of this function.

Value

named list containing the calculated contingency table:

• n_11

• n_10

• n_01

• n_00

References

Tibshirani, R. and Walther, G. (2005). Cluster Validation by Prediction Strength. Journal of Com-
putational and Graphical Statistics, 14, 3, 511-528. http://amstat.tandfonline.com/doi/abs/
10.1198/106186005X59243.

Examples

We generate K = 3 labels for each of n = 10 observations and compute the
comembership for all 'n choose 2' pairs.
set.seed(42)
K <- 3
n <- 10
labels1 <- sample.int(K, n, replace = TRUE)

http://amstat.tandfonline.com/doi/abs/10.1198/106186005X59243
http://amstat.tandfonline.com/doi/abs/10.1198/106186005X59243

intraclass_cov 9

labels2 <- sample.int(K, n, replace = TRUE)
comembership_table(labels1, labels2)

Here, we cluster the \code{\link{iris}} data set with the K-means and
hierarchical algorithms using the true number of clusters, K = 3.
Then, we compute the 2x2 contingency table agreements and disagreements of
#' the comemberships.
iris_kmeans <- kmeans(iris[, -5], centers = 3)$cluster
iris_hclust <- cutree(hclust(dist(iris[, -5])), k = 3)
comembership_table(iris_kmeans, iris_hclust)

intraclass_cov Construct an intraclass covariance matrix.

Description

We define a p× p intraclass covariance (correlation) matrix to be Σm = σ2(1− ρ)Jp + ρIp, where
−(p− 1)−1 < ρ < 1, Ip is the p× p identity matrix, and Jp denotes the p× p matrix of ones.

Usage

intraclass_cov(p, rho, sigma2 = 1)

Arguments

p the dimension of the matrix

rho the intraclass covariance (correlation) constant

sigma2 the coefficient of the intraclass covariance matrix

Value

an intraclass covariance matrix matrix of size p

jaccard_indep Computes the Jaccard similarity coefficient of two clusterings of the
same data set under the assumption that the two clusterings are inde-
pendent.

Description

For two clusterings of the same data set, this function calculates the Jaccard similarity coefficient of
the clusterings from the comemberships of the observations. Basically, the comembership is defined
as the pairs of observations that are clustered together.

Usage

jaccard_indep(labels1, labels2)

10 jaccard_indep

Arguments

labels1 a vector of n clustering labels
labels2 a vector of n clustering labels

Details

To calculate the Rand index, we compute the 2x2 contingency table, consisting of the following
four cells:

n_11 the number of observation pairs where both observations are comembers in both clusterings
n_10 the number of observation pairs where the observations are comembers in the first clustering

but not the second
n_01 the number of observation pairs where the observations are comembers in the second cluster-

ing but not the first
n_00 the number of observation pairs where neither pair are comembers in either clustering

The Jaccard similarity coefficient is defined as:

J =
n11

n11 + n10 + n01
.

In the special case that the Jaccard coefficient results in 0/0, we define J = 0. For instance, this
case can occur when both clusterings consist of all singleton clusters.

To compute the contingency table, we use the comembership_table function.

Value

the Jaccard coefficient for the two sets of cluster labels (See Details.)

Examples

Not run:
We generate K = 3 labels for each of n = 10 observations and compute the
Jaccard similarity coefficient between the two clusterings.
set.seed(42)
K <- 3
n <- 10
labels1 <- sample.int(K, n, replace = TRUE)
labels2 <- sample.int(K, n, replace = TRUE)
jaccard_indep(labels1, labels2)

Here, we cluster the \code{\link{iris}} data set with the K-means and
hierarchical algorithms using the true number of clusters, K = 3.
Then, we compute the Jaccard similarity coefficient between the two
clusterings.
iris_kmeans <- kmeans(iris[, -5], centers = 3)$cluster
iris_hclust <- cutree(hclust(dist(iris[, -5])), k = 3)
jaccard_indep(iris_kmeans, iris_hclust)

End(Not run)

random_clustering 11

random_clustering Randomly cluster a data set into K clusters.

Description

For each observation (row) in ’x’, one of K labels is randomly generated. By default, the probabili-
ties of selecting each clustering label are equal, but this can be altered by specifying ’prob’, a vector
of probabilities for each cluster.

