
Package ‘clampSeg’
November 5, 2019

Title Idealisation of Patch Clamp Recordings

Version 1.0-5

Depends R (>= 3.0.0)

Imports stepR(>= 2.0.0), Rcpp (>= 0.12.3), stats, methods

LinkingTo Rcpp

Suggests testthat, R.cache (>= 0.10.0)

Description Allows for idealisation of patch clamp recordings by implementing the non-
parametric JUmp Local dEconvolution Segmentation (JULES) filter, see F. Pein, I. Tecuapetla-
Gómez, O. Schütte, C. Steinem, and A. Munk (2017) <arXiv:1706.03671>.

License GPL-3

Encoding UTF-8

LazyData true

NeedsCompilation yes

Author Pein Florian [aut, cre],
Thomas Hotz [ctb],
Inder Tecuapetla-Gómez [ctb],
Timo Aspelmeier [ctb]

Maintainer Pein Florian <fp366@cam.ac.uk>

Repository CRAN

Date/Publication 2019-11-05 20:30:02 UTC

R topics documented:
clampSeg-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
deconvolveLocally . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
getCritVal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
gramA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
jules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
lowpassFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
stepDetection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Index 31

1



2 clampSeg-package

clampSeg-package Idealisation of patch clamp recordings

Description

Allows for idealisation (fitting) of patch clamp (ion channel) recordings by implementing the JUmp
Local dEconvolution Segmentation (JULES) filter (Pein et al., 2017) in the function jules. This
non-parametric (model-free) segmentation method combines statistical multiresolution techniques
with local deconvolution for idealising patch clamp recordings. In particular, also flickering (events
on small time scales) can be detected and idealised.

Details

The main function of this package is jules which implements the JUmp Local dEconvolution
Segmentation (JULES) filter (Pein et al., 2017). It reconstructs the signal underlying the data which
is assumed to be a step (piecewise constant) function, e.g. constant conductance levels are assumed.
The signal is pertubed by (Gaussian) white noise and convolved with a lowpass filter, resulting in
a smooth signal pertubed by correlated noise with known correlation structure. The recorded data
points are modelled as sampled (digitised) recordings of this process. For more details on this model
see (Pein et al., 2017, section II). A small example of such a recording, 3 seconds of a gramicidin
A recording, is given by gramA.
The filter can be created by the function lowpassFilter, currently only Bessel filters are supported.
The critical value q in (Pein et al., 2017, (7)), the main parameter of JULES, can either be given
by the user or be obtained by the function getCritVal, automatically called if required, in an uni-
versal manner by Monte-Carlo simulations such that (7) is a level alpha-test. The critical value q,
or alternatively the significance level alpha, balances the risk of over- and underfitting. By default
a small significance level of alpha = 0.05 is chosen to guarantee that additional artificial changes
are only be detected with a small probability. The critical value q and the Monte-Carlo simulations
depend on the number of data points and the filter.
Since a Monte-Carlo simulation lasts potentially much longer (up to several hours or days if the
number of observations is in the millions) than the main calculations, multiple possibilities for sav-
ing and loading the simulations are offered. Simulations can either be saved in the workspace in
the variable critValStepRTab or persistently on the file system for which the package R.cache is
used. Moreover, storing in and loading from variables and RDS files is supported. The simulation,
saving and loading can be controlled by the argument option. By default simulations will be saved
in the workspace and on the file system. For more details and for how simulation can be removed
see the documentation of getCritVal.
The detection and estimation step of JULES can be obtained separately by the functions stepDetection
and deconvolveLocally, respectively.

References

Pein, F., Tecuapetla-Gómez, I., Schütte, O., Steinem, C., Munk, A. (2017) Fully-automatic multires-
olution idealization for filtered ion channel recordings: flickering event detection. arXiv:1706.03671.

Hotz, T., Schütte, O., Sieling, H., Polupanow, T., Diederichsen, U., Steinem, C., and Munk, A.
(2013) Idealizing ion channel recordings by a jump segmentation multiresolution filter. IEEE Trans-
actions on NanoBioscience 12(4), 376–386.



clampSeg-package 3

Frick, K., Munk, A. and Sieling, H. (2014) Multiscale change-point inference. With discussion and
rejoinder by the authors. Journal of the Royal Statistical Society, Series B 76(3), 495–580.

Pein, F., Sieling, H. and Munk, A. (2016) Heterogeneous change point inference. Journal of the
Royal Statistical Society, Series B, early view.

See Also

jules, critVal, lowpassFilter, gramA, deconvolveLocally, stepDetection

Examples

## idealisation of the gramicidin A recordings given by gramA
# the used filter
filter <- lowpassFilter(type = "bessel", param = list(pole = 4L, cutoff = 1e3 / 1e4),

sr = 1e4)

# the corresponding time points
time <- 9 + seq(along = gramA) / filter$sr

# plot of the data as in (Pein et al., 2017, figure 1 lower panel)
plot(time, gramA, pch = ".", col = "grey30", ylim = c(20, 50),

ylab = "Conductance in pS", xlab = "Time in s")

# idealisation by JULES
# this call requires a Monte-Carlo simulation
# and therefore might last a few minutes,
# progress of the Monte-Carlo simulation is reported
idealisation <- jules(gramA, filter = filter, startTime = 9, messages = 100)

# this second call should be much faster
# as the previous Monte-Carlo simulation will be loaded
jules(gramA, filter = filter, startTime = 9)

# add idealisation to the plot
lines(idealisation, col = "#FF0000", lwd = 3)

# much larger significance level alpha for a larger detection power,
# but also with the risk of detecting additional artefacts
# in this example much more changes are detected,
# most of them are probably artefacts, but for instance the event at 11.36972
# might be an additional small event that was missed before
jules(gramA, filter = filter, alpha = 0.9, startTime = 9)

# getCritVal was called in jules, can be called explicitly
# for instance outside of a for loop to save computation time
q <- getCritVal(length(gramA), filter = filter)
identical(jules(gramA, q = q, filter = filter, startTime = 9), idealisation)

# both steps of JULES can be called separately
fit <- stepDetection(gramA, filter = filter, startTime = 9)
identical(deconvolveLocally(fit, data = gramA, filter = filter, startTime = 9),

idealisation)



4 clampSeg-package

# more detailed output
each <- jules(gramA, filter = filter, startTime = 9, output = "each")
every <- jules(gramA, filter = filter, startTime = 9, output = "every")

identical(idealisation, each$idealization)
idealisationEvery <- every$idealization[[3]]
attr(idealisationEvery, "noDeconvolution") <- attr(every$idealization,

"noDeconvolution")
identical(idealisation, idealisationEvery)

identical(each$fit, fit)
identical(every$fit, fit)

## zoom into a single event, (Pein et al., 2017, figure 2 lower left panel)
plot(time, gramA, pch = 16, col = "grey30", ylim = c(20, 50),

xlim = c(10.40835, 10.4103), ylab = "Conductance in pS", xlab = "Time in s")

# relevant part of the idealisation
cps <- idealisation$leftEnd[8:9]
levels <- idealisation$value[7:9]
t <- seq(cps[1] - 0.0009, cps[2] + 0.0023, 1e-6)

# idealisation
lines(t, ifelse(t < cps[1], rep(levels[1], length(t)),

ifelse(t < cps[2], rep(levels[2], length(t)),
rep(levels[3], length(t)))),

col = "#FF0000", lwd = 3)

# idealisation convolved with the filter
lines(t, levels[1] * (1 - filter$truncatedStepfun(t - cps[1])) +

levels[2] * (filter$truncatedStepfun(t - cps[1]) -
filter$truncatedStepfun(t - cps[2])) +

levels[3] * filter$truncatedStepfun(t - cps[2]),
col = "#770000", lwd = 3)

# fit prior to the deconvolution step
# does not fit the recorded data points appropriately
cps <- fit$leftEnd[8:9]
levels <- fit$value[7:9]
t <- seq(cps[1] - 0.0009, cps[2] + 0.0023, 1e-6)

# fit
lines(t, ifelse(t < cps[1], rep(levels[1], length(t)),

ifelse(t < cps[2], rep(levels[2], length(t)),
rep(levels[3], length(t)))),

col = "blue", lwd = 3)

# fit convolved with the filter
lines(t, levels[1] * (1 - filter$truncatedStepfun(t - cps[1])) +

levels[2] * (filter$truncatedStepfun(t - cps[1]) -
filter$truncatedStepfun(t - cps[2])) +



clampSeg-package 5

levels[3] * filter$truncatedStepfun(t - cps[2]),
col = "darkblue", lwd = 3)

## zoom into a single jump
plot(time, gramA, pch = 16, col = "grey30", ylim = c(20, 50),

xlim = c(9.6476, 9.6496), ylab = "Conductance in pS", xlab = "Time in s")

# relevant part of the idealisation
cp <- idealisation$leftEnd[2]
levels <- idealisation$value[1:2]
t <- seq(cp - 0.0009, cp + 0.0023, 1e-6)

