Package ‘cholera’

August 28, 2019
Type Package
Title Amend, Augment and Aid Analysis of John Snow's Cholera Map
Version 0.7.0
Date 2019-08-27
Description Amends errors, augments data and aids analysis of John Snow's map
of the 1854 London cholera outbreak.

URL https://github.com/lindbrook/cholera

BugReports https://github.com/lindbrook/cholera/issues
License GPL (>=2)

LazyData true

Depends R (>=3.4)

Imports deldir (>= 0.0-18), ggplot2, HistData (>= 0.7-8), igraph,
KernSmooth, pracma, RColorBrewer, sp, threejs, TSP

Suggests knitr, rmarkdown

VignetteBuilder knitr

RoxygenNote 6.1.1

Encoding UTF-8

Language en-US

NeedsCompilation no

Author Peter Li [aut, cre]

Maintainer Peter Li <lindbrook@gmail.com>
Repository CRAN

Date/Publication 2019-08-28 05:20:10 UTC

https://github.com/lindbrook/cholera
https://github.com/lindbrook/cholera/issues

2 R topics documented:

R topics documented:

cholera-package L 4
addCase e e e e 5
addDelauny 5
addEuclideanPatho 6
addFrame 7
addIndexCase 7
addKernelDensity 8
addLandmarks e e e 9
addMilePosts e e e e e e 10
addNeighborhoodCases 11
addNeighborhoodEuclidean, 12
addNeighborhoodWalking 13
addPlaguePit L 14
addPump L e 15
addRoads e e e 15
addSnow L e 16
addVoronoi 16
addWalkingPath e 17
addWhitehead L 18
anChOr.Case o e e e e e e e e e e e e 19
border e e e e e e e 20
caseLocator L 20
classifierAudit L 21
distanceTime 22
euclideanPath 22
fatalities e e e e e e e e 24
fatalities.address e e e 25
fatalities.unstacked L 25
fixFatalities 26
landmark.squares L 27
landmarkData 27
landmarks e e e e e e 28
mapRange 28
nearestPumpo Lo 29
neighborhoodData. L 30
neighborhoodEuclidean 30
neighborhoodVoronoi L 31
neighborhoodWalkingo oL 32
orthO.proj o o 33
OrthO.proj.pump o o vt e e e 34
OrthO.proj. pUMPpP.VeSIIY o v v e e bt e e e e e e e 35
orthogonalProjection 35
pearsonResiduals L 36
plague.pit 37
plot.classifier_audit L 37

ploteuclidean 38

R topics documented: 3

ploteuclidean_path 39
plot.neighborhood_data L 39
plot.profile_perspective 40
plottime_series e e 40
PIOLVOTONOL o o e e e e e e e 41
plot.walking e 42
plotwalking_path 43
print.classifier_audit. 44
printeuclidean L. e 44
printeuclidean_path 45
Print.time_Series o v v i i e e e e e 46
Print.VOTONOL v o it o e e e e e e e e e 46
print.walking 47
print.walking_path 47
profile2D . . . L e e e e e 48
profile3D e 49
pumpCaseo e e e e e e e 49
pumpData e e e e e e e 50
pumplocator e e e e 51
PUMPS . . . o ot e e e e e e e e e e e e 52
PUMPS.VESITY . . v v v o o o e e e e e e e e e e e e e e e 52
TEUIAT.CASES v o v e e e e e e e e e e e e e e 53
road.SegMeNts e e 54
roads . . . oL 55
roadSegments e e e e e e e e e e e 55
segmentlength L 56
segmentlocator L. oL e e e e e 57
SIM.Ortho.proj e 58
SIMPUMP.CASE .+« o v v o e v e e e e e e e e e e e e e e e e e e e 58
sim.walking.distance Lo 59
simulateFatalities 59
simulateWalkingDistance e 60
snow.neighborhoodo oL 61
SNOWCOIOTS L 61
SNOWMaAD 62
snowNeighborhood L 63
streetHighlight 63
streetLength 64
streetNameLocator e 64
streetNumberLocator L e 65
summary.euclidean 66
SUMMATY.VOTONOL + & v v v v v v v e 67
summary.walking oL e e e 68
timeSeries 68
unitMeter e e e 69
unstackFatalities L. 70
voronoiPolygons oL 71

walkingPath L 72

4 cholera-package

withinRadius L 73
Index 74
cholera-package cholera: amend, augment and aid analysis of John Snow’s cholera
map
Description

Amend, augment and aid the analysis of John Snow’s cholera map.