Usage

random_clustering(x, K, prob = NULL)

Arguments

x a matrix containing the data to cluster. The rows are the sample observations,
and the columns are the features.

K the number of clusters

prob a vector of probabilities to generate each cluster label. If NULL, each cluster
label has an equal chance of being selected.

Details

Random clustering is often utilized as a baseline comparison clustering against which other cluster-
ing algorithms are employed to identify structure within the data. Typically, comparisons are made
in terms of proposed clustering assessment and evaluation methods as well as clustering similarity
measures. For the former, a specified clustering evaluation method is computed for the considered
clustering algorithms as well as random clustering. If the clusters determined by a considered clus-
tering algorithm do not differ significantly from the random clustering, we might conclude that the
found clusters are no better than naively choosing clustering labels for each observation at random.
Likewise, a similarity measure can be computed to compare the clusterings from each of a con-
sidered clustering algorithm and a random clustering: if the clusterings are significantly similar,
once again, we might conclude the clusters found via the considered clustering algorithm do not
differ significantly from those found at random. In either case, the clusters are unlikely to provide
meaningful results on which the user can better understand the inherent structure within the data.

Value

a vector of clustering labels for each observation in ’x’.

12 rand_indep

rand_indep Computes the Rand similarity index of two clusterings of the same data
set under the assumption that the two clusterings are independent.

Description

For two clusterings of the same data set, this function calculates the Rand similarity coefficient of
the clusterings from the comemberships of the observations. Basically, the comembership is defined
as the pairs of observations that are clustered together.

Usage

rand_indep(labels1, labels2)

Arguments

labels1 a vector of n clustering labels

labels2 a vector of n clustering labels

Details

To calculate the Rand index, we compute the 2x2 contingency table, consisting of the following
four cells:

n_11 the number of observation pairs where both observations are comembers in both clusterings

n_10 the number of observation pairs where the observations are comembers in the first clustering
but not the second

n_01 the number of observation pairs where the observations are comembers in the second cluster-
ing but not the first

n_00 the number of observation pairs where neither pair are comembers in either clustering

The Rand similarity index is defined as:

R =
n11 + n00

n11 + n10 + n01 + n00

.

To compute the contingency table, we use the comembership_table function.

Value

the Rand index for the two sets of cluster labels

sim_data 13

Examples

Not run:
We generate K = 3 labels for each of n = 10 observations and compute the
Rand similarity index between the two clusterings.
set.seed(42)
K <- 3
n <- 10
labels1 <- sample.int(K, n, replace = TRUE)
labels2 <- sample.int(K, n, replace = TRUE)
rand_indep(labels1, labels2)

Here, we cluster the \code{\link{iris}} data set with the K-means and
hierarchical algorithms using the true number of clusters, K = 3.
Then, we compute the Rand similarity index between the two clusterings.
iris_kmeans <- kmeans(iris[, -5], centers = 3)$cluster
iris_hclust <- cutree(hclust(dist(iris[, -5])), k = 3)
rand_indep(iris_kmeans, iris_hclust)

End(Not run)

sim_data Wrapper function to generate data from a variety of data-generating
models.

Description

We provide a wrapper function to generate from three data-generating models:

sim_unif Five multivariate uniform distributions
sim_normal Multivariate normal distributions with intraclass covariance matrices
sim_student Multivariate Student’s t distributions each with a common covariance matrix

Usage

sim_data(family = c("uniform", "normal", "student"), ...)

Arguments

family the family of distributions from which to generate data
... optional arguments that are passed to the data-generating function

Details

For each data-generating model, we generate nm observations (m = 1, . . . ,M) from each of M
multivariate distributions so that the Euclidean distance between each of the population centroids
and the origin is equal and scaled by ∆ ≥ 0. For each model, the argument delta controls this
separation.

This wrapper function is useful for simulation studies, where the efficacy of supervised and unsu-
pervised learning methods and algorithms are evaluated as a the population separation is increased.

14 sim_normal

Value

named list containing:

x: A matrix whose rows are the observations generated and whose columns are the p features
(variables)

y: A vector denoting the population from which the observation in each row was generated.

