
Package ‘circlize’
June 15, 2020

Type Package

Title Circular Visualization

Version 0.4.10

Date 2020-06-14

Author Zuguang Gu

Maintainer Zuguang Gu <z.gu@dkfz.de>

Depends R (>= 3.0.0), graphics

Imports GlobalOptions (>= 0.1.2), shape, grDevices, utils, stats,
colorspace, methods, grid

Suggests knitr, dendextend (>= 1.0.1), ComplexHeatmap (>= 2.0.0),
gridBase, png

VignetteBuilder knitr

Description Circular layout is an efficient way for the visualization of huge
amounts of information. Here this package provides an implementation
of circular layout generation in R as well as an enhancement of available
software. The flexibility of the package is based on the usage of low-level
graphics functions such that self-defined high-level graphics can be easily
implemented by users for specific purposes. Together with the seamless
connection between the powerful computational and visual environment in R,
it gives users more convenience and freedom to design figures for
better understanding complex patterns behind multiple dimensional data.
The package is described in Gu et al. 2014 <doi:10.1093/bioinformatics/btu393>.

URL https://github.com/jokergoo/circlize,

http://jokergoo.github.io/circlize_book/book/

License MIT + file LICENSE

NeedsCompilation no

Repository CRAN

Date/Publication 2020-06-15 00:00:03 UTC

1

https://github.com/jokergoo/circlize
http://jokergoo.github.io/circlize_book/book/

2 R topics documented:

R topics documented:
circlize-package . 4
add_transparency . 6
adjacencyList2Matrix . 6
calc_gap . 7
CELL_META . 8
chordDiagram . 8
chordDiagramFromDataFrame . 12
chordDiagramFromMatrix . 15
circlize . 19
circos.arrow . 20
circos.axis . 21
circos.barplot . 24
circos.boxplot . 25
circos.clear . 26
circos.dendrogram . 27
circos.genomicAxis . 28
circos.genomicDensity . 29
circos.genomicHeatmap . 31
circos.genomicIdeogram . 32
circos.genomicInitialize . 33
circos.genomicLabels . 35
circos.genomicLines . 36
circos.genomicLink . 39
circos.genomicPoints . 40
circos.genomicPosTransformLines . 42
circos.genomicRainfall . 43
circos.genomicRect . 45
circos.genomicText . 47
circos.genomicTrack . 49
circos.genomicTrackPlotRegion . 50
circos.heatmap . 52
circos.heatmap.initialize . 53
circos.heatmap.link . 54
circos.info . 55
circos.initialize . 56
circos.initializeWithIdeogram . 57
circos.lines . 59
circos.link . 61
circos.nested . 63
circos.par . 64
circos.points . 66
circos.polygon . 67
circos.raster . 68
circos.rect . 70
circos.segments . 71
circos.text . 72

R topics documented: 3

circos.track . 73
circos.trackHist . 74
circos.trackLines . 75
circos.trackPlotRegion . 77
circos.trackPoints . 79
circos.trackText . 80
circos.triangle . 81
circos.update . 82
circos.updatePlotRegion . 82
circos.violin . 83
circos.xaxis . 85
circos.yaxis . 85
cm_h . 87
cm_x . 87
cm_y . 88
col2value . 89
colorRamp2 . 90
convert_height . 91
convert_length . 91
convert_x . 92
convert_y . 94
cytoband.col . 95
degree . 95
draw.sector . 96
fontsize . 97
generateRandomBed . 98
genomicDensity . 99
get.all.sector.index . 100
get.all.track.index . 100
get.cell.meta.data . 101
get.current.chromosome . 102
get.current.sector.index . 103
get.current.track.index . 103
getI . 104
highlight.chromosome . 104
highlight.sector . 105
inches_h . 106
inches_x . 107
inches_y . 107
inch_h . 108
inch_x . 109
inch_y . 109
mm_h . 110
mm_x . 111
mm_y . 111
names.CELL_META . 112
posTransform.default . 112
posTransform.text . 113

4 circlize-package

print.CELL_META . 114
rainfallTransform . 115
rand_color . 116
read.chromInfo . 117
read.cytoband . 118
reverse.circlize . 119
set.current.cell . 120
set_track_gap . 120
show.index . 121
smartAlign . 121
uh . 122
ux . 123
uy . 123
$.CELL_META . 124

Index 125

circlize-package Circular visualization in R

Description

Circular visualization in R

Details

This package aims to implement circular layout in R.

Since most of the figures are composed of points, lines and polygons, we just need to implement
low-level functions for drawing points, lines and polygons.

Current there are following low-level graphic functions:

• circos.points

• circos.lines

• circos.rect

• circos.polygon

• circos.segments

• circos.text

• circos.axis, circos.xaxis, circos.yaxis

• circos.link

For drawing points, lines and text through the whole track (among several sectors), the following
functions are available:

• circos.trackPoints

• circos.trackLines

circlize-package 5

• circos.trackText

Functions to arrange circular layout:

• circos.initialize

• circos.track

• circos.update

• circos.par

• circos.info

• circos.clear

Theoretically, you are able to draw most kinds of circular plots by the above functions.

For specific use in genomics, we also implement functions which add graphics in genome scale.

Functions to initialize circos plot with genomic coordinates:

• circos.initializeWithIdeogram

• circos.genomicInitialize

Functions to arrange genomic circular layout:

• circos.genomicTrack

Functions to add basic graphics in genomic scale:

• circos.genomicPoints

• circos.genomicLines

• circos.genomicText

• circos.genomicRect

• circos.genomicLink

Functions with specific purpose:

• circos.genomicDensity

• circos.genomicRainfall

• circos.genomicIdeogram

• circos.genomicHeatmap

• circos.genomicLabels

Finally, function that draws Chord diagram:

• chordDiagram

Please refer to the vignettes (https://jokergoo.github.io/circlize_book/book/) to find out
how to draw basic and advanced circular plots by this package.

Examples

There is no example
NULL

https://jokergoo.github.io/circlize_book/book/

6 adjacencyList2Matrix

add_transparency Add transparency to colors

Description

Add transparency to colors

Usage

add_transparency(col, transparency = 0)

Arguments

col a vector of colors

transparency transparency, numeric value between 0 and 1

Value

A vector of colors

Examples

add_transparency("red", 0.5)
add_transparency(1, 0.5)
add_transparency("#FF000080", 0.2)

adjacencyList2Matrix Convert adjacency list to adjacency matrix

Description

Convert adjacency list to adjacency matrix

Usage

adjacencyList2Matrix(lt, square = FALSE)

Arguments

lt a data frame which contains adjacency list.

square is the returned matrix a square matrix?

Details

Convert adjacency list to adjacency matrix.

calc_gap 7

Examples

There is no example
NULL

calc_gap Calculate gap to make two Chord diagram with same scale

Description

Calculate gap to make two Chord diagram with same scale

Usage

calc_gap(x1, x2, big.gap = 10, small.gap = 1)

Arguments

x1 The matrix or the data frame for the first Chord diagram.

x2 The matrix or the data frame for the second Chord diagram.

big.gap big.gap for the first Chord diagram.

small.gap small.gap for both Chord diagrams.

Details

There should be no overlap between the two sets of sectors.

Value

A numeric value which can be directly set to big.gap in the second Chord diagram.

Examples

set.seed(123)
mat1 = matrix(sample(20, 25, replace = TRUE), 5)
mat2 = mat1 / 2
gap = calc_gap(mat1, mat2, big.gap = 10, small.gap = 1)
chordDiagram(mat2, directional = 1, grid.col = rep(1:5, 2), transparency = 0.5,

big.gap = gap, small.gap = 1)

8 chordDiagram

CELL_META Easy way to get meta data in the current cell

Description

Easy way to get meta data in the current cell

Usage

CELL_META

Details

The variable CELL_META can only be used to get meta data of the "current" cell. Basically you can
simply replace e.g. get.cell.meta.data("sector.index") to CELL_META$sector.index.

See Also

get.cell.meta.data

Examples

pdf(NULL)
circos.initialize("a", xlim = c(0, 1))
circos.track(ylim = c(0, 1), panel.fun = function(x, y) {

print(CELL_META$sector.index)
print(CELL_META$xlim)

})
print(names(CELL_META))
dev.off()

chordDiagram Plot Chord Diagram

Description

Plot Chord Diagram

Usage

chordDiagram(
x,
grid.col = NULL,
grid.border = NA,
transparency = 0.5,
col = NULL,

chordDiagram 9

row.col = NULL,
column.col = NULL,
order = NULL,
directional = 0,
xmax = NULL,
symmetric = FALSE,
keep.diagonal = FALSE,
direction.type = "diffHeight",
diffHeight = convert_height(2, "mm"),
reduce = 1e-5,
self.link = 2,
preAllocateTracks = NULL,
annotationTrack = c("name", "grid", "axis"),
annotationTrackHeight = convert_height(c(3, 2), "mm"),
link.border = NA,
link.lwd = par("lwd"),
link.lty = par("lty"),
link.sort = FALSE,
link.decreasing = TRUE,
link.arr.length = ifelse(link.arr.type == "big.arrow", 0.02, 0.4),
link.arr.width = link.arr.length/2,
link.arr.type = "triangle",
link.arr.lty = par("lty"),
link.arr.lwd = par("lwd"),
link.arr.col = par("col"),
link.largest.ontop = FALSE,
link.visible = TRUE,
link.rank = NULL,
link.overlap = FALSE,
scale = FALSE,
group = NULL,
big.gap = 10,
small.gap = 1,
...)

Arguments

x a matrix or a data frame. The function will pass all argument to chordDiagramFromMatrix
or chordDiagramFromDataFrame depending on the type of x, also format of
other arguments depends of the type of x. If it is in the form of a matrix, it
should be an adjacency matrix. If it is in the form of a data frame, it should be
an adjacency list.

grid.col pass to chordDiagramFromMatrix or chordDiagramFromDataFrame

grid.border pass to chordDiagramFromMatrix or chordDiagramFromDataFrame

transparency pass to chordDiagramFromMatrix or chordDiagramFromDataFrame

col pass to chordDiagramFromMatrix or chordDiagramFromDataFrame

row.col pass to chordDiagramFromMatrix

10 chordDiagram

column.col pass to chordDiagramFromMatrix

order pass to chordDiagramFromMatrix or chordDiagramFromDataFrame
directional pass to chordDiagramFromMatrix or chordDiagramFromDataFrame
xmax maximum value on x-axes, the value should be a named vector.
symmetric pass to chordDiagramFromMatrix

keep.diagonal pass to chordDiagramFromMatrix

direction.type pass to chordDiagramFromMatrix or chordDiagramFromDataFrame
diffHeight pass to chordDiagramFromMatrix or chordDiagramFromDataFrame
reduce pass to chordDiagramFromMatrix or chordDiagramFromDataFrame
self.link pass to chordDiagramFromMatrix or chordDiagramFromDataFrame
preAllocateTracks

pass to chordDiagramFromMatrix or chordDiagramFromDataFrame
annotationTrack

pass to chordDiagramFromMatrix or chordDiagramFromDataFrame
annotationTrackHeight

pass to chordDiagramFromMatrix or chordDiagramFromDataFrame
link.border pass to chordDiagramFromMatrix or chordDiagramFromDataFrame
link.lwd pass to chordDiagramFromMatrix or chordDiagramFromDataFrame
link.lty pass to chordDiagramFromMatrix or chordDiagramFromDataFrame
link.sort pass to chordDiagramFromMatrix or chordDiagramFromDataFrame
link.decreasing

pass to chordDiagramFromMatrix or chordDiagramFromDataFrame
link.arr.length

pass to chordDiagramFromMatrix or chordDiagramFromDataFrame
link.arr.width pass to chordDiagramFromMatrix or chordDiagramFromDataFrame
link.arr.type pass to chordDiagramFromMatrix or chordDiagramFromDataFrame
link.arr.lty pass to chordDiagramFromMatrix or chordDiagramFromDataFrame
link.arr.lwd pass to chordDiagramFromMatrix or chordDiagramFromDataFrame
link.arr.col pass to chordDiagramFromMatrix or chordDiagramFromDataFrame
link.largest.ontop

pass to chordDiagramFromMatrix or chordDiagramFromDataFrame
link.visible pass to chordDiagramFromMatrix or chordDiagramFromDataFrame
link.rank order to add links to the circle, a large value means to add it later.
link.overlap pass to chordDiagramFromMatrix or chordDiagramFromDataFrame
scale scale each sector to same width
group It contains the group labels and the sector names are used as the names in the

vector.
big.gap Gap between the two sets of sectors. If the input is a matrix, the two sets are row

sectors and column sectors. If the input is a data frame, the two sets correspond
to the first column and the second column. It only works when there is no
intersection between the two sets.

small.gap Small gap between sectors.
... pass to circos.link.

chordDiagram 11

Details

Chord diagram is a way to visualize numeric tables (http://circos.ca/intro/tabular_visualization/
), especially useful when the table represents information of directional relations. This function vi-
sualize tables in a circular way.

This function is flexible and contains some settings that may be a little difficult to understand. Please
refer to vignette for better explanation.

Value

A data frame which contains positions of links, columns are:

rn sector name corresponding to rows in the adjacency matrix or the first column in the adjacency
list

cn sector name corresponding to columns in the adjacency matrix or the second column in the
adjacency list

value value for the interaction or relation

o1 order of the link on the "from" sector

o2 order of the link on the "to" sector

x1 and position of the link on the "from" sector, the interval for the link on the "from" sector is
c(x1-abs(value),x1)

x2 and position of the link on the "to" sector, the interval for the link on the "from" sector is
c(x2-abs(value),x2)

See Also

https://jokergoo.github.io/circlize_book/book/the-chorddiagram-function.html

Examples

set.seed(999)
mat = matrix(sample(18, 18), 3, 6)
rownames(mat) = paste0("S", 1:3)
colnames(mat) = paste0("E", 1:6)

df = data.frame(from = rep(rownames(mat), times = ncol(mat)),
to = rep(colnames(mat), each = nrow(mat)),
value = as.vector(mat),
stringsAsFactors = FALSE)

chordDiagram(mat)
chordDiagram(df)
circos.clear()

http://circos.ca/intro/tabular_visualization/
https://jokergoo.github.io/circlize_book/book/the-chorddiagram-function.html

12 chordDiagramFromDataFrame

chordDiagramFromDataFrame

Plot Chord Diagram from a data frame

Description

Plot Chord Diagram from a data frame

Usage

chordDiagramFromDataFrame(
df,
grid.col = NULL,
grid.border = NA,
transparency = 0.5,
col = NULL,
order = NULL,
directional = 0,
xmax = NULL,
direction.type = "diffHeight",
diffHeight = convert_height(2, "mm"),
reduce = 1e-5,
self.link = 2,
preAllocateTracks = NULL,
annotationTrack = c("name", "grid", "axis"),
annotationTrackHeight = convert_height(c(3, 2), "mm"),
link.border = NA,
link.lwd = par("lwd"),
link.lty = par("lty"),
link.sort = FALSE,
link.decreasing = TRUE,
link.arr.length = ifelse(link.arr.type == "big.arrow", 0.02, 0.4),
link.arr.width = link.arr.length/2,
link.arr.type = "triangle",
link.arr.lty = par("lty"),
link.arr.lwd = par("lwd"),
link.arr.col = par("col"),
link.largest.ontop = FALSE,
link.visible = TRUE,
link.rank = seq_len(nrow(df)),
link.overlap = FALSE,
scale = FALSE,
group = NULL,
big.gap = 10,
small.gap = 1,
...)

chordDiagramFromDataFrame 13

Arguments

df A data frame with at least two columns. The first two columns specify the
connections and the third column (optional) contains numeric values which are
mapped to the width of links as well as the colors if col is specified as a color
mapping function. The sectors in the plot will be union(df[[1]],df[[2]]).

grid.col Grid colors which correspond to sectors. The length of the vector should be
either 1 or the number of sectors. It’s preferred that grid.col is a named vector
of which names correspond to sectors. If it is not a named vector, the order of
grid.col corresponds to order of sectors.

grid.border border for grids. If it is NULL, the border color is same as grid color
transparency Transparency of link colors, 0 means no transparency and 1 means full trans-

parency. If transparency is already set in col or row.col or column.col, this
argument will be ignored. NAalso ignores this argument.

col Colors for links. It can be a vector which corresponds to connections in df, or
a function which generate colors according to values (the third column) in df,
or a single value which means colors for all links are the same. You may use
colorRamp2 to generate a function which maps values to colors.

order Order of sectors. Default order is union(df[[1]],df[[2]]).
directional Whether links have directions. 1 means the direction is from the first column

in df to the second column, -1 is the reverse, 0 is no direction, and 2 for two
directional. The value can be a vector which has same length as number of rows
in df.

xmax maximum value on x-axes, the value should be a named vector.
direction.type type for representing directions. Can be one or two values in "diffHeight" and

"arrows". If the value contains "diffHeight", different heights of the links are
used to represent the directions for which starting root has long height to give
people feeling that something is comming out. If the value contains "arrows",
users can customize arrows with following arguments. The value can be a vector
which has same length as number of rows in df. Note if you want to set both
diffHeight and arrows for certain links, you need to embed these two options
into one string such as "diffHeight+arrows".

diffHeight The difference of height between two ’roots’ if directional is set to TRUE. If
the value is set to a positive value, start root is shorter than end root and if it is
set to a negative value, start root is longer than the end root. The value can be a
vector which has same length as number of rows in df.

reduce if the ratio of the width of certain grid compared to the whole circle is less than
this value, the grid is removed on the plot. Set it to value less than zero if you
want to keep all tiny grid.

self.link if there is a self link in one sector, 1 means the link will be degenerated as a
’mountain’ and the width corresponds to the value for this connection. 2 means
the width of the starting root and the ending root all have the same width that
corresponds to the value for the connection.

preAllocateTracks

Pre-allocate empty tracks before drawing Chord diagram. It can be a single num-
ber indicating how many empty tracks needed to be created or a list containing
settings for empty tracks. Please refer to vignette for details.

14 chordDiagramFromDataFrame

annotationTrack

Which annotation track should be plotted? By default, a track containing sector
names and a track containing grid will be created.

annotationTrackHeight

Track height corresponding to values in annotationTrack.

link.border border for links, single scalar or a vector which has the same length as nrows of
df or a data frame

link.lwd width for link borders, single scalar or a vector which has the same length as
nrows of df or a data frame

link.lty style for link borders, single scalar or a vector which has the same length as
nrows of df or a data frame

link.sort whether sort links on every sector based on the width of the links on it. If it
is set to "overall", all links are sorted regardless whether they are from the first
column or the second column.

link.decreasing

for link.sort
link.arr.length

pass to circos.link. The format of this argument is same as link.lwd.

link.arr.width pass to Arrowhead. The format of this argument is same as link.lwd.

link.arr.type pass to circos.link, same settings as link.lwd. Default value is triangle.

link.arr.col color or the single line link which is put in the center of the belt. The format of
this argument is same as link.lwd.

link.arr.lwd line width ofthe single line link which is put in the center of the belt. The format
of this argument is same as link.lwd.

link.arr.lty line type of the single line link which is put in the center of the belt. The format
of this argument is same as link.lwd.

link.largest.ontop

controls the order of adding links, whether based on the absolute value?

link.visible whether plot the link. The value is logical, if it is set to FALSE, the corresponding
link will not plotted, but the space is still ocuppied. The format of this argument
is same as link.lwd

link.rank order to add links to the circle, a large value means to add it later.

link.overlap if it is a directional Chord Diagram, whether the links that come or end in a same
sector overlap?

scale scale each sector to same width

group It contains the group labels and the sector names are used as the names in the
vector.

big.gap Gaps between the sectors in the first column of df and sectors in the second
column in df.

small.gap Small gap between sectors.

... pass to circos.link

chordDiagramFromMatrix 15

Details

The data frame can have a column named "rank" which is used to control the order of adding links
to the diagram.

Value

A data frame which contains positions of links, see explanation in chordDiagram.

