Package 'clusternor'

February 16, 2020

Version 0.	0-4
Date 2020	-02-15
	rallel Clustering Non-Uniform Memory Access ('NUMA') mized Package
mize ing n	n The clustering 'NUMA' Optimized Routines package or 'clusternor' is a highly optidipackage for performing clustering in parallel with accelerations specifically target-nulti-core Non-Uniform Memory Access ('NUMA') hardware architectures. Disa Mhem-Da Zheng, Carey E. Priebe, Joshua T. Vogelstein, Randal Burns (2019) <arxiv:1902.09527< td=""></arxiv:1902.09527<>
LinkingTo	Rcpp
Depends I	R (>= 3.0), Rcpp (>= 0.12.8)
License A	pache License 2.0
URL http	os://github.com/neurodata/knorR
SystemRed	quirements GNU make C++11, pthreads
BugRepor	ts https://github.com/flashxio/knor/issues
RoxygenN	ote 7.0.2
Encoding	UTF-8
LazyData	true
NeedsCom	apilation yes
Suggests t	estthat
	sa Mhembere [aut, cre], odata (https://neurodata.io) [cph]
Maintaine	r Disa Mhembere <disa@cs.jhu.edu></disa@cs.jhu.edu>
Repository	CRAN
Date/Publi	cation 2020-02-16 05:10:02 UTC
R topic	s documented:
	means

2 FuzzyCMeans

	Kmeans	
	KmeansPP	
	MiniBatchKmeans	7
	Skmeans	8
	test_centroids	9
	test_data	
	Xmeans	10
Index	1	12

FuzzyCMeans

Perform Fuzzy C-means clustering on a data matrix. A soft variant of the kmeans algorithm where each data point are assigned a contribution weight to each cluster

Description

See: https://en.wikipedia.org/wiki/Fuzzy_clustering#Fuzzy_C-means_clustering

Usage

```
FuzzyCMeans(
  data,
  centers,
  nrow = -1,
  ncol = -1,
  iter.max = .Machine$integer.max,
  nthread = -1,
  fuzz.index = 2,
  init = c("forgy", "none"),
  tolerance = 1e-06,
  dist.type = c("sqeucl", "eucl", "cos", "taxi")
)
```

Arguments

data	Data file name on disk (NUMA optimized) or In memory data matrix
centers	Either (i) The number of centers (i.e., k), or (ii) an In-memory data matrix
nrow	The number of samples in the dataset
ncol	The number of features in the dataset
iter.max	The maximum number of iteration of k-means to perform
nthread	The number of parallel threads to run
fuzz.index	The fuzziness coefficient/index (> 1 and < inf)
init	The type of initialization to use c("forgy", "none")
tolerance	The convergence tolerance
dist.type	What dissimilarity metric to use

Hmeans 3

Value

A list containing the attributes of the output. cluster: A vector of integers (from 1:k) indicating the cluster to which each point is allocated. centers: A matrix of cluster centres. size: The number of points in each cluster. iter: The number of (outer) iterations. contrib.mat: The data point to cluster contribution matrix

Author(s)

Disa Mhembere <disa@cs.jhu.edu>

Examples

```
iris.mat <- as.matrix(iris[,1:4])
k <- length(unique(iris[, dim(iris)[2]])) # Number of unique classes
fcm <- FuzzyCMeans(iris.mat, k, iter.max=5)</pre>
```

Hmeans

Perform parallel hierarchical clustering on a data matrix.

Description

A recursive (not acutally implemented as recursion) partitioning of data into two disjoint sets at every level as described in https://en.wikipedia.org/wiki/Hierarchical_clustering

Usage

```
Hmeans(
    data,
    kmax,
    nrow = -1,
    ncol = -1,
    iter.max = 20,
    nthread = -1,
    init = c("forgy"),
    tolerance = 1e-06,
    dist.type = c("eucl", "cos", "sqeucl", "taxi"),
    min.clust.size = 1
)
```

Arguments

data	Data file name on disk (NUMA optmized) or In memory data matrix
kmax	The maximum number of centers
nrow	The number of samples in the dataset
ncol	The number of features in the dataset

4 Kmeans

iter.max	The maximum number of iteration of k-means to perform
nthread	The number of parallel threads to run
init	The type of initialization to use c("forgy") or initial centers
tolerance	The convergence tolerance for k-means at each hierarchical split
dist.type	What dissimilarity metric to use
min.clust.size	The minimum size of a cluster when it cannot be split

Value

A list of lists containing the attributes of the output. cluster: A vector of integers (from $1:\mathbf{k}$) indicating the cluster to which each point is allocated. centers: A matrix of cluster centres. size: The number of points in each cluster. iter: The number of (outer) iterations.

Author(s)

Disa Mhembere <disa@cs.jhu.edu>

Examples

```
iris.mat <- as.matrix(iris[,1:4])
kmax <- length(unique(iris[, dim(iris)[2]])) # Number of unique classes
kms <- Hmeans(iris.mat, kmax)</pre>
```

Kmeans

Perform k-means clustering on a data matrix.