# idealisation
lines(t, ifelse(t < cp, rep(levels[1], length(t)), rep(levels[2], length(t))),

col = "#FF0000", lwd = 3)

# idealisation convolved with the filter
lines(t, levels[1] * (1 - filter$stepfun(t - cp)) + levels[2] * filter$stepfun(t - cp),

col = "#770000", lwd = 3)

# idealisation with a wrong filter
# does not fit the recorded data points appropriately
wrongFilter <- lowpassFilter(type = "bessel",

param = list(pole = 6L, cutoff = 0.2),
sr = 1e4)

# Monte-Carlo simulation depend on the number of observations and on the filter
# hence a simulation is required again (if called for the first time)
# to save some time the number of iterations is reduced to r = 1e3
# hence the critical value is computed with less precision
# In general, r = 1e3 is enough for a first impression
# for a detailed analysis r = 1e4 is suggested
idealisationWrong <- jules(gramA, filter = wrongFilter, startTime = 9,

r = 1e3, messages = 100)

# relevant part of the idealisation
cp <- idealisationWrong$leftEnd[2]
levels <- idealisationWrong$value[1:2]
t <- seq(cp - 0.0012, cp + 0.0023, 1e-6)

# idealisation
lines(t, ifelse(t < cp, rep(levels[1], length(t)), rep(levels[2], length(t))),

col = "blue", lwd = 3)

# idealisation convolved with the filter
lines(t, levels[1] * (1 - filter$stepfun(t - cp)) + levels[2] * filter$stepfun(t - cp),

col = "darkblue", lwd = 3)

# simulation for a larger number of observations can be used (nq = 3e4)
# does not require a new simulation as the simulation from above will be used
# (if the previous call was executed first)



6 clampSeg-package

jules(gramA[1:2.99e4], filter = wrongFilter, startTime = 9,
nq = 3e4, r = 1e3, messages = 100)

# simulation of type "vectorIncreased" for n1 observations can only be reused
# for n2 observations if as.integer(log2(n1)) == as.integer(log2(n2))
# no simulation is required, since a simulation of type "matrixIncreased"
# will be loaded from the fileSystem
# this call also saves a simulation of type "vectorIncreased" in the workspace
jules(gramA[1:1e4], filter = filter, startTime = 9,

nq = 3e4, messages = 100, r = 1e3)
# here a new simulation is required
# (if no appropriate simulation is saved from a call outside of this file)
jules(gramA[1:1e3], filter = filter, startTime = 9,

nq = 3e4, messages = 100, r = 1e3,
options = list(load = list(workspace = c("vector", "vectorIncreased"))))

# the above calls saved and (attempted to) load Monte-Carlo simulations
# in the following call the simulations will neither be saved nor loaded
jules(gramA, filter = filter, startTime = 9, messages = 100, r = 1e3,

options = list(load = list(), save = list()))

# only simulations of type "vector" and "vectorInceased" will only be in and
# loaded from the workspace, but no simulations of type "matrix" and
# "matrixIncreased" on the file system
jules(gramA, filter = filter, startTime = 9, messages = 100,

options = list(load = list(workspace = c("vector", "vectorIncreased")),
save = list(workspace = c("vector", "vectorIncreased"))))

# explicit Monte-Carlo simulations, not recommended
stat <- stepR::monteCarloSimulation(n = length(gramA), , family = "mDependentPS",

filter = filter, output = "maximum",
r = 1e3, messages = 100)

jules(gramA, filter = filter, startTime = 9, stat = stat)

# with given standard deviation
sd <- stepR::sdrobnorm(gramA, lag = filter$len + 1)
identical(jules(gramA, filter = filter, startTime = 9, sd = sd), idealisation)

# with less regularisation of the correlation matrix
jules(gramA, filter = filter, startTime = 9, regularization = 0.5)

# with estimation of the level of long segments by the mean
# but requiring 30 observations for it
jules(gramA, filter = filter, startTime = 9,

localEstimate = mean, thresholdLongSegment = 30)

# with one refinement step less, but with a larger grid
# progress of the deconvolution is reported
# potential warning for no deconvolution is suppressed
jules(gramA, filter = filter, startTime = 9,

gridSize = c(1 / filter$sr, 1 / 10 / filter$sr),
windowFactorRefinement = 2, report = TRUE,
suppressWarningNoDeconvolution = TRUE)



deconvolveLocally 7

deconvolveLocally Local deconvolution

Description

Implements the estimation step of JULES (Pein et al., 2017, section III B) in which an initial fit
(reconstruction), e.g. computed by stepDetection, is refined by local deconvolution.

Usage

deconvolveLocally(fit, data, filter, startTime = 0, regularization = 1,
thresholdLongSegment = 10L, localEstimate = stats::median,

gridSize = c(1 / filter$sr, 1 / 10 / filter$sr, 1 / 100 / filter$sr),
windowFactorRefinement = 1,
output = c("onlyIdealization", "everyGrid"), report = FALSE,
suppressWarningNoDeconvolution = FALSE)

Arguments

fit an stepblock object or a list containing an entry fit with a stepblock object
giving the initial fit (reconstruction), e.g. computed by stepDetection

data a numeric vector containing the recorded data points

filter an object of class lowpassFilter giving the used analogue lowpass filter

startTime a single numeric giving the time at which recording (sampling) of data started,
sampling time points will be assumed to be startTime + seq(along = data) /
filter$sr

regularization a single positive numeric or a numeric vector with positive entries or a list
of length length(gridSize), with each entry a single positive numeric or a
numeric vector with positive entries, giving the regularisation added to the cor-
relation matrix, see details. For a list the i-th entry will be used in the i-th
refinement

thresholdLongSegment

a single integer giving the threshold determing how many observations are nec-
essary to estimate a level (without deconvolution)

localEstimate a function for estimating the levels of all long segments, see details, will be
called with localEstimate(data[i:j]) with i and j two integers in 1:length(data)
and j -i >= thresholdLongSegment

gridSize a numeric vector giving the size of the grids in the iterative grid search, see
details

windowFactorRefinement

a single numeric or a numeric vector of length length(gridSize) -1 giving
factors for the refinment of the grid, see details. If a single numeric is given its
value is used in all refinement steps

output a string specifing the return type, see Value



8 deconvolveLocally

report a single logical, if TRUE the progress will be reported by messages
suppressWarningNoDeconvolution

a single logical, if FALSE a warning will be given if at least one segment exists
for which no deconvolution can be performed, since two short segments follow
each other immediately

Details

The local deconvolution consists of two parts.
In the first part, all segments of the initial fit will be divided into long and short ones. The first
and lasts filter$len data points of each segment will be ignored and if the remaining data points
data[i:j] are at least thresholdLongSegment, i.e. j -i + 1 >= thresholdLongSegment, the level
(value) of this segment will be determined by localEstimate(data[i:j]).
The long segments allow in the second part to perform the deconvolution locally by maximizing the
likelihood function by an iterative grid search. Three scenarios might occur: Two long segments can
follow each other, in this case the change, but no level, has to be estimated by maximizing the like-
lihood function of only few observations in this single parameter. A single short segment can be in
between of two long segments, in this case two changes and one level have to be estimated by maxi-
mizing the likelihood function of only few observations in these three parameters. Finally, two short
segments can follow each other, in this case no deconvolution is performed and the initial param-
eters are returned for these segments together with entries in the "noDeconvolution" attribute.
More precisely, let i:j be the short segments, then i:j will be added to the "noDeconvolution"
attribute and for the idealisation (if output == "everyGrid" this applies for each entry) the
entries value[i:j], leftEnd[i:(j + 1)] and rightEnd[(i -1):j] are kept from the initial fit
without refinement by deconvolution. If suppressWarningNoDeconvolution == FALSE, addition-
ally, a warning will be given at first occurrence.
Maximisation of the likelihood is performed by minimizing (Pein et al., 2017, (9)), a term of the
form xTΣx, where Σ is the regularised correlation matrix and x a numeric vector of the same di-
mension. More precisely, the (unregularised) correlations are filter$acf, to this the regularisation
regularization is added. In detail, if regularization is a numeric, the regularised correlation
is

cor <- filter$acf
cor[seq(along = regularization)] <- cor[seq(along = regularization)] + regularization

and if regularization is a list the same, but regularization is in the i-th refinement replaced
by regularization[[i]]. Then, Σ is a symmetric Toeplitz matrix with entries cor, i.e. a matrix
with cor[1] on the main diagonal, cor[2] on the second diagonal, etc. and 0 for all entries outside
of the first length(cor) diagonals.
The minimisations are performed by an iterative grid search: In a first step potential changes will be
allowed to be at the grid / time points seq(cp -filter$len / filter$sr,cp,gridSize[1]), with
cp the considered change of the initial fit. For each grid point in case of a single change and for each
combination of grid points in case of two changes the term in (9) is computed and the change(s) for
which the minimum is attained is / are chosen. Afterwards, refinements are done with the grids

seq(cp - windowFactorRefinement[j - 1] * gridSize[j - 1],
cp + windowFactorRefinement[j - 1] * gridSize[j - 1],
gridSize[j]),

with cp the change of the iteration before, as long as entries in gridSize are given.



deconvolveLocally 9

Value

The idealisation (fit, regression) obtained by local deconvolution procedure of the estimation step
of JULES. If output == "onlyIdealization" an object of class stepblock containing the fi-
nal idealisation obtained by local deconvolution. If output == "everyGrid" a list of length
length(gridSize) containing the idealisation after each refining step. Additionally, in both cases,
an attribute "noDeconvolution", an integer vector, gives the segments for which no deconvolu-
tion could be performed, since two short segments followed each other, see details.