Examples

set.seed(42)
uniform_data <- sim_data(family = "uniform")
normal_data <- sim_data(family = "normal", delta = 2)
student_data <- sim_data(family = "student", delta = 1, df = 1:5)

sim_normal Generates random variates from multivariate normal populations with
intraclass covariance matrices.

Description

We generate nm observations (m = 1, . . . ,M) from each of M multivariate normal distributions
such that the Euclidean distance between each of the means and the origin is equal and scaled by
∆ ≥ 0.

Usage

sim_normal(n = rep(25, 5), p = 50, rho = rep(0.9, 5),
delta = 0, sigma2 = 1, seed = NULL)

Arguments

n a vector (of length M) of the sample sizes for each population

p the dimension of the multivariate normal populations

rho a vector (of length M) of the intraclass constants for each population

delta the fixed distance between each population and the origin

sigma2 the coefficient of each intraclass covariance matrix

seed seed for random number generation (If NULL, does not set seed)

Details

Let Πm denote themth population with a p-dimensional multivariate normal distribution,Np(µm,Σm)
with mean vector µm and covariance matrix Σm. Also, let em be themth standard basis vector (i.e.,
the mth element is 1 and the remaining values are 0). Then, we define

µm = ∆

p/M∑
j=1

e(p/M)(m−1)+j .

sim_student 15

Note that p must be divisible by M. By default, the first 10 dimensions of µ1 are set to delta with all
remaining dimensions set to 0, the second 10 dimensions of µ2 are set to delta with all remaining
dimensions set to 0, and so on.

Also, we consider intraclass covariance (correlation) matrices such that Σm = σ2(1 − ρm)Jp +
ρmIp, where −(p−1)−1 < ρm < 1, Ip is the p×p identity matrix, and Jp denotes the p×pmatrix
of ones.

By default, we let M = 5, ∆ = 0, and σ2 = 1. Furthermore, we generate 25 observations from
each population by default.

For ∆ = 0 and ρm = ρ, m = 1, . . . ,M , the M populations are equal.

Value

named list containing:

x: A matrix whose rows are the observations generated and whose columns are the p features
(variables)

y: A vector denoting the population from which the observation in each row was generated.

Examples

data_generated <- sim_normal(n = 10 * seq_len(5), seed = 42)
dim(data_generated$x)
table(data_generated$y)

data_generated2 <- sim_normal(p = 10, delta = 2, rho = rep(0.1, 5))
table(data_generated2$y)
sample_means <- with(data_generated2,

tapply(seq_along(y), y, function(i) {
colMeans(x[i,])

}))
(sample_means <- do.call(rbind, sample_means))

sim_student Generates random variates from multivariate Student’s t populations.

Description

We generate nm observations (m = 1, . . . ,M) from each of M multivariate Student’s t distribu-
tions such that the Euclidean distance between each of the means and the origin is equal and scaled
by ∆ ≥ 0.

Usage

sim_student(n = rep(25, 5), p = 50, df = rep(6, 5),
delta = 0, Sigma = diag(p), seed = NULL)

16 sim_student

Arguments

n a vector (of length M) of the sample sizes for each population

p the dimension of the multivariate Student’s t distributions

df a vector (of length M) of the degrees of freedom for each population

delta the fixed distance between each population and the origin

Sigma the common covariance matrix

seed seed for random number generation (If NULL, does not set seed)

Details

Let Πm denote themth population with a p-dimensional multivariate Student’s t distribution, Tp(µm,Σm, cm),
where µm is the population location vector, Σm is the positive-definite covariance matrix, and cm
is the degrees of freedom.

Let em be the mth standard basis vector (i.e., the mth element is 1 and the remaining values are 0).
Then, we define

µm = ∆

p/M∑
j=1

e(p/M)(m−1)+j .

Note that p must be divisible by M. By default, the first 10 dimensions of µ1 are set to delta with all
remaining dimensions set to 0, the second 10 dimensions of µ2 are set to delta with all remaining
dimensions set to 0, and so on.

We use a common covariance matrix Σm = Σ for all populations.

For small values of cm, the tails are heavier, and, therefore, the average number of outlying obser-
vations is increased.

By default, we let M = 5, ∆ = 0, Σm = Ip, and cm = 6, m = 1, . . . ,M , where Ip denotes the
p× p identity matrix. Furthermore, we generate 25 observations from each population by default.

For ∆ = 0 and cm = c, m = 1, . . . ,M , the M populations are equal.

Value

named list containing:

x: A matrix whose rows are the observations generated and whose columns are the p features
(variables)

y: A vector denoting the population from which the observation in each row was generated.

Examples

data_generated <- sim_student(n = 10 * seq_len(5), seed = 42)
dim(data_generated$x)
table(data_generated$y)

data_generated2 <- sim_student(p = 10, delta = 2, df = rep(2, 5))
table(data_generated2$y)
sample_means <- with(data_generated2,

tapply(seq_along(y), y, function(i) {

sim_unif 17

colMeans(x[i,])
}))

(sample_means <- do.call(rbind, sample_means))

sim_unif Generates random variates from five multivariate uniform popula-
tions.

Description

We generate n observations from each of four trivariate distributions such that the Euclidean dis-
tance between each of the populations is a fixed constant, delta > 0.

Usage

sim_unif(n = rep(25, 5), delta = 0, seed = NULL)

Arguments

n a vector (of length M = 5) of the sample sizes for each population

delta the fixed distance between each population and the origin

seed Seed for random number generation. (If NULL, does not set seed)

Details

To define the populations, let x = (X1, . . . , Xp)′ be a multivariate uniformly distributed random
vector such that Xj ∼ U(aj , bj) is an independently distributed uniform random variable with
aj < bj for j = 1, . . . , p. Let Pim denote the mth population (m = 1, . . . , 5). Then, we have the
five populations:

Π1 = U(−1/2, 1/2) × U(∆ − 1/2,∆ + 1/2) × U(−1/2, 1/2) × U(−1/2, 1/2),

Π2 = U(∆ − 1/2,∆ + 1/2) × U(−1/2, 1/2) × U(−1/2, 1/2) × U(−1/2, 1/2),

Π3 = U(−1/2, 1/2) × U(−∆ − 1/2,−∆ + 1/2) × U(−1/2, 1/2) × U(−1/2, 1/2),

Π4 = U(−1/2, 1/2) × U(−1/2, 1/2) × U(−∆ − 1/2,−∆ + 1/2) × U(−1/2, 1/2),

Π5 = U(−1/2, 1/2) × U(−1/2, 1/2) × U(−1/2, 1/2) × U(∆ − 1/2,∆ + 1/2).

We generate nm observations from population Πm.

For ∆ = 0 and ρm = ρ, m = 1, . . . ,M , the M populations are equal.

Notice that the support of each population is a unit hypercube with 4 features. Moreover, for ∆ ≥ 1,
the populations are mutually exclusive and entirely separated.

18 sim_unif

Value

named list containing:

x: A matrix whose rows are the observations generated and whose columns are the p features
(variables)

y: A vector denoting the population from which the observation in each row was generated.

Examples

data_generated <- sim_unif(seed = 42)
dim(data_generated$x)
table(data_generated$y)

data_generated2 <- sim_unif(n = 10 * seq_len(5), delta = 1.5)
table(data_generated2$y)
sample_means <- with(data_generated2,

tapply(seq_along(y), y, function(i) {
colMeans(x[i,])

}))
(sample_means <- do.call(rbind, sample_means))

Index

boot_stratified_omit, 2

cluster_similarity, 3
clusteval, 4
clusteval-package (clusteval), 4
clustomit, 2, 4
comembership, 6
comembership_table, 3, 7, 10, 12

intraclass_cov, 9

jaccard_indep, 9

lapply, 5

match.fun, 5
mclapply, 5

package-clusteval (clusteval), 4

rand_indep, 12
random_clustering, 11

sim_data, 13
sim_normal, 13, 14
sim_student, 13, 15
sim_unif, 13, 17

19

	boot_stratified_omit
	cluster_similarity
	clusteval
	clustomit
	comembership
	comembership_table
	intraclass_cov
	jaccard_indep
	random_clustering
	rand_indep
	sim_data
	sim_normal
	sim_student
	sim_unif
	Index