Description

K-means provides **k** disjoint sets for a dataset using a parallel and fast NUMA optimized version of Lloyd's algorithm. The details of which are found in this paper https://arxiv.org/pdf/1606.08905.pdf.

Usage

```
Kmeans(
  data,
  centers,
  nrow = -1,
  ncol = -1,
  iter.max = .Machine$integer.max,
  nthread = -1,
  init = c("kmeanspp", "random", "forgy", "none"),
  tolerance = 1e-06,
  dist.type = c("eucl", "sqeucl", "cos", "taxi")
)
```

KmeansPP 5

Arguments

data	Data file name on disk (NUMA optimized) or In memory data matrix
centers	Either (i) The number of centers (i.e., k), or
nrow	The number of samples in the dataset
ncol	The number of features in the dataset
iter.max	The maximum number of iteration of k-means to perform
nthread	The number of parallel threads to run (ii) an In-memory data matrix, or (iii) A 2-Element <i>list</i> with element 1 being a filename for precomputed centers, and element 2 the number of centroids.
init	The type of initialization to use c("kmeanspp", "random", "forgy", "none")
tolerance	The convergence tolerance
dist.type	What dissimilarity metric to use

Value

A list containing the attributes of the output. cluster: A vector of integers (from 1:k) indicating the cluster to which each point is allocated. centers: A matrix of cluster centres. size: The number of points in each cluster. iter: The number of (outer) iterations.

Author(s)

Disa Mhembere <disa@cs.jhu.edu>

Examples

```
iris.mat <- as.matrix(iris[,1:4]) 
 k <- length(unique(iris[, dim(iris)[2]]))  # Number of unique classes 
 kms <- Kmeans(iris.mat, k)
```

KmeansPP	Perform the k-means++ clustering algorithm on a data matrix.

Description

A parallel and scalable implementation of the algorithm described in Ostrovsky, Rafail, et al. "The effectiveness of Lloyd-type methods for the k-means problem." Journal of the ACM (JACM) 59.6 (2012): 28.

6 KmeansPP

Usage

```
KmeansPP(
   data,
   centers,
   nrow = -1,
   ncol = -1,
   nstart = 1,
   nthread = -1,
   dist.type = c("sqeucl", "eucl", "cos", "taxi")
)
```

Arguments

data	Data file name on disk (NUMA optimized) or In memory data matrix

nrow The number of samples in the dataset

ncol The number of features in the dataset

nstart The number of iterations of kmeans++ to run

nthread The number of parallel threads to run

dist.type What dissimilarity metric to use c("taxi", "eucl", "cos")

Value

A list containing the attributes of the output. cluster: A vector of integers (from 1:k) indicating the cluster to which each point is allocated. centers: A matrix of cluster centres. size: The number of points in each cluster. energy: The sum of distances for each sample from it's closest cluster. best.start: The sum of distances for each sample from it's closest cluster.

Author(s)

Disa Mhembere <disa@cs.jhu.edu>

Examples

```
iris.mat <- as.matrix(iris[,1:4])
k <- length(unique(iris[, dim(iris)[2]])) # Number of unique classes
nstart <- 3
km <- KmeansPP(iris.mat, k, nstart=nstart)</pre>
```

MiniBatchKmeans 7

MiniBatchKmeans	A randomize	d dataset	sub-sample	algorithm	that
	approximates https://www.eecs	the k-med tufts.edu/~dscu	O		See:

Description

A randomized dataset sub-sample algorithm that approximates the k-means algorithm. See: https://www.eecs.tufts.edu/~dscu

Usage

```
MiniBatchKmeans(
   data,
   centers,
   nrow = -1,
   ncol = -1,
   batch.size = 100,
   iter.max = .Machine$integer.max,
   nthread = -1,
   init = c("kmeanspp", "random", "forgy", "none"),
   tolerance = 0.01,
   dist.type = c("sqeucl", "eucl", "cos", "taxi"),
   max.no.improvement = 3
)
```

Arguments

data	Data file name on disk (NUMA optimized) or In memory data matrix	
centers	Either (i) The number of centers (i.e., k), or (ii) an In-memory data matrix, or (iii) A 2-Element <i>list</i> with element 1 being a filename for precomputed centers, and element 2 the number of centroids.	
nrow	The number of samples in the dataset	
ncol	The number of features in the dataset	
batch.size	Size of the mini batches	
iter.max	The maximum number of iteration of k-means to perform	
nthread	The number of parallel threads to run	
init	The type of initialization to use c("kmeanspp", "random", "forgy", "none")	
tolerance	The convergence tolerance	
dist.type	What dissimilarity metric to use	
max.no.improvement		
	Control early stopping based on the consecutive number of mini batches that	

Control early stopping based on the consecutive number of mini batches that does not yield an improvement on the smoothed inertia

8 Skmeans

Value

A list containing the attributes of the output. cluster: A vector of integers (from 1:k) indicating the cluster to which each point is allocated. centers: A matrix of cluster centres. size: The number of points in each cluster. iter: The number of (outer) iterations.

Author(s)

Disa Mhembere <disa@cs.jhu.edu>

Examples

```
iris.mat <- as.matrix(iris[,1:4])
k <- length(unique(iris[, dim(iris)[2]])) # Number of unique classes
kms <- MiniBatchKmeans(iris.mat, k, batch.size=5)</pre>
```

Skmeans

Perform spherical k-means clustering on a data matrix. Similar to the k-means algorithm differing only in that data features are min-max normalized the dissimilarity metric is Cosine distance.

Description

Perform spherical k-means clustering on a data matrix. Similar to the k-means algorithm differing only in that data features are min-max normalized the dissimilarity metric is Cosine distance.

Usage

```
Skmeans(
  data,
  centers,
  nrow = -1,
  ncol = -1,
  iter.max = .Machine$integer.max,
  nthread = -1,
  init = c("kmeanspp", "random", "forgy", "none"),
  tolerance = 1e-06
)
```

Arguments

data	Data file name on disk (NUMA optmized) or In-memory data matrix
centers	Either (i) The number of centers (i.e., k), or (ii) an In-memory data matrix
nrow	The number of samples in the dataset
ncol	The number of features in the dataset
iter.max	The maximum number of iteration of k-means to perform

test_centroids 9

nthread The number of parallel threads to run

init The type of initialization to use c("kmeanspp", "random", "forgy", "none")

tolerance The convergence tolerance

Value

A list containing the attributes of the output. cluster: A vector of integers (from 1:k) indicating the cluster to which each point is allocated. centers: A matrix of cluster centres. size: The number of points in each cluster. iter: The number of (outer) iterations.

Author(s)

Disa Mhembere <disa@cs.jhu.edu>

Examples

```
iris.mat <- as.matrix(iris[,1:4]) 
 k <- length(unique(iris[, dim(iris)[2]])) # Number of unique classes 
 km <- Skmeans(iris.mat, k)
```

test_centroids

A small example of centroids of dim: (8,5) used as for microbenchmarks of the clusternor package. The data are randomly generated.

Description

A small example of centroids of dim: (8,5) used as for micro-benchmarks of the clusternor package. The data are randomly generated.

Usage

```
data(test_centroids)
```

Format

An object of class "matrix"

Examples

```
data(test_centroids)
kms <- Kmeans(test_data, test_centroids)</pre>
```

10 Xmeans

test_data	A small dataset of dim: (50,5) used as for micro-benchmarks of the clusternor package. The data are randomly generated hence a clear
	number of clusters will be hard to find.

Description

A small dataset of dim: (50,5) used as for micro-benchmarks of the clusternor package. The data are randomly generated hence a clear number of clusters will be hard to find.

Usage

```
data(test_data)
```

Format

An object of class "matrix"

Examples

```
ncenters <- 8
kms <- Kmeans(test_data, ncenters)</pre>
```

Xmeans

Perform a parallel hierarchical clustering using the x-means algorithm

Description

A recursive (not acutally implemented as recursion) partitioning of data into two disjoint sets at every level as described in: http://cs.uef.fi/~zhao/Courses/Clustering2012/Xmeans.pdf

Usage

```
Xmeans(
   data,
   kmax,
   nrow = -1,
   ncol = -1,
   iter.max = 20,
   nthread = -1,
   init = c("forgy"),
   tolerance = 1e-06,
   dist.type = c("eucl", "cos", "taxi"),
   min.clust.size = 1
)
```

Xmeans 11

Arguments

data	Data file name on disk (NUMA optmized) or In memory data matrix
kmax	The maximum number of centers
nrow	The number of samples in the dataset
ncol	The number of features in the dataset
iter.max	The maximum number of iteration of k-means to perform
nthread	The number of parallel threads to run
init	The type of initialization to use c("forgy") or initial centers
tolerance	The convergence tolerance for k-means at each hierarchical split
dist.type	What dissimilarity metric to use

min.clust.size The minimum size of a cluster when it cannot be split

Value

A list of lists containing the attributes of the output. cluster: A vector of integers (from 1:k) indicating the cluster to which each point is allocated. centers: A matrix of cluster centres. size: The number of points in each cluster. iter: The number of (outer) iterations.

Author(s)

Disa Mhembere <disa@cs.jhu.edu>

Examples

```
iris.mat <- as.matrix(iris[,1:4])
kmax <- length(unique(iris[, dim(iris)[2]])) # Number of unique classes
xms <- Xmeans(iris.mat, kmax)</pre>
```

Index

```
*Topic datasets
    test_centroids, 9
    test_data, 10

FuzzyCMeans, 2

Hmeans, 3

Kmeans, 4

KmeansPP, 5

MiniBatchKmeans, 7

Skmeans, 8

test_centroids, 9
test_data, 10

Xmeans, 10
```