References

Pein, F., Tecuapetla-Gómez, I., Schütte, O., Steinem, C., Munk, A. (2017) Fully-automatic multires-
olution idealization for filtered ion channel recordings: flickering event detection. arXiv:1706.03671.

See Also

jules, stepDetection, lowpassFilter

Examples

## refinement of an initial fit of the gramicidin A recordings given by gramA
# the used filter
filter <- lowpassFilter(type = "bessel", param = list(pole = 4L, cutoff = 1e3 / 1e4),

sr = 1e4)
# initial fit
# with given q to save computation time
# this q is specific to length of the data and the filter
fit <- stepDetection(gramA, q = 1.370737, filter = filter, startTime = 9)

deconvolution <- deconvolveLocally(fit, data = gramA, filter = filter, startTime = 9)

# return fit after each refinement
every <- deconvolveLocally(fit, data = gramA, filter = filter, startTime = 9,

output = "every")

deconvolutionEvery <- every[[3]]
attr(deconvolutionEvery, "noDeconvolution") <- attr(every, "noDeconvolution")
identical(deconvolution, deconvolutionEvery)

# identical to a direct idealisation by jules
identical(jules(gramA, q = 1.370737, filter = filter, startTime = 9),

deconvolution)

# plot of the data as in (Pein et al., 2017, figure 2 middle panel)
time <- 9 + seq(along = gramA) / filter$sr # time points
plot(time, gramA, pch = ".", col = "grey30", ylim = c(20, 50),

ylab = "Conductance in pS", xlab = "Time in s")
lines(deconvolution, col = "#FF0000", lwd = 3)

## zoom into a single event, (Pein et al., 2017, figure 2 lower left panel)
plot(time, gramA, pch = 16, col = "grey30", ylim = c(20, 50),

xlim = c(10.40835, 10.4103), ylab = "Conductance in pS", xlab = "Time in s")



10 deconvolveLocally

# relevant part of the deconvolution
cps <- deconvolution$leftEnd[8:9]
levels <- deconvolution$value[7:9]
t <- seq(cps[1] - 0.0009, cps[2] + 0.0023, 1e-6)

# deconvolution
lines(t, ifelse(t < cps[1], rep(levels[1], length(t)),

ifelse(t < cps[2], rep(levels[2], length(t)),
rep(levels[3], length(t)))),

col = "#FF0000", lwd = 3)

# deconvolution convolved with the filter
lines(t, levels[1] * (1 - filter$truncatedStepfun(t - cps[1])) +

levels[2] * (filter$truncatedStepfun(t - cps[1]) -
filter$truncatedStepfun(t - cps[2])) +

levels[3] * filter$truncatedStepfun(t - cps[2]),
col = "#770000", lwd = 3)

# fit prior to the deconvolution
# does not fit the recorded data points appropriately
cps <- fit$leftEnd[8:9]
levels <- fit$value[7:9]
t <- seq(cps[1] - 0.0009, cps[2] + 0.0023, 1e-6)

# fit
lines(t, ifelse(t < cps[1], rep(levels[1], length(t)),

ifelse(t < cps[2], rep(levels[2], length(t)),
rep(levels[3], length(t)))),

col = "blue", lwd = 3)

# fit convolved with the filter
lines(t, levels[1] * (1 - filter$truncatedStepfun(t - cps[1])) +

levels[2] * (filter$truncatedStepfun(t - cps[1]) -
filter$truncatedStepfun(t - cps[2])) +

levels[3] * filter$truncatedStepfun(t - cps[2]),
col = "darkblue", lwd = 3)

## zoom into a single jump
plot(time, gramA, pch = 16, col = "grey30", ylim = c(20, 50),

xlim = c(9.6476, 9.6496), ylab = "Conductance in pS", xlab = "Time in s")

# relevant part of the deconvolution
cp <- deconvolution$leftEnd[2]
levels <- deconvolution$value[1:2]
t <- seq(cp - 0.0009, cp + 0.0023, 1e-6)

# deconvolution
lines(t, ifelse(t < cp, rep(levels[1], length(t)), rep(levels[2], length(t))),

col = "#FF0000", lwd = 3)

# deconvolution convolved with the filter



getCritVal 11

lines(t, levels[1] * (1 - filter$stepfun(t - cp)) + levels[2] * filter$stepfun(t - cp),
col = "#770000", lwd = 3)

# deconvolution with a wrong filter
# does not fit the recorded data points appropriately
wrongFilter <- lowpassFilter(type = "bessel",

param = list(pole = 6L, cutoff = 0.2),
sr = 1e4)

deconvolutionWrong <- deconvolveLocally(fit, data = gramA, filter = wrongFilter,
startTime = 9)

# relevant part of the deconvolution
cp <- deconvolutionWrong$leftEnd[2]
levels <- deconvolutionWrong$value[1:2]
t <- seq(cp - 0.0012, cp + 0.0023, 1e-6)

# deconvolution
lines(t, ifelse(t < cp, rep(levels[1], length(t)), rep(levels[2], length(t))),

col = "blue", lwd = 3)

# deconvolution convolved with the filter
lines(t, levels[1] * (1 - filter$stepfun(t - cp)) + levels[2] * filter$stepfun(t - cp),

col = "darkblue", lwd = 3)

# with less regularisation of the correlation matrix
deconvolveLocally(fit, data = gramA, filter = filter, startTime = 9,

regularization = 0.5)

# with estimation of the level of long segments by the mean
# but requiring 30 observations for it
deconvolveLocally(fit, data = gramA, filter = filter, startTime = 9,

localEstimate = mean, thresholdLongSegment = 30)

# with one refinement step less, but with a larger grid
# progress of the deconvolution is reported
# potential warning for no deconvolution is suppressed
deconvolveLocally(fit, data = gramA, filter = filter, startTime = 9,

gridSize = c(1 / filter$sr, 1 / 10 / filter$sr),
windowFactorRefinement = 2, report = TRUE,
suppressWarningNoDeconvolution = TRUE)

getCritVal Critical value

Description

Computes the critical value q in (Pein et al., 2017, (7)) based on a Monte-Carlo simulation such
that (7) is a level alpha test. Since a Monte-Carlo simulation lasts potentially much longer (up to
several hours or days if the number of observations is in the millions) than the main calculations,



12 getCritVal

the simulations are by default saved in the workspace and on the file system such that a second call
that require the same Monte-Carlo simulation will be much faster. For more details, in particular
to which arguments the Monte-Carlo simulations are specific, see Section Simulating, saving and
loading of Monte-Carlo simulations below. Progress of a Monte-Carlo simulation can be reported
by the argument messages and the saving can be controlled by the argument option.

Usage

getCritVal(n, alpha = 0.05, filter, r = 1e4, nq = n, options = NULL, stat = NULL,
messages = NULL)

Arguments

n a positive integer giving the number of observations

alpha a probability, i.e. a single numeric between 0 and 1, giving the significance
level. Its choice is a trade-off between data fit and parsimony of the estimator. In
other words, this argument balances the risks of missing changes and detecting
additional artefacts. For more details on this choice see (Frick et al., 2014,
section 4) and (Pein et al., 2017, section 3.4)

filter an object of class lowpassFilter giving the used analogue lowpass filter

r a positive integer giving the required number of Monte-Carlo simulations if they
will be simulated or loaded from the workspace or the file system

nq a positive integer larger than or equal to n giving the (increased) number of
observations for the Monte-Carlo simulation. See Section Simulating, saving
and loading of Monte-Carlo simulations for more details

options a list specifying how Monte-Carlo simulations will be simulated, saved and
loaded. For more details see Section Simulating, saving and loading of Monte-
Carlo simulations

stat an object of class "MCSimulationVector" or "MCSimulationMaximum", usu-
ally computed by monteCarloSimulation. Has to be simulated for at least the
given number of observations n and for the given filter. If missing it will be
loaded and if not found simulated accordingly to the given options. For more
details see Section Simulating, saving and loading of Monte-Carlo simulations

messages a positive integer or NULL, in each messages iteration a message will be given in
order to show the progress of the simulation, if NULL no message will be given

Value

A single numeric giving the critical value q in (Pein et al., 2017, (7)).