See Also

https://jokergoo.github.io/circlize_book/book/the-chorddiagram-function.html

Examples

There is no example
NULL

chordDiagramFromMatrix

Plot Chord Diagram from an adjacency matrix

Description

Plot Chord Diagram from an adjacency matrix

Usage

chordDiagramFromMatrix(
mat,
grid.col = NULL,
grid.border = NA,
transparency = 0.5,
col = NULL,
row.col = NULL,
column.col = NULL,
order = NULL,
directional = 0,
direction.type = "diffHeight",
diffHeight = convert_height(2, "mm"),
reduce = 1e-5,
xmax = NULL,
self.link = 2,
symmetric = FALSE,
keep.diagonal = FALSE,
preAllocateTracks = NULL,
annotationTrack = c("name", "grid", "axis"),

https://jokergoo.github.io/circlize_book/book/the-chorddiagram-function.html

16 chordDiagramFromMatrix

annotationTrackHeight = convert_height(c(3, 2), "mm"),
link.border = NA,
link.lwd = par("lwd"),
link.lty = par("lty"),
link.sort = FALSE,
link.decreasing = TRUE,
link.arr.length = ifelse(link.arr.type == "big.arrow", 0.02, 0.4),
link.arr.width = link.arr.length/2,
link.arr.type = "triangle",
link.arr.lty = par("lty"),
link.arr.lwd = par("lwd"),
link.arr.col = par("col"),
link.largest.ontop = FALSE,
link.visible = TRUE,
link.rank = NULL,
link.overlap = FALSE,
scale = FALSE,
group = NULL,
big.gap = 10,
small.gap = 1,
...)

Arguments

mat A table which represents as a numeric matrix.

grid.col Grid colors which correspond to matrix rows/columns (or sectors). The length of
the vector should be either 1 or length(union(rownames(mat),colnames(mat))).
It’s preferred that grid.col is a named vector of which names correspond to
sectors. If it is not a named vector, the order of grid.col corresponds to order
of sectors.

grid.border border for grids. If it is NULL, the border color is same as grid color

transparency Transparency of link colors, 0 means no transparency and 1 means full trans-
parency. If transparency is already set in col or row.col or column.col, this
argument will be ignored. NAalso ignores this argument.

col Colors for links. It can be a matrix which corresponds to mat, or a function
which generate colors according to values in mat, or a single value which means
colors for all links are the same, or a three-column data frame in which the first
two columns correspond to row names and columns and the third column is
colors. You may use colorRamp2 to generate a function which maps values to
colors.

row.col Colors for links. Links from the same row in mat will have the same color.
Length should be same as number of rows in mat. This argument only works
when col is set to NULL.

column.col Colors for links. Links from the same column in mat will have the same color.
Length should be same as number of columns in mat. This argument only works
when col and row.col is set to NULL.

order Order of sectors. Default order is union(df[[1]],df[[2]]).

chordDiagramFromMatrix 17

directional Whether links have directions. 1 means the direction is from the first column
in df to the second column, -1 is the reverse, 0 is no direction, and 2 for two
directional. Same setting as link.border.

xmax maximum value on x-axes, the value should be a named vector.

direction.type type for representing directions. Can be one or two values in "diffHeight"
and "arrows". If the value contains "diffHeight", different heights of the links
are used to represent the directions for which starting root has long height to
give people feeling that something is comming out. If the value contains "ar-
rows", users can customize arrows with following arguments. Same setting
as link.border. Note if you want to set both diffHeight and arrows for
certain links, you need to embed these two options into one string such as
"diffHeight+arrows".

diffHeight The difference of height between two ’roots’ if directional is set to TRUE. If
the value is set to a positive value, start root is shorter than end root and if it is
set to a negative value, start root is longer than the end root.

reduce if the ratio of the width of certain grid compared to the whole circle is less than
this value, the grid is removed on the plot. Set it to value less than zero if you
want to keep all tiny grid.

self.link if there is a self link in one sector, 1 means the link will be degenerated as a
’mountain’ and the width corresponds to the value for this connection. 2 means
the width of the starting root and the ending root all have the width that corre-
sponds to the value for the connection.

symmetric Whether the matrix is symmetric. If the value is set to TRUE, only lower triangu-
lar matrix without the diagonal will be used.

keep.diagonal If the matrix is specified as symmetric, whether keep diagonal for visualization.
preAllocateTracks

Pre-allocate empty tracks before drawing Chord diagram. It can be a single num-
ber indicating how many empty tracks needed to be created or a list containing
settings for empty tracks. Please refer to vignette for details.

annotationTrack

Which annotation track should be plotted? By default, a track containing sector
names and a track containing grid will be created.

annotationTrackHeight

Track height corresponding to values in annotationTrack.

link.border border for links, single scalar or a matrix with names or a data frame with three
columns

link.lwd width for link borders, single scalar or a matrix with names or a data frame with
three columns

link.lty style for link borders, single scalar or a matrix with names or a data frame with
three columns

link.sort whether sort links on every sector based on the width of the links on it. If it
is set to "overall", all links are sorted regardless whether they are from rows or
columns.

link.decreasing

for link.sort

18 chordDiagramFromMatrix

link.arr.length

pass to circos.link. The format of this argument is same as link.lwd.

link.arr.width pass to Arrowhead. The format of this argument is same as link.lwd.

link.arr.type pass to circos.link, same format as link.lwd. Default value is triangle.

link.arr.col color or the single line link which is put in the center of the belt. The format of
this argument is same as link.lwd.

link.arr.lwd line width ofthe single line link which is put in the center of the belt. The format
of this argument is same as link.lwd.

link.arr.lty line type of the single line link which is put in the center of the belt. The format
of this argument is same as link.lwd.

link.largest.ontop

controls the order of adding links, whether based on the absolute value?

link.visible whether plot the link. The value is logical, if it is set to FALSE, the corresponding
link will not plotted, but the space is still ocuppied. The format of this argument
is same as link.lwd

link.rank order to add links to the circle, a large value means to add it later.

link.overlap if it is a directional Chord Diagram, whether the links that come or end in a same
sector overlap?

scale scale each sector to same width

group It contains the group labels and the sector names are used as the names in the
vector.

big.gap Gap between row sectors and column sectors.

small.gap Small gap between sectors.

... pass to circos.link

Details

Internally, the matrix is transformed to a data frame and sent to chordDiagramFromDataFrame.

Value

A data frame which contains positions of links, see explanation in chordDiagram.

See Also

https://jokergoo.github.io/circlize_book/book/the-chorddiagram-function.html

Examples

There is no example
NULL

https://jokergoo.github.io/circlize_book/book/the-chorddiagram-function.html

circlize 19

circlize Convert to polar coordinate system

Description

Convert to polar coordinate system

Usage

circlize(
x, y,
sector.index = get.current.sector.index(),
track.index = get.current.track.index())

Arguments

x Data points on x-axis. The value can also be a two-column matrix/data frame if
you put x and y data points into one variable.

y Data points on y-axis.

sector.index Index for the sector to convert the coordinates

track.index Index for the track to convert the coordinates

Details

This is the core function in the package. It transform data points from data coordinate system (in a
specific cell) to the polar coordinate system.

Value

A matrix with two columns (theta and rou). rou is measured in degree.

Examples

pdf(NULL)
factors = c("a", "b")
circos.initialize(factors, xlim = c(0, 1))
circos.track(ylim = c(0, 1))
x = 0.5, y = 0.5 in sector a and track 1
circlize(0.5, 0.5, sector.index = "a", track.index = 1)
circos.clear()
dev.off()

20 circos.arrow

circos.arrow Draw arrow which is paralle to the circle

Description

Draw arrow which is paralle to the circle

Usage

circos.arrow(
x1,
x2,
y = get.cell.meta.data("ycenter", sector.index, track.index),
width = get.cell.meta.data("yrange", sector.index, track.index)/2,
sector.index = get.current.sector.index(),
track.index = get.current.track.index(),
arrow.head.length = convert_x(5, "mm", sector.index, track.index),
arrow.head.width = width*2,
arrow.position = c("end", "start"),
tail = c("normal", "point"),
border = "black",
col = "white",
lty = par("lty"),
...)

Arguments

x1 start position of the arrow on the x-axis.

x2 end position of the arrow on the x-axis.

y position of the arrow on the y-axis. Note this is the center of the arrow on y-axis.

width width of the arrow body.

sector.index index of the sector.

track.index index of the track.
arrow.head.length

length of the arrow head. Note the value should be smaller than the length of the
arrow itself (which is x2 -x1).

arrow.head.width

width of the arrow head.

arrow.position where is the arrow head on the arrow.

tail the shape of the arrow tail (the opposite side of arrow head).

border border color of the arrow.

col filled color of the arrow.

lty line style of the arrow.

... pass to polygon.

circos.axis 21

Details

Note all position values are measured in the data coordinate (the coordinate in each cell).

If you see points overflow warnings, you can set circos.par(points.overflow.warning = FALSE)
to turn it off.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

See Also

https://jokergoo.github.io/circlize_book/book/graphics.html#circular-arrows

Examples

circos.initialize(letters[1:4], xlim = c(0, 1))
circos.track(ylim = c(0, 1), panel.fun = function(x, y) {

circos.arrow(0, 1, y = 0.5, width = 0.4, arrow.head.length = ux(1, "cm"),
col = "red", tail = ifelse(CELL_META$sector.index %in% c("a", "c"),

"point", "normal"))
}, bg.border = NA, track.height = 0.4)
circos.clear()

########## cell cycle ###########
cell_cycle = data.frame(phase = factor(c("G1", "S", "G2", "M"),

levels = c("G1", "S", "G2", "M")),
hour = c(11, 8, 4, 1))

color = c("#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3")
circos.par(start.degree = 90)
circos.initialize(cell_cycle$phase, xlim = cbind(rep(0, 4), cell_cycle$hour))
circos.track(ylim = c(0, 1), panel.fun = function(x, y) {

circos.arrow(CELL_META$xlim[1], CELL_META$xlim[2],
arrow.head.width = CELL_META$yrange*0.8, arrow.head.length = ux(1, "cm"),
col = color[CELL_META$sector.numeric.index])

circos.text(CELL_META$xcenter, CELL_META$ycenter, CELL_META$sector.index,
facing = "downward")

}, bg.border = NA, track.height = 0.3)
circos.clear()

circos.axis Draw x-axis

Description

Draw x-axis

https://jokergoo.github.io/circlize_book/book/graphics.html#circular-arrows

22 circos.axis

Usage

circos.axis(
h = "top",
major.at = NULL,
labels = TRUE,
major.tick = TRUE,
sector.index = get.cell.meta.data("sector.index"),
track.index = get.cell.meta.data("track.index"),
labels.font = par("font"),
labels.cex = par("cex"),
labels.facing = "inside",
labels.direction = NULL,
labels.niceFacing = TRUE,
direction = c("outside", "inside"),
minor.ticks = 4,
major.tick.percentage = 0.1,
labels.away.percentage = major.tick.percentage/2,
major.tick.length = convert_y(1, "mm", sector.index, track.index),
lwd = par("lwd"),
col = par("col"),
labels.col = par("col"),
labels.pos.adjust = TRUE)

Arguments

h Position of the x-axis, can be "top", "bottom" or a numeric value

major.at If it is numeric vector, it identifies the positions of the major ticks. It can exceed
xlim value and the exceeding part would be trimmed automatically. If it is NULL,
about every 10 degrees there is a major tick.

labels labels of the major ticks. Also, the exceeding part would be trimmed automat-
ically. The value can also be logical (either an atomic value or a vector) which
represents which labels to show.

major.tick Whether to draw major tick. If it is set to FALSE, there would be no minor ticks.

sector.index Index for the sector

track.index Index for the track

labels.font font style for the axis labels

labels.cex font size for the axis labels
labels.direction

deprecated, use facing instead.

labels.facing facing of labels on axis, passing to circos.text

labels.niceFacing

Should facing of axis labels be human-easy

direction whether the axis ticks point to the outside or inside of the circle.

minor.ticks Number of minor ticks between two close major ticks.

circos.axis 23

major.tick.percentage

not used. Length of the major ticks. It is the percentage to the height of the cell.
labels.away.percentage

not used. The distance for the axis labels to the major ticks. It is the percentage
to the height of the cell.

major.tick.length

length of the major ticks, measured in "current" data coordinate. convert_y can
be used to convert an absolute unit to the data coordinate.

lwd line width for ticks

col color for the axes

labels.col color for the labels
labels.pos.adjust

whether to adjust the positions of the first label and the last label. The value can
be a vector of length two which correspond to the first label and the last label.

Details

It can only draw axes on x-direction.

See Also

circos.yaxis draws axes on y-direction.

https://jokergoo.github.io/circlize_book/book/graphics.html#axes

Examples

factors = letters[1:8]
circos.par(points.overflow.warning = FALSE)
circos.initialize(factors = factors, xlim = c(0, 10))
circos.trackPlotRegion(factors = factors, ylim = c(0, 10), track.height = 0.1,

bg.border = NA, panel.fun = function(x, y) {
circos.text(5, 10, get.cell.meta.data("sector.index"))

})

circos.trackPlotRegion(factors = factors, ylim = c(0, 10))
circos.axis(sector.index = "a")
circos.axis(sector.index = "b", direction = "inside", labels.facing = "outside")
circos.axis(sector.index = "c", h = "bottom")
circos.axis(sector.index = "d", h = "bottom", direction = "inside",

labels.facing = "reverse.clockwise")
circos.axis(sector.index = "e", h = 5, major.at = c(1, 3, 5, 7, 9))
circos.axis(sector.index = "f", h = 5, major.at = c(1, 3, 5, 7, 9),

labels = c("a", "c", "e", "g", "f"), minor.ticks = 0)
circos.axis(sector.index = "g", h = 5, major.at = c(1, 3, 5, 7, 9),

labels = c("a1", "c1", "e1", "g1", "f1"), major.tick = FALSE,
labels.facing = "reverse.clockwise")

circos.axis(sector.index = "h", h = 2, major.at = c(1, 3, 5, 7, 9),
labels = c("a1", "c1", "e1", "g1", "f1"), major.tick.percentage = 0.3,
labels.away.percentage = 0.2, minor.ticks = 2, labels.facing = "clockwise")

circos.clear()

https://jokergoo.github.io/circlize_book/book/graphics.html#axes

24 circos.barplot

if(FALSE) {

############### real-time clock #################
factors = letters[1]

circos.par("gap.degree" = 0, "cell.padding" = c(0, 0, 0, 0), "start.degree" = 90)
circos.initialize(factors = factors, xlim = c(0, 12))
circos.trackPlotRegion(factors = factors, ylim = c(0, 1), bg.border = NA)
circos.axis(sector.index = "a", major.at = 0:12, labels = "",

direction = "inside", major.tick.percentage = 0.3)
circos.text(1:12, rep(0.5, 12), 1:12, facing = "downward")

while(1) {
current.time = as.POSIXlt(Sys.time())
sec = ceiling(current.time$sec)
min = current.time$min
hour = current.time$hour

erase the clock hands
draw.sector(rou1 = 0.8, border = "white", col = "white")

sec.degree = 90 - sec/60 * 360
arrows(0, 0, cos(sec.degree/180*pi)*0.8, sin(sec.degree/180*pi)*0.8)

min.degree = 90 - min/60 * 360
arrows(0, 0, cos(min.degree/180*pi)*0.7, sin(min.degree/180*pi)*0.7, lwd = 2)

hour.degree = 90 - hour/12 * 360 - min/60 * 360/12
arrows(0, 0, cos(hour.degree/180*pi)*0.4, sin(hour.degree/180*pi)*0.4, lwd = 2)

Sys.sleep(1)
}
circos.clear()
}

circos.barplot Draw barplots

Description

Draw barplots

Usage

circos.barplot(value, pos, bar_width = 0.6,
col = NA, border = "black", lwd = par("lwd"), lty = par("lty"))

circos.boxplot 25

Arguments

value A numeric vector or a matrix. If it is a matrix, columns correspond to the height
of bars.

pos Positions of the boxes.

bar_width Width of bars.

col Filled color of bars.

border Color for the border.

lwd Line width.

lty Line style.

Examples

circos.initialize(fa = letters[1:4], xlim = c(0, 10))
circos.track(ylim = c(0, 1), panel.fun = function(x, y) {

value = runif(10)
circos.barplot(value, 1:10 - 0.5, col = 1:10)

})
circos.track(ylim = c(-1, 1), panel.fun = function(x, y) {

value = runif(10, min = -1, max = 1)
circos.barplot(value, 1:10 - 0.5, col = ifelse(value > 0, 2, 3))

})
circos.clear()

circos.initialize(fa = letters[1:4], xlim = c(0, 10))
circos.track(ylim = c(0, 4), panel.fun = function(x, y) {

value = matrix(runif(10*4), ncol = 4)
circos.barplot(value, 1:10 - 0.5, col = 2:5)

})
circos.clear()

circos.boxplot Draw boxplots

Description

Draw boxplots

Usage

circos.boxplot(value, pos, outline = TRUE, box_width = 0.6,
col = NA, border = "black", lwd = par("lwd"), lty = par("lty"),
cex = par("cex"), pch = 1, pt.col = par("col"))

26 circos.clear

Arguments

value A numeric vector, a matrix or a list. If it is a matrix, boxplots are made by
columns.

pos Positions of the boxes.

outline Whether to draw outliers.

box_width Width of boxes.

col Filled color of boxes.

border Color for the border as well as the quantile lines.

lwd Line width.

lty Line style

cex Point size.

pch Point type.

pt.col Point color

Examples

circos.initialize(fa = letters[1:4], xlim = c(0, 10))
circos.track(ylim = c(0, 1), panel.fun = function(x, y) {

for(pos in seq(0.5, 9.5, by = 1)) {
value = runif(10)
circos.boxplot(value, pos)

}
})
circos.clear()

circos.initialize(fa = letters[1:4], xlim = c(0, 10))
circos.track(ylim = c(0, 1), panel.fun = function(x, y) {

value = replicate(runif(10), n = 10, simplify = FALSE)
circos.boxplot(value, 1:10 - 0.5, col = 1:10)

})
circos.clear()

circos.clear Reset the circular layout parameters

Description

Reset the circular layout parameters

Usage

circos.clear()

circos.dendrogram 27

Details

Because there are several parameters for the circular plot which can only be set before circos.initialize.
So before you draw the next circular plot, you need to reset all these parameters.

If you meet some errors when re-drawing the circular plot, try running this function and it will solve
most of the problems.

Examples

There is no example
NULL

circos.dendrogram Add circular dendrograms

Description

Add circular dendrograms

Usage

circos.dendrogram(
dend,
facing = c("outside", "inside"),
max_height = NULL,
use_x_attr = FALSE)

Arguments

dend A dendrogram object.

facing Is the dendromgrams facing inside to the circle or outside.

max_height Maximum height of the dendrogram. This is important if more than one den-
drograms are drawn in one track and making them comparable.

use_x_attr Whether use the x attribute to determine node positions in the dendrogram, used
internally.

Details

Assuming there are n nodes in the dendrogram, the positions for leaves on x-axis is 0.5,1.5,...,n
-0.5. So you must be careful with xlim when you initialize the cirular layout.

You can use the dendextend package to render the dendrograms.

See Also

https://jokergoo.github.io/circlize_book/book/high-level-plots.html#phylogenetic-trees

https://jokergoo.github.io/circlize_book/book/high-level-plots.html#phylogenetic-trees

28 circos.genomicAxis

Examples

load(system.file(package = "circlize", "extdata", "bird.orders.RData"))

labels = hc$labels # name of birds
ct = cutree(hc, 6) # cut tree into 6 pieces
n = length(labels) # number of bird species
dend = as.dendrogram(hc)

circos.par(cell.padding = c(0, 0, 0, 0))
circos.initialize(factors = "a", xlim = c(0, n)) # only one sector
max_height = attr(dend, "height") # maximum height of the trees
circos.trackPlotRegion(ylim = c(0, 1), bg.border = NA, track.height = 0.3,

panel.fun = function(x, y) {
for(i in seq_len(n)) {

circos.text(i-0.5, 0, labels[i], adj = c(0, 0.5),
facing = "clockwise", niceFacing = TRUE,
col = ct[labels[i]], cex = 0.7)

}
})

suppressPackageStartupMessages(require(dendextend))
dend = color_branches(dend, k = 6, col = 1:6)

circos.trackPlotRegion(ylim = c(0, max_height), bg.border = NA,
track.height = 0.4, panel.fun = function(x, y) {

circos.dendrogram(dend, max_height = max_height)
})
circos.clear()

circos.genomicAxis Add genomic axes

Description

Add genomic axes

Usage

circos.genomicAxis(
h = "top",
major.at = NULL,
labels = NULL,
major.by = NULL,
tickLabelsStartFromZero = TRUE,
labels.cex = 0.4*par("cex"),
sector.index = get.cell.meta.data("sector.index"),
track.index = get.cell.meta.data("track.index"),
...)

circos.genomicDensity 29

Arguments

h Position of the axes. "top" or "bottom".

major.at Major breaks. If major.at is set, major.by is ignored.

labels labels corresponding to major.at. If labels is set, major.at must be set.

major.by Increment of major ticks. It is calculated automatically if the value is not set
(about every 10 degrees there is a major tick).

tickLabelsStartFromZero

Whether axis tick labels start from 0? This will only affect the axis labels while
not affect x-values in cells.

labels.cex the font size for the axis tick labels.

sector.index Index for the sector

track.index Index for the track

... Other arguments pass to circos.axis.

