
Introduction to the ‘chronosphere’ R package

Adam T. Kocsis, Nussaïbah B. Raja

2020-06-10

1. Introduction

1.1. Installation

To install this alpha version of the package, you must download it either from the CRAN servers or its
dedicated GitHub repository (http://www.github.com/adamkocsis/chronosphere/). All minor updates will
be posted on GitHub as soon as they are finished, so please check this regularly. The version on CRAN
will be lagging for some time, as it takes the servers many days to process everything. All questions and
bugs can be reported at the GitHub issues board (https://github.com/adamkocsis/chronosphere/issues).
Instead of spending it on actual research, a tremendous amount of time was invested in making this piece of
software streamlined and user-friendly. If you use a dataset of the package in a publication, please cite both
its reference(s) and the chronosphere package itself.

After installing from CRAN, from a source, or with devtools::install_github() , you can attach the
package with:

library(chronosphere)

1.2 General features

The purpose of the chronosphere project is to facilitate, streamline and speed up the finding, acquisition
and importing of Earth science data in R. Although the package currently focuses on deep time datasets, the
scope of the included datasets will be much larger, spanning from a single variable published as supplementary
material in a journal article to GIS data or the entire output of GCM models. chronosphere intends to
decrease the gap between research hypotheses and the finding, downloading and importing of datasets.

2. RasterArray

Faster data importing and better organization represents a considerable part of this process. Spatially
explicit data are excellent candidates to demonstrate how more efficient data organization can speed up
research. Although R has an excellent infrastructure for handling raster data (Hijmans & van Etten, 2019),
the arrangement of individual layers are rather limited, which can be a problem when a large number of
layers are considered. RasterStacks and RasterBricks are very efficient for organizing RasterLayers according
to a single dimension (e.g. depth for 3D variables, or time), but multidimensional structures are preferred.

To offer a more effective solution, the chronosphere package includes the definition of the RasterArray S4
class. RasterArrays represent hybrids between RasterStacks and regular R arrays. In short, they are virtual
arrays of RasterLayers, and can be thought of as regular arrays that include entire rasters as elements rather
than single numeric, logical or character values. As regular R users are familiar with subsetting, combinations

1

http://www.github.com/adamkocsis/chronosphere/
https://github.com/adamkocsis/chronosphere/issues

and structures of regular arrays (including formal vectors and matrices), the finding, extraction and storage
of spatially explicit data is much easier in such containers.

2.1. Structure

RasterArrays do not directly inherit from Raster* objects of the raster package, as a considerable number of
main functions differ, but they rather represent a wrapper object around regular RasterStacks - stacks of
individual RasterLayers. This ensures that whenever users are unfamiliar with the methods of RasterArray
class objects, they can always reduce their data to stacks or individual layers.

The formal class RasterArray has only two slots: a stack and an index. The stack includes the Raster data in
an unfolded manner, similarly to how matrices and arrays are essentially just vectors with additional attributes.
The stack slot incorporates a single RasterStack object, which represents the data content of the object. The
index slot, on the other hand, describes the structure of the RasterArray. It is a vector/matrix/array of
integers each representing an index of the layers in the stack. The configuration (dimensions) of the index
represents the entire array.

The chronosphere package includes two demo data sets: a set of ancient topographies (Scotese and Wright,
2018) and a time series of bio-climatic variables (annual mean temperature and precipitation) from the
CHELSA project (Karger et al, 2017a, 2017b). These datasets can be attached with the data command.

data(dems)

data(clim)

The structure of RasterArrays can be inspected if the object’s name is typed into the console:

dems

class : RasterArray

RasterLayer properties:

- dimensions : 181, 361 (nrow, ncol)

- resolution : 1, 1 (x, y)

- extent : -180.5, 180.5, -90.5, 90.5 (xmin, xmax, ymin, ymax)

- coord. ref. : +proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0

Array properties:

- dimensions : 10 (vector)

- num. layers : 10

- proxy:

0 5 10 15 20 25 30 35

"dem_0" "dem_5" "dem_10" "dem_15" "dem_20" "dem_25" "dem_30" "dem_35"

40 45

"dem_40" "dem_45"

The first part of the console output includes properties of the individual RasterLayers stored in the stack.
These layers have to share essential attributes that allow them to be stored in a single stack (extent, resolution,
CRS).

The second part of the output is a visualization of the structure of the RasterArray itself. In the case of the
DEMs, 10 layers are stored in the stack, each layer having its individual name (e.g. dem_0). It is a single
dimensional array (vector), and each element has its name in the array (0). Differentiating between the
names of layers and the names of elements allows different subsetting and replacement rules for the two,
which can both be handy - depending on the needs of the user.

The structure of the RasterArray can be visualized, analyzed or processed using the the proxy object. Proxies
are essentially the same as the index slots of the RasterArray, but instead of including the indices of the layers
they represent, proxies include the names of the layers. These can be accessed using the proxy() function.

2

proxy(dems)

0 5 10 15 20 25 30 35

"dem_0" "dem_5" "dem_10" "dem_15" "dem_20" "dem_25" "dem_30" "dem_35"

40 45

"dem_40" "dem_45"

Proxies are displayed as the second parts of the console output when the name of the object is typed into the
console (show method).

clim

class : RasterArray

RasterLayer properties:

- dimensions : 90, 180 (nrow, ncol)

- resolution : 2, 2 (x, y)

- extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)

- coord. ref. : +proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0

Array properties:

- dimensions : 10, 2 (nrow, ncol)

- num. layers : 20

- proxy:

bio1 bio12

2001 "bio01_2001" "bio12_2001"

2002 "bio01_2002" "bio12_2002"

2003 "bio01_2003" "bio12_2003"

2004 "bio01_2004" "bio12_2004"

2005 "bio01_2005" "bio12_2005"

2006 "bio01_2006" "bio12_2006"

2007 "bio01_2007" "bio12_2007"

2008 "bio01_2008" "bio12_2008"

2009 "bio01_2009" "bio12_2009"

2010 "bio01_2010" "bio12_2010"

This RasterArray has 10 rows (annual means) and two variables/columns: temperature (bio1) and precip-
itation (bio12). With the proxy() function it is easy to interact with this object, or to query or analyze
it.

proxy(clim)

bio1 bio12

2001 "bio01_2001" "bio12_2001"

2002 "bio01_2002" "bio12_2002"

2003 "bio01_2003" "bio12_2003"

2004 "bio01_2004" "bio12_2004"

2005 "bio01_2005" "bio12_2005"

2006 "bio01_2006" "bio12_2006"

2007 "bio01_2007" "bio12_2007"

2008 "bio01_2008" "bio12_2008"

2009 "bio01_2009" "bio12_2009"

2010 "bio01_2010" "bio12_2010"

RasterArrays are fairly easy to construct: one only needs a stack of the data and a regular vector/matrix/array
including integers. For instance, the dems object can be recreated from scratch without any problem.

a stack of rasters

stackOfLayers <- dems@stack

3

an index object

ind <- 1:10

names(ind) <- letters[1:10]

a RasterArray

nra <- RasterArray(index=ind, stack=stackOfLayers)

nra

class : RasterArray

RasterLayer properties:

- dimensions : 181, 361 (nrow, ncol)

- resolution : 1, 1 (x, y)

- extent : -180.5, 180.5, -90.5, 90.5 (xmin, xmax, ymin, ymax)

- coord. ref. : +proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0

Array properties:

- dimensions : 10 (vector)

- num. layers : 10

- proxy:

a b c d e f g h

"dem_0" "dem_5" "dem_10" "dem_15" "dem_20" "dem_25" "dem_30" "dem_35"

i j

"dem_40" "dem_45"

The attributes of the index object are defining the structure of the RasterArray. RasterArrays can be created
with the combination of individual RasterLayers (or RasterArrays) using the combine() function.

one raster

r1 <- raster()

values(r1) <- 1

same structure, different value

r2 <-raster()

values(r2) <- 2

comb <- combine(r1, r2)

comb

class : RasterArray

RasterLayer properties:

- dimensions : 180, 360 (nrow, ncol)

- resolution : 1, 1 (x, y)

- extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)

- coord. ref. : +proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0

Array properties:

- dimensions : 2 (vector)

- num. layers : 2

- proxy:

r1 r2

"layer.1" "layer.2"

Matrix-like RasterArrays can also be created easily with the cbind() and rbind() functions.

bind dems to itself

cbind(dems, dems)

class : RasterArray

RasterLayer properties:

- dimensions : 181, 361 (nrow, ncol)

- resolution : 1, 1 (x, y)

- extent : -180.5, 180.5, -90.5, 90.5 (xmin, xmax, ymin, ymax)

4

- coord. ref. : +proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0

Array properties:

- dimensions : 10, 2 (nrow, ncol)

- num. layers : 20

- proxy:

[,1] [,2]

0 "dem_0.1" "dem_0.2"

5 "dem_5.1" "dem_5.2"

10 "dem_10.1" "dem_10.2"

15 "dem_15.1" "dem_15.2"

20 "dem_20.1" "dem_20.2"

25 "dem_25.1" "dem_25.2"

30 "dem_30.1" "dem_30.2"

35 "dem_35.1" "dem_35.2"

40 "dem_40.1" "dem_40.2"

45 "dem_45.1" "dem_45.2"

2.2. RasterArray attributes and function to query

Functions that query and change attributes of the RasterArray resemble general arrays more than Raster*
objects. They are connected to the index slot of the RasterArray and return values accordingly.

The number of elements represented in the RasterArray can be queried with the length() function:

length(dems)

[1] 10

This RasterArray has 10 elements. The number of column and row names can be queried in a similar way:

nrow(clim)

[1] 10

ncol(clim)

[1] 2

These functions are summarized in the dim() function. This, however, unlike the regular dim() method of
vectors, return the length of the RasterArray vector, rather than just NULL.

dim(dems)

[1] 10

dim(clim)

[1] 10 2

The organization of RasterLayers can be greatly facilitated with names. The names(), colnames(),
rownames() and dimnames() functions work the same way on RasterArrays as if they were arrays of
simple numeric, logical or character values. The names() function returns the names of individual elements
of a vector-like RasterArray.

names(dems)

[1] "0" "5" "10" "15" "20" "25" "30" "35" "40" "45"

The colnames() and rownames() functions are more relevant for matrix-like RasterArrays, such as clim.

5

colnames(clim)

[1] "bio1" "bio12"

rownames(clim)

[1] "2001" "2002" "2003" "2004" "2005" "2006" "2007" "2008" "2009" "2010"

All name-related methods can be used for replacement as well. For instance, you can quickly rename the
names of the columns of the clim object this way:

clim2 <- clim

colnames(clim2) <- c("temp", "prec")

clim2

class : RasterArray

RasterLayer properties:

- dimensions : 90, 180 (nrow, ncol)

- resolution : 2, 2 (x, y)

- extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)

- coord. ref. : +proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0

Array properties:

- dimensions : 10, 2 (nrow, ncol)

- num. layers : 20

- proxy:

temp prec

2001 "bio01_2001" "bio12_2001"

2002 "bio01_2002" "bio12_2002"

2003 "bio01_2003" "bio12_2003"

2004 "bio01_2004" "bio12_2004"

2005 "bio01_2005" "bio12_2005"

2006 "bio01_2006" "bio12_2006"

2007 "bio01_2007" "bio12_2007"

2008 "bio01_2008" "bio12_2008"

2009 "bio01_2009" "bio12_2009"

2010 "bio01_2010" "bio12_2010"

Just as you would do with normal arrays, you can query/rewrite all names with the dimnames() function,
which uses a list to store the names in every dimension.

dimnames(clim2)[[1]] <- 1:10

clim2

class : RasterArray

RasterLayer properties:

- dimensions : 90, 180 (nrow, ncol)

- resolution : 2, 2 (x, y)

- extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)

- coord. ref. : +proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0

Array properties:

- dimensions : 10, 2 (nrow, ncol)

- num. layers : 20

- proxy:

temp prec

1 "bio01_2001" "bio12_2001"

2 "bio01_2002" "bio12_2002"

3 "bio01_2003" "bio12_2003"

6

4 "bio01_2004" "bio12_2004"

5 "bio01_2005" "bio12_2005"

6 "bio01_2006" "bio12_2006"

7 "bio01_2007" "bio12_2007"

8 "bio01_2008" "bio12_2008"

9 "bio01_2009" "bio12_2009"

10 "bio01_2010" "bio12_2010"

Besides the names of the elements in the RasterArray, every layer has its own name in the stack. These can
be accessed with layers() function:

layers(clim)

[1] "bio01_2001" "bio01_2002" "bio01_2003" "bio01_2004" "bio01_2005"

[6] "bio01_2006" "bio01_2007" "bio01_2008" "bio01_2009" "bio01_2010"

[11] "bio12_2001" "bio12_2002" "bio12_2003" "bio12_2004" "bio12_2005"

[16] "bio12_2006" "bio12_2007" "bio12_2008" "bio12_2009" "bio12_2010"

The total number of cells in the RasterLayer or the entire stack can accessed with the ncell() and nvalues()

functions, respectively.

ncell(dems)

[1] 65341

nvalues(dems)

[1] 653410

2.3. Subsetting and replacement

Facilitating the accession of items is the primary purpose of RasterArrays. These either focus on the layers
(stack items, double bracket operator “[[”) or on the elements of the RasterArray (single bracket operator “[”).

2.3.1 Layer selection - Double bracket [[

This form of subsetting and replacement is inherited from the RasterStack class. Individual layers can be
accessed directly from the stack using either the position index, the name of the layer, or the logical value
pointing to the position. Whichever is used, the RasterArray wrapper is omitted and the output will be a
RasterLayer or RasterStack class object.

A single layer can be accessed using its name, regardless of its position in the RasterArray. This can be
visualized either with the default plot() or the more general mapplot() function.

one <- dems[["dem_45"]]

mapplot(one, col="earth")

7

The double bracket returns a single RasterArray. Using multiple elements for subsetting will return a
RasterStack:

dems[[c(1,2)]]

class : RasterArray

RasterLayer properties:

- dimensions : 181, 361 (nrow, ncol)

- resolution : 1, 1 (x, y)

- extent : -180.5, 180.5, -90.5, 90.5 (xmin, xmax, ymin, ymax)

- coord. ref. : +proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0

Array properties:

- dimensions : 2 (vector)

- num. layers : 2

- proxy:

[1] "dem_0" "dem_5"

These are the first two RasterLayers in the stack of the RasterArray.

Double brackets can also be used for replacements, but as this has no effect on the structure of the array,
changes implemented with this method are more difficult to trace. For instance,

8

copy

dem2 <- dems

dem2[["dem_0"]] <- dem2[["dem_5"]]

will rewrite the values in the first element of dem2, but that will not be evident in the RasterArray’s structure.

but these two are now the same

dem2[[1]]

class : RasterLayer

dimensions : 181, 361, 65341 (nrow, ncol, ncell)

resolution : 1, 1 (x, y)

extent : -180.5, 180.5, -90.5, 90.5 (xmin, xmax, ymin, ymax)

crs : +proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0

source : memory

names : dem_0

values : -7000, 6300 (min, max)

zvar : z

dem2[[2]]

class : RasterLayer

dimensions : 181, 361, 65341 (nrow, ncol, ncell)

resolution : 1, 1 (x, y)

extent : -180.5, 180.5, -90.5, 90.5 (xmin, xmax, ymin, ymax)

crs : +proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0

source : memory

names : dem_5

values : -7000, 6300 (min, max)

zvar : z

2.3.2 Single bracket

Features offered by the double bracket (“[[”) operator are virtually identical with those of RasterStacks. The
true utility of RasterArrays become evident with simple array-type subsetting.

Unlike Raster* objects of the raster package, single brackets will retrieve and replace items from the
RasterArray as if they were simple arrays. For example, single elements of the DEMs can be selected with
the age of the DEM, passed as a character subscript.

dems["30"]

class : RasterLayer

dimensions : 181, 361, 65341 (nrow, ncol, ncell)

resolution : 1, 1 (x, y)

extent : -180.5, 180.5, -90.5, 90.5 (xmin, xmax, ymin, ymax)

crs : +proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0

source : memory

names : dem_30

values : -8000, 10200 (min, max)

zvar : z

returning the 30Ma RasterLayer. By default, the RasterArray container is dropped, but it can be conserved
if the drop argument is set to FALSE.

dem30 <- dems["30", drop=FALSE]

class(dem30)

9

[1] "RasterArray"

attr(,"package")

[1] "chronosphere"

Accessing elements which are not present is valid for single dimensional RasterArrays (vector-like ones):

dems[4:12]

class : RasterArray

RasterLayer properties:

- dimensions : 181, 361 (nrow, ncol)

- resolution : 1, 1 (x, y)

- extent : -180.5, 180.5, -90.5, 90.5 (xmin, xmax, ymin, ymax)

- coord. ref. : +proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0

Array properties:

- dimensions : 9 (vector)

- num. layers : 7

- proxy:

15 20 25 30 35 40 45 <NA>

"dem_15" "dem_20" "dem_25" "dem_30" "dem_35" "dem_40" "dem_45" NA

<NA>

NA

Missing values are legitimate parts of RasterArrays. These gaps in the data are not represented in the stacks
but only in the index slots of the RasterArrays. They can be inserted or added into the layers.

demna <- dems

demna[3] <- NA

Multidimensional subscripts work in a similar fashion. If a single layer is desired from the RasterArray, that
can be accessed using the names of the margins.

character type is necessary as the rowname is "2003"

one <- clim["2003", "bio1"]

mapplot(one)

10

similarly to entire rows,

clim["2005",]

class : RasterArray

RasterLayer properties:

- dimensions : 90, 180 (nrow, ncol)

- resolution : 2, 2 (x, y)

- extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)

- coord. ref. : +proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0

Array properties:

- dimensions : 2 (vector)

- num. layers : 2

- proxy:

bio1 bio12

"bio01_2005" "bio12_2005"

or columns

clim[,"bio12"]

class : RasterArray

11

RasterLayer properties:

- dimensions : 90, 180 (nrow, ncol)

- resolution : 2, 2 (x, y)

- extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)

- coord. ref. : +proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0

Array properties:

- dimensions : 10 (vector)

- num. layers : 10

- proxy:

2001 2002 2003 2004 2005 2006

"bio12_2001" "bio12_2002" "bio12_2003" "bio12_2004" "bio12_2005" "bio12_2006"

2007 2008 2009 2010

"bio12_2007" "bio12_2008" "bio12_2009" "bio12_2010"

2.4 Inherited from Raster*

As the spatial information is contained entirely in the RasterStacks, a number of methods are practically
inherited from RasterStack class. For instance, all RasterLayers of the RasterArray can be cropped in a
single line of code.

crop to Australia

ext <- extent(c(

xmin = 106.58,

xmax = 157.82,

ymin = -45.23,

ymax = 1.14

))

cropping all DEMS

au<- crop(dems, ext)

select the first element

mapplot(au[1], col="earth")

12

If you plot all cropped DEMs, you can see how Australia drifted to its current position.

Other functions such as aggregation or resampling work in a similar way.

template <- raster(res=5)

resample all DEMS

coarse <- resample(dems, template)

plot an element

mapplot(coarse["45"], col="earth")

13

3. Plotting

The mapplot() function makes it easy to produce visually pleasing plots of a Raster* object.

3.1 Colour palettes

The package includes several colour palettes which can be used for plotting purposes. An additional palette
option developed specifically with DEMs in mind is earth. This combines the ocean and terra palettes and
automatically sets the breaks to differentiate between marine and terrestrial cells. An example is shown
below in RasterLayer plotting example.

showPal()

14

ocean gradinv terra ipccTemp

ipccPrec wet ipccLine ipccRCP

3.2 RasterLayer

The mapplot() function for RasterLayer works similar to the plot() function. The mapplot function for
the Raster* objects include a default palette and omits the legend, axes and bounding box.

data(dems)

mapplot(dems[1])

#using a custom colour palette

mapplot(dems[1], col="earth", main="Using the earth palette")

15

Using the earth palette

3.3 RasterArray

RasterArrays can be plotted as multi-faceted plots using mapplot(). The mapplot() function keeps the
structure of the RasterArray in terms of the order that the plots are generated. The plot titles are automatically
generated based on the names of the layers within the RasterArray. This can be changed by passing the
custom plot titles to the argument plot.title. Note: The number of plot titles provided should be equal
to the number of layers in the RasterArray.

data(dems)

mapplot(dems)

16

0 5 10

15 20 25

30 35 40

45

3.3.1 Adding a single consistent legend

Just like with RasterLayers, different palettes can be used for the plots. This implements a single palette for
all the plots. In addition, this can then be used to generate a single legend that ensures consistency and
makes it easier to compare the figures.

data(dems)

mapplot(dems, col="ocean", legend=TRUE, legend.title="DEM",

plot.title=proxy(dems))

17

dem_0 dem_5 dem_10

dem_15 dem_20 dem_25

dem_30 dem_35 dem_40

dem_45

−8000 −6000 −4000 −2000 0 2000 4000 6000 8000 10000

DEM

3.3.2 RasterArrays with NA layers

In the event that one of the layers of the dem does not exist, i.e. has an NA value instead, the plot
corresponding to this NA layer will show “Plot not available”.

data(dems)

#create NA layer

dems[5] <- NA

is.na(dems)

0 5 10 15 20 25 30 35 40 45

FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

mapplot(dems, col="ipccTemp")

18

0 5 10

15

Plot
not available

25

30 35 40

3.3.3 Number of columns and pages

The custom number of columns can also be specified through the ncol argument. The default number of
columns is 3.

4 columns

data(dems)

mapplot(dems, ncol=4)

19

0 5 10 15

20 25 30 35

40 45

Sometimes, there might be too many plots to plot all on one single page. In this instance, the argument
multi can be set to TRUE to allow the maps to be plotted in multiple figures.

data(dems)

mapplot(dems, multi=TRUE)

3.3.4 Multiple variables in RasterArray

The above described methods can also be applied to RasterArrays containing more than one variable. However,
in this instance, the number of columns automatically defaults to the number of variables in the array. Also,
plot titles for each individual plot are not printed. Instead, row labels corresponding to the row names of
each variable are added, and when legend=TRUE, the default legend title defaults to the variables names in
the RasterArray.

data(clim)

mapplot(clim[1:2,], legend=TRUE)

20

2001

2002

5 10 15 20 25 30

bio1

1000 2000 3000 4000 5000 6000 7000

bio12

The row labels and legend titles can be edited using the argument rowlabels and legend.title respectively.
Different colours for each variable can also be provided. The number of provided colour palettes should be
either 1 or correspond to the number of variables.

data(clim)

mapplot(clim[1:2,], col=c("ipccTemp", "ipccPrec"),

legend=TRUE, legend.title=c("Temperature", "Precipitation"))

2001

2002

5 10 15 20 25 30

Temperature

1000 2000 3000 4000 5000 6000 7000

Precipitation

21

References

Hijmans, R. J., & van Etten, J. (2019). raster: Geographic Data Analysis and Modeling. Retrieved from
https://cran.r-project.org/package=raster

Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., . . . Kessler, M. (2017a).
Data from: Climatologies at high resolution for the earth’s land surface areas. Dryad Digital Repository.
https://doi.org/10.5061/dryad.kd1d4

Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., . . . Kessler, M. (2017b).
Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4(1), 170122. https:
//doi.org/10.1038/sdata.2017.122

Scotese, C. R. Wright, N. (2018). PALEOMAP Paleodigital Elevation Models (PaleoDEMS) for the
Phanerozoic. URL: https://www.earthbyte.org/paleodem-resource-scotese-and-wright-2018/

22

https://cran.r-project.org/package=raster
https://doi.org/10.5061/dryad.kd1d4
https://doi.org/10.1038/sdata.2017.122
https://doi.org/10.1038/sdata.2017.122
https://www.earthbyte.org/paleodem-resource-scotese-and-wright-2018/

	1. Introduction
	1.1. Installation

	1.2 General features
	2. RasterArray
	2.1. Structure
	2.2. RasterArray attributes and function to query
	2.3. Subsetting and replacement
	2.3.1 Layer selection - Double bracket [[
	2.3.2 Single bracket
	2.4 Inherited from Raster*

	3. Plotting
	3.1 Colour palettes
	3.2 RasterLayer
	3.3 RasterArray
	3.3.1 Adding a single consistent legend
	3.3.2 RasterArrays with NA layers
	3.3.3 Number of columns and pages
	3.3.4 Multiple variables in RasterArray

	References