Simulating, saving and loading of Monte-Carlo simulations

Since a Monte-Carlo simulation lasts potentially much longer (up to several hours or days if the
number of observations is in the millions) than the main calculations, this function offers multiple
possibilities to save and load the simulations. The simulation, saving and loading can be controlled
by the argument option. This argument has to be a list or NULL. For the list the following
named entries are allowed: "simulation", "save", "load", "envir" and "dirs". All missing



getCritVal 13

entries will be set to their default option.
Each Monte-Carlo simulation is specific to the number of observations and the used filter. Monte-
Carlo simulations can also be performed for a (slightly) larger number of observations nq given
in the argument nq, which avoids extensive resimulations for only a little bit varying number of
observations at price of a (slightly) smaller detection power. We recommend to not use a nq more
than two times larger than the number of observations n.
Objects of the following types can be simulated, saved and loaded:

• "vector": an object of class "MCSimulationMaximum" for n observations, i.e. a numeric
vector of length r

• "vectorIncreased": an object of class "MCSimulationMaximum" for nq observations, i.e. a
numeric vector of length r

• "matrix": an object of class "MCSimulationVector" for n observations, i.e. a matrix of
dimensions as.integer(log2(n)) + 1L and r

• "matrixIncreased": an object of class "MCSimulationVector" for nq observations, i.e. a
matrix of as.integer(log2(n)) + 1L and r

Objects of class "MCSimulationVector" and objects of class "MCSimulationMaximum" lead to the
same result (if the number of observations is the same), but an object of class "MCSimulationVector"
requires much more storage space and has slightly larger saving and loading times. However, simu-
lations of type "vectorIncreased", i.e. objects of class "MCSimulationMaximum" with nq obser-
vations, have to be resimulated if as.integer(log2(n1)) != as.integer(log2(n2)) when the
saved simulation was computed with n == n1 and the simulation now is required for n == n2 and nq
>= n1 and nq >= n2. All in all, if all data sets in the analysis have the same number of observations
simulations of type "vector" are recommended. If they have a slightly different number of observa-
tions it is recommend to set nq to the largest number and to use simulations for an increased number
of observations: If as.integer(log2(n)) is the same for all data sets type "vectorIncreased"
is recommend, if they differ type "matrixIncreased" avoids a resimulation at the price of a larger
object to be stored and loaded.
The simulations can either be saved in the workspace in the variable critValStepRTab or persis-
tently on the file system for which the package R.cache is used. Loading from the workspace is
faster, but either the user has to save the workspace manually or in a new session simulations have
to be performed again. Moreover, storing in and loading from variables and RDS files is supported.

options$envir and options$dirs: For loading from / saving in the workspace the variable
critValStepRTab in the environment options$envir will be looked for and if missing in case
of saving also created there. Moreover, the variable(s) specified in options$save$variable (ex-
plained in the Subsection Saving: options$save) will be assigned to this environment. By default
the global environment .GlobalEnv is used, i.e. options$envir == .GlobalEnv.
For loading from / saving on the file system loadCache(key = keyList,dirs = options$dirs)
and saveCache(stat,key = attr(stat,"keyList"),dirs = options$dirs) are called, respec-
tively. In other words, options$dirs has to be a character vector constituting the path to the
cache subdirectory relative to the cache root directory as returned by getCacheRootPath(). If
options$dirs == "", the path will be the cache root path. By default the subdirectory "stepR"
is used, i.e. options$dirs == "stepR". Missing directories will be created.

Simulation: options$simulation: Whenever Monte-Carlo simulations have to be performed,
i.e. when stat == NULL and the required Monte-Carlo simulation could not be loaded, the type
specified in options$simulation will be simulated by monteCarloSimulation. In other words,



14 getCritVal

options$simulation must be a single string of the following: "vector", "vectorIncreased",
"matrix" or "matrixIncreased". By default (options$simulation == NULL), an object of
class "MCSimulationVector" for nq observations will be simulated, i.e. options$simulation
== "matrixIncreased". For this choice please recall the explanations regarding computation
time and flexibility at the beginning of this section.

Loading: options$load: Loading of the simulations can be controlled by the entry options$load
which itself has to be a list with possible entries: "RDSfile", "workspace", "package" and
"fileSystem". Missing entries disable the loading from this option. Whenever a Monte-Carlo
simulation is required, i.e. when the variable q is not given, it will be searched for at the following
places in the given order until found:

1. in the variable stat,
2. in options$load$RDSfile as an RDS file, i.e. the simulation will be loaded by

readRDS(options$load$RDSfile).

In other words, options$load$RDSfile has to be a connection or the name of the file
where the R object is read from,

3. in the workspace or on the file system in the following order: "vector", "matrix", "vectorIncreased"
and finally of "matrixIncreased". For each option it will first be looked in the workspace
and then on the file system. All searches can be disabled by not specifying the correspond-
ing string in options$load$workspace and options$load$fileSystem. In other words,
options$load$workspace and options$load$fileSystem have to be vectors of strings
containing none, some or all of "vector", "matrix", "vectorIncreased" and "matrixIncreased",

4. if all other options fail a Monte-Carlo simulation will be performed.

By default (if options$load is missing / NULL) no RDS file is specified and all other options are
enabled, i.e.

options$load <- list(workspace = c("vector", "vectorIncreased",
"matrix", "matrixIncreased"),

fileSystem = c("vector", "vectorIncreased",
"matrix", "matrixIncreased"),

RDSfile = NULL).

Saving: options$save: Saving of the simulations can be controlled by the entry options$save
which itself has to be a list with possible entries: "workspace", "fileSystem", "RDSfile" and
"variable". Missing entries disable the saving in this option.
All available simulations, no matter whether they are given by stat, loaded, simulated or in
case of "vector" and "vectorIncreased" computed from "matrix" and "matrixIncreased",
respectively, will be saved in all options for which the corresponding type is specified. Here we
say a simulation is of type "vectorIncreased" or "matrixIncreased" if the simulation is not
performed for n observations. More specifically, a simulation will be saved:

1. in the workspace or on the file system if the corresponding string is contained in options$save$workspace
and options$save$fileSystem, respectively. In other words, options$save$workspace
and options$save$fileSystem have to be vectors of strings containing none, some or all
of "vector", "matrix", "vectorIncreased" and "matrixIncreased",

2. in a variable named by options$save$variable in the environment options$envir. Hence,
options$save$variable has to be a vector of one or two containing variable names (char-
acter vectors). If options$save$variable is of length two a simulation of type "vector" or
"vectorIncreased" (only one can occur at one function call) will be saved in options$save$variable[1]



getCritVal 15

and "matrix" or "matrixIncreased" (only one can occur at one function call) will be
saved in options$save$variable[2]. If options$save$variable is of length one both
will be saved in options$save$variable which means if both occur at the same call only
"vector" or "vectorIncreased" will be saved. Each saving can be disabled by not specify-
ing options$save$variable or by passing "" to the corresponding entry of options$save$variable.

By default (if options$save is missing) "vector" and "vectorIncreased" will be saved in the
workspace and "matrixIncreased" on the file system, i.e.

options$save <- list(workspace = c("vector", "vectorIncreased"),
fileSystem = c("matrix", "matrixIncreased"),
RDSfile = NULL, variable = NULL).

Simulations can be removed from the workspace by removing the variable critValStepRTab,
i.e. by calling remove(critValStepRTab,envir = envir), with envir the used environment,
and from the file system by deleting the corresponding subfolder, i.e. by calling

unlink(file.path(R.cache::getCacheRootPath(), dirs), recursive = TRUE),

with dirs the corresponding subdirectory.

References

Pein, F., Tecuapetla-Gómez, I., Schütte, O., Steinem, C., Munk, A. (2017) Fully-automatic multires-
olution idealization for filtered ion channel recordings: flickering event detection. arXiv:1706.03671.

Frick, K., Munk, A., Sieling, H. (2014) Multiscale change-point inference. With discussion and
rejoinder by the authors. Journal of the Royal Statistical Society, Series B 76(3), 495–580.

Pein, F., Sieling, H., Munk, A. (2017) Heterogeneous change point inference. Journal of the Royal
Statistical Society, Series B, 79(4), 1207–1227.