Details

Features:

* Fixes three apparent coding errors in Dodson and Tobler’s 1992 digitization of Snow’s map.

» "Unstacks" the data in two ways to make analysis and visualization easier and more meaning-
ful.

* Computes and visualizes "pump neighborhoods" based on Voronoi tessellation, Euclidean
distance, and walking distance.

* Ability to overlay graphical elements and features like kernel density, Voronoi diagrams,
Snow’s Broad Street neighborhood, and notable landmarks (John Snow’s residence, the Lion
Brewery, etc.) via add*() functions.

* Includes a variety of functions to highlight specific cases, roads, pumps and paths.
* Appends actual street names to roads data.

* Includes the revised pump data used in the second version of Snow’s map from the Vestry
report, which includes the "correct" location of the Broad Street pump.

* Adds two different aggregate time series fatalities data sets, taken from the Vestry report.

» Computes and visualizes two types of "pump neighborhoods": Voronoi, based on Euclidean
distance, and walking, based on computed walking distances.

To learn more, see the vignettes:
vignette("duplicate.missing.cases")
vignette("kernel.density")
vignette("pump.neighborhoods")
vignette("roads")
vignette("tiles.polygons")
vignette("time.series")

vignette("unstacking.bars")

addCase

addCase Add observed case(s).

Description

Add case(s), as "address" or "fatalities" as points or IDs, to a plot.

Usage
addCase(case = 1, type = "observed”, token = "both”,
text.size = 0.5, col = "red", pos = 1)
Arguments
case Numeric. Vector of case ID(s).
type Character. Type of case: "observed" or "expected".
token Character. Type of token to plot: "point”, "id" or "both".
text.size Numeric. Size of case ID text.
col Character. Color.
pos Numeric. Text position.
Examples
snowMap (add. cases = FALSE)
addCase(1)
snowMap (add. cases = FALSE)
addCase(100)
addDelauny Add Delauny triangles.
Description
Add Delauny triangles.
Usage

addDelauny (pump.select = NULL, vestry = FALSE, color = "black”
line.type = "solid")

’

6 addEuclideanPath

Arguments
pump.select Numeric. Default is NULL; all pumps are used. Otherwise, selection by a
vector of numeric IDs: 1 to 13 for pumps; 1 to 14 for pumps.vestry. Exclusion
(negative selection) is possible (e.g., -6).
vestry Logical. FALSE for original 13 pumps. TRUE for 14 pumps in Vestry Report.
color Character. Color of triangle edges.
line. type Character. Type of line for triangle edges.
Note

This function uses deldir: :deldir().

Examples

snowMap ()
addDelauny ()

addEuclideanPath Add the path for the Euclidean distance between cases and/or pumps.

Description

Add the path for the Euclidean distance between cases and/or pumps.

Usage
addEuclideanPath(origin, destination = NULL, type = "case-pump”,
observed = TRUE, case.location = "address"”, vestry = FALSE,
distance.unit = "meter”, time.unit = "second”, walking.speed = 5,
unit.posts = "distance”, unit.interval = NULL, alpha.level = 1)
Arguments
origin Numeric or Integer. Numeric ID of case or pump.
destination Numeric or Integer. Numeric ID(s) of case(s) or pump(s). Exclusion is possible

via negative selection (e.g., -7). Default is NULL: this returns closest pump or
"anchor" case.

type Character "case-pump", "cases" or "pumps".

observed Logical. Use observed or simulated expected data.

non

case.location Character. For observed = FALSE: "address" or "nominal". "address" is the x-y
coordinate of a stack’s "anchor" case. "nominal" is the x-y coordinate of a bar.

vestry Logical. TRUE uses the 14 pumps from the Vestry Report. FALSE uses the 13
pumps from the original map.

non

distance.unit Character. Unit of distance: "meter", "yard" or "native". "native" returns the
map’s native scale. See vignette("roads") for information on unit distances.

addFrame

time.unit
walking. speed
unit.posts
unit.interval

alpha.level

Value

non

Character. "hour", "minute", or "second".