Details

It assigns proper tick labels under genomic coordinate.

See Also

https://jokergoo.github.io/circlize_book/book/high-level-genomic-functions.html#
genomic-axes

Examples

circos.initializeWithIdeogram(plotType = NULL)
circos.track(ylim = c(0, 1), panel.fun = function(x, y) circos.genomicAxis())
circos.clear()

circos.genomicDensity Calculate and add genomic density track

Description

Calculate and add genomic density track

Usage

circos.genomicDensity(
data,
ylim.force = FALSE,
window.size = NULL,
overlap = TRUE,
count_by = c("percent", "number"),
col = ifelse(area, "grey", "black"),

https://jokergoo.github.io/circlize_book/book/high-level-genomic-functions.html#genomic-axes
https://jokergoo.github.io/circlize_book/book/high-level-genomic-functions.html#genomic-axes

30 circos.genomicDensity

lwd = par("lwd"),
lty = par("lty"),
type = "l",
area = TRUE,
area.baseline = NULL,
baseline = 0,
border = NA,
...)

Arguments

data A bed-file-like data frame or a list of data frames

ylim.force Whether to force upper bound of ylim to be 1.

window.size Pass to genomicDensity

overlap Pass to genomicDensity

count_by Pass to genomicDensity

col Colors. It should be length of one. If data is a list of data frames, the length of
col can also be the length of the list.

lwd Width of lines

lty Style of lines

type Type of lines, see circos.lines

area See circos.lines

area.baseline Deprecated, use baseline instead.

baseline See circos.lines

border See circos.lines

... Pass to circos.trackPlotRegion

Details

This function is a high-level graphical function, and it will create a new track.

See Also

https://jokergoo.github.io/circlize_book/book/high-level-genomic-functions.html#
genomic-density-and-rainfall-plot

Examples

load(system.file(package = "circlize", "extdata", "DMR.RData"))

rainfall

circos.initializeWithIdeogram(plotType = c("axis", "labels"))

bed_list = list(DMR_hyper, DMR_hypo)
circos.genomicRainfall(bed_list, pch = 16, cex = 0.4, col = c("#FF000080", "#0000FF80"))

https://jokergoo.github.io/circlize_book/book/high-level-genomic-functions.html#genomic-density-and-rainfall-plot
https://jokergoo.github.io/circlize_book/book/high-level-genomic-functions.html#genomic-density-and-rainfall-plot

circos.genomicHeatmap 31

circos.genomicDensity(bed_list[[1]], col = c("#FF000080"), track.height = 0.1)
circos.genomicDensity(bed_list[[2]], col = c("#0000FF80"), track.height = 0.1)

circos.clear()

circos.genomicHeatmap Add heatmaps for selected regions

Description

Add heatmaps for selected regions

Usage

circos.genomicHeatmap(
bed,
col,
na_col = "grey",
numeric.column = NULL,
border = NA,
border_lwd = par("lwd"),
border_lty = par("lty"),
connection_height = convert_height(5, "mm"),
line_col = par("col"),
line_lwd = par("lwd"),
line_lty = par("lty"),
heatmap_height = 0.15,
side = c("inside", "outside"),
track.margin = circos.par("track.margin"))

Arguments

bed a data frame in bed format, the matrix is stored from the fourth column.

col colors for the heatmaps. The value can be a matrix or a color mapping function
generated by colorRamp2.

na_col color for NA values.

numeric.column column index for the numeric columns. The values can be integer index or
character index

border border of the heatmap grids.

border_lwd line width for borders of heatmap grids

border_lty line style for borders of heatmap grids
connection_height

height of the connection lines. If it is set to NULL, no connection will be drawn.

32 circos.genomicIdeogram

line_col col of the connection line. The value can be a vector.

line_lwd line width of the connection lines.

line_lty line style of the connection lines.

heatmap_height height of the heatmap track

side side of the heatmaps. Is the heatmap facing inside or outside?

track.margin bottom and top margins

Details

The function visualizes heatmaps which correspond to a subset of regions in the genome. The
correspondance between heatmaps and regions are identified by connection lines.

The function actually creates two tracks, one track for the connection lines and one track for the
heamtaps. The heatmaps always fill the whole track.

See Also

https://jokergoo.github.io/circlize_book/book/high-level-genomic-functions.html#
genomic-heatmap

Examples

circos.initializeWithIdeogram(plotType = c("labels", "axis"))
bed = generateRandomBed(nr = 100, nc = 4)
col_fun = colorRamp2(c(-1, 0, 1), c("green", "black", "red"))
circos.genomicHeatmap(bed, col_fun, side = "inside", border = "white")
circos.genomicHeatmap(bed, col_fun, side = "outside",

line_col = as.numeric(factor(bed[[1]])))

circos.genomicIdeogram

Add an ideogram track

Description

Add an ideogram track

Usage

circos.genomicIdeogram(
cytoband = system.file(package = "circlize", "extdata", "cytoBand.txt"),
species = NULL,
track.height = convert_height(2, "mm"),
track.margin = circos.par("track.margin"))

https://jokergoo.github.io/circlize_book/book/high-level-genomic-functions.html#genomic-heatmap
https://jokergoo.github.io/circlize_book/book/high-level-genomic-functions.html#genomic-heatmap

circos.genomicInitialize 33

Arguments

cytoband a data frame or a file path, pass to read.cytoband

species Abbreviations of species, pass to read.cytoband

track.height height of the ideogram track

track.margin margins for the track

Author(s)

Zuguang Gu <z.gu@dkfz.de>

See Also

https://jokergoo.github.io/circlize_book/book/high-level-genomic-functions.html#
ideograms

Examples

circos.initializeWithIdeogram(plotType = c("labels", "axis"))
circos.track(ylim = c(0, 1))
circos.genomicIdeogram() # put ideogram as the third track

circos.genomicInitialize

Initialize circular plot with any genomic data

Description

Initialize circular plot with any genomic data

Usage

circos.genomicInitialize(
data,
sector.names = NULL,
major.by = NULL,
plotType = c("axis", "labels"),
tickLabelsStartFromZero = TRUE,
axis.labels.cex = 0.4*par("cex"),
labels.cex = 0.8*par("cex"),
track.height = NULL,
...)

https://jokergoo.github.io/circlize_book/book/high-level-genomic-functions.html#ideograms
https://jokergoo.github.io/circlize_book/book/high-level-genomic-functions.html#ideograms

34 circos.genomicInitialize

Arguments

data A data frame containing genomic data.

sector.names Labels for each sectors which will be drawn along each sector. It will not modify
values of sector index.

major.by Increment of major ticks. It is calculated automatically if the value is not set
(about every 10 degrees there is a major tick).

plotType If it is not NULL, there will create a new track containing axis and names for
sectors. This argument controls which part should be drawn, axis for genomic
axis and labels for chromosome names

tickLabelsStartFromZero

Whether axis tick labels start from 0? This will only affect the axis labels while
not affect x-values in cells.

axis.labels.cex

the font size for the axis tick labels.

labels.cex the font size for the labels.

track.height If PlotType is not NULL, height of the annotation track.

... Pass to circos.initialize

Details

The function will initialize circular plot from genomic data. If plotType is set with value in axis
or labels, there will create a new track.

The order of sectors related to data structure of data. If the first column in data is a factor, the order
of sectors is levels(data[[1]]); If the first column is just a simple vector, the order of sectors is
unique(data[[1]].

For more details on initializing genomic plot, please refer to the vignettes.

See Also

https://jokergoo.github.io/circlize_book/book/initialize-genomic-plot.html#initialize-with-general-genomic-category

Examples

df = read.cytoband()$df
circos.genomicInitialize(df)

df = data.frame(name = c("TP53", "TP63", "TP73"),
start = c(7565097, 189349205, 3569084),
end = c(7590856, 189615068, 3652765),
stringsAsFactors = FALSE)

circos.genomicInitialize(df)
circos.clear()

circos.genomicInitialize(df, major.by = 10000)
circos.clear()

circos.genomicInitialize(df, plotType = "labels")

https://jokergoo.github.io/circlize_book/book/initialize-genomic-plot.html#initialize-with-general-genomic-category

circos.genomicLabels 35

circos.clear()

circos.genomicInitialize(df, sector.names = c("tp53", "tp63", "tp73"))
circos.clear()

circos.genomicInitialize(df, sector.names = c("tp53x", "tp63x", "tp73"))
circos.clear()

df[[1]] = factor(df[[1]], levels = c("TP73", "TP63", "TP53"))
circos.genomicInitialize(df)
circos.clear()

circos.genomicLabels Add labels to specified genomic regions

Description

Add labels to specified genomic regions

Usage

circos.genomicLabels(
bed,
labels = NULL,
labels.column = NULL,
facing = "clockwise",
niceFacing = TRUE,
col = par("col"),
cex = 0.8,
font = par("font"),
padding = 0.4,
connection_height = convert_height(5, "mm"),
line_col = par("col"),
line_lwd = par("lwd"),
line_lty = par("lty"),
labels_height = min(c(convert_height(1.5, "cm"),
max(strwidth(labels, cex = cex, font = font)))),
side = c("inside", "outside"),
track.margin = circos.par("track.margin"))

Arguments

bed a data frame in bed format

labels a vector of labels corresponding to rows in bed

labels.column if the label column is already in bed, the index for this column in bed

facing facing of the labels. The value can only be ’clockwise’ or ’reverse.clockwise’.

niceFacing whether automatically adjust the facing of the labels.

36 circos.genomicLines

col color for the labels

cex size of the labels

font font of the labels

padding padding of the labels, the value is the ratio to the height of the label
connection_height

height of the connection track

line_col color for the connection lines

line_lwd line width for the connection lines

line_lty line type for the connectioin lines

labels_height height of the labels track

side side of the labels track, is it in the inside of the track where the regions are
marked?

track.margin bottom and top margins

Details

The function adds labels for the specified regions. The positions of labels are arranged so that they
are not overlapping to each other.

See Also

https://jokergoo.github.io/circlize_book/book/high-level-genomic-functions.html#
labels

Examples

circos.initializeWithIdeogram(plotType = c("labels", "axis"))
bed = generateRandomBed(nr = 100, fun = function(k) sample(letters, k, replace = TRUE))
bed[1, 4] = "aaaaaaaa"
circos.genomicLabels(bed, labels.column = 4, side = "inside",

col = as.numeric(factor(bed[[1]])))
circos.genomicLabels(bed, labels.column = 4, side = "outside",

line_col = as.numeric(factor(bed[[1]])))

circos.genomicLines Add lines to a plotting region, specifically for genomic graphics

Description

Add lines to a plotting region, specifically for genomic graphics

https://jokergoo.github.io/circlize_book/book/high-level-genomic-functions.html#labels
https://jokergoo.github.io/circlize_book/book/high-level-genomic-functions.html#labels

circos.genomicLines 37

Usage

circos.genomicLines(
region,
value,
numeric.column = NULL,
sector.index = get.cell.meta.data("sector.index"),
track.index = get.cell.meta.data("track.index"),
posTransform = NULL,
col = ifelse(area, "grey", "black"),
lwd = par("lwd"),
lty = par("lty"),
type = "l",
area = FALSE,
area.baseline = NULL,
border = "black",
baseline = "bottom",
pt.col = par("col"),
cex = par("cex"),
pch = par("pch"),
...)

Arguments

region A data frame contains 2 column which correspond to start position and end
position

value A data frame contains values and other information

numeric.column Which column in value data frame should be taken as y-value. If it is not
defined, the whole numeric columns in value will be taken.

sector.index Pass to circos.lines

track.index Pass to circos.lines

posTransform Self-defined function to transform genomic positions, see posTransform.default
for explaination

col col of lines/areas. If there are more than one numeric column, the length of col
can be either one or number of numeric columns. If there is only one numeric
column and type is either segment or h, the length of col can be either one or
number of rows of region. pass to circos.lines

lwd Settings are similar as col. Pass to circos.lines

lty Settings are similar as col. Pass to circos.lines

type There is an additional option segment which plot segment lines from start posi-
tion to end position. Settings are similar as col. Pass to circos.lines.

area Settings are similar as col. Pass to circos.lines

area.baseline Deprecated, use baseline instead.

baseline Settings are similar as col. Pass to circos.lines

border Settings are similar as col. Pass to circos.lines

38 circos.genomicLines

pt.col Settings are similar as col. Pass to circos.lines

cex Settings are similar as col. Pass to circos.lines

pch Settings are similar as col. Pass to circos.lines

... mysterious parameters

Details

The function is a low-level graphical function and usually is put in panel.fun when using circos.genomicTrackPlotRegion.

Examples

test bed
circos.par("track.height" = 0.1)
circos.initializeWithIdeogram(plotType = NULL)

bed = generateRandomBed(nr = 100)
circos.genomicTrackPlotRegion(bed, panel.fun = function(region, value, ...) {

circos.genomicLines(region, value, type = "l", ...)
})

bed1 = generateRandomBed(nr = 100)
bed2 = generateRandomBed(nr = 100)
bed_list = list(bed1, bed2)

circos.genomicTrackPlotRegion(bed_list, panel.fun = function(region, value, ...) {
i = getI(...)
circos.genomicLines(region, value, col = i, ...)

})

circos.genomicTrackPlotRegion(bed_list, stack = TRUE,
panel.fun = function(region, value, ...) {
i = getI(...)
circos.genomicLines(region, value, col = i, ...)

})

bed = generateRandomBed(nr = 100, nc = 4)
circos.genomicTrackPlotRegion(bed, panel.fun = function(region, value, ...) {

circos.genomicLines(region, value, col = 1:4, ...)
})

circos.genomicTrackPlotRegion(bed, stack = TRUE, panel.fun = function(region, value, ...) {
i = getI(...)
circos.genomicLines(region, value, col = i, ...)

})

bed = generateRandomBed(nr = 100)
circos.genomicTrackPlotRegion(bed, panel.fun = function(region, value, ...) {

circos.genomicLines(region, value, type = "segment", lwd = 2, ...)
})

circos.genomicLink 39

circos.clear()

circos.genomicLink Add links from two sets of genomic positions

Description

Add links from two sets of genomic positions

Usage

circos.genomicLink(
region1,
region2,
rou = get_most_inside_radius(),
rou1 = rou,
rou2 = rou,
col = "black",
lwd = par("lwd"),
lty = par("lty"),
border = col,
...)

Arguments

region1 A genomic data frame

region2 A genomic data frame

rou Pass to circos.link

rou1 Pass to circos.link

rou2 Pass to circos.link

col Pass to circos.link, length can be either one or nrow of region1

lwd Pass to circos.link, length can be either one or nrow of region1

lty Pass to circos.link, length can be either one or nrow of region1

border Pass to circos.link, length can be either one or nrow of region1

... Pass to circos.link

Details

Of course, number of rows should be same in region1 and region2.

If you want to have more controls on links, please use circos.link directly.

See Also

https://jokergoo.github.io/circlize_book/book/genomic-plotting-region.html#genomic-links

https://jokergoo.github.io/circlize_book/book/genomic-plotting-region.html#genomic-links

40 circos.genomicPoints

Examples

set.seed(123)

bed1 = generateRandomBed(nr = 100)
bed1 = bed1[sample(nrow(bed1), 20),]
bed2 = generateRandomBed(nr = 100)
bed2 = bed2[sample(nrow(bed2), 20),]
circos.par("track.height" = 0.1, cell.padding = c(0, 0, 0, 0))
circos.initializeWithIdeogram()

circos.genomicLink(bed1, bed2, col = sample(1:5, 20, replace = TRUE), border = NA)
circos.clear()

circos.genomicPoints Add points to a plotting region, specifically for genomic graphics

Description

Add points to a plotting region, specifically for genomic graphics

Usage

circos.genomicPoints(
region,
value,
numeric.column = NULL,
sector.index = get.cell.meta.data("sector.index"),
track.index = get.cell.meta.data("track.index"),
posTransform = NULL,
pch = par("pch"),
col = par("col"),
cex = par("cex"),
bg = par("bg"),
...)

Arguments

region A data frame contains 2 columns which correspond to start positions and end
positions

value A data frame contains values and other information

numeric.column Which column in value data frame should be taken as y-value. If it is not
defined, the whole numeric columns in value will be taken.

sector.index Pass to circos.points

track.index Pass to circos.points

circos.genomicPoints 41

posTransform Self-defined function to transform genomic positions, see posTransform.default
for explanation

col color of points. If there is only one numeric column, the length of col can be
either one or number of rows of region. If there are more than one numeric
column, the length of col can be either one or number of numeric columns.
Pass to circos.points

pch Type of points. Settings are similar as col. Pass to circos.points

cex Size of points. Settings are similar as col. Pass to circos.points

bg background colors for points.

... Mysterious parameters

Details

The function is a low-level graphical function and usually is put in panel.fun when using circos.genomicTrackPlotRegion.

Examples

circos.par("track.height" = 0.1)
circos.initializeWithIdeogram(plotType = NULL)

bed = generateRandomBed(nr = 100)
circos.genomicTrackPlotRegion(bed, panel.fun = function(region, value, ...) {

circos.genomicPoints(region, value, pch = 16, cex = 0.5, ...)
})

circos.genomicTrackPlotRegion(bed, stack = TRUE, panel.fun = function(region, value, ...) {
circos.genomicPoints(region, value, pch = 16, cex = 0.5, ...)
i = getI(...)
cell.xlim = get.cell.meta.data("cell.xlim")
circos.lines(cell.xlim, c(i, i), lty = 2, col = "#00000040")

})

bed1 = generateRandomBed(nr = 100)
bed2 = generateRandomBed(nr = 100)
bed_list = list(bed1, bed2)

data frame list
circos.genomicTrackPlotRegion(bed_list, panel.fun = function(region, value, ...) {

cex = (value[[1]] - min(value[[1]]))/(max(value[[1]]) - min(value[[1]]))
i = getI(...)
circos.genomicPoints(region, value, cex = cex, pch = 16, col = i, ...)

})

circos.genomicTrackPlotRegion(bed_list, stack = TRUE,
panel.fun = function(region, value, ...) {
cex = (value[[1]] - min(value[[1]]))/(max(value[[1]]) - min(value[[1]]))
i = getI(...)
circos.genomicPoints(region, value, cex = cex, pch = 16, col = i, ...)
cell.xlim = get.cell.meta.data("cell.xlim")
circos.lines(cell.xlim, c(i, i), lty = 2, col = "#00000040")

42 circos.genomicPosTransformLines

})

bed = generateRandomBed(nr = 100, nc = 4)
circos.genomicTrackPlotRegion(bed, panel.fun = function(region, value, ...) {

cex = (value[[1]] - min(value[[1]]))/(max(value[[1]]) - min(value[[1]]))
circos.genomicPoints(region, value, cex = 0.5, pch = 16, col = 1:4, ...)

})

circos.genomicTrackPlotRegion(bed, stack = TRUE, panel.fun = function(region, value, ...) {
cex = (value[[1]] - min(value[[1]]))/(max(value[[1]]) - min(value[[1]]))
i = getI(...)
circos.genomicPoints(region, value, cex = cex, pch = 16, col = i, ...)
cell.xlim = get.cell.meta.data("cell.xlim")
circos.lines(cell.xlim, c(i, i), lty = 2, col = "#00000040")

})

circos.clear()

circos.genomicPosTransformLines

Add genomic position transformation lines between tracks

Description

Add genomic position transformation lines between tracks

Usage

circos.genomicPosTransformLines(
data,
track.height = 0.1,
posTransform = NULL,
horizontalLine = c("none", "top", "bottom", "both"),
track.margin = c(0, 0),
direction = c("inside", "outside"),
col = "black",
lwd = par("lwd"),
lty = par("lty"),
...)