See Also

jules, lowpassFilter, stepDetection

Examples

# the for the recording of the gramA data set used filter
filter <- lowpassFilter(type = "bessel", param = list(pole = 4L, cutoff = 1e3 / 1e4),

sr = 1e4)

# critical value for jules or stepDetection
# this call requires a Monte-Carlo simulation at the first time
# and therefore might last a few minutes,
# progress of the Monte-Carlo simulation is reported
q <- getCritVal(length(gramA), filter = filter, messages = 100)

# this second call should be much faster
# as the previous Monte-Carlo simulation will be loaded
getCritVal(length(gramA), filter = filter)

# much larger significance level alpha for a larger detection power,
# but also with the risk of detecting additional artefacts
getCritVal(length(gramA), filter = filter, alpha = 0.9)



16 getCritVal

# medium significance level alpha for a tradeoff between detection power
# and the risk to detect additional artefacts
getCritVal(length(gramA), filter = filter, alpha = 0.5)

# critical values depend on the number of observations and on the filter
# also a new Monte-Carlo simulation is required
getCritVal(100, filter = filter, messages = 500)

otherFilter <- lowpassFilter(type = "bessel",
param = list(pole = 6L, cutoff = 0.2),
sr = 1e4)

getCritVal(100, filter = otherFilter, messages = 500)

# simulation for a larger number of oberservations can be used (nq = 100)
# does not require a new simulation as the simulation from above will be used
# (if the previous call was executed first)
getCritVal(90, filter = filter, nq = 100)

# simulation of type "vectorIncreased" for n1 observations can only be reused
# for n2 observations if as.integer(log2(n1)) == as.integer(log2(n2))
# no simulation is required, since a simulation of type "matrixIncreased"
# will be loaded from the fileSystem
# this call also saved a simulation of type "vectorIncreased" in the workspace
getCritVal(30, filter = filter, nq = 100)
# here a new simulation is required
# (if no appropriate simulation is saved from a call outside of this file)
getCritVal(10, filter = filter, nq = 100, messages = 500,

options = list(load = list(workspace = c("vector", "vectorIncreased"))))

# the above calls saved and (attempted to) load Monte-Carlo simulations
# in the following call the simulations will neither be saved nor loaded
# to save some time the number of iterations is reduced to r = 1e3
# hence the critical value is computed with less precision
# In general, r = 1e3 is enough for a first impression
# for a detailed analysis r = 1e4 is suggested
getCritVal(100, filter = filter, messages = 100, r = 1e3,

options = list(load = list(), save = list()))

# simulations will only be saved in and loaded from the workspace,
# but not on the file system
getCritVal(100, filter = filter, messages = 100, r = 1e3,

options = list(load = list(workspace = c("vector", "vectorIncreased")),
save = list(workspace = c("vector", "vectorIncreased"))))

# explicit Monte-Carlo simulations, not recommended
stat <- stepR::monteCarloSimulation(n = 100, , family = "mDependentPS",

filter = filter, output = "maximum",
r = 1e3, messages = 100)

getCritVal(100, filter = filter, stat = stat)



gramA 17

gramA Patch clamp recording of gramicidin A

Description

3 second part of a patch clamp recording of gramicidin A with solvent-free lipid bilayers using
the Port-a-Patch measured in the Steinem lab (Institute of Organic and Biomolecular Chemistry,
University of Goettingen). All rights reserved by them. The recorded data points are a conducatance
trace in pico Siemens and were recorded at a sampling rate of 10 kHz using a 1 kHz 4-pole Bessel
filter. More details of the recording can be found in (Pein et al., 2017, section V A) and a plot in the
examples or in (Pein et al., 2017, figure 1 lower panel).

Usage

gramA

Format

A numeric vector containing 30,000 values.

References

Pein, F., Tecuapetla-Gómez, I., Schütte, O., Steinem, C., Munk, A. (2017) Fully-automatic multires-
olution idealization for filtered ion channel recordings: flickering event detection. arXiv:1706.03671.

Examples

# the recorded data points
gramA

# the used filter
filter <- lowpassFilter(type = "bessel", param = list(pole = 4L, cutoff = 1e3 / 1e4),

sr = 1e4)

# the corresponding time points
time <- 9 + seq(along = gramA) / filter$sr

# plot of the data as in (Pein et al., 2017, figure 1 lower panel)
plot(time, gramA, pch = ".", col = "grey30", ylim = c(20, 50),

ylab = "Conductance in pS", xlab = "Time in s")



18 jules

jules JULES

Description

Implements the JUmp Local dEconvolution Segmentation (JULES) filter (Pein et al., 2017). This
non-parametric (model-free) segmentation method combines statistical multiresolution techniques
with local deconvolution for idealising patch clamp (ion channel) recordings. In particular, also
flickering (events on small time scales) can be detected and idealised which is not possible with
common thresholding methods.
If q == NULL a Monte-Carlo simulation is required for computing the critical value. Since a Monte-
Carlo simulation lasts potentially much longer (up to several hours or days if the number of ob-
servations is in the millions) than the main calculations, this package saves them by default in the
workspace and on the file system such that a second call requiring the same Monte-Carlo simulation
will be much faster. For more details, in particular to which arguments the Monte-Carlo simulations
are specific, see Section Storing of Monte-Carlo simulations below. Progress of a Monte-Carlo sim-
ulation can be reported by the argument messages and the saving can be controlled by the argument
option, both can be specified in ... and are explained in getCritVal.

Usage

jules(data, filter, q = NULL, alpha = 0.05, sd = NULL, startTime = 0,
output = c("onlyIdealization", "eachStep", "everything"), ...)

Arguments

data a numeric vector containing the recorded data points

filter an object of class lowpassFilter giving the used analogue lowpass filter

q a single numeric giving the critical value q in (Pein et al., 17, (7)), by default
chosen automatically by getCritVal

alpha a probability, i.e. a single numeric between 0 and 1, giving the significance
level to compute the critical value q (if q == NULL), see getCritVal. Its choice
is a trade-off between data fit and parsimony of the estimator. In other words,
this argument balances the risks of missing changes and detecting additional
artefacts. For more details on this choice see (Frick et al., 2014, section 4) and
(Pein et al., 2016, section 3.4)

sd a single positive numeric giving the standard deviation (noise level) σ0 of the
data points before filtering, by default (NULL) estimated by sdrobnorm with
lag = filter$len + 1L

startTime a single numeric giving the time at which recording (sampling) of data started,
sampling time points will be assumed to be startTime + seq(along = data) /
filter$sr

output a string specifing the return type, see Value

... additional parameters to be passed to getCritVal or deconvolveLocally:



jules 19

1. getCritVal will be called automatically (if q == NULL), the number of data
points n = length(data) will be set and alpha and filter will be passed.
For these parameter no user interaction is required and possible, all other
parameters of getCritVal can be passed additionally

2. deconvolveLocally will be called automatically, the by stepDetection
computed reconstruction / fit will be passed to fit and data, filter,
startTime will be passed and output will be set accordingly to the output
argument. For these parameter no user interaction is required and possible,
all other parameters of deconvolveLocally can be passed additionally

Value

The idealisation (estimation, regression) obtained by JULES. If output == "onlyIdealization"
an object object of class stepblock containing the idealisation. If output == "eachStep" a list
containing the entries idealization with the idealisation, fit with the fit obtained by the detection
step only, q with the given / computed critical value, filter with the given filter and sd with
the given / estimated standard deviation. If output == "everything" a list containing the en-
tries idealization with a list containing the idealisation after each refining step in the local
deconvolution, fit with the fit obtained by the detection step only, stepfit with the fit ob-
tained by the detection step before postfiltering, q with the given / computed critical value,
filter with the given filter and sd with the given / estimated standard deviation. Additionally,
in all cases, the idealisation has an attribute "noDeconvolution", an integer vector, that gives
the segments for which no deconvolution could be performed, since two short segments followed
each other, see also details in deconvolveLocally.

Storing of Monte-Carlo simulations

If q == NULL a Monte-Carlo simulation is required to compute the critical value. Since a Monte-
Carlo simulation lasts potentially much longer (up to several hours or days if the number of obser-
vations is in the millions) than the main calculations, multiple possibilities for saving and loading the
simulations are offered. Progress of a simulation can be reported by the argument messages which
can be specified in ... and is explained in the documentation of getCritVal. Each Monte-Carlo
simulation is specific to the number of observations and the used filter. But note that also Monte-
Carlo simulations for a (slightly) larger number of observations nq , given in the argument nq in ...
and explained in the documentation of getCritVal, can be used, which avoids extensive resimula-
tions for only a little bit varying number of observations, but results in a (small) loss of power. How-
ever, simulations of type "vectorIncreased", i.e. objects of class "MCSimulationMaximum" with
nq observations, have to be resimulated if as.integer(log2(n1)) != as.integer(log2(n2))
when the saved simulation was computed with n == n1 and the simulation now is required for n
== n2 and nq >= n1 and nq >= n2. Simulations can either be saved in the workspace in the variable
critValStepRTab or persistently on the file system for which the package R.cache is used. More-
over, storing in and loading from variables and RDS files is supported. The simulation, saving and
loading can be controlled by the argument option which can be specified in ... and is explained
in the documentation of getCritVal. By default simulations will be saved in the workspace and on
the file system. For more details and for how simulation can be removed see Section Simulating,
saving and loading of Monte-Carlo simulations in getCritVal.



20 jules

References

Pein, F., Tecuapetla-Gómez, I., Schütte, O., Steinem, C., Munk, A. (2017) Fully-automatic multires-
olution idealization for filtered ion channel recordings: flickering event detection. arXiv:1706.03671.

See Also

critVal, lowpassFilter, deconvolveLocally, stepDetection

Examples

## idealisation of the gramicidin A recordings given by gramA with jules
# the used filter
filter <- lowpassFilter(type = "bessel", param = list(pole = 4L, cutoff = 1e3 / 1e4),

sr = 1e4)

# idealisation by JULES
# this call requires a Monte-Carlo simulation
# and therefore might last a few minutes,
# progress of the Monte-Carlo simulation is reported
idealisation <- jules(gramA, filter = filter, startTime = 9, messages = 100)

# this second call should be much faster
# as the previous Monte-Carlo simulation will be loaded
jules(gramA, filter = filter, startTime = 9)

# plot of the data as in (Pein et al., 2017, figure 2 middle panel)
time <- 9 + seq(along = gramA) / filter$sr # time points
plot(time, gramA, pch = ".", col = "grey30", ylim = c(20, 50),

ylab = "Conductance in pS", xlab = "Time in s")
lines(idealisation, col = "#FF0000", lwd = 3)

# much larger significance level alpha for a larger detection power,
# but also with the risk of detecting additional artefacts
# in this example much more changes are detected,
# most of them are probably artefacts, but for instance the event at 11.36972
# might be an additional small event that was missed before
jules(gramA, filter = filter, alpha = 0.9, startTime = 9)

# getCritVal was called in jules, can be called explicitly
# for instance outside of a for loop to save computation time
q <- getCritVal(length(gramA), filter = filter)
identical(jules(gramA, q = q, filter = filter, startTime = 9), idealisation)

# more detailed output with information about the single steps
each <- jules(gramA, filter = filter, startTime = 9, output = "each")
every <- jules(gramA, filter = filter, startTime = 9, output = "every")

identical(idealisation, each$idealization)
idealisationEvery <- every$idealization[[3]]
attr(idealisationEvery, "noDeconvolution") <- attr(every$idealization,

"noDeconvolution")
identical(idealisation, idealisationEvery)



jules 21

fit <- stepDetection(gramA, filter = filter, startTime = 9)
identical(each$fit, fit)
identical(every$fit, fit)

## zoom into a single event, (Pein et al., 2017, figure 2 lower left panel)
plot(time, gramA, pch = 16, col = "grey30", ylim = c(20, 50),

xlim = c(10.40835, 10.4103), ylab = "Conductance in pS", xlab = "Time in s")

# relevant part of the idealisation
cps <- idealisation$leftEnd[8:9]
levels <- idealisation$value[7:9]
t <- seq(cps[1] - 0.0009, cps[2] + 0.0023, 1e-6)

# idealisation
lines(t, ifelse(t < cps[1], rep(levels[1], length(t)),

ifelse(t < cps[2], rep(levels[2], length(t)),
rep(levels[3], length(t)))),

col = "#FF0000", lwd = 3)

# idealisation convolved with the filter
lines(t, levels[1] * (1 - filter$truncatedStepfun(t - cps[1])) +

levels[2] * (filter$truncatedStepfun(t - cps[1]) -
filter$truncatedStepfun(t - cps[2])) +

levels[3] * filter$truncatedStepfun(t - cps[2]),
col = "#770000", lwd = 3)

# fit prior to the deconvolution step
# does not fit the recorded data points appropriately
cps <- fit$leftEnd[8:9]
levels <- fit$value[7:9]
t <- seq(cps[1] - 0.0009, cps[2] + 0.0023, 1e-6)

# fit
lines(t, ifelse(t < cps[1], rep(levels[1], length(t)),

ifelse(t < cps[2], rep(levels[2], length(t)),
rep(levels[3], length(t)))),

col = "blue", lwd = 3)

# fit convolved with the filter
lines(t, levels[1] * (1 - filter$truncatedStepfun(t - cps[1])) +

levels[2] * (filter$truncatedStepfun(t - cps[1]) -
filter$truncatedStepfun(t - cps[2])) +

levels[3] * filter$truncatedStepfun(t - cps[2]),
col = "darkblue", lwd = 3)

## zoom into a single jump
plot(time, gramA, pch = 16, col = "grey30", ylim = c(20, 50),

xlim = c(9.6476, 9.6496), ylab = "Conductance in pS", xlab = "Time in s")

# relevant part of the idealisation



22 jules

cp <- idealisation$leftEnd[2]
levels <- idealisation$value[1:2]
t <- seq(cp - 0.0009, cp + 0.0023, 1e-6)

# idealisation
lines(t, ifelse(t < cp, rep(levels[1], length(t)), rep(levels[2], length(t))),

col = "#FF0000", lwd = 3)

# idealisation convolved with the filter
lines(t, levels[1] * (1 - filter$stepfun(t - cp)) + levels[2] * filter$stepfun(t - cp),

col = "#770000", lwd = 3)

# idealisation with a wrong filter
# does not fit the recorded data points appropriately
wrongFilter <- lowpassFilter(type = "bessel",

param = list(pole = 6L, cutoff = 0.2),
sr = 1e4)

# Monte-Carlo simulation depend on the number of observations and on the filter
# hence a simulation is required again (if called for the first time)
# to save some time the number of iterations is reduced to r = 1e3
# hence the critical value is computed with less precision
# In general, r = 1e3 is enough for a first impression
# for a detailed analysis r = 1e4 is suggested
idealisationWrong <- jules(gramA, filter = wrongFilter, startTime = 9,

r = 1e3, messages = 100)

# relevant part of the idealisation
cp <- idealisationWrong$leftEnd[2]
levels <- idealisationWrong$value[1:2]
t <- seq(cp - 0.0012, cp + 0.0023, 1e-6)

# idealisation
lines(t, ifelse(t < cp, rep(levels[1], length(t)), rep(levels[2], length(t))),

col = "blue", lwd = 3)

# idealisation convolved with the filter
lines(t, levels[1] * (1 - filter$stepfun(t - cp)) + levels[2] * filter$stepfun(t - cp),

col = "darkblue", lwd = 3)

# simulation for a larger number of observations can be used (nq = 3e4)
# does not require a new simulation as the simulation from above will be used
# (if the previous call was executed first)
jules(gramA[1:2.99e4], filter = wrongFilter, startTime = 9,

nq = 3e4, r = 1e3, messages = 100)

# simulation of type "vectorIncreased" for n1 observations can only be reused
# for n2 observations if as.integer(log2(n1)) == as.integer(log2(n2))
# no simulation is required, since a simulation of type "matrixIncreased"
# will be loaded from the fileSystem
# this call also saves a simulation of type "vectorIncreased" in the workspace
jules(gramA[1:1e4], filter = filter, startTime = 9,

nq = 3e4, messages = 100, r = 1e3)



lowpassFilter 23

# here a new simulation is required
# (if no appropriate simulation is saved from a call outside of this file)
jules(gramA[1:1e3], filter = filter, startTime = 9,

nq = 3e4, messages = 100, r = 1e3,
options = list(load = list(workspace = c("vector", "vectorIncreased"))))

# the above calls saved and (attempted to) load Monte-Carlo simulations
# in the following call the simulations will neither be saved nor loaded
jules(gramA, filter = filter, startTime = 9, messages = 100, r = 1e3,

options = list(load = list(), save = list()))

# only simulations of type "vector" and "vectorInceased" will only be in and
# loaded from the workspace, but no simulations of type "matrix" and
# "matrixIncreased" on the file system
jules(gramA, filter = filter, startTime = 9, messages = 100,

options = list(load = list(workspace = c("vector", "vectorIncreased")),
save = list(workspace = c("vector", "vectorIncreased"))))

# explicit Monte-Carlo simulations, not recommended
stat <- stepR::monteCarloSimulation(n = length(gramA), , family = "mDependentPS",

filter = filter, output = "maximum",
r = 1e3, messages = 100)

jules(gramA, filter = filter, startTime = 9, stat = stat)

# with given standard deviation
sd <- stepR::sdrobnorm(gramA, lag = filter$len + 1)
identical(jules(gramA, filter = filter, startTime = 9, sd = sd), idealisation)

# with less regularisation of the correlation matrix
jules(gramA, filter = filter, startTime = 9, regularization = 0.5)

# with estimation of the level of long segments by the mean
# but requiring 30 observations for it
jules(gramA, filter = filter, startTime = 9,

localEstimate = mean, thresholdLongSegment = 30)

# with one refinement step less, but with a larger grid
# progress of the deconvolution is reported
# potential warning for no deconvolution is suppressed
jules(gramA, filter = filter, startTime = 9,

gridSize = c(1 / filter$sr, 1 / 10 / filter$sr),
windowFactorRefinement = 2, report = TRUE,
suppressWarningNoDeconvolution = TRUE)

lowpassFilter Lowpass filtering

Description

Create lowpass filter.



24 lowpassFilter

Usage

lowpassFilter(type = c("bessel"), param, sr = 1, len = NULL, shift = 0.5)
## S3 method for class 'lowpassFilter'
print(x, ...)