Numeric. Walking speed in km/hr.

Character. "distance" for mileposts; "time" for timeposts; NULL for no posts.
Numeric. Sets interval between unit.posts.

Numeric. Alpha level transparency for path: a value in [0, 1].

An R list with 3 data frames: x-y coordinates for the origin and destination, and a summary of

results.

Note

Walking time is computed using distanceTime().

addFrame

Add map border to plot.

Description

Add map border to plot.

Usage
addFrame(...)

Arguments
Additional plotting parameters.
addIndexCase Highlight index case at 40 Broad Street.
Description

Highlight index case at 40 Broad Street.

Usage

addIndexCase(cex = 2, col = "red", pch = 1, add.label = FALSE,

text.size =

0.5)

8 addKernelDensity

Arguments
cex Numeric. Size of point.
col Character. Color of point.
pch Numeric. Type of of point.
add. label Logical. Add text annotation: "40 Broad Street"
text.size Numeric. Size of text label.
Value

Add base R point and (optionally) text to a graphics plot.

Examples

segmentlLocator(”216-1")
addIndexCase()

addKernelDensity Add 2D kernel density contours.

Description

Add 2D kernel density contours based on selected sets of observations.

Usage

addKernelDensity(pump.subset = "pooled”, pump.select = NULL,
neighborhood. type = "walking”, data = "unstacked”, bandwidth = 0.5,
color = "black”, line.type = "solid”, multi.core = FALSE)

Arguments
pump.subset Character or Numeric: "pooled", "individual", or numeric vector. "pooled"
treats all observations as a single set. "individual" is a shortcut for all indi-
vidual pump neighborhoods. Use of vector of numeric pump IDs to subset from
the neighborhoods defined by pump. select. Negative selection possible. NULL
selects all pumps in pump.select.
pump.select Numeric. Vector of numeric pump IDs to define pump neighborhoods (i.e., the

"population"). Negative selection possible. NULL selects all pumps.
neighborhood. type
Character. "voronoi" or "walking"

data Character. Unit of observation: "unstacked" uses fatalities.unstacked; "ad-
dress" uses fatalities.address; "fatality” uses fatalities.

bandwidth Numeric. Bandwidth for kernel density estimation.

color Character. Color of contour lines.

addLandmarks 9

line. type Character. Line type for contour lines.

multi.core Logical or Numeric. TRUE uses parallel::detectCores(). FALSE uses one,
single core. You can also specify the number logical cores. See vignette(”Parallelization”)
for details.

Value

Add contours to a graphics plot.

Note

This function uses KernSmooth: : bkde2D().

Examples

snowMap ()
addKernelDensity()

snowMap ()
addKernelDensity("individual")

snowMap ()
addKernelDensity(c(6, 8))

snowMap ()
addKernelDensity(pump.select = c(6, 8))

addLandmarks Add landmarks to plot.

Description

Add landmarks to plot.

Usage
addLandmarks(text.size = 0.5, highlight.perimeter = TRUE)

Arguments

text.size Numeric. cex for text labels.
highlight.perimeter
Logical. Highlight Lion Brewery and Model Housing.

Value

Base R points and text.

10 addMilePosts

Note

The location of 18 Sackville Street and 28 Dean Street are approximate. Falconberg Court & Mews
form an isolate: they are not part of the network of roads and are technically unreachable. Adam
and Eve Court and its pump also form an isolate.

Examples

snowMap(add.landmarks = FALSE)

addLandmarks ()
addMilePosts Add distance or time based "mileposts" to an observed walking neigh-
borhood plot.
Description

Add distance or time based "mileposts" to an observed walking neighborhood plot.

Usage

addMilePosts(pump.subset = NULL, pump.select = NULL, vestry = FALSE,
unit = "distance”, interval = NULL, walking.speed = 5,
type = "arrows"”, multi.core = FALSE, dev.mode = FALSE)

Arguments
pump. subset Numeric. