Estimating causal effects from observational studies assuming clustered (or partial) interference. These inverse probability-weighted estimators target new estimands arising from population-level treatment policies. The estimands and estimators are introduced in Barkley et al. (2017) <arXiv:1711.04834>.
Version: | 1.0.1 |
Depends: | R (≥ 3.2) |
Imports: | Formula (≥ 1.1-2), cubature (≥ 1.1-2), lme4 (≥ 1.1-10), numDeriv (≥ 2014.2-1), rootSolve (≥ 1.6.6) |
Suggests: | testthat, rprojroot, knitr, rmarkdown, covr |
Published: | 2019-03-18 |
Author: | Brian G. Barkley |
Maintainer: | Brian G. Barkley <BarkleyBG at outlook.com> |
BugReports: | http://github.com/BarkleyBG/clusteredinterference/issues |
License: | GPL-3 |
URL: | http://github.com/BarkleyBG/clusteredinterference |
NeedsCompilation: | no |
Materials: | NEWS |
CRAN checks: | clusteredinterference results |
Reference manual: | clusteredinterference.pdf |
Vignettes: |
estimate-policyFX |
Package source: | clusteredinterference_1.0.1.tar.gz |
Windows binaries: | r-devel: clusteredinterference_1.0.1.zip, r-release: clusteredinterference_1.0.1.zip, r-oldrel: clusteredinterference_1.0.1.zip |
macOS binaries: | r-release: clusteredinterference_1.0.1.tgz, r-oldrel: clusteredinterference_1.0.1.tgz |
Old sources: | clusteredinterference archive |
Please use the canonical form https://CRAN.R-project.org/package=clusteredinterference to link to this page.