Arguments

type a string specifying the type of the filter, currently only Bessel filters are sup-
ported

param a list specifying the parameters of the filter depending on type. For "bessel"
the entries pole and cutoff have to be specified and no other named entries
are allowed. pole has to be a single integer giving the number of poles (order).
cutoff has to be a single positive numeric not larger than 1 giving the normal-
ized cutoff frequency, i.e. the cutoff frequency (in the temporal domain) of the
filter divided by the sampling rate

sr a single numeric giving the sampling rate

len a single integer giving the filter length of the truncated and digitised filter, see
Value for more details. By default (NULL) chosen such that the autocorrelation
function is below 1e-3 at len / sr and all lager lags (len + i) / sr, with i a
positive integer

shift a single numeric between 0 and 1 giving a shift for the digitised filter, i.e. kernel
and step are obtained at (0:len + shift) / sr from the corresponding functions

x the object

... for generic methods only

Value

An object of class lowpassFilter, i.e. a list that contains

"type", "param", "sr", "len" the corresponding arguments

"kernfun" the kernel function of the filter, obtained as the Laplace transform of the corresponding
transfer function

"stepfun" the step-response of the filter, i.e. the antiderivative of the filter kernel

"acfun" the autocorrelation function, i.e. the convolution of the filter kernel with itself

"truncatedKernfun" the kernel function of the at len / sr truncated filter, i.e. kernfun truncated
and rescaled such that the new kernel still integrates to 1

"truncatedStepfun" the step-response of the at len / sr truncated filter, i.e. the antiderivative of
the kernel of the truncated filter

"truncatedAcfun" the autocorrelation function of the at len / sr truncated filter, i.e. the convo-
lution of the kernel of the truncated filter with itself

"kern" the digitised filter kernel normalised to one, i.e. kernfun((0:len + shift) / sr) / sum(kernfun((0:len
+ shift) / sr))

"step" the digitised step-response of the filter, i.e. stepfun((0:len + shift) / sr)

"acf" the discrete autocorrelation, i.e. acfun(0:len / sr)



lowpassFilter 25

Author(s)

This function is a modified and extended version of the dfilter function in the stepR package
written by Thomas Hotz. New code is written by Florian Pein and Inder Tecuapetla-Gómez.

See Also

filter

Examples

# the filter used for the gramicidin A recordings given by gramA
filter <- lowpassFilter(type = "bessel", param = list(pole = 4L, cutoff = 1e3 / 1e4),

sr = 1e4)

# filter kernel, truncated version
plot(filter$kernfun, xlim = c(0, 20 / filter$sr))
t <- seq(0, 20 / filter$sr, 0.01 / filter$sr)
# truncated version looks very similar
lines(t, filter$truncatedKernfun(t), col = "red")

# filter$len (== 11) is chosen such that filter$acf < 1e-3 for it and all larger lags
plot(filter$acfun, xlim = c(0, 20 / filter$sr), ylim = c(-0.003, 0.003))
abline(h = 0.001, lty = "22")
abline(h = -0.001, lty = "22")

abline(v = (filter$len - 1L) / filter$sr, col = "grey")
abline(v = filter$len / filter$sr, col = "red")

## zoom into a single jump of the idealisation
## we suggest to do this for every new measurement setup once
## to control whether the correct filter is assumed
# idealisation by JULES (might take some time if not called somewhere before,
# please see its documentation for more details)
idealisation <- jules(gramA, filter = filter, startTime = 9, messages = 100)

## zoom into a single jump
plot(9 + seq(along = gramA) / filter$sr, gramA, pch = 16, col = "grey30",

ylim = c(20, 50), xlim = c(9.6476, 9.6496), ylab = "Conductance in pS",
xlab = "Time in s")

# relevant part of the idealisation
cp <- idealisation$leftEnd[2]
levels <- idealisation$value[1:2]
t <- seq(cp - 0.0009, cp + 0.0023, 1e-6)

# idealisation
lines(t, ifelse(t < cp, rep(levels[1], length(t)), rep(levels[2], length(t))),

col = "#FF0000", lwd = 3)

# idealisation convolved with the filter
lines(t, levels[1] * (1 - filter$stepfun(t - cp)) + levels[2] * filter$stepfun(t - cp),

col = "#770000", lwd = 3)



26 stepDetection

# idealisation with a wrong filter
# does not fit the recorded data points appropriately
wrongFilter <- lowpassFilter(type = "bessel",

param = list(pole = 6L, cutoff = 0.2),
sr = 1e4)

# the needed Monte-Carlo simulation depends on the number of observations and the filter
# hence a new simulation is required (if called for the first time)
idealisationWrong <- jules(gramA, filter = wrongFilter, startTime = 9, messages = 100)

# relevant part of the idealisation
cp <- idealisationWrong$leftEnd[2]
levels <- idealisationWrong$value[1:2]
t <- seq(cp - 0.0012, cp + 0.0023, 1e-6)

# idealisation
lines(t, ifelse(t < cp, rep(levels[1], length(t)), rep(levels[2], length(t))),

col = "blue", lwd = 3)

# idealisation convolved with the filter
lines(t, levels[1] * (1 - filter$stepfun(t - cp)) + levels[2] * filter$stepfun(t - cp),

col = "darkblue", lwd = 3)

# filter with sr == 1
filter <- lowpassFilter(type = "bessel", param = list(pole = 4L, cutoff = 1e3 / 1e4))

# filter kernel and its truncated version
plot(filter$kernfun, xlim = c(0, 20 / filter$sr))
t <- seq(0, 20 / filter$sr, 0.01 / filter$sr)
# truncated version looks very similar
lines(t, filter$truncatedKernfun(t), col = "red")
# digitised filter
points((0:filter$len + 0.5) / filter$sr, filter$kern, col = "red", pch = 16)

# without a shift
filter <- lowpassFilter(type = "bessel", param = list(pole = 4L, cutoff = 1e3 / 1e4),

shift = 0)
# filter$kern starts with zero
points(0:filter$len / filter$sr, filter$kern, col = "blue", pch = 16)

# much shorter filter
filter <- lowpassFilter(type = "bessel", param = list(pole = 4L, cutoff = 1e3 / 1e4),

len = 4L)
points((0:filter$len + 0.5) / filter$sr, filter$kern, col = "darkgreen", pch = 16)

stepDetection Detection of steps / jumps by a multiresolution criterion



stepDetection 27

Description

Implements the detection step of JULES (Pein et al., 2017, section III B) which consists of a fit
by a multiresolution criterion computed by a dynamic program and a postfilter step that removes
incremental steps. This initial fit (reconstruction) can then be refined by local deconvolution imple-
mented in deconvolveLocally to obtain JULES, also implemented in jules.
If q == NULL a Monte-Carlo simulation is required for computing the critical value. Since a Monte-
Carlo simulation lasts potentially much longer (up to several hours or days if the number of ob-
servations is in the millions) than the main calculations, this package saves them by default in
the workspace and on the file system such that a second call that require the same Monte-Carlo
simulation will be much faster. For more details, in particular to which arguments the Monte-
Carlo simulations are specific, see Section Storing of Monte-Carlo simulations below. Progress
of a Monte-Carlo simulation can be reported by the argument messages and the saving can be
controlled by the argument option, both can be specified in ... and are explained in getCritVal.

Usage

stepDetection(data, filter, q = NULL, alpha = 0.05, sd = NULL, startTime = 0,
output = c("onlyFit", "everything"), ...)

Arguments

data a numeric vector containing the recorded data points

filter an object of class lowpassFilter giving the used analogue lowpass filter

q a single numeric giving the critical value q in (Pein et al., 17, (7)), by default
chosen automatically by getCritVal

alpha a probability, i.e. a single numeric between 0 and 1, giving the significance
level to compute the critical value q (if q == NULL), see getCritVal. Its choice
is a trade-off between data fit and parsimony of the estimator. In other words,
this argument balances the risks of missing changes and detecting additional
artefacts. For more details on this choice see (Frick et al., 2014, section 4) and
(Pein et al., 2016, section 3.4)

sd a single positive numeric giving the standard deviation (noise level) σ0 of the
data points before filtering, by default (NULL) estimated by sdrobnorm with
lag = filter$len + 1L

startTime a single numeric giving the time at which recording (sampling) of data started,
sampling time points will be assumed to be startTime + seq(along = data) /
filter$sr

output a string specifing the return type, see Value

... additional parameters to be passed to getCritVal. getCritVal will be called
automatically (if q == NULL), the number of data points n = length(data) will
be set and alpha and filter will be passed. For these parameter no user in-
teraction is required and possible, all other parameters of getCritVal can be
passed additionally



28 stepDetection

Value

The reconstruction (fit) obtained by the detection step of JULES. If output == "onlyFit" an object
object of class stepblock containing the fit. If output == "everything" a list containing the
entries fit with the fit, stepfit with the fit before postfiltering, q with the given / computed
critical value, filter with the given filter and sd with the given / estimated standard deviation.

Storing of Monte-Carlo simulations

If q == NULL a Monte-Carlo simulation is required to compute the critical value. Since a Monte-
Carlo simulation lasts potentially much longer (up to several hours or days if the number of obser-
vations is in the millions) than the main calculations, multiple possibilities for saving and loading the
simulations are offered. Progress of a simulation can be reported by the argument messages which
can be specified in ... and is explained in the documentation of getCritVal. Each Monte-Carlo
simulation is specific to the number of observations and the used filter. But note that also Monte-
Carlo simulations for a (slightly) larger number of observations nq , given in the argument nq in ...
and explained in the documentation of getCritVal, can be used, which avoids extensive resimula-
tions for only a little bit varying number of observations, but results in a (small) loss of power. How-
ever, simulations of type "vectorIncreased", i.e. objects of class "MCSimulationMaximum" with
nq observations, have to be resimulated if as.integer(log2(n1)) != as.integer(log2(n2))
when the saved simulation was computed with n == n1 and the simulation now is required for n
== n2 and nq >= n1 and nq >= n2. Simulations can either be saved in the workspace in the variable
critValStepRTab or persistently on the file system for which the package R.cache is used. More-
over, storing in and loading from variables and RDS files is supported. The simulation, saving and
loading can be controlled by the argument option which can be specified in ... and is explained
in the documentation of getCritVal. By default simulations will be saved in the workspace and on
the file system. For more details and for how simulation can be removed see Section Simulating,
saving and loading of Monte-Carlo simulations in getCritVal.

References

Pein, F., Tecuapetla-Gómez, I., Schütte, O., Steinem, C., Munk, A. (2017) Fully-automatic multires-
olution idealization for filtered ion channel recordings: flickering event detection. arXiv:1706.03671.

See Also

jules, getCritVal, lowpassFilter, deconvolveLocally

Examples

## fit of the gramicidin A recordings given by gramA
# the used filter
filter <- lowpassFilter(type = "bessel", param = list(pole = 4L, cutoff = 1e3 / 1e4),

sr = 1e4)

# this call requires a Monte-Carlo simulation
# and therefore might last a few minutes,
# progress of the Monte-Carlo simulation is reported
fit <- stepDetection(gramA, filter = filter, startTime = 9, messages = 100)

# this second call should be much faster



stepDetection 29

# as the previous Monte-Carlo simulation will be loaded
stepDetection(gramA, filter = filter, startTime = 9)

# much larger significance level alpha for a larger detection power,
# but also with the risk of detecting additional artefacts
# in this example much more changes are detected,
# most of them are probably artefacts, but for instance the event at 11.3699
# might be an additional small event that was missed before
stepDetection(gramA, filter = filter, alpha = 0.9, startTime = 9)

# getCritVal was called in stepDetection, can be called explicitly
# for instance outside of a for loop to save computation time
q <- getCritVal(length(gramA), filter = filter)
identical(stepDetection(gramA, q = q, filter = filter, startTime = 9), fit)

# more detailed output
every <- stepDetection(gramA, filter = filter, startTime = 9, output = "every")
identical(every$fit, fit)
identical(every$q, q)
identical(every$sd, stepR::sdrobnorm(gramA, lag = filter$len + 1L))
identical(every$filter, every$filter)

# for this data set no incremental changes occur
identical(every$stepfit, every$stepfit)

## zoom into a single event
time <- 9 + seq(along = gramA) / filter$sr # time points
plot(time, gramA, pch = 16, col = "grey30", ylim = c(20, 50),

xlim = c(10.40835, 10.4103), ylab = "Conductance in pS", xlab = "Time in s")

# fit is a piecewise constant approximation of the observations
# hence its convolution does not fit the recorded data points appropriately
# for a fit of the observations a deconvolution is required
# either by calling deconvolveLocally additionally or better immediately jules
cps <- fit$leftEnd[8:9]
levels <- fit$value[7:9]
t <- seq(cps[1] - 0.0009, cps[2] + 0.0023, 1e-6)

# fit
lines(t, ifelse(t < cps[1], rep(levels[1], length(t)),

ifelse(t < cps[2], rep(levels[2], length(t)),
rep(levels[3], length(t)))),

col = "blue", lwd = 3)

# fit convolved with the filter
lines(t, levels[1] * (1 - filter$truncatedStepfun(t - cps[1])) +

levels[2] * (filter$truncatedStepfun(t - cps[1]) -
filter$truncatedStepfun(t - cps[2])) +

levels[3] * filter$truncatedStepfun(t - cps[2]),
col = "darkblue", lwd = 3)

# fit with a wrong filter



30 stepDetection

wrongFilter <- lowpassFilter(type = "bessel",
param = list(pole = 6L, cutoff = 0.2),
sr = 1e4)

# Monte-Carlo simulation depend on the number of observations and on the filter
# hence a simulation is required again (if called for the first time)
# to save some time the number of iterations is reduced to r = 1e3
# hence the critical value is computed with less precision
# In general, r = 1e3 is enough for a first impression
# for a detailed analysis r = 1e4 is suggested
stepDetection(gramA, filter = filter, startTime = 9, messages = 100L, r = 1e3L)

# simulation for a larger number of observations can be used (nq = 3e4)
# does not require a new simulation as the simulation from above will be used
# (if the previous call was executed first)
stepDetection(gramA, filter = filter, startTime = 9,

messages = 100L, r = 1e3L, nq = 3e4L)

# simulation of type "vectorIncreased" for n1 observations can only be reused
# for n2 observations if as.integer(log2(n1)) == as.integer(log2(n2))
# no simulation is required, since a simulation of type "matrixIncreased"
# will be loaded from the fileSystem
# this call also saves a simulation of type "vectorIncreased" in the workspace
stepDetection(gramA[1:1e4], filter = filter, startTime = 9,

nq = 3e4, messages = 100, r = 1e3)
# here a new simulation is required
# (if no appropriate simulation is saved from a call outside of this file)
stepDetection(gramA[1:1e3], filter = filter, startTime = 9,

nq = 3e4, messages = 100, r = 1e3,
options = list(load = list(workspace = c("vector", "vectorIncreased"))))

# the above calls saved and (attempted to) load Monte-Carlo simulations
# in the following call the simulations will neither be saved nor loaded
stepDetection(gramA, filter = filter, startTime = 9, messages = 100L, r = 1e3L,

options = list(load = list(), save = list()))

# only simulations of type "vector" and "vectorInceased" will only be in and
# loaded from the workspace, but no simulations of type "matrix" and
# "matrixIncreased" on the file system
stepDetection(gramA, filter = filter, startTime = 9, messages = 100L, r = 1e3L,

options = list(load = list(workspace = c("vector", "vectorIncreased")),
save = list(workspace = c("vector", "vectorIncreased"))))

# explicit Monte-Carlo simulations, not recommended
stat <- stepR::monteCarloSimulation(n = length(gramA), , family = "mDependentPS",

filter = filter, output = "maximum",
r = 1e3, messages = 100)

stepDetection(gramA, filter = filter, startTime = 9, stat = stat)

# with given standard deviation
sd <- stepR::sdrobnorm(gramA, lag = filter$len + 1)
identical(stepDetection(gramA, filter = filter, startTime = 9, sd = sd), fit)



Index

∗Topic datasets
gramA, 17

∗Topic nonparametric
clampSeg-package, 2
deconvolveLocally, 7
getCritVal, 11
jules, 18
stepDetection, 26

∗Topic package
clampSeg-package, 2

∗Topic ts
lowpassFilter, 23

attribute, 8, 9, 19

character, 13
clampSeg (clampSeg-package), 2
clampSeg-package, 2
class, 24
connection, 14
critVal, 3, 20

deconvolveLocally, 2, 3, 7, 18–20, 27, 28
detection step, 19
detection step (stepDetection), 26
detectionStep (stepDetection), 26
dfilter, 25

environment, 13, 14

filter, 25

getCacheRootPath, 13
getCritVal, 2, 11, 18, 19, 27, 28
global environment, 13
gramA, 2, 3, 17
gramicidin (gramA), 17
gramicidin A (gramA), 17
gramicidinA (gramA), 17

JULES (jules), 18

Jules (jules), 18
jules, 2, 3, 9, 15, 18, 27, 28

list, 7, 9, 12, 14, 19, 24, 28
loadCache, 13
Local Deconvolution

(deconvolveLocally), 7
Local deconvolution

(deconvolveLocally), 7
local deconvolution, 19
local deconvolution

(deconvolveLocally), 7
localDeconvolution (deconvolveLocally),

7
logical, 8
lowpassFilter, 2, 3, 7, 9, 12, 15, 18, 20, 23,

27, 28

messages, 8
monteCarloSimulation, 12, 13

numeric, 17

print.lowpassFilter (lowpassFilter), 23

R.cache, 2, 13, 19, 28
RDS, 2, 13, 14, 19, 28

saveCache, 13
sdrobnorm, 18, 27
stepblock, 7, 9, 19, 28
stepDetection, 2, 3, 7, 9, 15, 19, 20, 26
stepR, 25

vector, 13

warning, 8

31


	clampSeg-package
	deconvolveLocally
	getCritVal
	gramA
	jules
	lowpassFilter
	stepDetection
	Index

