
Package ‘ciTools’
June 12, 2020

Type Package

Title Confidence or Prediction Intervals, Quantiles, and Probabilities
for Statistical Models

Version 0.5.2

Maintainer John Haman <jhaman@ida.org>

Description Functions to append confidence intervals, prediction intervals,
and other quantities of interest to data frames. All appended quantities
are for the response variable, after conditioning on the model and covariates.
This package has a data frame first syntax that allows for easy piping.
Currently supported models include (log-) linear, (log-) linear mixed,
generalized linear models, generalized linear mixed models, and
accelerated failure time models.

Depends R (>= 3.4.0)

Imports arm, boot, dplyr, lme4, magrittr, MASS, methods, stats,
survival, tibble, utils

Suggests broom, here, knitr, rmarkdown, SPREDA, tidyverse

VignetteBuilder rmarkdown, knitr

URL https://github.com/jthaman/ciTools

BugReports https://github.com/jthaman/ciTools/issues

License GPL (>= 3)

Encoding UTF-8

LazyData true

RoxygenNote 7.1.0

NeedsCompilation no

Author John Haman [cre, aut],
Matthew Avery [aut],
Institute for Defense Analyses [cph]

Repository CRAN

Date/Publication 2020-06-12 16:00:11 UTC

1

https://github.com/jthaman/ciTools
https://github.com/jthaman/ciTools/issues

2 add_ci

R topics documented:
add_ci . 2
add_ci.glm . 4
add_ci.glmerMod . 6
add_ci.lm . 7
add_ci.lmerMod . 9
add_ci.negbin . 10
add_ci.survreg . 12
add_pi . 13
add_pi.glm . 15
add_pi.glmerMod . 16
add_pi.lm . 18
add_pi.lmerMod . 19
add_pi.negbin . 21
add_pi.survreg . 22
add_probs . 24
add_probs.glm . 26
add_probs.glmerMod . 27
add_probs.lm . 29
add_probs.lmerMod . 30
add_probs.negbin . 32
add_probs.survreg . 33
add_quantile . 35
add_quantile.glm . 36
add_quantile.glmerMod . 38
add_quantile.lm . 39
add_quantile.lmerMod . 40
add_quantile.negbin . 42
add_quantile.survreg . 43

Index 46

add_ci Add Confidence Intervals for Fitted Values to Data Frames

Description

This is a generic function to append confidence intervals for predictions of a model fit to a data
frame. A confidence interval is generated for the fitted value of each observation in tb. These
confidence intervals are then appended to tb and returned to the user as a tibble. The fit may be
a linear, log-linear, linear mixed, generalized linear model, generalized linear mixed, or accelerated
failure time model.

Usage

add_ci(tb, fit, alpha = 0.05, names = NULL, yhatName = "pred", ...)

add_ci 3

Arguments

tb A tibble or data frame of new data. tb can be the original data or new data.

fit An object of class lm, glm, lmerMod, glmerMod, or survreg. Predictions are
made with this object.

alpha A real number between 0 and 1. Controls the confidence level of the interval
estimates.

names NULL or character vector of length two. If NULL, confidence bounds automati-
cally will be named by add_ci, otherwise, the lower confidence bound will be
named names[1] and the upper confidence bound will be named names[2].

yhatName A character vector of length one. Name of the vector of the predictions made
for each observation in tb

... Additional arguments.

Details

For more specific information about the arguments that are applicable in each method, consult:

• add_ci.lm for linear model confidence intervals

• add_ci.glm for generalized linear model confidence intervals

• add_ci.lmerMod for linear mixed model confidence intervals

• add_ci.glmerMod for generalized linear mixed model confidence intervals

• add_ci.survreg for accelerated failure time confidence intervals

Note that add_ci calculates confidence intervals for fitted values, not model coefficients. For con-
fidence intervals of model coefficients, see confint.

Value

A tibble, tb, with predicted values, upper and lower confidence bounds attached.

See Also

add_pi for prediction intervals, add_probs for response level probabilities, and add_quantile for
quantiles of the conditional response distribution.

Examples

Fit a linear model
fit <- lm(dist ~ speed, data = cars)
Make a confidence interval for each observation in cars, and
append to the data frame
add_ci(cars, fit)

Make new data
new_data <- cars[sample(NROW(cars), 10),]
add_ci(new_data, fit)

4 add_ci.glm

Fit a Poisson model
fit2 <- glm(dist ~ speed, family = "poisson", data = cars)
Append CIs
add_ci(cars, fit2)

Fit a linear mixed model using lme4
fit3 <- lme4::lmer(Reaction ~ Days + (1|Subject), data = lme4::sleepstudy)
Append CIs
Generally, you should use more than 100 bootstrap replicates
add_ci(lme4::sleepstudy, fit3, nSims = 100)

Fit a logistic model
fit4 <- glm(I(dist > 20) ~ speed, family = "binomial", data = cars)
Append CIs
add_ci(cbind(cars, I(cars$dist > 20)), fit4)

add_ci.glm Confidence Intervals for Generalized Linear Model Predictions

Description

This function is one of the methods for add_ci, and is called automatically when add_ci is used on
a fit of class glm. The default method calculates confidence intervals by making an interval on the
scale of the linear predictor, then applying the inverse link function from the model fit to transform
the linear level confidence intervals to the response level. Alternatively, confidence intervals may
be calculated through a nonparametric bootstrap method.

Usage

S3 method for class 'glm'
add_ci(
tb,
fit,
alpha = 0.05,
names = NULL,
yhatName = "pred",
response = TRUE,
type = "parametric",
nSims = 2000,
...

)

Arguments

tb A tibble or data frame of new data.

fit An object of class glm.

add_ci.glm 5

alpha A real number between 0 and 1. Controls the confidence level of the interval
estimates.

names NULL or character vector of length two. If NULL, confidence bounds automati-
cally will be named by add_ci, otherwise, the lower confidence bound will be
named names[1] and the upper confidence bound will be named names[2].

yhatName A character vector of length one. Name of the vector of predictions made for
each observation in tb

response A logical. The default is TRUE. If TRUE, the confidence intervals will be deter-
mined for the expected response; if FALSE, confidence intervals will be made on
the scale of the linear predictor.

type A character vector of length one. Must be type = "parametric" or type =
"boot". type determines the method used to compute the confidence intervals.

nSims An integer. Number of simulations to perform if the bootstrap method is used.

... Additional arguments.

Value

A tibble, tb, with predicted values, upper and lower confidence bounds attached.

See Also

add_pi.glm for prediction intervals for glm objects, add_probs.glm for conditional probabilities
of glm objects, and add_quantile.glm for response quantiles of glm objects.

Examples

Poisson regression
fit <- glm(dist ~ speed, data = cars, family = "poisson")
add_ci(cars, fit)
Try a different confidence level
add_ci(cars, fit, alpha = 0.5)
Add custom names to the confidence bounds (may be useful for plotting)
add_ci(cars, fit, alpha = 0.5, names = c("lwr", "upr"))

Logistic regression
fit2 <- glm(I(dist > 30) ~ speed, data = cars, family = "binomial")
dat <- cbind(cars, I(cars$dist > 30))
Form 95% confidence intervals for the fit:
add_ci(dat, fit2)
Form 50% confidence intervals for the fit:
add_ci(dat, fit2, alpha = 0.5)
Make confidence intervals on the scale of the linear predictor
add_ci(dat, fit2, alpha = 0.5, response = FALSE)
Add custom names to the confidence bounds
add_ci(dat, fit2, alpha = 0.5, names = c("lwr", "upr"))

6 add_ci.glmerMod

add_ci.glmerMod Confidence Intervals for Generalized Linear Mixed Model Predictions

Description

This function is one of the methods for add_ci, and is called automatically when add_ci is used
on a fit of class glmerMod.

Usage

S3 method for class 'glmerMod'
add_ci(
tb,
fit,
alpha = 0.05,
names = NULL,
yhatName = "pred",
response = TRUE,
type = "boot",
includeRanef = TRUE,
nSims = 500,
...

)

Arguments

tb A tibble or data frame of new data.
fit An object of class glmerMod.
alpha A real number between 0 and 1. Controls the confidence level of the interval

estimates.
names NULL or character vector of length two. If NULL, confidence bounds automati-

cally will be named by add_ci, otherwise, the lower confidence bound will be
named names[1] and the upper confidence bound will be named names[2].

yhatName NULL or a string. Name of the predictions vector. If NULL, the predictions will be
named pred.

response A logical. The default is TRUE. If TRUE, the confidence intervals will be deter-
mined for the expected response; if FALSE, confidence intervals will be made on
the scale of the linear predictor.

type A string. If type == "boot" then bootstrap intervals are formed. If type ==
"parametric" then parametric intervals are formed. Currently only bootstrap
intervals are supported.

includeRanef A logical. Default is TRUE. Set whether the predictions and intervals should be
made conditional on the random effects. If FALSE, random effects will not be
included.

nSims A positive integer. Controls the number of bootstrap replicates if type = "boot".
... Additional arguments.

add_ci.lm 7

Details

The default and recommended method is bootstrap. The bootstrap method can handle many types
of models and we find it to be generally reliable and robust as it is built on the bootMer function
from lme4.