Arguments

data A data frame containing genomic data

track.height Height of the track

posTransform Genomic position transformation function, see posTransform.default for an
example.

horizontalLine Whether to draw horizontal lines which indicate region width

circos.genomicRainfall 43

track.margin Margin of tracks

direction Type of the transformation. inside means position transformed track are lo-
cated inside and outside means position transformed track are located outside.

col Color of lines, can be length of one or nrow of data

lwd Width of lines

lty Style of lines

... pass to circos.trackPlotRegion

Details

There is one representative situation when such position transformation needs to be applied. For
example, there are two sets of regions in a chromosome in which regions in one set regions are
quite densely to each other and regions in other set are far from others. Heatmap or text is going to
be drawn on the next track. If there is no position transformation, heatmap or text for those dense
regions would be overlapped and hard to identify, also ugly to visualize. Thus, a way to transform
original positions to new positions would help for the visualization.

Examples

There is no example
NULL

circos.genomicRainfall

Genomic rainfall plot

Description

Genomic rainfall plot

Usage

circos.genomicRainfall(
data,
mode = "min",
ylim = NULL,
col = "black",
pch = par("pch"),
cex = par("cex"),
normalize_to_width = FALSE,
...)

44 circos.genomicRainfall

Arguments

data A bed-file-like data frame or a list of data frames

mode how to calculate the distance of two neighbouring regions, pass to rainfallTransform

ylim ylim for rainfall plot track. If normalize_to_width is FALSE, the value should
correspond to log10(dist+1), and if normalize_to_width is TRUE, the value
should correspond to log2(rel_dist).

col Color of points. It should be length of one. If data is a list, the length of col
can also be the length of the list.

pch Style of points

cex Size of points
normalize_to_width

If it is TRUE, the value is the relative distance divided by the width of the region.

... Pass to circos.trackPlotRegion

Details

This is high-level graphical function, which mean, it will create a new track.

Rainfall plot can be used to visualize distribution of regions. On the plot, y-axis corresponds to the
distance to neighbour regions (log-based). So if there is a drop-down on the plot, it means there is
a cluster of regions at that area.

On the plot, y-axis are log10-transformed.

See Also

https://jokergoo.github.io/circlize_book/book/high-level-genomic-functions.html#
genomic-density-and-rainfall-plot

Examples

load(system.file(package = "circlize", "extdata", "DMR.RData"))

rainfall
circos.initializeWithIdeogram(plotType = c("axis", "labels"))

bed_list = list(DMR_hyper, DMR_hypo)
circos.genomicRainfall(bed_list, pch = 16, cex = 0.4, col = c("#FF000080", "#0000FF80"))

circos.genomicDensity(bed_list[[1]], col = c("#FF000080"), track.height = 0.1)
circos.genomicDensity(bed_list[[2]], col = c("#0000FF80"), track.height = 0.1)

circos.clear()

https://jokergoo.github.io/circlize_book/book/high-level-genomic-functions.html#genomic-density-and-rainfall-plot
https://jokergoo.github.io/circlize_book/book/high-level-genomic-functions.html#genomic-density-and-rainfall-plot

circos.genomicRect 45

circos.genomicRect Draw rectangle-like grid, specifically for genomic graphics

Description

Draw rectangle-like grid, specifically for genomic graphics

Usage

circos.genomicRect(
region,
value = NULL,
ytop = NULL,
ybottom = NULL,
ytop.column = NULL,
ybottom.column = NULL,
sector.index = get.cell.meta.data("sector.index"),
track.index = get.cell.meta.data("track.index"),
posTransform = NULL,
col = NA,
border = "black",
lty = par("lty"),
...)

Arguments

region A data frame contains 2 column which correspond to start position and end
position

value A data frame contains values and other information

ytop A vector or a single value indicating top position of rectangles

ybottom A vector or a single value indicating bottom position of rectangles

ytop.column If ytop is in value, the index of the column

ybottom.column If ybottom is in value, the index of the column

sector.index Pass to circos.rect

track.index Pass to circos.rect

posTransform Self-defined function to transform genomic positions, see posTransform.default
for explaination

col The length of col can be either one or number of rows of region. Pass to
circos.rect

border Settings are similar as col. Pass to circos.rect

lty Settings are similar as col. Pass to circos.rect

... Mysterious parameters

46 circos.genomicRect

Details

The function is a low-level graphical function and usually is put in panel.fun when using circos.genomicTrackPlotRegion.

Examples

############################
rect matrix
circos.par("track.height" = 0.1, cell.padding = c(0, 0, 0, 0))
circos.initializeWithIdeogram(plotType = NULL)

bed = generateRandomBed(nr = 100, nc = 4)
circos.genomicTrackPlotRegion(bed, stack = TRUE, panel.fun = function(region, value, ...) {

circos.genomicRect(region, value, col = sample(1:10, nrow(region), replace = TRUE),
border = NA, ...)

i = getI(...)
cell.xlim = get.cell.meta.data("cell.xlim")
#circos.lines(cell.xlim, c(i, i), lty = 2, col = "#00000040")

}, bg.border = NA)

circos.genomicPosTransformLines(bed, posTransform = posTransform.default,
horizontalLine = "top")

circos.genomicTrackPlotRegion(bed, stack = TRUE, panel.fun = function(region, value, ...) {
circos.genomicRect(region, value, col = sample(1:10, nrow(region), replace = TRUE),

border = NA, posTransform = posTransform.default, ...)
i = getI(...)
cell.xlim = get.cell.meta.data("cell.xlim")
#circos.lines(cell.xlim, c(i, i), lty = 2, col = "#00000040")

}, bg.border = NA)

circos.genomicPosTransformLines(bed, posTransform = posTransform.default,
direction = "outside", horizontalLine = "bottom")

circos.genomicTrackPlotRegion(bed, stack = TRUE, panel.fun = function(region, value, ...) {
circos.genomicRect(region, value, col = sample(1:10, nrow(region), replace = TRUE),

border = NA, ...)
i = getI(...)
cell.xlim = get.cell.meta.data("cell.xlim")
#circos.lines(cell.xlim, c(i, i), lty = 2, col = "#00000040")

}, bg.border = NA)

circos.clear()

##########################
rect from bed list
circos.par("track.height" = 0.1, cell.padding = c(0, 0, 0, 0))
circos.initializeWithIdeogram(plotType = NULL)

bed1 = generateRandomBed(nr = 100)
bed2 = generateRandomBed(nr = 100)
bed_list = list(bed1, bed2)

circos.genomicText 47

f = colorRamp2(breaks = c(-1, 0, 1), colors = c("green", "black", "red"))
circos.genomicTrackPlotRegion(bed_list, stack = TRUE,

panel.fun = function(region, value, ...) {

circos.genomicRect(region, value, col = f(value[[1]]),
border = NA, ...)

i = getI(...)
cell.xlim = get.cell.meta.data("cell.xlim")
circos.lines(cell.xlim, c(i, i), lty = 2, col = "#000000")

})

circos.genomicTrackPlotRegion(bed_list, ylim = c(0, 3),
panel.fun = function(region, value, ...) {
i = getI(...)
circos.genomicRect(region, value, ytop = i+0.4, ybottom = i-0.4, col = f(value[[1]]),

border = NA, ...)

cell.xlim = get.cell.meta.data("cell.xlim")
circos.lines(cell.xlim, c(i, i), lty = 2, col = "#000000")

})

circos.genomicTrackPlotRegion(bed1, panel.fun = function(region, value, ...) {
circos.genomicRect(region, value, col = "red", border = NA, ...)

})

circos.genomicTrackPlotRegion(bed_list, panel.fun = function(region, value, ...) {
i = getI(...)
circos.genomicRect(region, value, col = i, border = NA, ...)

})

circos.clear()

circos.genomicText Draw text in a cell, specifically for genomic graphics

Description

Draw text in a cell, specifically for genomic graphics

Usage

circos.genomicText(
region,
value = NULL,
y = NULL,
labels = NULL,
labels.column = NULL,

48 circos.genomicText

numeric.column = NULL,
sector.index = get.cell.meta.data("sector.index"),
track.index = get.cell.meta.data("track.index"),
posTransform = NULL,
direction = NULL,
facing = "inside",
niceFacing = FALSE,
adj = par("adj"),
cex = 1,
col = "black",
font = par("font"),
padding = 0,
extend = 0,
align_to = "region",
...)

Arguments

region A data frame contains 2 column which correspond to start position and end
position

value A data frame contains values and other information

y A vector or a single value indicating position of text.

labels Labels of text corresponding to each genomic positions

labels.column If labels are in value, index of column in value

numeric.column Which column in value data frame should be taken as y-value. If it is not
defined, only the first numeric columns in value will be taken.

sector.index Pass to circos.rect

track.index Pass to circos.rect

posTransform Self-defined function to transform genomic positions, see posTransform.default
for explanation

facing Passing to circos.text. Settings are similar as col

niceFacing Should the facing of text be adjusted to fit human eyes?

direction Deprecated, use facing instead.

adj Pass to circos.text. Settings are similar as col

cex Pass to circos.text. Settings are similar as col

col Pass to circos.text. The length of col can be either one or number of rows of
region.

font Pass to circos.text. Settings are similar as col

padding pass to posTransform if it is set as posTransform.text

extend pass to posTransform if it is set as posTransform.text

align_to pass to posTransform if it is set as posTransform.text

... Mysterious parameters

circos.genomicTrack 49

Details

The function is a low-level graphical function and usually is put in panel.fun when using circos.genomicTrackPlotRegion.

Examples

circos.par("track.height" = 0.1, cell.padding = c(0, 0, 0, 0))
circos.initializeWithIdeogram(plotType = NULL)

bed = generateRandomBed(nr = 20)

circos.genomicTrackPlotRegion(bed, ylim = c(0, 1), panel.fun = function(region, value, ...) {
circos.genomicText(region, value, y = 0.5, labels = "text", ...)

})

bed = cbind(bed, sample(letters, nrow(bed), replace = TRUE))
circos.genomicTrackPlotRegion(bed, panel.fun = function(region, value, ...) {

circos.genomicText(region, value, labels.column = 2, ...)
})

circos.clear()

circos.genomicTrack Create a track for genomic graphics

Description

Create a track for genomic graphics

Usage

circos.genomicTrack(...)

Arguments

... pass to circos.genomicTrackPlotRegion

Details

shortcut function of circos.genomicTrackPlotRegion.

Examples

There is no example
NULL

50 circos.genomicTrackPlotRegion

circos.genomicTrackPlotRegion

Create a track for genomic graphics

Description

Create a track for genomic graphics

Usage

circos.genomicTrackPlotRegion(
data = NULL,
ylim = NULL,
stack = FALSE,
numeric.column = NULL,
jitter = 0,
panel.fun = function(region, value, ...) {NULL},
...)

Arguments

data A bed-file-like data frame or a list of data frames
ylim If it is NULL, the value will be calculated from data. If stack is set to TRUE, this

value is ignored.
stack whether to plot in a "stack" mode.
numeric.column Columns of numeric values in data that will be used for plotting. If data is

a data frame list, numeric.column should be either length of one or length of
data. If value of numeric.column is not set, its value will depend on the struc-
ture of data. If data is a data frame, the default value for numeric.column is
all the numeric column starting from the fourth column. If data is a list of data
frame, the default value for numeric.column is a vector which have the same
length as data and the value in default numeric.column is the index of the first
numeric column in corresponding data frame.

jitter Numeric. Only works for adding points in circos.genomicTrackPlotRegion
under stack mode

panel.fun Self-defined function which will be applied on each sector. Please not it is dif-
ferent from that in circos.trackPlotRegion. In this function, there are two
arguments (region and value) plus In them, region is a two-column data
frame with start positions and end positions in current genomic category (e.g.
chromosome). value is a data frame which is derived from data but excluding
the first three columns. Rows in value correspond to rows in region. ... is
mandatory and is used to pass internal parameters to other functions. The defi-
nition of value will be different according to different input data (data frame or
list of data frame) and different settings (stacked or not), please refer to ’details’
section and vignettes to detailed explanation.

... Pass to circos.trackPlotRegion.

circos.genomicTrackPlotRegion 51

Details

Similar as circos.trackPlotRegion, users can add customized graphics by panel.fun, but the
behaviour of panel.fun will change depending on users’ input data and stack setting.

When data is a single data frame, region in panel.fun is a data frame containing the second and
third column in data in ’current‘ genomic category (e.g. current chromosome). value is also a data
frame containing columns in data excluding the first three columns.

When data is a list containing data frames, panel.fun will be applied iteratively on each data
frame, thus, region is extracted from the data frame which is in the current iteration. For example,
if data contains two data frames, panel.fun will be applied with the first data frame in current
chromosome and then applied with the second data frame in the same chromosome.

If stack is set to TRUE, ylim will be re-defined. in stack mode, the y-axis will be splitted into
several part with equal height and graphics will be drawn on each ’horizontal’ lines (y = 1, 2, ...).
In this case:

When data is a single data frame containing one or more numeric columns, each numeric column
defined in numeric.column will be treated as a single unit. ylim is re-defined to c(0.5,n+0.5)
in which n is number of numeric columns. panel.fun will be applied iteratively on each numeric
column. In each iteration, in panel.fun, region is still the genomic regions in current genomic
category, but value contains current numeric column plus all non-numeric columns. Under stack
mode, in panel.fun, all low-level genomic graphical functions will draw on the ’horizontal line’ y
= i in which i is the index of current numeric column and the value of i can be obtained by getI.

When data is a list containing data frames, each data frame will be treated as a single unit. The
situation is quite similar as described in previous paragraph. ylim is re-defined to c(0.5,n+0.5)
in which n is number of data frames. panel.fun will be applied iteratively on each data frame.
In each iteration, in panel.fun, region is still the genomic regions in current genomic category,
and value contains columns in current data frame excluding the first three columns. Under stack
mode, in panel.fun, all low-level genomic graphical functions will draw on the ’horizontal line’ y
= i in which i is the index of current data frame.

Being different from panel.fun in circos.trackPlotRegion, there should be an additional ar-
gument ... in panel.fun. This additional argument is used to pass hidden values to low-level
graphical functions. So if you are using functions like circos.genomicPoints, you should also
add ... as an additional argument into circos.genomicPoints.

See Also

https://jokergoo.github.io/circlize_book/book/genomic-plotting-region.html and https:
//jokergoo.github.io/circlize_book/book/modes-of-input.html

Examples

There is no example
NULL

https://jokergoo.github.io/circlize_book/book/genomic-plotting-region.html
https://jokergoo.github.io/circlize_book/book/modes-of-input.html
https://jokergoo.github.io/circlize_book/book/modes-of-input.html

52 circos.heatmap

circos.heatmap Make circular heatmaps

Description

Make circular heatmaps

Usage

circos.heatmap(mat, split = NULL, col, na.col = "grey",
bg.border = NA, bg.lty = par("lty"), bg.lwd = par("lwd"), ignore.white = TRUE,
cluster = TRUE, clustering.method = "complete", distance.method = "euclidean",
dend.callback = function(dend, m, si) reorder(dend, rowMeans(m)),
dend.side = c("none", "outside", "inside"), dend.track.height = 0.1,
rownames.side = c("none", "outside", "inside"), rownames.cex = 0.5,
rownames.font = par("font"), rownames.col = "black",
show.sector.labels = FALSE, ...)

Arguments

mat A matrix or a vector. The vector is transformed as a one-column matrix.

split A categorical variable. It splits the matrix into a list of matrices.

col If the values in the matrices are continuous, the color should be a color mapping
generated by colorRamp2. If the values are characters, the color should be a
named color vector.

na.col Color for NA values.

bg.border Color for background border.

bg.lty Line type of the background border.

bg.lwd Line width of the background border.

ignore.white Whether to draw the white color?

cluster whether to apply clustering on rows.
clustering.method

Clustering method, pass to hclust.
distance.method

Distance method, pass to dist.

dend.callback A callback function that is applied to the dendrogram in every sector.

dend.side Side of the dendrograms relative to the heatmap track.
dend.track.height

Track height of the dendrograms.

rownames.side Side of the row names relative to the heatmap track.

rownames.cex Cex of row names.

rownames.font Font of row names.

circos.heatmap.initialize 53

rownames.col Color of row names.
show.sector.labels

Whether to show sector labels.

... Pass to circos.track which draws the heatmap track.

Examples

set.seed(123)
mat1 = rbind(cbind(matrix(rnorm(50*5, mean = 1), nr = 50),

matrix(rnorm(50*5, mean = -1), nr = 50)),
cbind(matrix(rnorm(50*5, mean = -1), nr = 50),

matrix(rnorm(50*5, mean = 1), nr = 50))
)

rownames(mat1) = paste0("R", 1:100)
colnames(mat1) = paste0("C", 1:10)
mat1 = mat1[sample(100, 100),] # randomly permute rows
split = sample(letters[1:5], 100, replace = TRUE)
spilt = factor(split, levels = letters[1:5])
col_fun1 = colorRamp2(c(-2, 0, 2), c("blue", "white", "red"))
circos.heatmap(mat1, split = split, col = col_fun1)
circos.clear()

circos.heatmap.initialize

Initialize circular heatmaps

Description

Initialize circular heatmaps

Usage

circos.heatmap.initialize(mat, split = NULL, cluster = TRUE,
clustering.method = "complete", distance.method = "euclidean",
dend.callback = function(dend, m, si) reorder(dend, rowMeans(m)))

Arguments

mat A matrix or a vector. The vector is transformed as a one-column matrix.

split A categorical variable. It splits the matrix into a list of matrices.

cluster whether to apply clustering on rows.
clustering.method

Clustering method, pass to hclust.
distance.method

Distance method, pass to dist.

dend.callback A callback function that is applied to the dendrogram in every sector.

54 circos.heatmap.link

Examples

There is no example
NULL

circos.heatmap.link Draw a link between two matrix rows in the circular heatmap

Description

Draw a link between two matrix rows in the circular heatmap

Usage

circos.heatmap.link(row_from, row_to, ...)

Arguments

row_from The row index where the link starts. The value should be length 1. If you want
to draw multiple links, put the function in a for loop.

row_to The row index where the link ends.

... Pass to circos.link.

Examples

set.seed(123)
mat = matrix(rnorm(100*10), nrow = 100)
rownames(mat) = paste0("R", 1:100)
col_fun = colorRamp2(c(-2, 0, 2), c("blue", "white", "red"))
circos.heatmap(mat, col = col_fun, rownames.side = "outside")
circos.heatmap.link(10, 60)
circos.clear()

split = sample(letters[1:5], 100, replace = TRUE)
circos.heatmap(mat, col = col_fun, split = split,
rownames.side = "outside")
circos.heatmap.link(10, 60)
circos.clear()

circos.info 55

circos.info Get information of the circular plot

Description

Get information of the circular plot

Usage

circos.info(sector.index = NULL, track.index = NULL, plot = FALSE)

Arguments

sector.index Which sectors you want to look at? It can be a vector.

track.index Which tracks you want to look at? It can be a vector.

plot Whether to add information on the plot

Details

It tells you the basic parameters for sectors/tracks/cells. If both sector.index and track.index
are set to NULL, the function would print index for all sectors and all tracks. If sector.index and/or
track.index are set, the function would print xlim, ylim, cell.xlim, cell.ylim, xplot, yplot,
cell.width, cell.height, track.margin and cell.padding for every cell in specified sectors
and tracks. Also, the function will print index of your current sector and current track.

If plot is set to TRUE, the function will plot the index of the sector and the track for each cell on the
figure.

See Also

https://jokergoo.github.io/circlize_book/book/circular-layout.html#circos-info-and-circos-clear

Examples

There is no example
NULL

https://jokergoo.github.io/circlize_book/book/circular-layout.html#circos-info-and-circos-clear

56 circos.initialize

circos.initialize Initialize the circular layout

Description

Initialize the circular layout

Usage

circos.initialize(
factors,
x = NULL,
xlim = NULL,
sector.width = NULL)

Arguments

factors A factor variable or a character vector which represent data categories

x Data on x-axes, a vector

xlim Ranges for values on x-axes, see "details" section for explanation of the format

sector.width Width for each sector. The length of the vector should be either 1 which means
all sectors have same width or as same as the number of sectors. Values for
the vector are relative, and they will be scaled by dividing their summation. By
default, it is NULL which means the width of sectors correspond to the data range
in sectors.

Details

The function allocates the sectors according to the values on x-axis. The number of sectors are
determined by the factors and the order of sectors are determined by the levels of factors. In this
function, the start and end position for each sector on the circle (measured by degree) are calculated
according to the values on x-axis or by xlim.

If x is set, the length of x must be equal to the length of factors. Then the data range for each
sector are calculated from x by splitting factors.

If xlim is set, it should be a vector containing two numbers or a matrix with 2 columns. If xlim
is a 2-element vector, it means all sector share the same xlim. If xlim is a 2-column matrix, the
number of rows should be equal to the number of categories identified by factors, then each row
of xlim corresponds to the data range for each sector and the order of rows is corresponding to the
order of levels of factors. If xlim is a matrix for which row names cover all sector names, xlim is
automatically adjusted.

Normally, width of sectors will be calculated internally according to the data range in sectors. But
you can still set the width manually. However, it is not always a good idea to change the default
sector width since the width can reflect the range of data in sectors. However, in some cases, it is
useful to manually set the width such as you want to zoom some part of the sectors.

The function finally calls plot with enforing aspect ratio to be 1 and be ready for adding graphics.

circos.initializeWithIdeogram 57

See Also

https://jokergoo.github.io/circlize_book/book/circular-layout.html

Examples

There is no example
NULL

circos.initializeWithIdeogram

Initialize the circular layout with an ideogram

Description

Initialize the circular layout with an ideogram

Usage

circos.initializeWithIdeogram(
cytoband = system.file(package = "circlize", "extdata", "cytoBand.txt"),
species = NULL,
sort.chr = TRUE,
chromosome.index = usable_chromosomes(species),
major.by = NULL,
plotType = c("ideogram", "axis", "labels"),
track.height = NULL,
ideogram.height = convert_height(2, "mm"),
...)

Arguments

cytoband A path of the cytoband file or a data frame that already contains cytoband data.
By default it is cytoband for hg19. Pass to read.cytoband.

species Abbreviations of species. e.g. hg19 for human, mm10 for mouse. If this value
is specified, the function will download cytoBand.txt.gz from UCSC website
automatically. If there is no cytoband for user’s species, it will keep on trying to
download chromInfo file. Pass to read.cytoband or read.chromInfo.

chromosome.index

subset of chromosomes, also used to reorder chromosomes.
sort.chr Whether chromosome names should be sorted (first sort by numbers then by

letters). If chromosome.index is set, this argumetn is enforced to FALSE

major.by Increment of major ticks. Pass to circos.genomicInitialize.
plotType Which tracks should be drawn. ideogram for ideogram rectangle, axis for

genomic axis and labels for chromosome names. If there is no ideogram for
specified species, ideogram will be enforced to be excluded. If it is set to NULL,
the function just initialize the plot but draw nothing.

https://jokergoo.github.io/circlize_book/book/circular-layout.html

58 circos.initializeWithIdeogram

track.height Height of the track which contains "axis" and "labels".
ideogram.height

Height of the ideogram track

... Pass to circos.genomicInitialize.

Details

The function will initialize the circular plot in which each sector corresponds to a chromosome.
You can control the order of chromosomes by chromosome.index or by sort.chr, or by setting
a special format of cytoband (please refer to read.cytoband to find out how to control a proper
cytoband).

The function finally pass data to circos.genomicInitialize to initialize the circular plot.

The style of ideogram is almost fixed, but you can customize it with your self-sefined code. Refer
to vignette for demonstration.

See Also

https://jokergoo.github.io/circlize_book/book/initialize-genomic-plot.html#initialize-cytoband

Examples

circos.initializeWithIdeogram()

cytoband.file = system.file(package = "circlize",
"extdata", "cytoBand.txt")

circos.initializeWithIdeogram(cytoband.file)

cytoband.df = read.table(cytoband.file, colClasses = c("character", "numeric",
"numeric", "character", "character"), sep = "\t")

circos.initializeWithIdeogram(cytoband.df)

circos.initializeWithIdeogram(species = "hg18")

circos.initializeWithIdeogram(species = "mm10")

circos.initializeWithIdeogram(chromosome.index = c("chr1", "chr2"))

cytoband = read.table(cytoband.file, colClasses = c("character", "numeric",
"numeric", "character", "character"), sep = "\t")

circos.initializeWithIdeogram(cytoband, sort.chr = FALSE)

cytoband[[1]] = factor(cytoband[[1]], levels = paste0("chr", c(22:1, "X", "Y")))
circos.initializeWithIdeogram(cytoband, sort.chr = FALSE)

cytoband = read.table(cytoband.file, colClasses = c("character", "numeric",
"numeric", "character", "character"), sep = "\t")

circos.initializeWithIdeogram(cytoband, sort.chr = TRUE)

circos.initializeWithIdeogram(plotType = c("axis", "labels"))

https://jokergoo.github.io/circlize_book/book/initialize-genomic-plot.html#initialize-cytoband

circos.lines 59

circos.initializeWithIdeogram(plotType = NULL)

circos.par("start.degree" = 90)
circos.initializeWithIdeogram()
circos.clear()

circos.par("gap.degree" = rep(c(2, 4), 12))
circos.initializeWithIdeogram()
circos.clear()

circos.lines Add lines to the plotting region

Description

Add lines to the plotting region

Usage

circos.lines(
x, y,
sector.index = get.cell.meta.data("sector.index"),
track.index = get.cell.meta.data("track.index"),
col = ifelse(area, "grey", par("col")),
lwd = par("lwd"),
lty = par("lty"),
type = "l",
straight = FALSE,
area = FALSE,
area.baseline = NULL,
border = "black",
baseline = "bottom",
pt.col = par("col"),
cex = par("cex"),
pch = par("pch"))

Arguments

x Data points on x-axis, measured in "current" data coordinate

y Data points on y-axis, measured in "current" data coordinate

sector.index Index for the sector

track.index Index for the track

col Line color

lwd line width

60 circos.lines

lty line style
type line type, similar as type argument in lines, but only in c("l","o","h","s")

straight whether draw straight lines between points.
area whether to fill the area below the lines. If it is set to TRUE, col controls the filled

color in the area and border controls color of the line.
area.baseline deprecated, use baseline instead.
baseline the base line to draw areas. By default it is the minimal of y-range (bottom). It

can be a string or a number. If a string, it should be one of bottom and top. This
argument also works if type is set to h.

border color for border of the area
pt.col if type is "o", point color
cex if type is "o", point size
pch if type is "o", point type

Details

Normally, straight lines in the Cartesian coordinate have to be transformed into curves in the circular
layout. But if you do not want to do such transformation you can use this function just drawing
straight lines between points by setting straight to TRUE.

Drawing areas below lines can help to identify the direction of y-axis in cells (since it is a circle).
This can be done by specifying area to TURE.

See Also

factors = letters[1:9] circos.par(points.overflow.warning = FALSE) circos.initialize(factors = fac-
tors, xlim = c(0, 10)) circos.trackPlotRegion(factors = factors, ylim = c(0, 10), track.height = 0.5)

circos.lines(sort(runif(10)*10), runif(10)*8, sector.index = "a") circos.text(5, 9, "type = ’l’", sec-
tor.index = "a", facing = "outside")

circos.lines(sort(runif(10)*10), runif(10)*8, sector.index = "b", type = "o") circos.text(5, 9, "type =
’o’", sector.index = "b", facing = "outside")

circos.lines(sort(runif(10)*10), runif(10)*8, sector.index = "c", type = "h") circos.text(5, 9, "type =
’h’", sector.index = "c", facing = "outside")

circos.lines(sort(runif(10)*10), runif(10)*8, sector.index = "d", type = "h", baseline = 5) circos.text(5,
9, "type = ’h’, baseline = 5", sector.index = "d", facing = "outside")

circos.lines(sort(runif(10)*10), runif(10)*8, sector.index = "e", type = "s") circos.text(5, 9, "type =
’s’", sector.index = "e", facing = "outside")

circos.lines(sort(runif(10)*10), runif(10)*8, sector.index = "f", area = TRUE) circos.text(5, 9, "type
= ’l’, area = TRUE", sector.index = "f")

circos.lines(sort(runif(10)*10), runif(10)*8, sector.index = "g", type = "o", area = TRUE) cir-
cos.text(5, 9, "type = ’o’, area = TRUE", sector.index = "g")

circos.lines(sort(runif(10)*10), runif(10)*8, sector.index = "h", type = "s", area = TRUE) circos.text(5,
9, "type = ’s’, area = TRUE", sector.index = "h")

circos.lines(sort(runif(10)*10), runif(10)*8, sector.index = "i", area = TRUE, baseline = "top") cir-
cos.text(5, 9, "type = ’l’, area = TRUE, baseline = ’top’", sector.index = "i")

circos.clear()

circos.link 61

Examples

There is no example
NULL

circos.link Draw links between points or/and intervals

Description

Draw links between points or/and intervals

Usage

circos.link(
sector.index1,
point1,
sector.index2,
point2,
rou = get_most_inside_radius(),
rou1 = rou,
rou2 = rou,
h = NULL,
h.ratio = 0.5,
w = 1,
h2 = h,
w2 = w,
col = "black",
lwd = par("lwd"),
lty = par("lty"),
border = col,
directional = 0,
arr.length = ifelse(arr.type == "big.arrow", 0.02, 0.4),
arr.width = arr.length/2,
arr.type = "triangle",
arr.lty = lty,
arr.lwd = lwd,
arr.col = col,
reduce_to_mid_line = FALSE)

Arguments

sector.index1 Index for the first sector where one link end locates

point1 A single value or a numeric vector of length 2. If it is a 2-elements vector, then
the link would be a belt/ribbon.

sector.index2 Index for the other sector where the other link end locates

62 circos.link

point2 A single value or a numeric vector of length 2. If it is a 2-elements vector, then
the link would be a belt/ribbon.

rou The position of the the link ends (if rou1 and rou2 are not set). It is the percent-
age of the radius of the unit circle. By default its value is the position of bottom
margin of the most inner track.

rou1 The position of end 1 of the link.

rou2 The position of end 2 of the link.

h Height of the link, measured as percent to the radius to the unit circle. By default
it is automatically infered.

h.ratio systematically change the link height. The value is between 0 and 1.

w Since the link is a Bezier curve, it controls the shape of Bezier curve.

h2 Height of the bottom edge of the link if it is a ribbon.

w2 Shape of the bottom edge of the link if it is a ribbon.

col Color of the link. If the link is a ribbon, then it is the filled color for the ribbon.

lwd Line (or border) width

lty Line (or border) style

border If the link is a ribbon, then it is the color for the ribbon border.

directional 0 for no direction, 1 for direction from point1 to point2, -1 for direction from
point2 to point1. 2 for two directional. The direction is important when arrow
heads are added.

arr.width Width of the arrows, pass to Arrowhead.

arr.type Type of the arrows, pass to Arrowhead. Default value is triangle. There is an
additional option big.arrow.

arr.length Length of the arrows, measured in ’cm’, pass to Arrowhead. If arr.type is set
to big.arrow, the value is percent to the radius of the unit circle.

arr.col Color of the arrows, pass to Arrowhead.

arr.lwd Line width of arrows, pass to Arrowhead.

arr.lty Line type of arrows, pass to Arrowhead.
reduce_to_mid_line

Only use the middle points of point1 and point2 to draw the link.

Details

Links are implemented as quadratic Bezier curves (https://en.wikipedia.org/wiki/B%C3%A9zier_
curve#Rational_B.C3.A9zier_curves).

Drawing links does not create any track. So you can think it is independent of the tracks.

By default you only need to set sector.index1, point1, sector.index2 and point2. The links
would look nice.

Please refer to the vignette for detailed explanation.

See Also

https://jokergoo.github.io/circlize_book/book/graphics.html#links

https://en.wikipedia.org/wiki/B%C3%A9zier_curve#Rational_B.C3.A9zier_curves
https://en.wikipedia.org/wiki/B%C3%A9zier_curve#Rational_B.C3.A9zier_curves
https://jokergoo.github.io/circlize_book/book/graphics.html#links

circos.nested 63

Examples

There is no example
NULL

circos.nested Nested zooming with two circular plots

Description

Nested zooming with two circular plots

Usage

circos.nested(
f1,
f2,
correspondance,
connection_height = convert_height(5, "mm"),
connection_col = NA,
connection_border = "black",
connection_lty = par("lty"),
connection_lwd = par("lwd"),
adjust_start_degree = TRUE)

Arguments

f1 a self-defined function for making the first circular plot. The function should
have no argument.

f2 a self-defined function for making the second circular plot. The function should
have no argument.

correspondance a six-column data frame which contains correspondance between the coordi-
nates in two circular plots

connection_height

the height of the connection track, measured as the percent to the radius of the
unit circle. The value can be specified by uh or convert_height with absolute
units.

connection_col filled color of the connection track. The value can be a vector with same length
as number of rows of correspondance

connection_border

border color of the connection track.
connection_lty line style of the connection track borders
connection_lwd line width of the connection track borders
adjust_start_degree

If circos.par(start.degree = ...) is not set in f2(), the start degree for the
second circular plot will be adjusted to make the distance of sectors between the
two plots to the minimal.

64 circos.par

Details

The function visualizes zoomings by combining two circular plots into one page where one is the
normal circular plot and the other one only contains regions that need to be zoomed. This function
automatically arranges the two plots to make it easy to correspond between the original and the
zoomed sectors.

Since the function needs to know the information of the two circular plots, please do not call
circos.clear in either f1() or f2(). It will be called internally in circos.nested.

If adjust_start_degree is set to TRUE, start.degree should not be set in f2(). Also canvas.xlim
and canvas.ylim are reset in f2(), they should not be set in f2() either.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

See Also

https://jokergoo.github.io/circlize_book/book/nested-zooming.html

Examples

There is no example
NULL

circos.par Parameters for the circular layout

Description

Parameters for the circular layout

Usage

circos.par(..., RESET = FALSE, READ.ONLY = NULL, LOCAL = FALSE, ADD = FALSE)

Arguments

... Arguments for the parameters, see "details" section

RESET reset to default values

READ.ONLY please ignore

LOCAL please ignore

ADD please ignore

https://jokergoo.github.io/circlize_book/book/nested-zooming.html

circos.par 65

Details

Global parameters for the circular layout. Currently supported parameters are:

start.degree The starting degree from which the circle begins to draw. Note this degree is mea-
sured in the standard polar coordinate which means it is always reverse-clockwise.

gap.degree Gap between two neighbour sectors. It can be a single value or a vector. If it is a
vector, the first value corresponds to the gap after the first sector.

gap.after identical to gap.degree option, but a more understandable name. Modifying this op-
tion will also affect gap.degree.

track.margin Like margin in Cascading Style Sheets (CSS), it is the blank area out of the plotting
region, also outside of the borders. Since left and right margin are controlled by gap.degree,
only bottom and top margin need to be set. And all cells in a same track share the same mar-
gins, and that’s why this parameter is called track.margin. The value for the track.margin
is the percentage according to the radius of the unit circle. convert_height can be used to
set to an absolute unit (e.g cm/inche).

unit.circle.segments Since curves are simulated by a series of straight lines, this parameter
controls the amount of segments to represent a curve. The minimal length of the line seg-
mentation is the length of the unit circle (2pi) divided by unit.circoe.segments. More
segments means better approximation for the curves while larger size if you generate figures
as PDF format.

cell.padding Padding of the cell. Like padding in Cascading Style Sheets (CSS), it is the blank
area around the plotting regions, but within the borders. The parameter has four values, which
controls the bottom, left, top and right paddings respectively. The first and the third padding
values are the percentages according to the radius of the unit circle and the second and fourth
values are degrees. Similar as track.margin option, the first and the third value can be set by
convert_height to an absolute unit.

track.height The default height of tracks. It is the percentage according to the radius of the unit
circle. The height includes the top and bottom cell paddings but not the margins. convert_height
can be used to set the height to an absolute unit.

points.overflow.warning Since each cell is in fact not a real plotting region but only an ordinary
rectangle, it does not eliminate points that are plotted out of the region. So if some points are
out of the plotting region, circlize would continue drawing the points and printing warnings.
In some cases, draw something out of the plotting region is useful, such as draw some legend
or text. Set this value to FALSE to turn off the warnings.

canvas.xlim The coordinate for the canvas. Because circlize draws everything (or almost ev-
erything) inside the unit circle, the default canvas.xlim and canvas.ylim for the canvas
would be all c(-1,1). However, you can set it to a more broad interval if you want to draw
other things out of the circle. By choosing proper canvas.xlim and canvas.ylim, you can
draw part of the circle. E.g. setting canvas.xlim to c(0,1) and canvas.ylim to c(0,1)
would only draw circle in the region of (0, pi/2).

canvas.ylim The coordinate for the canvas. By default it is c(-1,1)

clock.wise The direction for adding sectors. Default is TRUE.

Similar as par, you can get the parameter values by specifying the names of parameters and you
can set the parameter values by specifying a named list which contains the new values.

66 circos.points

gap.degree, start.degree, canvas.xlim, canvas.ylim and clock.wise only be set before the
initialization of the circular layout (i.e. before calling circos.initialize) because these values
will not be changed after adding sectors on the circle. The left and right padding for cell.padding
will also be ignored after the initialization because all cells in a sector would share the same left
and right paddings.

Examples

There is no example
NULL

circos.points Add points to a plotting region

Description

Add points to a plotting region

Usage

circos.points(
x, y,
sector.index = get.cell.meta.data("sector.index"),
track.index = get.cell.meta.data("track.index"),
pch = par("pch"),
col = par("col"),
cex = par("cex"),
bg = par("bg"))

Arguments

x Data points on x-axis, measured in "current" data coordinate

y Data points on y-axis, measured in "current" data coordinate

sector.index Index for the sector

track.index Index for the track

pch Point type

col Point color

cex Point size

bg backgrond of points

circos.polygon 67

Details

This function can only add points in one specified cell. Pretending a low-level plotting function, it
can only be applied in plotting region which has been created.

You can think the function similar as the normal points function, just adding points in the circular
plotting region. The position of cell is identified by sector.index and track.index, if they are
not specified, they are in ’current’ sector and ’current’ track.

Data points out of the plotting region will also be added, but with warning messages.

Other graphics parameters which are available in the function are pch, col and cex which have
same meaning as those in the par.

It is recommended to use circos.points inside panel.fun in circos.trackPlotRegion so that
it draws points directly on "curent" cell.

See Also

https://jokergoo.github.io/circlize_book/book/graphics.html#points

Examples

circos.initialize(letters[1:8], xlim = c(0, 1))
circos.track(ylim = c(0, 1), panel.fun = function(x, y) {

circos.points(runif(10), runif(10))
})
circos.points(runif(10), runif(10), sector.index = "c", pch = 16, col = "red")
circos.clear()

circos.polygon Draw polygon

Description

Draw polygon

Usage

circos.polygon(
x, y,
sector.index = get.cell.meta.data("sector.index"),
track.index = get.cell.meta.data("track.index"),
...)

Arguments

x Data points on x-axis
y Data points on y-axis
sector.index Index for the sector
track.index Index for the track
... pass to polygon

https://jokergoo.github.io/circlize_book/book/graphics.html#points

68 circos.raster

Details

similar as polygon.

Note: start point should overlap with the end point,

Examples

set.seed(123)
factors = letters[1:4]
circos.initialize(factors, xlim = c(0, 1))
circos.trackPlotRegion(ylim = c(-3, 3), track.height = 0.4, panel.fun = function(x, y) {

x1 = runif(20)
y1 = x1 + rnorm(20)
or = order(x1)
x1 = x1[or]
y1 = y1[or]
loess.fit = loess(y1 ~ x1)
loess.predict = predict(loess.fit, x1, se = TRUE)
d1 = c(x1, rev(x1))
d2 = c(loess.predict$fit + loess.predict$se.fit,

rev(loess.predict$fit - loess.predict$se.fit))
circos.polygon(d1, d2, col = "#CCCCCC", border = NA)
circos.points(x1, y1, cex = 0.5)
circos.lines(x1, loess.predict$fit)

})
circos.clear()

circos.raster Add raster images

Description

Add raster images

Usage

circos.raster(
image, x, y,
width, height,
facing = c("inside", "outside", "reverse.clockwise", "clockwise",
"downward", "bending.inside", "bending.outside"),
niceFacing = FALSE,
sector.index = get.cell.meta.data("sector.index"),
track.index = get.cell.meta.data("track.index"),
scaling = 1)

circos.raster 69

Arguments

image a raster object, or an object that can be converted by as.raster

x position of the center of the raster image, measued in the data coordinate in the
cell

y position of the center of the raster image, measued in the data coordinate in the
cell

width width of the raster image. When facing is one of "inside", "outside", "clock-
wise" and "reverse.clockwise", the image should have absolute size where the
value of width should be specified like 20mm, 1cm or 0.5inche. When facing is
one of bending.inside and bending.outside, the value of width is measured
in the data coordinate in the cell.

height height of the raster image. Same format as width. If the value of height is
omit, default height is calculated by taking the aspect ratio of the original image.
But when facing is one of bending.inside and bending.outside, height is
mandatory to set.

facing facing of the raster image

niceFacing facing of text. Please refer to vignette for different settings

sector.index index for the sector

track.index index for the track

scaling scaling factor to resize the raster image.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

require(png)
image = system.file("extdata", "Rlogo.png", package = "circlize")
image = as.raster(readPNG(image))
circos.initialize(letters[1:8], xlim = c(0, 1))
circos.track(ylim = c(0, 1), panel.fun = function(x, y) {

circos.raster(image, CELL_META$xcenter, CELL_META$ycenter, width = "2cm",
facing = "inside", niceFacing = TRUE)

})
circos.clear()

if(FALSE) {
NOTE: following takes quite a long time to run
load(system.file("extdata", "doodle.RData", package = "circlize"))
circos.par("cell.padding" = c(0, 0, 0, 0))
circos.initialize(letters[1:16], xlim = c(0, 1))
circos.track(ylim = c(0, 1), panel.fun = function(x, y) {

img = img_list[[CELL_META$sector.numeric.index]]
circos.raster(img, CELL_META$xcenter, CELL_META$ycenter, width = 1,

height = 1, facing = "bending.inside")
}, track.height = 0.25, bg.border = NA)

70 circos.rect

circos.track(ylim = c(0, 1), panel.fun = function(x, y) {
img = img_list[[CELL_META$sector.numeric.index + 16]]
circos.raster(img, CELL_META$xcenter, CELL_META$ycenter, width = 1,

height = 1, facing = "bending.inside")
}, track.height = 0.25, bg.border = NA)
circos.clear()
}

circos.rect Draw rectangle-like grid

Description

Draw rectangle-like grid

Usage

circos.rect(
xleft, ybottom, xright, ytop,
sector.index = get.cell.meta.data("sector.index"),
track.index = get.cell.meta.data("track.index"),
rot = 0,
...)

Arguments

xleft x for the left bottom points

ybottom y for the left bottom points

xright x for the right top points

ytop y for the right top points

sector.index Index for the sector

track.index Index for the track

rot Rotation of the rectangles. The value is measured clockwise in degree. Rotation
is relative to the center of the rectangles.

... pass to polygon

Details

The name for this function is circos.rect because if you imagine the plotting region as Cartesian
coordinate, then it is rectangle. in the polar coordinate, the up and bottom edge become two arcs.

This function can be vectorized.

circos.segments 71

Examples

circos.initialize(fa = c("a", "b", "c", "d"), xlim = c(0, 10))
circos.track(ylim = c(0, 10), panel.fun = function(x, y) {

for(rot in seq(0, 360, by = 30)) {
circos.rect(2, 2, 6, 6, rot = rot)

}
}, track.height = 0.5)

circos.segments Draw segments through pairwise of points

Description

Draw segments through pairwise of points

Usage

circos.segments(
x0, y0, x1, y1,
sector.index = get.cell.meta.data("sector.index"),
track.index = get.cell.meta.data("track.index"),
straight = FALSE,
col = par("col"),
lwd = par("lwd"),
lty = par("lty"),
...)

Arguments

x0 x coordinates for starting points
y0 y coordinates for ending points
x1 x coordinates for starting points
y1 y coordinates for ending points
sector.index Index for the sector
track.index Index for the track
straight whether the segment is a straight line
col color of the segments
lwd line width of the segments
lty line type of the segments
... pass to lines

Examples

There is no example
NULL

72 circos.text

circos.text Draw text in a cell

Description

Draw text in a cell

Usage

circos.text(
x, y,
labels,
sector.index = get.cell.meta.data("sector.index"),
track.index = get.cell.meta.data("track.index"),
direction = NULL,
facing = c("inside", "outside", "reverse.clockwise", "clockwise",
"downward", "bending", "bending.inside", "bending.outside"),
niceFacing = FALSE,
adj = par("adj"),
cex = 1,
col = par("col"),
font = par("font"),
...)

Arguments

x Data points on x-axis
y Data points on y-axis
labels Labels for each points
sector.index Index for the sector
track.index Index for the track
direction deprecated, use facing instead.
facing Facing of text. Please refer to vignette for different settings
niceFacing Should the facing of text be adjusted to fit human eyes?
adj offset for text. By default the text position adjustment is either horizontal or

vertical in the canvas coordinate system. The "circular horizontal" offset can be
set as a value in degree unit and the value should be wrapped by degree.

... Pass to text

cex Font size
col Font color
font Font style

Details

The function is similar to text. All you need to note is the facing settings.

circos.track 73

See Also

https://jokergoo.github.io/circlize_book/book/graphics.html#text

Examples

factors = letters[1:4]
circos.par(points.overflow.warning = FALSE)
circos.initialize(factors = factors, xlim = c(0, 10))
circos.trackPlotRegion(factors = factors, ylim = c(0, 10),

track.height = 0.5, panel.fun = function(x, y) {
circos.text(3, 1, "inside", facing = "inside", cex = 0.8)
circos.text(7, 1, "outside", facing = "outside", cex = 0.8)
circos.text(0, 5, "reverse.clockwise", facing = "reverse.clockwise",

adj = c(0.5, 0), cex = 0.8)
circos.text(10, 5, "clockwise", facing = "clockwise", adj = c(0.5, 0),

cex = 0.8)
circos.text(5, 5, "downward", facing = "downward", cex = 0.8)
circos.text(3, 9, "====bending.inside====", facing = "bending.inside",

cex = 0.8)
circos.text(7, 9, "====bending.outside====", facing = "bending.outside",

cex = 0.8)
})
circos.clear()

circos.track Create plotting regions for a whole track

Description

Create plotting regions for a whole track

Usage

circos.track(...)

Arguments

... pass to circos.trackPlotRegion

Details

Shortcut function of circos.trackPlotRegion.

Examples

There is no example
NULL

https://jokergoo.github.io/circlize_book/book/graphics.html#text

74 circos.trackHist

circos.trackHist Draw histogram in cells among a whole track

Description

Draw histogram in cells among a whole track

Usage

circos.trackHist(
factors,
x,
track.height = circos.par("track.height"),
track.index = NULL,
ylim = NULL,
force.ylim = TRUE,
col = ifelse(draw.density, "black", NA),
border = "black",
lty = par("lty"),
lwd = par("lwd"),
bg.col = NA,
bg.border = "black",
bg.lty = par("lty"),
bg.lwd = par("lwd"),
breaks = "Sturges",
include.lowest = TRUE,
right = TRUE,
draw.density = FALSE,
bin.size = NULL,
area = FALSE)

Arguments

factors Factors which represent the categories of data

x Data on the x-axis

track.index Index for the track which is going to be updated. Setting it to NULL means
creating the plotting regions in the next newest track.

track.height Height of the track. It is the percentage to the radius of the unit circle. If to
update a track, this argument is disabled.

ylim Ranges on y-direction. By default, ylim is calculated automatically.

force.ylim Whether to force all cells in the track to share the same ylim.

col Filled color for histogram

border Border color for histogram

lty Line style for histogram

circos.trackLines 75

lwd Line width for histogram

bg.col Background color for the plotting regions

bg.border Color for the border of the plotting regions

bg.lty Line style for the border of the plotting regions

bg.lwd Line width for the border of the plotting regions

breaks see hist

include.lowest see hist

right see hist

draw.density whether draw density lines instead of histogram bars.

area whether to fill the area below the density lines. If it is set to TRUE, col controls
the filled color in the area and border controls color of the line.

bin.size size of the bins of the histogram

Details

It draw histogram in cells among a whole track. It is also an example to show how to add self-
defined high-level graphics by this package.

See Also

https://jokergoo.github.io/circlize_book/book/high-level-plots.html#histograms

Examples

x = rnorm(1600)
factors = sample(letters[1:16], 1600, replace = TRUE)
circos.initialize(factors = factors, x = x)
circos.trackHist(factors = factors, x = x, col = "#999999",

border = "#999999")
circos.trackHist(factors = factors, x = x, bin.size = 0.1,

col = "#999999", border = "#999999")
circos.trackHist(factors = factors, x = x, draw.density = TRUE,

col = "#999999", border = "#999999")
circos.clear()

circos.trackLines Add lines to the plotting regions in a same track

Description

Add lines to the plotting regions in a same track

https://jokergoo.github.io/circlize_book/book/high-level-plots.html#histograms

76 circos.trackLines

Usage

circos.trackLines(
factors,
x, y,
track.index = get.cell.meta.data("track.index"),
col = par("col"),
lwd = par("lwd"),
lty = par("lty"),
type = "l",
straight = FALSE,
area = FALSE,
area.baseline = NULL,
border = "black",
baseline = "bottom",
pt.col = par("col"),
cex = par("cex"),
pch = par("pch"))

Arguments

factors A factor or a character vector which represents the categories of data

x Data points on x-axis

y Data points on y-axis

track.index Index for the track

col Line color

lwd line width

lty line style

type line type, similar as type argument in lines, but only in c("l","o","h","s")

straight whether draw straight lines between points

area whether to fill the area below the lines. If it is set to TRUE, col controls the filled
color in the area and border controls the color of the line.

area.baseline deprecated, use baseline instead.

baseline the base line to draw area, pass to circos.lines.

border color for border of the area

pt.col if type is "o", points color

cex if type is "o", points size

pch if type is "o", points type

Details

The function adds lines in multiple cells by first splitting data into several parts in which each part
corresponds to one factor (sector index) and then add lines in cells by calling circos.lines.

This function can be replaced by a for loop containing circos.lines.

circos.trackPlotRegion 77

Examples

There is no example
NULL

circos.trackPlotRegion

Create plotting regions for a whole track

Description

Create plotting regions for a whole track

Usage

circos.trackPlotRegion(
factors = NULL,
x = NULL, y = NULL,
ylim = NULL,
force.ylim = TRUE,
track.index = NULL,
track.height = circos.par("track.height"),
track.margin = circos.par("track.margin"),
cell.padding = circos.par("cell.padding"),
bg.col = NA,
bg.border = "black",
bg.lty = par("lty"),
bg.lwd = par("lwd"),
panel.fun = function(x, y) {NULL})

Arguments

factors A factor or a character vector which represents categories of data, if it is NULL,
then it uses all sector index.

x Data on x-axis. It is only used if panel.fun is set.

y Data on y-axis

ylim Range of data on y-axis

force.ylim Whether to force all cells in the track to share the same ylim. Normally, all cells
on a same track should have same ylim.

track.index Index for the track which is going to be created/updated. If the specified track
has already been created, this function just updated corresponding track with
new plot. If the specified track is NULL or has not been created, this function just
creates it. Note the value for this argument should not exceed maximum track
index plus 1.

78 circos.trackPlotRegion

track.height Height of the track. It is the percentage to the radius of the unit circles. The
value can be set by uh to an absolute unit. If updating a track (with proper
track.index value), this argument is ignored.

track.margin only affect current track
cell.padding only affect current track
bg.col Background color for the plotting regions. It can be vector which has the same

length of sectors.
bg.border Color for the border of the plotting regions. It can be vector which has the same

length of sectors.
bg.lty Line style for the border of the plotting regions. It can be vector which has the

same length of sectors.
bg.lwd Line width for the border of the plotting regions. It can be vector which has the

same length of sectors.
panel.fun Panel function to add graphics in each cell, see "details" section and vignette for

explanation.

Details

This function tends to be a high-level plotting function, which means, you must first call this
function to create plotting regions, then those low-level graphic function such as circos.points,
circos.lines can be applied.

Currently, all the cells that are created in a same track sharing same height, which means, there is
no cell has larger height than others.

Since ranges for values on x-axis has already been defined by circos.initialize, only ranges for
values on y-axis should be specified in this function. There are two ways to identify the ranges for
values on y-axes either by y or ylim. If y is set, it must has the same length as factors and the
ylim for each cell is calculated from y values. Also, the ylim can be specified from ylim which can
be a two-element vector or a matrix which has two columns and the number of rows is the same as
the length of the levels of the factors.

If there is no enough space for the new track or the new track overlaps with other tracks, there will
be an error.

If factors does not cover all sectors, the cells in remaining unselected sectors would also be created
but without drawing anything. The ylim for these cells are the same as that in the last created cell.

The function can also update a already-created track if the index for the track is specified. If updat-
ing an existed track, those parameters related to the position (such as track height and track margin)
of the plotting region can not be changed.

Panel

panel.fun provides a convenient way to add graphics in each cell when initializing the tracks.
The self-defined function needs two arguments: x and y which correspond to the data points in the
current cell. When factors, x, and y are set in circos.trackPlotRegion, a subset of x and y
are split by factors and are sent to panel.fun in the "current" cell. circos.trackPlotRegion
creates plotting regions one by one on the track and panel.fun adds graphics in the ’current’ cell
after the plotting region for a certain cell has been created.

See vignette for examples of how to use this feature.

circos.trackPoints 79

See Also

https://jokergoo.github.io/circlize_book/book/circular-layout.html

Examples

circos.initialize(letters[1:8], xlim = c(0, 1))
set.seed(123)
df = data.frame(fa = sample(letters[1:8], 100, replace = TRUE),

x = runif(100), y = rnorm(100))
circos.track(ylim = c(0, 1), bg.col = rand_color(8))
circos.track(df$fa, x = df$x, y = df$y, panel.fun = function(x, y) {

circos.points(x, y)
}, track.height = 0.2, bg.border = rand_color(8))
circos.clear()

circos.trackPoints Add points to the plotting regions in a same track

Description

Add points to the plotting regions in a same track

Usage

circos.trackPoints(
factors = NULL,
x, y,
track.index = get.cell.meta.data("track.index"),
pch = par("pch"),
col = par("col"),
cex = par("cex"),
bg = par("bg"))

Arguments

factors A factor or a character vector which represents the categories of data

x Data points on x-axis

y Data points on y-axis

track.index Index for the track

pch Point type

col Point color

cex Point size

bg backgrond color

https://jokergoo.github.io/circlize_book/book/circular-layout.html

80 circos.trackText

Details

The function adds points in multiple cells by first splitting data into several parts in which each part
corresponds to one factor (sector index) and then adding points in each cell by calling circos.points.

Length of pch, col and cex can be one, length of levels of the factors or length of factors.

This function can be replaced by a for loop containing circos.points.

Examples

circos.initialize(letters[1:8], xlim = c(0, 1))
df = data.frame(fa = sample(letters[1:8], 100, replace = TRUE),

x = runif(100), y = runif(100))
circos.track(ylim = c(0, 1))
circos.trackPoints(df$fa, x = df$x, y = df$y, pch = 16, col = as.numeric(factor(df$fa)))
circos.clear()

circos.trackText Draw text in cells among the whole track

Description

Draw text in cells among the whole track

Usage

circos.trackText(
factors,
x, y,
labels,
track.index = get.cell.meta.data("track.index"),
direction = NULL,
facing = c("inside", "outside", "reverse.clockwise", "clockwise",
"downward", "bending", "bending.inside", "bending.outside"),
niceFacing = FALSE,
adj = par("adj"),
cex = 1,
col = par("col"),
font = par("font"))

Arguments

factors A factor or a character vector which represents the categories of data

x Data points on x-axis

y Data points on y-axis

labels Labels

track.index Index for the track

circos.triangle 81

direction deprecated, use facing instead.

facing Facing of text

niceFacing Should the facing of text be adjusted to fit human eyes?

adj Adjustment for text

cex Font size

col Font color

font Font style

Details

The function adds texts in multiple cells by first splitting data into several parts in which each part
corresponds to one factor (sector index) and then add texts in cells by calling circos.text.

This function can be replaced by a for loop containing circos.text.

Examples

There is no example
NULL

circos.triangle Draw triangles

Description

Draw triangles

Usage

circos.triangle(x1, y1, x2, y2, x3, y3, ...)

Arguments

x1 x-coordinates for the first point

y1 y-coordinates for the first point

x2 x-coordinates for the second point

y2 y-coordinates for the second point

x3 x-coordinates for the third point

y3 y-coordinates for the third point

... pass to circos.polygon

82 circos.updatePlotRegion

Examples

circos.initialize(fa = c("a", "b", "c", "d"), xlim = c(0, 10))
circos.track(ylim = c(0, 10), panel.fun = function(x, y) {

circos.triangle(c(2, 2), c(2, 8),
c(8, 8), c(2, 8),
c(5, 5), c(8, 2))

}, track.height = 0.5)

circos.update Create plotting regions for a whole track

Description

Create plotting regions for a whole track

Usage

circos.update(...)

Arguments

... pass to circos.updatePlotRegion

Details

shortcut function of circos.updatePlotRegion.

Examples

There is no example
NULL

circos.updatePlotRegion

Update the plotting region in an existed cell

Description

Update the plotting region in an existed cell

circos.violin 83

Usage

circos.updatePlotRegion(
sector.index = get.cell.meta.data("sector.index"),
track.index = get.cell.meta.data("track.index"),
bg.col = NA,
bg.border = "black",
bg.lty = par("lty"),
bg.lwd = par("lwd"))

Arguments

sector.index Index for the sector

track.index Index for the track

bg.col Background color for the plotting region

bg.border Color for the border of the plotting region

bg.lty Line style for the border of the plotting region

bg.lwd Line width for the border of the plotting region

Details

You can update an existed cell by this function by erasing all the graphics. But the xlim and ylim
inside the cell still remain unchanged.

Note if you use circos.track to update an already created track, you can re-define ylim in these
cells.

Examples

circos.initialize(letters[1:8], xlim = c(0, 1))
circos.track(ylim = c(0, 1), panel.fun = function(x, y) {

circos.text(CELL_META$xcenter, CELL_META$ycenter, CELL_META$sector.index)
})
circos.update(sector.index = "b", track.index = 1)
circos.rect(CELL_META$cell.xlim[1], CELL_META$cell.ylim[1],

CELL_META$cell.xlim[2], CELL_META$cell.ylim[2],
col = "#FF000080")

circos.clear()

circos.violin Draw violin plots

Description

Draw violin plots

84 circos.violin

Usage

circos.violin(value, pos, violin_width = 0.8,
col = NA, border = "black", lwd = par("lwd"), lty = par("lty"),
show_quantile = TRUE, pt.col = par("col"), cex = par("cex"), pch = 16,
max_density = NULL)

Arguments

value A numeric vector, a matrix or a list. If it is a matrix, boxplots are made by
columns.

pos Positions of the boxes.

violin_width Width of violins.

col Filled color of boxes.

border Color for the border as well as the quantile lines.

lwd Line width.

lty Line style

show_quantile Whether to show the quantile lines.

cex Point size.

pch Point type.

pt.col Point color

max_density The maximal density value across several violins. It is used to compare between
violins.

Examples

circos.initialize(fa = letters[1:4], xlim = c(0, 10))
circos.track(ylim = c(0, 1), panel.fun = function(x, y) {

for(pos in seq(0.5, 9.5, by = 1)) {
value = runif(10)
circos.violin(value, pos)

}
})
circos.clear()

circos.initialize(fa = letters[1:4], xlim = c(0, 10))
circos.track(ylim = c(0, 1), panel.fun = function(x, y) {

value = replicate(runif(10), n = 10, simplify = FALSE)
circos.violin(value, 1:10 - 0.5, col = 1:10)

})
circos.clear()

circos.xaxis 85

circos.xaxis Draw x-axis

Description

Draw x-axis

Usage

circos.xaxis(...)

Arguments

... all pass to circos.axis

Examples

There is no example
NULL

circos.yaxis Draw y-axis

Description

Draw y-axis

Usage

circos.yaxis(
side = c("left", "right"),
at = NULL,
labels = TRUE,
tick = TRUE,
sector.index = get.cell.meta.data("sector.index"),
track.index = get.cell.meta.data("track.index"),
labels.font = par("font"),
labels.cex = par("cex"),
labels.niceFacing = TRUE,
tick.length = convert_x(1, "mm", sector.index, track.index),
lwd = par("lwd"),
col = par("col"),
labels.col = par("col"))

86 circos.yaxis

Arguments

side add the y-axis on the left or right of the cell

at If it is numeric vector, it identifies the positions of the ticks. It can exceed ylim
value and the exceeding part would be trimmed automatically.

labels labels of the ticks. The exceeding part would be trimmed automatically. The
value can also be logical (either an atomic value or a vector) which represents
which labels to show.

tick Whether to draw ticks.

sector.index Index for the sector

track.index Index for the track

labels.font font style for the axis labels

labels.cex font size for the axis labels
labels.niceFacing

Should facing of axis labels be human-easy

tick.length length of the tick

lwd line width for ticks

col color for the axes

labels.col color for the labels

Details

Note, you need to set the gap between sectors manually by circos.par to make sure there is enough
space for y-axis.

Examples

op = par(no.readonly = TRUE)

factors = letters[1:8]
circos.par(points.overflow.warning = FALSE)
circos.par(gap.degree = 8)
circos.initialize(factors = factors, xlim = c(0, 10))
circos.trackPlotRegion(factors = factors, ylim = c(0, 10), track.height = 0.5)
par(cex = 0.8)
for(a in letters[2:4]) {

circos.yaxis(side = "left", sector.index = a)
}
for(a in letters[5:7]) {

circos.yaxis(side = "right", sector.index = a)
}
circos.clear()

par(op)

cm_h 87

cm_h Convert units

Description

Convert units

Usage

cm_h(...)

Arguments

... pass to convert_length

Details

This function is same as convert_length in cm unit.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

see example in `convert_length` page
NULL

cm_x Convert unit on x direction in data coordinate

Description

Convert unit on x direction in data coordinate

Usage

cm_x(...)

Arguments

... pass to convert_x

Details

This function is same as convert_x in cm unit.

88 cm_y

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

see example in `convert_x` page
NULL

cm_y Convert unit on y direction in data coordinate

Description

Convert unit on y direction in data coordinate

Usage

cm_y(...)

Arguments

... pass to convert_y

Details

This function is same as convert_y in cm unit.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

see example in `convert_y` page
NULL

col2value 89

col2value Transform back from colors to values

Description

Transform back from colors to values

Usage

col2value(r, g, b, col_fun)

Arguments

r red channel in sRGB color space, value should be between 0 and 1. The r, g and
b argumentc can be wrapped into one variable which is either a three-column
matrix or a vector of colors.

g green channel in sRGB color space, value should be between 0 and 1.

b blue channel in sRGB color space, value should be between 0 and 1.

col_fun the color mapping function generated by colorRamp2.

Details

colorRamp2 transforms values to colors and this function does the reversed job. Note for some
color spaces, it cannot transform back to the original value perfectly.

Value

A vector of original numeric values.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

x = seq(0, 1, length = 11)
col_fun = colorRamp2(c(0, 0.5, 1), c("blue", "white", "red"))
col = col_fun(x)
col2value(col, col_fun = col_fun)
col2value("red", col_fun = col_fun)

col_fun = colorRamp2(c(0, 0.5, 1), c("blue", "white", "red"), space = "sRGB")
col = col_fun(x)
col2value(col, col_fun = col_fun)

90 colorRamp2

colorRamp2 Color interpolation

Description

Color interpolation

Usage

colorRamp2(breaks, colors, transparency = 0, space = "LAB")

Arguments

breaks A vector indicating numeric breaks

colors A vector of colors which correspond to values in breaks

transparency A single value in [0,1]. 0 refers to no transparency and 1 refers to full trans-
parency

space color space in which colors are interpolated. Value should be one of "RGB",
"HSV", "HLS", "LAB", "XYZ", "sRGB", "LUV", see color-class for detail.

Details

Colors are linearly interpolated according to break values and corresponding colors through CIE
Lab color space (LAB) by default. Values exceeding breaks will be assigned with corresponding
maximum or minimum colors.

Value

It returns a function which accepts a vector of numeric values and returns interpolated colors.

See Also

col2value converts back to the original values by providing the color mapping function generated
by colorRamp2.

Examples

col_fun = colorRamp2(c(-1, 0, 1), c("green", "white", "red"))
col_fun(c(-2, -1, -0.5, 0, 0.5, 1, 2))

convert_height 91

convert_height Convert units

Description

Convert units

Usage

convert_height(...)

Arguments

... pass to convert_length

Details

This function is same as convert_length. The reason for naming this function is convert_length
is mostely used for defining the height of tracks and track margins.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

See Also

For pre-defined units, users can use cm_h, mm_h and inches_h.

Examples

see example in `convert_length` page
NULL

convert_length Convert units

Description

Convert units

Usage

convert_length(x, unit = c("mm", "cm", "inches"))

92 convert_x

Arguments

x a numeric vector
unit supported units, only "mm", "cm", "inches".

Details

This function coverts mm/cm/inches units to units measured in the canvas coordinate, e.g. how
much is it in the canvas coordinate for 1 mm/cm/inches.

Since in the circular plot, the aspect ratio is always 1, it does not matter this conversion is applied
on x direction or y direction.

This function is mainly used in the radical direction.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

See Also

convert_x and convert_y convert absolute units into a data coordinate in a specified cell.

https://jokergoo.github.io/circlize_book/book/circular-layout.html#convert-functions

Examples

fa = letters[1:10]
circos.par(cell.padding = c(0, 0, 0, 0), track.margin = c(0, 0))
circos.initialize(fa, xlim = cbind(rep(0, 10), runif(10, 0.5, 1.5)))
circos.track(ylim = c(0, 1), track.height = convert_length(5, "mm"))
circos.par(track.margin = c(0, convert_length(2, "mm")))
circos.track(ylim = c(0, 1), track.height = convert_length(1, "cm"))
circos.par(track.margin = c(0, convert_length(5, "mm")))
circos.track(ylim = c(0, 1), track.height = convert_length(1, "inches"))
circos.clear()

convert_x Convert unit on x direction in data coordinate

Description

Convert unit on x direction in data coordinate

Usage

convert_x(
x,
unit = c("mm", "cm", "inches"),
sector.index = get.cell.meta.data("sector.index"),
track.index = get.cell.meta.data("track.index"),
h = get.cell.meta.data("ycenter", sector.index = sector.index,
track.index = track.index))

https://jokergoo.github.io/circlize_book/book/circular-layout.html#convert-functions

convert_x 93

Arguments

x a numeric vector

unit supported units, only "mm", "cm", "inches"

sector.index index for the sector where the conversion is applied

track.index index for the track where the conversion is applied

h since the width of the cell is not identical from the top to the bottom in the cell,
the position on y direction needs to be specified. By default it is at the middle
point on y-axis

Value

A vector of numeric values which are measured in the specified data coordinate

Author(s)

Zuguang Gu <z.gu@dkfz.de>

See Also

For pre-defined units, users can use cm_x, mm_x and inches_x.

convert_y converts on y direction.

https://jokergoo.github.io/circlize_book/book/circular-layout.html#convert-functions

Examples

fa = letters[1:10]
circos.par(cell.padding = c(0, 0, 0, 0), track.margin = c(0, 0))
circos.initialize(fa, xlim = cbind(rep(0, 10), runif(10, 0.5, 1.5)))
circos.track(ylim = c(0, 1), track.height = mm_h(5),

panel.fun = function(x, y) {
circos.lines(c(0, 0 + mm_x(5)), c(0.5, 0.5), col = "blue")

})
circos.par(track.margin = c(0, mm_h(2)))
circos.track(ylim = c(0, 1), track.height = convert_height(1, "cm"),

panel.fun = function(x, y) {
xcenter = get.cell.meta.data("xcenter")
circos.lines(c(xcenter, xcenter), c(0, cm_y(1)), col = "red")

})
circos.par(track.margin = c(0, mm_h(5)))
circos.track(ylim = c(0, 1), track.height = inch_h(1),

panel.fun = function(x, y) {
line_length_on_x = cm_x(1*sqrt(2)/2)
line_length_on_y = cm_y(1*sqrt(2)/2)
circos.lines(c(0, line_length_on_x), c(0, line_length_on_y), col = "orange")

})
circos.clear()

https://jokergoo.github.io/circlize_book/book/circular-layout.html#convert-functions

94 convert_y

convert_y Convert unit on y direction in data coordinate

Description

Convert unit on y direction in data coordinate

Usage

convert_y(
x,
unit = c("mm", "cm", "inches"),
sector.index = get.current.sector.index(),
track.index = get.current.track.index())

Arguments

x a numeric vector

unit supported units, only "mm", "cm", "inches"

sector.index index for the sector where the conversion is applied

track.index index for the track where the conversion is applied

Value

A vector of numeric values which are measured in the specified data coordinate

Author(s)

Zuguang Gu <z.gu@dkfz.de>

See Also

For pre-defined units, users can use cm_y, mm_y and inches_y.

convert_x converts on x direction.

https://jokergoo.github.io/circlize_book/book/circular-layout.html#convert-functions

Examples

see example on `convert_x` page
NULL

https://jokergoo.github.io/circlize_book/book/circular-layout.html#convert-functions

cytoband.col 95

cytoband.col Assign colors to cytogenetic band (hg19) according to the Giemsa
stain results

Description

Assign colors to cytogenetic band (hg19) according to the Giemsa stain results

Usage

cytoband.col(x)

Arguments

x A vector containing the Giemsa stain results

Examples

There is no example
NULL

degree Mark the value as a degree value

Description

Mark the value as a degree value

Usage

degree(x)

Arguments

x degree value

Value

a degree object

Examples

There is no example
NULL

96 draw.sector

draw.sector Draw sectors or rings in a circle

Description

Draw sectors or rings in a circle

Usage

draw.sector(
start.degree = 0,
end.degree = 360,
rou1 = 1,
rou2 = NULL,
center = c(0, 0),
clock.wise = TRUE,
col = NA,
border = "black",
lwd = par("lwd"),
lty = par("lty"))

Arguments

start.degree start degree for the sector

end.degree end degree for the sector

rou1 Radius for one of the arc in the sector

rou2 Radius for the other arc in the sector

center Center of the circle

clock.wise The direction from start.degree to end.degree

col Filled color

border Border color

lwd Line width

lty Line style

Details

If the interval between start and end (larger or equal to 360 or smaller or equal to -360) it would
draw a full circle or ring. If rou2 is set, it would draw part of a ring.

fontsize 97

Examples

plot(c(-1, 1), c(-1, 1), type = "n", axes = FALSE, ann = FALSE, asp = 1)
draw.sector(20, 0)
draw.sector(30, 60, rou1 = 0.8, rou2 = 0.5, clock.wise = FALSE, col = "#FF000080")
draw.sector(350, 1000, col = "#00FF0080", border = NA)
draw.sector(0, 180, rou1 = 0.25, center = c(-0.5, 0.5), border = 2, lwd = 2, lty = 2)
draw.sector(0, 360, rou1 = 0.7, rou2 = 0.6, col = "#0000FF80")

factors = letters[1:8]
circos.initialize(factors, xlim = c(0, 1))
for(i in 1:3) {

circos.trackPlotRegion(ylim = c(0, 1))
}
circos.info(plot = TRUE)

draw.sector(get.cell.meta.data("cell.start.degree", sector.index = "a"),
get.cell.meta.data("cell.end.degree", sector.index = "a"),
rou1 = 1, col = "#FF000040")

draw.sector(0, 360,
rou1 = get.cell.meta.data("cell.top.radius", track.index = 1),
rou2 = get.cell.meta.data("cell.bottom.radius", track.index = 1),
col = "#00FF0040")

draw.sector(get.cell.meta.data("cell.start.degree", sector.index = "e"),
get.cell.meta.data("cell.end.degree", sector.index = "f"),
get.cell.meta.data("cell.top.radius", track.index = 2),
get.cell.meta.data("cell.bottom.radius", track.index = 3),
col = "#0000FF40")

pos = circlize(c(0.2, 0.8), c(0.2, 0.8), sector.index = "h", track.index = 2)
draw.sector(pos[1, "theta"], pos[2, "theta"], pos[1, "rou"], pos[2, "rou"],

clock.wise = TRUE, col = "#00FFFF40")
circos.clear()

fontsize Convert fontsize to cex

Description

Convert fontsize to cex

Usage

fontsize(x)

Arguments

x value for fontsize

98 generateRandomBed

Examples

There is no example
NULL

generateRandomBed Generate random genomic data

Description

Generate random genomic data

Usage

generateRandomBed(
nr = 10000,
nc = 1,
fun = function(k) rnorm(k, 0, 0.5),
species = NULL)

Arguments

nr Number of rows

nc Number of numeric columns / value columns

fun Function for generating random values

species species, pass to read.cytoband

Details

The function will uniformly sample positions from the genome. Chromosome names start with
"chr" and positions are sorted. The final number of rows may not be exactly as same as nr.

Examples

There is no example
NULL

genomicDensity 99

genomicDensity Calculate genomic region density

Description

Calculate genomic region density

Usage

genomicDensity(
region,
window.size = 1e7,
n.window = NULL,
overlap = TRUE,
count_by = c("percent", "number"),
chr.len = NULL)

Arguments

region Genomic positions. It can be a data frame with two columns which are start
positions and end positions on a single chromosome. It can also be a bed-format
data frame which contains the chromosome column.

window.size Window size to calculate genomic density

n.window number of windows, if it is specified, window.size is ignored

overlap Whether two neighbouring windows have half overlap

count_by How to count the value for each window, percent: percent of the window cov-
ered by the input regions; number: number of regions that overlap to the window.

chr.len the chromosome length. The value should be named vector

Details

It calculate the percent of each genomic windows that is covered by the input regions.

Value

If the input is a two-column data frame, the function returns a data frame with three columns: start
position, end position and the overlapping (value depends on the count_by argument). And if the
input is a bed-format data frame, there will be an additionally chromosome name column.

Examples

bed = generateRandomBed()
bed = subset(bed, chr == "chr1")
head(genomicDensity(bed))
head(genomicDensity(bed, count_by = "number"))

100 get.all.track.index

get.all.sector.index Get index for all sectors

Description

Get index for all sectors

Usage

get.all.sector.index()

Details

It simply returns a vector of all sector index.

Examples

There is no example
NULL

get.all.track.index Get index for all tracks

Description

Get index for all tracks

Usage

get.all.track.index()

Details

It simply returns a vector of all track index.

Examples

There is no example
NULL

get.cell.meta.data 101

get.cell.meta.data Get the meta data of a cell

Description

Get the meta data of a cell

Usage

get.cell.meta.data(name, sector.index = get.current.sector.index(),
track.index = get.current.track.index())

Arguments

name Only support one name at a time, see "details" section

sector.index Index of the sector

track.index Index of the track

Details

The following meta information for a cell can be obtained:

sector.index The name (index) for the sector

sector.numeric.index Numeric index for the sector

track.index Numeric index for the track

xlim Minimal and maximal values on the x-axis

ylim Minimal and maximal values on the y-axis

xrange Range of xlim. It equals to xlim[2] -xlim[1]

yrange Range of ylim

xcenter Center of x-axis. It equals to (xlim[2] + xlim[1])/2

ycenter Center of y-axis

cell.xlim Minimal and maximal values on the x-axis extended by cell paddings

cell.ylim Minimal and maximal values on the y-axis extended by cell paddings

xplot Degrees for right and left borders of the cell. The values ignore the direction of the circular
layout (i.e. whether it is clock wise or not).

yplot Radius for top and bottom borders of the cell.

cell.width Width of the cell, in degrees.

cell.height Height of the cell, simply yplot[2] -yplot[1]

cell.start.degree Same as xplot[1]

cell.end.degree Same as xplot[2]

cell.bottom.radius Same as yplot[1]

102 get.current.chromosome

cell.top.radius Same as yplot[2]

track.margin Margin for the cell

cell.padding Padding for the cell

The function is useful when using panel.fun in circos.track to get detailed information of the
current cell.

See Also

CELL_META is a short version of get.cell.meta.data.

Examples

factors = letters[1:4]
circos.initialize(factors, xlim = c(0, 1))
circos.trackPlotRegion(ylim = c(0, 1), panel.fun = function(x, y) {

print(get.cell.meta.data("xlim"))
})
print(get.cell.meta.data("xlim", sector.index = "a", track.index = 1))
circos.clear()

get.current.chromosome

Get current chromosome name

Description

Get current chromosome name

Usage

get.current.chromosome()

Details

The function is same as get.current.sector.index and should only be put inside panel.fun
when using circos.genomicTrackPlotRegion.

Examples

There is no example
NULL

get.current.sector.index 103

get.current.sector.index

Get current sector index

Description

Get current sector index

Usage

get.current.sector.index()

Value

Simply returns the name of current sector

Examples

There is no example
NULL

get.current.track.index

Get current track index

Description

Get current track index

Usage

get.current.track.index()

Value

Simply returns the numeric index for the current track.

Examples

There is no example
NULL

104 highlight.chromosome

getI Which data that panel.fun is using

Description

Which data that panel.fun is using

Usage

getI(...)

Arguments

... Invisible arguments that users do not need to care

Details

The function should only be put inside panel.fun when using circos.genomicTrackPlotRegion.

If stack is set to TRUE in circos.genomicTrackPlotRegion, the returned value indicates which
stack the function will be applied to.

If data is a list of data frames, the value indicates which data frame is being used. Please see the
vignette to get a more clear explanation.

Examples

There is no example
NULL

highlight.chromosome Highlight chromosomes

Description

Highlight chromosomes

Usage

highlight.chromosome(...)

Arguments

... pass to highlight.sector

highlight.sector 105

Details

This is only a shortcut function of highlight.sector.

Examples

There is no example
NULL

highlight.sector Highlight sectors and tracks

Description

Highlight sectors and tracks

Usage

highlight.sector(
sector.index,
track.index = get.all.track.index(),
col = "#FF000040",
border = NA,
lwd = par("lwd"),
lty = par("lty"),
padding = c(0, 0, 0, 0),
text = NULL,
text.col = par("col"),
text.vjust = 0.5,
...)

Arguments

sector.index A vector of sector index
track.index A vector of track index that you want to highlight
col Color for highlighting. Note the color should be semi-transparent.
border Border of the highlighted region
lwd Width of borders
lty Style of borders
padding Padding for the highlighted region. It should contain four values representing

ratios of the width or height of the highlighted region
text text added in the highlight region, only support plotting one string at a time
text.vjust adjustment on ’vertical’ (radical) direction. Besides to set it as numeric values,

the value can also be a string contain absoute unit, e.g. "2.1mm", "-1 inche", but
only "mm", "cm", "inches"/"inche" are allowed.

text.col color for the text
... pass to circos.text

106 inches_h

Details

You can use circos.info to find out index for all sectors and all tracks.

The function calls draw.sector.

See Also

https://jokergoo.github.io/circlize_book/book/graphics.html#highlight-sectors-and-tracks

Examples

factors = letters[1:8]
circos.initialize(factors, xlim = c(0, 1))
for(i in 1:4) {

circos.trackPlotRegion(ylim = c(0, 1))
}
circos.info(plot = TRUE)

highlight.sector(c("a", "h"), track.index = 1)
highlight.sector("c", col = "#00FF0040")
highlight.sector("d", col = NA, border = "red", lwd = 2)
highlight.sector("e", col = "#0000FF40", track.index = c(2, 3))
highlight.sector(c("f", "g"), col = NA, border = "green",

lwd = 2, track.index = c(2, 3))
highlight.sector(factors, col = "#FFFF0040", track.index = 4)
circos.clear()

inches_h Convert units

Description

Convert units

Usage

inches_h(...)

Arguments

... pass to convert_length

Details

This function is same as convert_length in inch unit.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

https://jokergoo.github.io/circlize_book/book/graphics.html#highlight-sectors-and-tracks

inches_x 107

Examples

see example in `convert_length` page
NULL

inches_x Convert unit on x direction in data coordinate

Description

Convert unit on x direction in data coordinate

Usage

inches_x(...)

Arguments

... pass to convert_x

Details

This function is same as convert_x in inch unit.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

see example in `convert_x` page
NULL

inches_y Convert unit on y direction in data coordinate

Description

Convert unit on y direction in data coordinate

Usage

inches_y(...)

Arguments

... pass to convert_y

108 inch_h

Details

This function is same as convert_y in inch unit.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

see example in `convert_y` page
NULL

inch_h Convert units

Description

Convert units

Usage

inch_h(...)

Arguments

... pass to convert_length

Details

This function is same as convert_length in inch unit.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

see example in `convert_length` page
NULL

inch_x 109

inch_x Convert unit on x direction in data coordinate

Description

Convert unit on x direction in data coordinate

Usage

inch_x(...)

Arguments

... pass to convert_x

Details

This function is same as convert_x in inch unit.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

see example in `convert_x` page
NULL

inch_y Convert unit on y direction in data coordinate

Description

Convert unit on y direction in data coordinate

Usage

inch_y(...)

Arguments

... pass to convert_y

Details

This function is same as convert_y in inch unit.

110 mm_h

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

see example in `convert_y` page
NULL

mm_h Convert units

Description

Convert units

Usage

mm_h(...)

Arguments

... pass to convert_length

Details

This function is same as convert_length in mm unit.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

see example in `convert_length` page
NULL

mm_x 111

mm_x Convert unit on x direction in data coordinate

Description

Convert unit on x direction in data coordinate

Usage

mm_x(...)

Arguments

... pass to convert_x

Details

This function is same as convert_x in mm unit.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

see example in `convert_x` page
NULL

mm_y Convert unit on y direction in data coordinate

Description

Convert unit on y direction in data coordinate

Usage

mm_y(...)

Arguments

... pass to convert_y

Details

This function is same as convert_y in mm unit.

112 posTransform.default

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

see example in `convert_y` page
NULL

names.CELL_META Names of all meta data in the current cell

Description

Names of all meta data in the current cell

Usage

S3 method for class 'CELL_META'
names(x)

Arguments

x use CELL_META.

Examples

names(CELL_META)

posTransform.default Genomic position transformation function

Description

Genomic position transformation function

Usage

posTransform.default(region, ...)

Arguments

region Genomic positions at a single chromosome. It is a data frame with two columns
which are start position and end position.

... other arguments

posTransform.text 113

Details

The default position transformation functions transforms position to be equally distributed along the
chromosome. If users want to define their own transformation function, the requirement is that the
returned value should be a data frame with two columns: transformed start position and transformed
end position. The returned value should have same number of rows as the input one.

For details why need to use position transformation, please refer to circos.genomicPosTransformLines.

Examples

There is no example
NULL

posTransform.text Genomic position transformation function specifically for text

Description

Genomic position transformation function specifically for text

Usage

posTransform.text(
region,
y,
labels,
cex = 1,
font = par("font"),
sector.index = get.cell.meta.data("sector.index"),
track.index = get.cell.meta.data("track.index"),
padding = 0,
extend = 0,
...)

Arguments

region Genomic positions at a single chromosome. It is a data frame with two columns
which are start position and end position.

y positions of texts

labels text labels

cex text size

font text font style

sector.index sector index

track.index track index

padding padding of text

114 print.CELL_META

extend extend to allow labels to be put in an region which is wider than the current
chromosome. The value should be a proportion value and the length is either
one or two.

... other arguments

Details

This position transformation function is designed specifically for text. Under the transformation,
texts will be as close as possible to the original positions.

Examples

There is no example
NULL

print.CELL_META Print CELL_META

Description

Print CELL_META

Usage

S3 method for class 'CELL_META'
print(x, ...)

Arguments

x input

... additional parameters

Examples

There is no example
NULL

rainfallTransform 115

rainfallTransform Calculate inter-distance of genomic regions

Description

Calculate inter-distance of genomic regions

Usage

rainfallTransform(
region,
mode = c("min", "max", "mean", "left", "right"),
normalize_to_width = FALSE)

Arguments

region Genomic positions. It can be a data frame with two columns which are start
positions and end positions on a single chromosome. It can also be a bed-format
data frame which contains the chromosome column.

mode How to calculate inter-distance. For a region, there is a distance to the prevous
region and also there is a distance to the next region. mode controls how to merge
these two distances into one value.

normalize_to_width

If it is TRUE, the value is the relative distance divided by the width of the region.

Value

If the input is a two-column data frame, the function returnes a data frame with three columns: start
position, end position and distance. And if the input is a bed-format data frame, there will be the
chromosome column added.

The row order of the returned data frame is as same as the input one.

Examples

bed = generateRandomBed()
bed = subset(bed, chr == "chr1")
head(rainfallTransform(bed))

116 rand_color

rand_color Generate random colors

Description

Generate random colors

Usage

rand_color(n, hue = NULL, luminosity = "random", transparency = 0)

Arguments

n number of colors

hue the hue of the generated color. You can use following default color name: red,
orange, yellow, green, blue, purple, pink and monochrome. If the value is a
hexidecimal color string such as #00FFFF, the function will extract its hue value
and use that to generate colors.

luminosity controls the luminosity of the generated color. The value should be a string
containing bright, light, dark and random.

transparency transparency, numeric value between 0 and 1.

Details

The code is adapted from randomColor.js (https://github.com/davidmerfield/randomColor
).

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

plot(NULL, xlim = c(1, 10), ylim = c(1, 8), axes = FALSE, ann = FALSE)
points(1:10, rep(1, 10), pch = 16, cex = 5,

col = rand_color(10, luminosity = "random"))
points(1:10, rep(2, 10), pch = 16, cex = 5,

col = rand_color(10, luminosity = "bright"))
points(1:10, rep(3, 10), pch = 16, cex = 5,

col = rand_color(10, luminosity = "light"))
points(1:10, rep(4, 10), pch = 16, cex = 5,

col = rand_color(10, luminosity = "dark"))
points(1:10, rep(5, 10), pch = 16, cex = 5,

col = rand_color(10, hue = "red", luminosity = "bright"))
points(1:10, rep(6, 10), pch = 16, cex = 5,

col = rand_color(10, hue = "green", luminosity = "bright"))
points(1:10, rep(7, 10), pch = 16, cex = 5,

col = rand_color(10, hue = "blue", luminosity = "bright"))

https://github.com/davidmerfield/randomColor

read.chromInfo 117

points(1:10, rep(8, 10), pch = 16, cex = 5,
col = rand_color(10, hue = "monochrome", luminosity = "bright"))

read.chromInfo Read/parse chromInfo data from a data frame/file/UCSC database

Description

Read/parse chromInfo data from a data frame/file/UCSC database

Usage

read.chromInfo(
chromInfo = system.file(package = "circlize", "extdata", "chromInfo.txt"),
species = NULL,
chromosome.index = usable_chromosomes(species),
sort.chr = TRUE)

Arguments

chromInfo Path of the chromInfo file or a data frame that already contains chromInfo data

species Abbreviations of species. e.g. hg19 for human, mm10 for mouse. If this value is
specified, the function will download chromInfo.txt.gz from UCSC website
automatically.

chromosome.index

subset of chromosomes, also used to reorder chromosomes.

sort.chr Whether chromosome names should be sorted (first sort by numbers then by
letters). If chromosome.index is set, this argument is enforced to FALSE

Details

The function read the chromInfo data, sort the chromosome names and calculate the length of each
chromosome. By default, it is human hg19 chromInfo data.

You can find the data structure for the chromInfo data from https://hgdownload.cse.ucsc.edu/
goldenpath/hg19/database/chromInfo.txt.gz

Value

df Data frame for chromInfo data (rows are sorted if sort.chr is set to TRUE)

chromosome Sorted chromosome names

chr.len Length of chromosomes. Order are same as chromosome

https://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/chromInfo.txt.gz
https://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/chromInfo.txt.gz

118 read.cytoband

Examples

data = read.chromInfo(species = "hg19")
data = read.chromInfo(chromInfo = system.file(package = "circlize", "extdata", "chromInfo.txt"))
chromInfo = read.table(system.file(package = "circlize", "extdata", "chromInfo.txt"),

colClasses = c("character", "numeric"), sep = "\t")
data = read.chromInfo(chromInfo = chromInfo)

read.cytoband Read/parse cytoband data from a data frame/file/UCSC database

Description

Read/parse cytoband data from a data frame/file/UCSC database

Usage

read.cytoband(
cytoband = system.file(package = "circlize", "extdata", "cytoBand.txt"),
species = NULL,
chromosome.index = usable_chromosomes(species),
sort.chr = TRUE)

Arguments

cytoband Path of the cytoband file or a data frame that already contains cytoband data

species Abbreviations of species. e.g. hg19 for human, mm10 for mouse. If this value
is specified, the function will download cytoBand.txt.gz from UCSC website
automatically.

chromosome.index

subset of chromosomes, also used to reorder chromosomes.

sort.chr Whether chromosome names should be sorted (first sort by numbers then by
letters). If chromosome.index is set, this argument is enforced to FALSE

Details

The function read the cytoband data, sort the chromosome names and calculate the length of each
chromosome. By default, it is human hg19 cytoband data.

You can find the data structure of the cytoband data from https://hgdownload.cse.ucsc.edu/
goldenpath/hg19/database/cytoBand.txt.gz

Value

df Data frame for cytoband data (rows are sorted if sort.chr is set to TRUE)

chromosome Sorted chromosome names

chr.len Length of chromosomes. Orders are same as chromosome

https://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/cytoBand.txt.gz
https://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/cytoBand.txt.gz

reverse.circlize 119

Examples

data = read.cytoband(species = "hg19")
data = read.cytoband(cytoband = system.file(package = "circlize", "extdata", "cytoBand.txt"))
cytoband = read.table(system.file(package = "circlize", "extdata", "cytoBand.txt"),

colClasses = c("character", "numeric", "numeric", "character", "character"), sep = "\t")
data = read.cytoband(cytoband = cytoband)

reverse.circlize Convert to data coordinate system

Description

Convert to data coordinate system

Usage

reverse.circlize(
x, y,
sector.index = get.current.sector.index(),
track.index = get.current.track.index())

Arguments

x degree values. The value can also be a two-column matrix/data frame if you put
x and y data points into one variable.

y distance to the circle center (the radius)
sector.index Index for the sector where the data coordinate is used
track.index Index for the track where the data coordinate is used

Details

This is the reverse function of circlize. It transform data points from polar coordinate system to
a specified data coordinate system.

Value

A matrix with two columns (x and y)

Examples

pdf(NULL)
factors = letters[1:4]
circos.initialize(factors, xlim = c(0, 1))
circos.trackPlotRegion(ylim = c(0, 1))
reverse.circlize(c(30, 60), c(0.9, 0.8))
reverse.circlize(c(30, 60), c(0.9, 0.8), sector.index = "d", track.index = 1)
reverse.circlize(c(30, 60), c(0.9, 0.8), sector.index = "a", track.index = 1)
circos.clear()
dev.off()

120 set_track_gap

set.current.cell Set flag to current cell

Description

Set flag to current cell

Usage

set.current.cell(sector.index, track.index)

Arguments

sector.index sector index

track.index track index

Details

After setting the current cell, all functions which need sector.index and track.index arguments
and are applied to the current cell do not need to specify the two arguments explicitly.

Examples

pdf(NULL)
circos.initialize(letters[1:8], xlim = c(0, 1))
circos.track(ylim = c(0, 1))
circos.info()
set.current.cell("b", 1)
circos.info()
circos.clear()
dev.off()

set_track_gap Set gaps between tracks

Description

Set gaps between tracks

Usage

set_track_gap(gap = 0.02)

Arguments

gap Gap between two tracks

show.index 121

Examples

circos.initialize(fa = letters[1:10], xlim = c(0, 1))
circos.track(ylim = c(0, 1))
set_track_gap(mm_h(2))
circos.track(ylim = c(0, 1))
circos.clear()

show.index Label the sector index and the track index on each cell

Description

Label the sector index and the track index on each cell

Usage

show.index()

Details

This function is deprecated, please use circos.info instead.

Examples

There is no example
NULL

smartAlign Adjust positions of text

Description

Adjust positions of text

Usage

smartAlign(x1, x2, xlim)

Arguments

x1 position which corresponds to the top of the text

x2 position which corresponds to the bottom of the text

xlim ranges on x-axis

122 uh

Details

used internally

Examples

There is no example
NULL

uh Convert units

Description

Convert units

Usage

uh(...)

Arguments

... pass to convert_length

Details

This function is same as convert_length.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

see example in `convert_length` page
NULL

ux 123

ux Convert unit on x direction in data coordinate

Description

Convert unit on x direction in data coordinate

Usage

ux(...)

Arguments

... pass to convert_x

Details

This function is same as convert_x.

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

see example in `convert_x` page
NULL

uy Convert unit on y direction in data coordinate

Description

Convert unit on y direction in data coordinate

Usage

uy(...)

Arguments

... pass to convert_y

Details

This function is same as convert_y.

124 $.CELL_META

Author(s)

Zuguang Gu <z.gu@dkfz.de>

Examples

see example in `convert_y` page
NULL

$.CELL_META Easy to way to get meta data in the current cell

Description

Easy to way to get meta data in the current cell

Usage

S3 method for class 'CELL_META'
x$name

Arguments

x name of the variable should be "CELL_META"

name name of the cell meta name

Details

The variable CELL_META can only be used to get meta data of the "current" cell. Basically you can
simply replace e.g. get.cell.meta.data("sector.index") to CELL_META$sector.index.

See Also

get.cell.meta.data

Examples

There is no example
NULL

Index

$.CELL_META, 124

add_transparency, 6
adjacencyList2Matrix, 6
Arrowhead, 14, 18, 62
as.raster, 69

calc_gap, 7
CELL_META, 8, 8, 102, 112, 124
chordDiagram, 5, 8, 15, 18
chordDiagramFromDataFrame, 9, 10, 12, 18
chordDiagramFromMatrix, 9, 10, 15
circlize, 19, 119
circlize-package, 4
circos.arrow, 20
circos.axis, 4, 21, 29, 85
circos.barplot, 24
circos.boxplot, 25
circos.clear, 5, 26, 64
circos.dendrogram, 27
circos.genomicAxis, 28
circos.genomicDensity, 5, 29
circos.genomicHeatmap, 5, 31
circos.genomicIdeogram, 5, 32
circos.genomicInitialize, 5, 33, 57, 58
circos.genomicLabels, 5, 35
circos.genomicLines, 5, 36
circos.genomicLink, 5, 39
circos.genomicPoints, 5, 40
circos.genomicPosTransformLines, 42,

113
circos.genomicRainfall, 5, 43
circos.genomicRect, 5, 45
circos.genomicText, 5, 47
circos.genomicTrack, 5, 49
circos.genomicTrackPlotRegion, 38, 41,

46, 49, 50, 102, 104
circos.heatmap, 52
circos.heatmap.initialize, 53
circos.heatmap.link, 54

circos.info, 5, 55, 106, 121
circos.initialize, 5, 27, 34, 56, 66, 78
circos.initializeWithIdeogram, 5, 57
circos.lines, 4, 30, 37, 38, 59, 76, 78
circos.link, 4, 10, 14, 18, 39, 54, 61
circos.nested, 63, 64
circos.par, 5, 64, 86
circos.points, 4, 40, 41, 66, 67, 78, 80
circos.polygon, 4, 67, 81
circos.raster, 68
circos.rect, 4, 45, 48, 70, 70
circos.segments, 4, 71
circos.text, 4, 22, 48, 72, 81, 105
circos.track, 5, 53, 73, 83, 102
circos.trackHist, 74
circos.trackLines, 4, 75
circos.trackPlotRegion, 30, 43, 44, 50, 51,

67, 73, 77, 78
circos.trackPoints, 4, 79
circos.trackText, 5, 80
circos.triangle, 81
circos.update, 5, 82
circos.updatePlotRegion, 82, 82
circos.violin, 83
circos.xaxis, 4, 85
circos.yaxis, 4, 23, 85
cm_h, 87, 91
cm_x, 87, 93
cm_y, 88, 94
col2value, 89, 90
colorRamp2, 13, 16, 31, 52, 89, 90, 90
convert_height, 63, 65, 91
convert_length, 87, 91, 91, 106, 108, 110,

122
convert_x, 87, 92, 92, 94, 107, 109, 111, 123
convert_y, 23, 88, 92, 93, 94, 107–109, 111,

123
cytoband.col, 95

degree, 72, 95

125

126 INDEX

dendrogram, 27
dist, 52, 53
draw.sector, 96, 106

factor, 56, 76, 77, 79, 80
fontsize, 97

generateRandomBed, 98
genomicDensity, 30, 99
get.all.sector.index, 100
get.all.track.index, 100
get.cell.meta.data, 8, 101, 102, 124
get.current.chromosome, 102
get.current.sector.index, 102, 103
get.current.track.index, 103
getI, 51, 104

hclust, 52, 53
highlight.chromosome, 104
highlight.sector, 104, 105, 105
hist, 75

inch_h, 108
inch_x, 109
inch_y, 109
inches_h, 91, 106
inches_x, 93, 107
inches_y, 94, 107

LAB, 90
lines, 60, 71, 76

mm_h, 91, 110
mm_x, 93, 111
mm_y, 94, 111

names.CELL_META, 112

par, 65, 67
plot, 56
points, 67
polygon, 20, 67, 68, 70
posTransform.default, 37, 41, 42, 45, 48,

112
posTransform.text, 48, 113
print.CELL_META, 114

rainfallTransform, 44, 115
rand_color, 116
read.chromInfo, 57, 117

read.cytoband, 33, 57, 58, 98, 118
reverse.circlize, 119

set.current.cell, 120
set_track_gap, 120
show.index, 121
smartAlign, 121
sRGB, 89
Subset.CELL_META ($.CELL_META), 124

text, 72

uh, 63, 78, 122
ux, 123
uy, 123

	circlize-package
	add_transparency
	adjacencyList2Matrix
	calc_gap
	CELL_META
	chordDiagram
	chordDiagramFromDataFrame
	chordDiagramFromMatrix
	circlize
	circos.arrow
	circos.axis
	circos.barplot
	circos.boxplot
	circos.clear
	circos.dendrogram
	circos.genomicAxis
	circos.genomicDensity
	circos.genomicHeatmap
	circos.genomicIdeogram
	circos.genomicInitialize
	circos.genomicLabels
	circos.genomicLines
	circos.genomicLink
	circos.genomicPoints
	circos.genomicPosTransformLines
	circos.genomicRainfall
	circos.genomicRect
	circos.genomicText
	circos.genomicTrack
	circos.genomicTrackPlotRegion
	circos.heatmap
	circos.heatmap.initialize
	circos.heatmap.link
	circos.info
	circos.initialize
	circos.initializeWithIdeogram
	circos.lines
	circos.link
	circos.nested
	circos.par
	circos.points
	circos.polygon
	circos.raster
	circos.rect
	circos.segments
	circos.text
	circos.track
	circos.trackHist
	circos.trackLines
	circos.trackPlotRegion
	circos.trackPoints
	circos.trackText
	circos.triangle
	circos.update
	circos.updatePlotRegion
	circos.violin
	circos.xaxis
	circos.yaxis
	cm_h
	cm_x
	cm_y
	col2value
	colorRamp2
	convert_height
	convert_length
	convert_x
	convert_y
	cytoband.col
	degree
	draw.sector
	fontsize
	generateRandomBed
	genomicDensity
	get.all.sector.index
	get.all.track.index
	get.cell.meta.data
	get.current.chromosome
	get.current.sector.index
	get.current.track.index
	getI
	highlight.chromosome
	highlight.sector
	inches_h
	inches_x
	inches_y
	inch_h
	inch_x
	inch_y
	mm_h
	mm_x
	mm_y
	names.CELL_META
	posTransform.default
	posTransform.text
	print.CELL_META
	rainfallTransform
	rand_color
	read.chromInfo
	read.cytoband
	reverse.circlize
	set.current.cell
	set_track_gap
	show.index
	smartAlign
	uh
	ux
	uy
	$.CELL_META
	Index