Value

A tibble, tb, with predicted values, upper and lower confidence bounds attached.

References

For general information about GLMMs http://bbolker.github.io/mixedmodels-misc/glmmFAQ.html

See Also

add_pi.glmerMod for prediction intervals of glmerMod objects, add_probs.glmerMod for condi-
tional probabilities of glmerMod objects, and add_quantile.glmerMod for response quantiles of
glmerMod objects.

Examples

n <- 300
x <- runif(n)
f <- factor(sample(1:5, size = n, replace = TRUE))
y <- rpois(n, lambda = exp(1 - 0.05 * x * as.numeric(f) + 2 * as.numeric(f)))
tb <- tibble::tibble(x = x, f = f, y = y)
fit <- lme4::glmer(y ~ (1+x|f), data=tb, family = "poisson")

Not run: add_ci(tb, fit, names = c("lcb", "ucb"), nSims = 300)

add_ci.lm Confidence Intervals for Linear Model Predictions

Description

This function is one of the methods in add_ci and automatically is called when an object of class
lm is passed to add_ci.

Usage

S3 method for class 'lm'
add_ci(
tb,
fit,
alpha = 0.05,
names = NULL,
yhatName = "pred",

8 add_ci.lm

log_response = FALSE,
...

)

Arguments

tb A tibble or data frame.

fit An object of class lm. Predictions are made with this object.

alpha A real number between 0 and 1. Controls the confidence level of the interval
estimates.

names NULL or character vector of length two. If NULL, confidence bounds automati-
cally will be named by add_ci, otherwise, the lower confidence bound will be
named names[1] and the upper confidence bound will be named names[2].

yhatName A string. Name of the vector of the predictions made for each observation in tb

log_response Logical. Default is FALSE. If TRUE, confidence intervals will be generated for
the response level of a log-linear model: log(Y) = Xβ + ε.

... Additional arguments.

Details

Confidence intervals for lm objects are calculated parametrically. This function is essentially a
wrapper for predict(fit,tb,interval = "confidence") if fit is a linear model. If log_response
= TRUE, confidence intervals for the response are calculated using Wald’s Method. See Meeker and
Escobar (1998) for details.

Value

A tibble, tb, with predicted values, upper and lower confidence bounds attached.

See Also

add_pi.lm for prediction intervals for lm objects, add_probs.lm for conditional probabilities of lm
objects, and add_quantile.lm for response quantiles of lm objects.

Examples

Fit a linear model
fit <- lm(dist ~ speed, data = cars)
Get fitted values for each observation in cars, and append
confidence intervals
add_ci(cars, fit)
Try a different confidence level
add_ci(cars, fit, alpha = 0.5)
Try custom names for the confidence bounds
add_ci(cars, fit, alpha = 0.5, names = c("lwr", "upr"))

add_ci.lmerMod 9

add_ci.lmerMod Confidence Intervals for Linear Mixed Model Predictions

Description

This function is one of the methods for add_ci, and is called automatically when add_ci is used
on a fit of class lmerMod. It is recommended that one use parametric confidence intervals when
modeling with a random intercept linear mixed model (i.e. a fit with a formula such as lmer(y ~ x
+ (1|group))). Otherwise, confidence intervals may be bootstrapped via lme4::bootMer.

Usage

S3 method for class 'lmerMod'
add_ci(
tb,
fit,
alpha = 0.05,
names = NULL,
yhatName = "pred",
type = "boot",
includeRanef = TRUE,
nSims = 500,
...

)

Arguments

tb A tibble or data frame of new data.

fit An object of class lmerMod.

alpha A real number between 0 and 1. Controls the confidence level of the interval
estimates.

names NULL or character vector of length two. If NULL, confidence bounds automati-
cally will be named by add_ci, otherwise, the lower confidence bound will be
named names[1] and the upper confidence bound will be named names[2].

yhatName A string. Name of the predictions vector.

type A string. Must be "parametric" or "boot", If type = "boot", then add_ci
calls lme4::bootMer to calculate the confidence intervals. This method may
be time consuming, but is applicable with random slope and random intercept
models. The parametric method is fast, but currently only works well for random
intercept models.

includeRanef A logical. Default is TRUE. Set whether the predictions and intervals should be
made conditional on the random effects. If FALSE, random effects will not be
included.

nSims A positive integer. Controls the number of bootstrap replicates if type = "boot".

... Additional arguments.

10 add_ci.negbin

Details

Bootstrapped intervals are slower to compute, but they are the recommended method when working
with any linear mixed models more complicated than the random intercept model.

Value

A tibble, tb, with predicted values, upper and lower confidence bounds attached.

See Also

add_pi.lmerMod for prediction intervals of lmerMod objects, add_probs.lmerMod for conditional
probabilities of lmerMod objects, and add_quantile.lmerMod for response quantiles of lmerMod
objects.

Examples

Not run:
dat <- lme4::sleepstudy
Fit a linear mixed model (random intercept model)
fit <- lme4::lmer(Reaction ~ Days + (1|Subject), data = lme4::sleepstudy)
Get the fitted values for each observation in dat, and
append CIs for those fitted values to dat
add_ci(dat, fit, alpha = 0.5)
Try the parametric bootstrap method, and make prediction at the population level
add_ci(dat, fit, alpha = 0.5, type = "boot", includeRanef = FALSE, nSims = 100)

End(Not run)

add_ci.negbin Confidence Intervals for Negative Binomial Linear Model Predictions

Description

This function is one of the methods for add_ci, and is called automatically when add_ci is used
on a fit of class negbin.

Usage

S3 method for class 'negbin'
add_ci(
tb,
fit,
alpha = 0.05,
names = NULL,
yhatName = "pred",
response = TRUE,
type = "parametric",
nSims = 2000,

add_ci.negbin 11

...
)

Arguments

tb A tibble or data frame of new data.
fit An object of class negbin.
alpha A real number between 0 and 1. Controls the confidence level of the interval

estimates.
names NULL or character vector of length two. If NULL, confidence bounds automati-

cally will be named by add_ci, otherwise, the lower confidence bound will be
named names[1] and the upper confidence bound will be named names[2].

yhatName A string. Name of the vector of predictions made for each observation in tb
response A logical. The default is TRUE. If TRUE, the confidence intervals will be deter-

mined for the expected response; if FALSE, confidence intervals will be made on
the scale of the linear predictor.

type A string. Must be type = "parametric" or type = "boot". type determines
the method used to compute the confidence intervals.

nSims An integer. Number of simulations to perform if the bootstrap method is used.
... Additional arguments.

Details

The default link function is log-link. Confidence Intervals are determined by making an interval
on the scale of the linear predictor, then applying the inverse link function from the model fit to
transform the linear level confidence intervals to the response level. Alternatively, bootstrap confi-
dence intervals may be formed. The bootstrap intervals are formed by first resampling cases from
the data frame used to calculate fit, then bias corrected and accelerated intervals are calculated.
See boot::boot.ci for more details.

Value

A tibble, tb, with predicted values, upper and lower confidence bounds attached.

See Also

add_pi.negbin for prediction intervals for negbin objects, add_probs.negbin for conditional
probabilities of negbin objects, and add_quantile.negbin for response quantiles of negbin ob-
jects.

Examples

x1 <- rnorm(300, mean = 1)
y <- MASS::rnegbin(n = 300, mu = exp(5 + 0.5 * x1), theta = 2)
df <- data.frame(x1 = x1, y = y)
fit <- MASS::glm.nb(y ~ x1, data = df)
df <- df[sample(100),]
add_ci(df, fit, names = c("lcb", "ucb"))

12 add_ci.survreg

add_ci.survreg Confidence Intervals for the Mean Survival Time of Accelerated Fail-
ure Time Models.

Description

This function is one of the methods for add_ci, and is called automatically when add_ci is used
on a fit of class survreg.

Usage

S3 method for class 'survreg'
add_ci(tb, fit, alpha = 0.1, names = NULL, yhatName = "mean_pred", ...)

Arguments

tb A tibble or data frame of new data on which to form predictions and confidence
intervals.

fit An object of class survreg. Predictions are made with this object.

alpha A number between 0 and 1. 1 - alpha is the confidence level of the intervals.

names NULL or a string of length 2. If NULL, quantiles automatically will be named by
add_quantile, otherwise, they will be named names.

yhatName A string. Name of the vector of predictions. The default name is mean_pred.

... Additional arguments.

Details

add_ci.survreg calculates confidence intervals for the mean survival time of several accelerated
failure time (AFT) models including exponential, lognormal, weibull, and loglogistic models. AFT
models must be fit with the survreg function in the survival package. Confidence intervals are
formed parametrically via the Delta method.

add_ci.survreg will compute confidence intervals for the following mean survival time point
estimates:

Exponential: E[Y |X] = expXβ

Weibull: E[Y |X] = expXβΓ(1 + σ)

Lognormal: E[Y |X] = expXβ + σ2

2

Loglogistic: E[Y |X] = expXβΓ(1 + σ)(1− σ)

Traditionally, survival time predictions are made with the median survival time. For forming confi-
dence intervals for the median survival time (or any quantile of the survival time distribution), see
add_quantile.survreg.

Note: The expected survival time of a loglogistic model with scale >= 1 does not exist. Otherwise,
expected survival times exist for each of the four AFT models considered in add.ci_survreg.

add_pi 13

Note: Due to a limitation, the Surv object must be specified in survreg function call. See the
examples section for one way to do this.

Note: add_ci.survreg cannot inspect the convergence of fit. Poor maximum likelihood estimates
will result in poor confidence intervals. Inspect any warning messages given from survreg.

Value

A tibble, tb, with predicted expected values and level 1 - alpha level confidence levels attached.

References

For descriptions of the log-location scale models supported: Meeker, William Q., and Luis A.
Escobar. Statistical methods for reliability data. John Wiley & Sons, 2014. (Chapter 4)

For a description of the multivariate Delta method: Meeker, William Q., and Luis A. Escobar.
Statistical methods for reliability data. John Wiley & Sons, 2014. (Appendix B.2)

See Also

add_quantile.survreg for quantiles of the survival time distribution of survreg objects, add_pi.survreg
for prediction intervals of survreg objects, and add_probs.survreg for survival probabilities of
survreg objects.

Examples

Define a data set.
tb <- survival::stanford2
remove a covariate with missing values.
tb <- tb[, 1:4]
next, create the Surv object inside the survreg call:
fit <- survival::survreg(survival::Surv(time, status) ~ age + I(age^2),

data = tb, dist = "lognormal")
add_ci(tb, fit, alpha = 0.1, names = c("lwr", "upr"))

Try a different model:
fit2 <- survival::survreg(survival::Surv(time, status) ~ age + I(age^2),

data = tb, dist = "weibull")
add_ci(tb, fit2, alpha = 0.1, names = c("lwr", "upr"))

add_pi Add Prediction Intervals to Data Frames

Description

This is a generic function to append prediction intervals to a data frame. A prediction interval is
made for each observation in tb with respect to the model fit. These intervals are then appended
to tb and returned to the user as a tibble. fit can be a linear, log-linear, linear mixed, generalized
linear, generalized linear mixed, or accelerated failure time model.

14 add_pi

Usage

add_pi(tb, fit, alpha = 0.05, names = NULL, yhatName = "pred", ...)

Arguments

tb A tibble or data frame of new data.

fit An object of class lm, glm, or lmerMod. Predictions are made with this object.

alpha A real number between 0 and 1. Controls the confidence level of the interval
estimates.

names NULL or character vector of length two. If NULL, prediction bounds automatically
will be named by add_pi, otherwise, the lower prediction bound will be named
piNames[1] and the upper prediction bound will be named piNames[2].

yhatName A string. Name of the predictions vector.

... Additional arguments

Details

For more specific information about the arguments that are applicable in each method, consult:

• add_pi.lm for linear regression prediction intervals

• add_pi.glm for generalized linear regression prediction intervals

• add_pi.lmerMod for linear mixed models prediction intervals

• add_pi.glmerMod for generalized linear mixed model prediction intervals

• add_pi.survreg for accelerated failure time model prediction intervals

Value

A tibble, tb, with predicted values, upper and lower prediction bounds attached.

See Also

add_ci for confidence intervals, add_probs for response level probabilities, and add_quantile for
quantiles of the conditional response distribution.

Examples

Fit a linear model
fit <- lm(dist ~ speed, data = cars)
Define some new data
new_data <- cars[sample(NROW(cars), 10),]
Add fitted values and prediction intervals to new_data
add_pi(new_data, fit)

Fit a Poisson model
fit2 <- glm(dist ~ speed, family = "poisson", data = cars)
Add approximate prediction intervals to the fitted values of
new_data

add_pi.glm 15

add_pi(new_data, fit2)

Fit a linear mixed model
fit3 <- lme4::lmer(Reaction ~ Days + (1|Subject), data = lme4::sleepstudy)
Add parametric prediction intervals for the fitted values to the
original data
add_pi(lme4::sleepstudy, fit3, type = "parametric")

add_pi.glm Prediction Intervals for Generalized Linear Models

Description

This function is one of the methods for add_pi, and is called automatically when add_pi is used
on a fit of class glm.

Usage

S3 method for class 'glm'
add_pi(
tb,
fit,
alpha = 0.05,
names = NULL,
yhatName = "pred",
nSims = 2000,
...

)

Arguments

tb A tibble or data frame of new data.

fit An object of class glm.

alpha A real number between 0 and 1. Controls the confidence level of the interval
estimates.

names NULL or character vector of length two. If NULL, prediction bounds automatically
will be named by add_pi, otherwise, the lower prediction bound will be named
names[1] and the upper prediction bound will be named names[2].

yhatName A string. Name of the predictions vector.

nSims A positive integer. Determines the number of simulations to run.

... Additional arguments.

16 add_pi.glmerMod

Details

Prediction intervals are generated through simulation with the aid arm::sim, which simulates the
uncertainty in the regression coefficients. At the moment, only prediction intervals for Poisson,
Quasipoisson, Gaussian, and Gamma GLMs are supported. Note that if the response is count data,
prediction intervals are only approximate. Simulation from the QuasiPoisson model is performed
with the negative binomial distribution, see Gelman and Hill (2007).

Value

A tibble, tb, with predicted values, upper and lower prediction bounds attached.

See Also

add_ci.glm for confidence intervals for glm objects, add_probs.glm for conditional probabilities
of glm objects, and add_quantile.glm for response quantiles of glm objects.

Examples

Fit a Poisson model
fit <- glm(dist ~ speed, data = cars, family = "poisson")
Add prediction intervals and fitted values to the original data frame
add_pi(cars, fit)
Try a different confidence level
add_pi(cars, fit, alpha = 0.5)
Try custom names for the prediction bounds (may be useful for plotting)
add_pi(cars, fit, alpha = 0.5, names = c("lwr", "upr"))

add_pi.glmerMod Prediction Intervals for Generalized Linear Mixed Model Predictions

Description

This function is one of the methods for add_pi, and is called automatically when add_pi is used
on a fit of class glmerMod.

Usage

S3 method for class 'glmerMod'
add_pi(
tb,
fit,
alpha = 0.05,
names = NULL,
yhatName = "pred",
type = "boot",
includeRanef = TRUE,
nSims = 10000,

add_pi.glmerMod 17

...
)

Arguments

tb A tibble or data frame of new data.

fit An object of class glmerMod.

alpha A real number between 0 and 1. Controls the confidence level of the interval
estimates.

names NULL or character vector of length two. If NULL, prediction bounds automatically
will be named by add_pi, otherwise, the lower prediction bound will be named
names[1] and the upper prediction bound will be named names[2].

yhatName NULL or a string. The name of the predictions vector.

type A string. Must be "boot", If type = "boot", then add_ci calls lme4::bootMer
to calculate the confidence intervals.

includeRanef A logical. Default is TRUE. Set whether the predictions and intervals should be
made conditional on the random effects. If FALSE, random effects will not be
included.

nSims A positive integer. Controls the number of bootstrap replicates.

... Additional arguments.

Details

Prediction intervals are approximate and determined by simulation through the simulate function
distributed with lme4.

Value

A tibble, tb, with predicted values, upper and lower prediction bounds attached.

See Also

add_ci.glmerMod for confidence intervals of glmerMod objects, add_probs.glmerMod for condi-
tional probabilities of glmerMod objects, and add_quantile.glmerMod for response quantiles of
glmerMod objects.

Examples

n <- 300
x <- runif(n)
f <- factor(sample(1:5, size = n, replace = TRUE))
y <- rpois(n, lambda = exp(1 - 0.05 * x * as.numeric(f) + 2 * as.numeric(f)))
tb <- tibble::tibble(x = x, f = f, y = y)
fit <- lme4::glmer(y ~ (1+x|f), data=tb, family = "poisson")

add_pi(tb, fit, names = c("LPB", "UPB"), nSims = 500)

18 add_pi.lm

add_pi.lm Prediction Intervals for Linear Model Predictions

Description

This function is one of the methods for add_pi and is automatically called when an object of class
lm is passed to to add_pi.

Usage

S3 method for class 'lm'
add_pi(
tb,
fit,
alpha = 0.05,
names = NULL,
yhatName = "pred",
log_response = FALSE,
...

)

Arguments

tb A tibble or data frame of new data.

fit An object of class lm. Predictions are made with this object.

alpha A real number between 0 and 1. Controls the confidence level of the interval
estimates.

names NULL or character vector of length two. If NULL, prediction bounds automatically
will be named by add_pi, otherwise, the lower prediction bound will be named
names[1] and the upper prediction bound will be named names[2].

yhatName A string. Name of the predictions vector.

log_response A logical. If TRUE, prediction intervals will be generated at the response level
of a log-linear model: log(Y) = Xβ + ε. Again, these intervals will be on the
scale of the original response, Y.

... Additional arguments.

Details

Prediction intervals for lm objects are calculated parametrically. This function is essentially just a
wrapper for predict(fit,tb,interval = "prediction") if fit is a linear model. If log_response
= TRUE, prediction intervals for the response are calculated parametrically, then the exponential
function is applied to transform them to the original scale.

Value

A tibble, tb, with predicted values, upper and lower prediction bounds attached.

add_pi.lmerMod 19

See Also

add_ci.lm for confidence intervals for lm objects. add_probs.lm for conditional probabilities of
lm objects, and add_quantile.lm for response quantiles of lm objects.

Examples

Fit a linear model
fit <- lm(dist ~ speed, data = cars)
Add prediction intervals and fitted values to the original data
add_pi(cars, fit)

Try to add predictions to a data frame of new data
new_data <- cars[sample(NROW(cars), 10),]
add_pi(new_data, fit)

Try a different confidence level
add_pi(cars, fit, alpha = 0.5)

Add custom names to the prediction bounds.
add_pi(cars, fit, alpha = 0.5, names = c("lwr", "upr"))

add_pi.lmerMod Prediction Intervals for Linear Mixed Model Fitted Values

Description

This function is one of the methods in add_pi, and is called automatically when add_pi is used on
a fit of class lmerMod.

Usage

S3 method for class 'lmerMod'
add_pi(
tb,
fit,
alpha = 0.05,
names = NULL,
yhatName = "pred",
type = "parametric",
includeRanef = TRUE,
log_response = FALSE,
nSims = 10000,
...

)

20 add_pi.lmerMod

Arguments

tb A tibble or data frame of new data

fit An object of class lmerMod.

alpha A real number between 0 and 1. Controls the confidence level of the interval
estimates.

names NULL or character vector of length two. If NULL, prediction bounds automatically
will be named by add_pi, otherwise, the lower prediction bound will be named
names[1] and the upper prediction bound will be named names[2].

yhatName A string. Name of the predictions vector.

type A string, either "parametric" or "boot". Determines the method used to cal-
culate the prediction intervals.

includeRanef A logical. Set whether the predictions and intervals should be conditioned on
the random effects. If FALSE, random effects will not be included.

log_response A logical, indicating if the response is on log scale in the model fit. If TRUE,
prediction intervals will be returned on the response scale.

nSims A positive integer. If type = "boot", nSims will determine the number of boot-
strap simulations to perform.

... Additional arguments.

Details

It is recommended that one use parametric prediction intervals when modeling with a random in-
tercept linear mixed model. Otherwise, prediction intervals may be simulated via a parametric
bootstrap using the function lme4.simulate().

Value

A tibble, tb, with predicted values, upper and lower prediction bounds attached.

See Also

add_ci.lmerMod for confidence intervals for lmerMod objects, add_probs.lmerMod for condi-
tional probabilities of lmerMod objects, and add_quantile.lmerMod for response quantiles of
lmerMod objects.

Examples

dat <- lme4::sleepstudy
Fit a (random intercept) linear mixed model
fit <- lme4::lmer(Reaction ~ Days + (1|Subject), data = lme4::sleepstudy)
Add 50% prediction intervals to the original data using the default
method.
add_pi(dat, fit, alpha = 0.5)

Add 50% prediction intervals to the original data using the
parametric bootstrap method. Form prediction intervals at the population
level (unconditional on the random effects).

add_pi.negbin 21

add_pi(dat, fit, alpha = 0.5, type = "boot", includeRanef = FALSE)

add_pi.negbin Prediction Intervals for Negative Binomial Linear Models

Description

This function is one of the methods for add_pi, and is called automatically when add_pi is used
on a fit of class negbin.

Usage

S3 method for class 'negbin'
add_pi(
tb,
fit,
alpha = 0.05,
names = NULL,
yhatName = "pred",
nSims = 2000,
...

)

Arguments

tb A tibble or data frame of new data.

fit An object of class negbin.

alpha A real number between 0 and 1. Controls the confidence level of the interval
estimates.

names NULL or character vector of length two. If NULL, prediction bounds automatically
will be named by add_pi, otherwise, the lower prediction bound will be named
names[1] and the upper prediction bound will be named names[2].

yhatName A string. Name of the predictions vector.

nSims A positive integer. Determines the number of simulations to run.

... Additional arguments.

Details

Prediction intervals for negative binomial fits are formed through a two part simulation scheme:

1. Model coefficients are generated through a parametric bootstrap procedure that simulates the
uncertainty in the regression coefficients.

2. Random draws from the negative binomial distribution are taken with a mean that varies based
on the model coefficients determined in step (1) and over-dispersion parameter that is taken from
the original fitted model.

Quantiles of the simulated responses are taken at the end to produce intervals of the desired level.

22 add_pi.survreg

Value

A tibble, tb, with predicted values, upper and lower prediction bounds attached.

See Also

add_ci.negbin for confidence intervals for negbin objects, add_probs.negbin for conditional
probabilities of negbin objects, and add_quantile.negbin for response quantiles of negbin ob-
jects.

Examples

x1 <- rnorm(100, mean = 1)
y <- MASS::rnegbin(n = 100, mu = exp(1 + x1), theta = 5)
df <- data.frame(x1 = x1, y = y)
fit <- MASS::glm.nb(y ~ x1, data = df)
add_pi(df, fit, names = c("lpb", "upb"))

add_pi.survreg Prediction Intervals for Accelerated Failure Time Models

Description

This function is one of the methods for add_pi, and is called automatically when add_pi is used
on a fit of class survreg.

Usage

S3 method for class 'survreg'
add_pi(
tb,
fit,
alpha = 0.05,
names = NULL,
yhatName = "median_pred",
nSims = 10000,
method = "naive",
...

)

Arguments

tb A tibble or data frame of new data.

fit An object of class survreg.

alpha A real number between 0 and 1. Controls the confidence level of the interval
estimates.

add_pi.survreg 23

names NULL or character vector of length two. If NULL, prediction bounds automatically
will be named by add_pi, otherwise, the lower prediction bound will be named
names[1] and the upper prediction bound will be named names[2].

yhatName A string. Name of the predictions vector.

nSims A positive integer. Determines the number of bootstrap replicates if method =
"boot".

method A string. Determines the method used to calculate prediction intervals. Must be
one of either "naive" or "boot".

... Additional arguments.

Details

add_pi.survreg creates prediction intervals for the survival time T conditioned on the covariates
of the survreg model. In simple terms, this function calculates error bounds within which one
can expect to observe a new survival time. Like other parametric survival methods in ciTools,
prediction intervals are limited to unweighted lognormal, exponential, weibull, and loglogistic AFT
models.

Two methods are available for creating prediction intervals, the "naive" method (Meeker and Esco-
bar, chapter 8) and a simulation method that implements a parametric bootstrap routine. The "naive"
method calculates quantiles of the fitted survival time distribution to determine prediction intervals.
The parametric bootstrap method simulates new survival times from the conditional survival time
distribution, taking into account the uncertainty in the regression coefficients. The bootstrap method
is similar to the one implemented in add_pi.glm.

Note: Due to a limitation, the Surv object must be specified in survreg function call. See the
examples section for one way to do this.

Note: add_pi.survreg cannot inspect the convergence of fit. Poor maximum likelihood estimates
will result in poor prediction intervals. Inspect any warning messages given from survreg.

Value

A tibble, tb, with predicted medians, upper and lower prediction bounds attached.

References

For a discussion prediction intervals of accelerated failure time models: Meeker, William Q., and
Luis A. Escobar. Statistical methods for reliability data. John Wiley & Sons, 2014. (Chapter 8)

See Also

add_ci.survreg for confidence intervals for survreg objects, add_probs.survreg for condi-
tional survival probabilities of survreg objects, and add_quantile.survreg for survival time
quantiles of survreg objects.

Examples

Define a data set.
tb <- survival::stanford2
remove a covariate with missing values.

24 add_probs

tb <- tb[, 1:4]
next, create the Surv object inside the survreg call:
fit <- survival::survreg(survival::Surv(time, status) ~ age + I(age^2),

data = tb, dist = "lognormal")
add_pi(tb, fit, alpha = 0.1, names = c("lwr", "upr"))

Try a different model:
fit2 <- survival::survreg(survival::Surv(time, status) ~ age + I(age^2),

data = tb, dist = "weibull")
add_pi(tb, fit2, alpha = 0.1, names = c("lwr", "upr"))

add_probs Add Regression Probabilities to Data Frames

Description

This is a generic function to append response level probabilities to a data frame. A response level
probability (conditioned on the model and covariates), such as Pr(Response|Covariates < 10),
is generated for the fitted value of each observation in tb. These probabilities are then appended to
tb and returned to the user as a tibble.

Usage

add_probs(tb, fit, q, name = NULL, yhatName = "pred", comparison, ...)

Arguments

tb A tibble or data frame of new data.

fit An object of class lm, glm, or lmerMod. Predictions are made with this object.

q A real number. A quantile of the conditional response distribution.

name NULL or character vector of length one. If NULL, probabilities automatically will
be named by add_probs, otherwise, the probabilities will be named name in the
returned tibble.

yhatName A character vector of length one. Names of the

comparison A string. If comparison = "<", then Pr(Y |x < q) is calculated for each ob-
servation in tb. Default is "<". Must be "<" or ">" for objects of class lm or
lmerMod. If fit is a glm, then comparison also may be "<=" , ">=" , or "=".

... Additional arguments

Details

For more specific information about the arguments that are useful in each method, consult:

• add_probs.lm for linear regression response probabilities

• add_probs.glm for generalized linear regression response probabilities

add_probs 25

• add_probs.lmerMod for linear mixed models response probabilities

• add_probs.glmerMod for generalized linear mixed model response probabilities

• add_probs.survreg for accelerated failure time model response probabilities

Note: Except in add_probs.survreg, the probabilities calculated by add_probs are on the distri-
bution of Y |x, not E[Y |x]. That is, they use the same distribution from which a prediction interval
is determined, not the distribution that determines a confidence interval. add_probs.survreg is an
exception to this pattern so that users of accelerated failure time models can obtain estimates of the
survivor function.

Value

A tibble, tb, with predicted values and probabilities attached.

See Also

add_ci for confidence intervals, add_quantile for response level quantiles, and add_pi for pre-
diction intervals.

Examples

Define a model
fit <- lm(dist ~ speed, data = cars)

Calculate the probability that the probability that a new
dist is less than 20 (Given the model).
add_probs(cars, fit, q = 20)

Calculate the probability that a new
dist is greater than 20 (Given the model).
add_probs(cars, fit, q = 20, comparison = ">")

Try a different model fit.
fit2 <- glm(dist ~ speed, family = "poisson", data = cars)
add_probs(cars, fit2, q = 20)

Try a different model fit.
fit3 <- lme4::lmer(Reaction ~ Days + (1|Subject), data = lme4::sleepstudy)
add_probs(lme4::sleepstudy, fit3, q = 300, type = "parametric")

As above, but do not condition on the random effects.
add_probs(lme4::sleepstudy, fit3, q = 300, type = "parametric", includeRanef = FALSE)

26 add_probs.glm

add_probs.glm Response Probabilities for Generalized Linear Models

Description

This is the method add_probs uses if the model fit is an object of class glm. Probabilities are
determined through simulation, using the same method as add_pi.glm. Currently, only logistic,
Poisson, Quasipoisson, and Gamma models are supported.

Usage

S3 method for class 'glm'
add_probs(
tb,
fit,
q,
name = NULL,
yhatName = "pred",
comparison = "<",
nSims = 2000,
...

)

Arguments

tb A tibble or data frame of new data.

fit An object of class glm. Predictions are made with this object.

q A double. A quantile of the response distribution.

name NULL or a string. If NULL, probabilities automatically will be named by add_probs(),
otherwise, the probabilities will be named name in the returned tibble

yhatName A string. Name of the vector of predictions.

comparison A character vector of length one. If comparison = "<", then Pr(Y |X < q) is
calculated. Any comparison is allowed in Poisson regression, but only certain
comparisons may be made in Logistic regression. See the Details section.

nSims A positive integer. Controls the number of simulated draws to make if the model
is Poisson.

... Additional arguments.

Details

Any of the five comparisons may be made for a Poisson, quasipoisson, or Gamma model: comparison
= "<", ">", "=", "<=", or ">=". For logistic regression, the comparison statement must be equiva-
lent to Pr(Y |x = 0) or Pr(Y |x = 1).

If add_probs is called on a Poisson, quasiPoisson or Gamma model, a simulation is performed
using arm::sim.

add_probs.glmerMod 27

If add_probs is called on a logistic model, the fitted probabilities are used directly (no simulation
is required).

If add_probs is called on a Gaussian GLM, the returned probabilities are identical to those given
by add_probs.lm. In this case, the comparisons < and <= are identical (likewise for > and >=). If
the comparison = is used in the Gaussian GLM, an informative error is returned.

Value

A tibble, tb, with predicted values and probabilities attached.

See Also

add_ci.glm for confidence intervals for glm objects, add_pi.glm for prediction intervals of glm
objects, and add_quantile.glm for response quantiles of glm objects.

Examples

Fit a Poisson model
fit <- glm(dist ~ speed, data = cars, family = "poisson")

Determine the probability that a new dist is less than 20, given
the Poisson model.
add_probs(cars, fit, q = 20)

Determine the probability that a new dist is greater than 20,
given the Poisson model.
add_probs(cars, fit, q = 30, comparison = ">")

Determine the probability that a new dist is greater than or
equal to 20, given the Poisson model.
add_probs(cars, fit, q = 30, comparison = ">=")

Fit a logistic model
fit2 <- glm(I(dist > 30) ~ speed, data = cars, family = "binomial")
add_probs(cars, fit2, q = 0, comparison = "=")
add_probs(cars, fit2, q = 1, comparison = "=")

add_probs.glmerMod Response Probabilities for Generalized Linear Mixed Model Predic-
tions

Description

This function is one of the methods for add_probs, and is called automatically when add_probs is
used on a fit of class glmerMod. Probabilities are approximate and determined via a simulation.

28 add_probs.glmerMod

Usage

S3 method for class 'glmerMod'
add_probs(
tb,
fit,
q,
name = NULL,
yhatName = "pred",
comparison = "<",
type = "boot",
includeRanef = TRUE,
nSims = 10000,
...

)

Arguments

tb A tibble or data frame of new data.

fit An object of class glmerMod.

q A double. A quantile of the response distribution.

name NULL or character vector of length one. If NULL, response probabilities automat-
ically will be named by add_probs,

yhatName NULL or a string. Name of the predictions vector.

comparison A string. If comparison = "<", then Pr(Y |x < q) is calculated for each ob-
servation in tb. Default is "<". Must be "<" or ">" for objects of class lm or
lmerMod. If fit is a glm or glmerMod, then comparison also may be "<=" ,
">=" , or "=".

type A string. Must be "boot", If type = "boot", then add_ci calls lme4::simulate
to calculate the probabilities.

includeRanef A logical. Default is TRUE. Set whether the predictions and intervals should be
made conditional on the random effects. If FALSE, random effects will not be
included.

nSims A positive integer. Controls the number of bootstrap replicates if type = "boot".

... Additional arguments.

Value

A tibble, tb, with predicted values and estimated probabilities attached.

See Also

add_pi.glmerMod for prediction intervals of glmerMod objects, add_ci.glmerMod for confidence
intervals of glmerMod objects, and add_quantile.glmerMod for response quantiles of glmerMod
objects.

add_probs.lm 29

Examples

n <- 300
x <- runif(n)
f <- factor(sample(1:5, size = n, replace = TRUE))
y <- rpois(n, lambda = exp(1 - 0.05 * x * as.numeric(f) + 2 * as.numeric(f)))
tb <- tibble::tibble(x = x, f = f, y = y)
fit <- lme4::glmer(y ~ (1+x|f), data=tb, family = "poisson")

add_probs(tb, fit, name = "p0.6", q = 0.6, nSims = 500)

add_probs.lm Response Level Probabilities for Linear Models

Description

This is the method add_probs uses if the model is of class lm. Probabilities are calculated paramet-
rically, using a pivotal quantity.

Usage

S3 method for class 'lm'
add_probs(
tb,
fit,
q,
name = NULL,
yhatName = "pred",
comparison = "<",
log_response = FALSE,
...

)

Arguments

tb A tibble or data frame of new data.

fit An object of class lm. Predictions are made with this object.

q A real number. A quantile of the response distribution.

name NULL or a string. If NULL, probabilities automatically will be named by add_probs,
otherwise, the probabilities will be named name in the returned tibble.

yhatName A character vector of length one. Names of the

comparison "<", or ">". If comparison = "<", then Pr(Y |x < q) is calculated for each
observation in tb. Otherwise, Pr(Y |x > q) is calculated.

log_response A logical. Default is FALSE. Set to TRUE if the model is log-linear: log(Y) =
Xβ + ε.

... Additional arguments.

30 add_probs.lmerMod

Value

A tibble, tb, with predicted values and probabilities attached.

See Also

add_ci.lm for confidence intervals for lm objects, add_pi.lm for prediction intervals of lm objects,
and add_quantile.lm for response quantiles of lm objects.

Examples

Fit a linear model
fit <- lm(dist ~ speed, data = cars)

Calculate the probability that a new dist will be less than 20,
given the model.
add_probs(cars, fit, q = 20)

Calculate the probability that a new dist will be greater than
30, given the model.
add_probs(cars, fit, q = 30, comparison = ">")

add_probs.lmerMod Response Probabilities for Linear Mixed Models

Description

This function is one of the methods of add_probs, and is called automatically when add_probs is
used on a fit of class lmerMod.

Usage

S3 method for class 'lmerMod'
add_probs(
tb,
fit,
q,
name = NULL,
yhatName = "pred",
comparison = "<",
type = "parametric",
includeRanef = TRUE,
nSims = 10000,
log_response = FALSE,
...

)

add_probs.lmerMod 31

Arguments

tb A tibble or data frame of new data.

fit An object of class lmerMod.

q A real number. A quantile of the conditional response distribution.

name NULL or a string. If NULL, probabilities automatically will be named by add_probs,
otherwise, the probabilities will be named name in the returned tibble.

yhatName A string. Name of the vector of predictions.

comparison A character vector of length one. Must be either "<" or ">". If comparison =
"<", then Pr(Y |x < q) is calculated for each x in the new data, tb. Otherwise,
Pr(Y |x > q) is calculated.

type A string, either "parametric" or "boot". Determines the method used to de-
termine the probabilities.

includeRanef A logical. If TRUE, probabilities and predictions will be calculated at the group
level. If FALSE, random effects will not be included, and probabilities will be
calculated at the population level.

nSims A positive integer. If type = "boot", nSims will determine the number of boot-
strap simulations to perform.

log_response A logical. Set to TRUE if your model is a log-linear mixed model: log(Y) =
Xβ + Zγ + ε.

... Additional arguments.

Details

It is recommended that one perform a parametric bootstrap to determine these probabilities. To do
so, use the option type = "boot".

Value

A tibble, tb, with predictions and probabilities attached.

See Also

add_ci.lmerMod for confidence intervals for lmerMod objects, add_pi.lmerMod for prediction in-
tervals of lmerMod objects, and add_quantile.lmerMod for response quantiles of lmerMod objects.

Examples

dat <- lme4::sleepstudy

Fit a random intercept model
fit <- lme4::lmer(Reaction ~ Days + (1|Subject), data = lme4::sleepstudy)

What is the probability that a new reaction time will be less
than 300? (given the random effects).
add_probs(dat, fit, q = 300)

32 add_probs.negbin

What is the probability that a new reaction time will be greater
than 300? (ignoring the random effects).
add_probs(dat, fit, q = 300, includeRanef = FALSE, comparison = ">")

add_probs.negbin Response Probabilities for Negative Binomial Models

Description

This is the method add_probs uses if the model fit is an object of class negbin. Probabilities are
determined through simulation, using the same method as add_pi.negbin.

Usage

S3 method for class 'negbin'
add_probs(
tb,
fit,
q,
name = NULL,
yhatName = "pred",
comparison = "<",
nSims = 2000,
...

)

Arguments

tb A tibble or data frame of new data.

fit An object of class negbin. Predictions are made with this object.

q A double. A quantile of the response distribution.

name NULL or a string. If NULL, probabilities automatically will be named by add_probs(),
otherwise, the probabilities will be named name in the returned tibble

yhatName A string. Name of the vector of predictions.

comparison A character vector of length one. Permitted arguments are "=", "<", "<=", ">",
or ">=". The default value is "<".

nSims A positive integer. Controls the number of simulated draws.

... Additional arguments.

Value

A tibble, tb, with predicted values and probabilities attached.

add_probs.survreg 33

See Also

add_ci.negbin for confidence intervals for negbin objects, add_pi.negbin for prediction inter-
vals of negbin objects, and add_quantile.negbin for response quantiles of negbin objects.

Examples

x1 <- rnorm(100, mean = 1)
y <- MASS::rnegbin(n = 100, mu = exp(1 + x1), theta = 5)
df <- data.frame(x1 = x1, y = y)
fit <- MASS::glm.nb(y ~ x1, data = df)
add_probs(df, fit, q = 50)

add_probs.survreg Confidence Intervals for the Survivor Function of Accelerated Failure
Time Models

Description

This function is one of the methods of add_probs and is automatically called when an object of
class survreg is passed to add_probs.

Usage

S3 method for class 'survreg'
add_probs(
tb,
fit,
q,
name = NULL,
yhatName = "median_pred",
comparison = "<",
confint = TRUE,
alpha = 0.05,
...

)

Arguments

tb A tibble or data frame of new data.

fit An object of class survreg. Predictions are made with this object.

q A double. A quantile of the survival time distribution. In survival applications
this is the time of event.

name NULL or a string. If NULL, probabilities automatically will be named by add_probs(),
otherwise, the probabilities will be named name in the returned tibble

yhatName A string. Name of the vector of predictions.

34 add_probs.survreg

comparison A character vector of length one. If comparison = "<", then Pr(Y |X < q) is
calculated. If comparison = ">", the survivor function at time q is calculated.

confint A logical. If TRUE, confidence intervals for the estimated probabilities will be
calculated and appended to tb.

alpha A number. Control the confidence level of the confidence intervals if confint =
TRUE.

... Additional arguments.

Details

Confidence intervals may be produced for estimated probabilities of accelerated failure time mod-
els. Presently, confidence intervals may be computed for lognormal, weibull, exponential, and
loglogistic failure time models. If comparison = "<", confidence intervals are made for the proba-
bility that a failure will be observed before q. Similarly, if comparison = ">", confidence intervals
will be formed for the probability that a unit fails after q. In the survival literature, comparison =
">" corresponds to estimating the survivor function, S(q).

Confidence intervals are produced parametrically via the Delta Method. Simulations show that
under a mild to moderate amount of censoring, this method performs adequately.

The logistic transformation is applied to ensure that confidence interval bounds lie between 0 and
1.

Note: Due to a limitation, the Surv object must be specified in survreg function call. See the
examples section for one way to do this.

Note: add_probs.survreg cannot inspect the convergence of fit. Poor maximum likelihood esti-
mates will result in poor confidence intervals. Inspect any warning messages given from survreg.

Value

A tibble, tb, with predicted medians, probabilities, and confidence intervals for predicted probabil-
ities attached.

References

For the logistic transformation of estimated probabilities and error bounds: Meeker, William Q.,
and Luis A. Escobar. Statistical methods for reliability data. John Wiley & Sons, 2014. (Chapter 8)

For a discussion of forming confidence intervals for survival probabilities: Harrell, Frank E. Re-
gression modeling strategies. Springer, 2015. (Chapter 17)

See Also

add_ci.survreg for confidence intervals for survreg objects, add_pi.survreg for prediction in-
tervals of survreg objects, and add_quantile.survreg for response quantiles of survreg objects.

Examples

Define a data set.
tb <- survival::stanford2
remove a covariate with missing values.

add_quantile 35

tb <- tb[, 1:4]
next, create the Surv object inside the survreg call:
fit <- survival::survreg(survival::Surv(time, status) ~ age + I(age^2),

data = tb, dist = "lognormal")
Calculate the level 0.75 quantile wit CIs for that quantile
add_probs(tb, fit, q = 500, name = c("Fhat", "lwr", "upr"))

Try a weibull model for the same data:
fit2 <- survival::survreg(survival::Surv(time, status) ~ age + I(age^2),

data = tb, dist = "weibull")
Calculate the level 0.75 quantile with CIs for the quantile
add_probs(tb, fit2, q = 500, name = c("Fhat", "lwr", "upr"))

add_quantile Add Regression Quantiles to Data Frames

Description

This is a generic function to append regression quantiles to a data frame. A regression quantile q is
a point such that Pr(Response|Covariates < q) = p. These quantiles are generated for the fitted
value of each observation in tb. Quantiles are then appended to tb and returned to the user as a
tibble.

Usage

add_quantile(tb, fit, p = 0.5, name = NULL, yhatName = "pred", ...)

Arguments

tb A tibble or data frame of new data.

fit An object of class lm, glm, or lmerMod. Predictions are made with this object.

p A double. A probability that determines the quantile. Must be between 0 and 1.

name NULL or a string. If NULL, quantiles automatically will be named by add_quantile(),
otherwise, the quantiles will be named name in the returned tibble.

yhatName A string. Name of the vector of predictions.

... Additional arguments

Details

For more specific information about the arguments that are applicable for each type of model,
consult:

• add_quantile.lm for linear regression response quantiles

• add_quantile.glm for generalized linear regression response quantiles

36 add_quantile.glm

• add_quantile.lmerMod for linear mixed models response quantiles
• add_quantile.glmerMod for generalized linear mixed models response quantiles
• add_quantile.survreg for accelerated failure time response quantiles

Note: Except in add_ci.survreg, the quantiles that add_quantile calculates are on the distribu-
tion of Y |x, notE[Y |x]. That is, they use the same distribution that determines a prediction interval,
not the distribution that determines a confidence interval.

Value

A tibble, tb, with predicted values and level-p quantiles attached.

See Also

add_ci for confidence intervals, add_probs for response level probabilities, and add_pi for pre-
diction intervals

Examples

Fit a linear model
fit <- lm(dist ~ speed, data = cars)

Find the 0.4 quantile (or 40th percentile) of new distances for
each observations in cars, conditioned on the linear model.
add_quantile(cars, fit, p = 0.4)

Fit a Poisson model
fit2 <- glm(dist ~ speed, family = "poisson", data = cars)
Find the 0.4 quantile (or 40th percentile) of new distances for
each observation in cars, conditioned on the Poisson model.
add_quantile(cars, fit2, p = 0.4)

Fit a random intercept linear mixed model
fit3 <- lme4::lmer(Reaction ~ Days + (1|Subject), data = lme4::sleepstudy)
Find the 0.4 quantile (or 40 percentile) of reaction times for
each observation in the sleepstudy data. Condition on the model and random effects.
add_quantile(lme4::sleepstudy, fit3, p = 0.4, type = "parametric")

add_quantile.glm Quantiles for the Response of a Generalized Linear Model

Description

This function is one of the methods of add_quantile. Currently, you can only use this function
to compute the quantiles of the response of Poisson, Quasipoisson, Gamma, or Gaussian regres-
sion models. Quantile estimates for Bernoulli response variables (i.e., logistic regression) are not
supported.

add_quantile.glm 37

Usage

S3 method for class 'glm'
add_quantile(tb, fit, p, name = NULL, yhatName = "pred", nSims = 2000, ...)

Arguments

tb A tibble or data frame of new data.
fit An object of class glm. Predictions are made with this object.
p A real number between 0 and 1. Sets the probability level of the quantiles.
name NULL or a string. If NULL, quantiles automatically will be named by add_quantile,

otherwise, they will be named name.
yhatName A string. Name of the vector of predictions.
nSims A positive integer. Set the number of simulated draws to use.
... Additional arguments.

Details

Quantiles of generalized linear models are determined by add_quantile through a simulation us-
ing arm::sim. If a Quasipoisson regression model is fit, simulation using the Negative Binomial
distribution is performed, see Gelman and Hill (2007).

If add_quantile.glm is called on a Gaussian GLM with identity link function, the returned quan-
tiles are identical to those of add_quantile.lm. If a different link function is used, the appropriate
inverse transformation is applied.

Value

A tibble, tb, with predicted values and level p quantiles attached.

See Also

add_ci.glm for confidence intervals for glm objects, add_pi.glm for prediction intervals of glm
objects, and add_probs.glm for response probabilities of glm objects.

Examples

Fit a Poisson GLM
fit <- glm(dist ~ speed, data = cars, family = "poisson")

What is the 0.3-quantile (or 30th percentile) of new distances,
given the Poisson model?
add_quantile(cars, fit, p = 0.3)

As above, but now find the 0.5-quantile (50th percentile), change
the number of simulations to run, and give the vector of
quantiles a custom name.
add_quantile(cars, fit, p = 0.5, name = "my_quantile", nSims = 300)

38 add_quantile.glmerMod

add_quantile.glmerMod Response Quantiles for Generalized Linear Mixed Model Predictions

Description

This function is one of the methods for add_pi, and is called automatically when add_pi is used
on a fit of class glmerMod.

Usage

S3 method for class 'glmerMod'
add_quantile(
tb,
fit,
p,
name = NULL,
yhatName = "pred",
type = "boot",
includeRanef = TRUE,
nSims = 10000,
...

)

Arguments

tb A tibble or data frame of new data.

fit An object of class glmerMod.

p A real number between 0 and 1. Sets the probability level of the quantiles.

name NULL or a string. If NULL, quantile automatically will be named by add_quantile

yhatName NULL or a string. Name of the predictions vector.

type A string. Must be "boot", If type = "boot", then add_ci calls lme4::simulate
to calculate the confidence intervals. This method may be time consuming, but
is applicable with random slope and random intercept models.

includeRanef A logical. Default is TRUE. Set whether the predictions and intervals should be
made conditional on the random effects. If FALSE, random effects will not be
included.

nSims A positive integer. Controls the number of bootstrap replicates.

... Additional arguments.

Value

A tibble, tb, with predicted values and quantiles attached.

add_quantile.lm 39

See Also

add_pi.glmerMod for prediction intervals of glmerMod objects, add_probs.glmerMod for condi-
tional probabilities of glmerMod objects, and add_ci.glmerMod for confidence intervals of glmerMod
objects.

Examples

n <- 300
x <- runif(n)
f <- factor(sample(1:5, size = n, replace = TRUE))
y <- rpois(n, lambda = exp(1 - 0.05 * x * as.numeric(f) + 2 * as.numeric(f)))
tb <- tibble::tibble(x = x, f = f, y = y)
fit <- lme4::glmer(y ~ (1+x|f), data=tb, family = "poisson")

add_quantile(tb, fit, name = "quant0.6", p = 0.6, nSims = 500)

add_quantile.lm Quantiles for the Response of a Linear Model

Description

This function is one of the methods of add_quantile. It is called automatically when add_quantile
is called on objects of class lm.

Usage

S3 method for class 'lm'
add_quantile(
tb,
fit,
p,
name = NULL,
yhatName = "pred",
log_response = FALSE,
...

)

Arguments

tb A tibble or data frame of new data.

fit An object of class lm. Predictions are made with this object.

p A real number between 0 and 1. Sets the level of the quantiles.

name NULL or a string. If NULL, quantiles automatically will be named by add_quantile,
otherwise, they will be named name.

yhatName A string. Name of the vector of predictions.

40 add_quantile.lmerMod

log_response A logical. If TRUE, quantiles will be generated for the prediction made with a
log-linear model: log(Y) = Xβ + ε. These quantiles will be on the scale of the
original response, Y .

... Additional arguments.

Details

Quantiles for linear models are determined parametrically, by applying a pivotal quantity to the
distribution of Y |x.

Value

A tibble, tb, with predicted values and level - p quantiles attached.

See Also

add_ci.lm for confidence intervals for lm objects, add_pi.lm for prediction intervals of lm objects,
and add_probs.lm for response probabilities of lm objects.

Examples

Fit a linear Model
fit <- lm(dist ~ speed, data = cars)

Find the 0.7-quantile (70th percentile) of new distances, given
the linear model fit.
add_quantile(cars, fit, p = 0.7)

As above, but with a custom name for the vector of quantiles
add_quantile(cars, fit, p = 0.7, name = "my_quantile")

add_quantile.lmerMod Quantiles for the Response of a Linear Mixed Model

Description

This function is one of the methods for add_quantile and is called automatically when add_quantile
is applied to an object of class lmerMod.

Usage

S3 method for class 'lmerMod'
add_quantile(
tb,
fit,
p,

add_quantile.lmerMod 41

name = NULL,
yhatName = "pred",
includeRanef = TRUE,
type = "boot",
nSims = 10000,
log_response = FALSE,
...

)

Arguments

tb A tibble or data frame of new data.

fit An object of class lm. Predictions are made with this object.

p A real number between 0 and 1. Determines the probability level of the quan-
tiles.

name NULL or a string. If NULL, quantiles automatically will be named by add_quantile,
otherwise, they will be named name.

yhatName A string. Determines the name of the column of predictions.

includeRanef The random effects be included or not? If TRUE, quantiles will be calculated
at the "group level". Otherwise, quantiles will be calculated at the "population
level", where random effects are set to 0.

type A string. Options are "parametric" or "boot".

nSims A positive integer. Set the number of bootstrap simulations to perform. Only
applied when type = "boot".

log_response A logical. Set to TRUE if the model is a log-linear mixed model: log(Y) =
Xβ + Zγ + ε.

... Additional arguments.

Details

add_qauntile.lmerMod may use one of two different methods for determining quantiles: a para-
metric method or a parametric bootstrap method (via lme4::simulate). The parametric method is
the default. Only use the parametric method (type = "parametric") if fit is a random intercept
model, e.g. fit = lmer(y ~ x + (1|group)). If your model of interest is random slope and random
intercept, use the parametric bootstrap method (type = "boot").

Value

A tibble, tb, with predicted values and level-p quantiles attached.

See Also

add_ci.lmerMod for confidence intervals for lmerMod objects, add_pi.lmerMod for prediction in-
tervals of lmerMod objects, and add_probs.lmerMod for response probabilities of lmerMod objects.

42 add_quantile.negbin

Examples

dat <- lme4::sleepstudy

Fit a random intercept model
fit <- lme4::lmer(Reaction ~ Days + (1|Subject), data = lme4::sleepstudy)

Using the parametric method: given the model fit, what value
of reaction time do we expect half of new reaction times to fall
under?
add_quantile(dat, fit, p = 0.5)

Using the parametric method:
as above, but we ignore the random effects.
add_quantile(dat, fit, p = 0.5, includeRanef = FALSE)

add_quantile.negbin Quantiles for the Response of a Negative Binomial Regression

Description

This function is one of the methods of add_quantile.

Usage

S3 method for class 'negbin'
add_quantile(tb, fit, p, name = NULL, yhatName = "pred", nSims = 2000, ...)

Arguments

tb A tibble or data frame of new data.

fit An object of class negbin. Predictions are made with this object.

p A real number between 0 and 1. Sets the probability level of the quantiles.

name NULL or a string. If NULL, quantiles automatically will be named by add_quantile,
otherwise, they will be named name.

yhatName A string. Name of the vector of predictions.

nSims A positive integer. Set the number of simulated draws to use.

... Additional arguments.

Details

Quantiles of Negative Binomial linear models are determined by add_quantile through a simula-
tion using arm::sim.

Value

A tibble, tb, with predicted values and level p quantiles attached.

add_quantile.survreg 43

See Also

add_ci.negbin for confidence intervals for negbin objects, add_pi.negbin for prediction inter-
vals of negbin objects, and add_probs.negbin for response probabilities of negbin objects.

Examples

x1 <- rnorm(100, mean = 1)
y <- MASS::rnegbin(n = 100, mu = exp(1 + x1), theta = 5)
df <- data.frame(x1 = x1, y = y)
fit <- MASS::glm.nb(y ~ x1, data = df)
add_quantile(df, fit, p = 0.3)

add_quantile.survreg Confidence Intervals for Predicted Survival Time Quantiles of Accel-
erated Failure Time Models

Description

This function is one of the methods of add_quantile and is automatically called when an object of
class survreg is passed to add_quantile.

Usage

S3 method for class 'survreg'
add_quantile(
tb,
fit,
p = 0.5,
name = NULL,
yhatName = "median_pred",
confint = TRUE,
alpha = 0.1,
...

)

Arguments

tb A tibble or data frame of new data.

fit An object of class survreg. Predictions are made with this object.

p A real number between 0 and 1. Sets the probability level of the quantiles.

name NULL or a character vector of length 3. If NULL, quantiles automatically will be
named by add_quantile, otherwise, they will be named name.

yhatName A string. Name of the vector of predictions.

confint A logical. If TRUE, confidence intervals for the quantiles are also appended to
tb.

44 add_quantile.survreg

alpha A number. Controls the confidence level of the confidence intervals if confint
= TRUE.

... Additional arguments.

Details

add_quantile.survreg produces quantiles for the estimated distribution of survival times from a
survreg object. Estimated quantiles (such as the median survival time) may be calculated for a range
of distributions including lognormal, exponential, weibull, and loglogistic models. add_quantile.survreg
can compute quantiles through a parametric method based on the Delta Method. Generally, this
method performs well under a mild to moderate amount of censoring. Parametric intervals are cal-
culated using a transformation of the confidence intervals produced by predict.survreg and are
mathematically identical to intervals calculated by a manual Delta Method.

Unlike other add_quantile methods, add_quantile.survreg additionally produces confidence
intervals for predicted quantiles by default. This may optionally be disabled by switching the
confint argument.

Note: Due to a limitation, the Surv object must be specified in survreg function call. See the
examples section for one way to do this.

Note: add_quantile.survreg cannot inspect the convergence of fit. Poor maximum likeli-
hood estimates will result in poor confidence intervals. Inspect any warning messages given from
survreg.

Value

A tibble, tb, with predicted medians, level p quantiles, and confidence intervals attached.

References

For descriptions of the log-location scale models supported: Meeker, William Q., and Luis A.
Escobar. Statistical methods for reliability data. John Wiley & Sons, 2014. (Chapter 4)

For a description of the multivariate Delta method: Meeker, William Q., and Luis A. Escobar.
Statistical methods for reliability data. John Wiley & Sons, 2014. (Appendix B.2)

For a description of Delta Method Confidence Intervals: Meeker, William Q., and Luis A. Escobar.
Statistical methods for reliability data. John Wiley & Sons, 2014. (Chapter 8)

See Also

add_ci.survreg for confidence intervals survreg objects, add_pi.survreg for prediction inter-
vals of survreg objects, and add_probs.survreg for survival probabilities of survreg objects.

Examples

Define a data set:
tb <- survival::stanford2
remove a covariate with missing values:
tb <- tb[, 1:4]
next, create the Surv object inside the survreg call:
fit <- survival::survreg(survival::Surv(time, status) ~ age + I(age^2),

add_quantile.survreg 45

data = tb, dist = "lognormal")
Calculate the level 0.75 quantile wit CIs for that quantile
add_quantile(tb, fit, p = 0.75, name = c("quant", "lwr", "upr"))

Try a weibull model for the same data:
fit2 <- survival::survreg(survival::Surv(time, status) ~ age + I(age^2),

data = tb, dist = "weibull")
Calculate the level 0.75 quantile with CIs for the quantile
add_quantile(tb, fit2, p = 0.75, name = c("quant", "lwr", "upr"))

Index

add_ci, 2, 14, 25, 36
add_ci.glm, 3, 4, 16, 27, 37
add_ci.glmerMod, 3, 6, 17, 28, 39
add_ci.lm, 3, 7, 19, 30, 40
add_ci.lmerMod, 3, 9, 20, 31, 41
add_ci.negbin, 10, 22, 33, 43
add_ci.survreg, 3, 12, 23, 34, 44
add_pi, 3, 13, 25, 36
add_pi.glm, 5, 14, 15, 27, 37
add_pi.glmerMod, 7, 14, 16, 28, 39
add_pi.lm, 8, 14, 18, 30, 40
add_pi.lmerMod, 10, 14, 19, 31, 41
add_pi.negbin, 11, 21, 33, 43
add_pi.survreg, 13, 14, 22, 34, 44
add_probs, 3, 14, 24, 36
add_probs.glm, 5, 16, 24, 26, 37
add_probs.glmerMod, 7, 17, 25, 27, 39
add_probs.lm, 8, 19, 24, 29, 40
add_probs.lmerMod, 10, 20, 25, 30, 41
add_probs.negbin, 11, 22, 32, 43
add_probs.survreg, 13, 23, 25, 33, 44
add_quantile, 3, 14, 25, 35
add_quantile.glm, 5, 16, 27, 35, 36
add_quantile.glmerMod, 7, 17, 28, 36, 38
add_quantile.lm, 8, 19, 30, 35, 39
add_quantile.lmerMod, 10, 20, 31, 36, 40
add_quantile.negbin, 11, 22, 33, 42
add_quantile.survreg, 12, 13, 23, 34, 36, 43

46

	add_ci
	add_ci.glm
	add_ci.glmerMod
	add_ci.lm
	add_ci.lmerMod
	add_ci.negbin
	add_ci.survreg
	add_pi
	add_pi.glm
	add_pi.glmerMod
	add_pi.lm
	add_pi.lmerMod
	add_pi.negbin
	add_pi.survreg
	add_probs
	add_probs.glm
	add_probs.glmerMod
	add_probs.lm
	add_probs.lmerMod
	add_probs.negbin
	add_probs.survreg
	add_quantile
	add_quantile.glm
	add_quantile.glmerMod
	add_quantile.lm
	add_quantile.lmerMod
	add_quantile.negbin
	add_quantile.survreg
	Index

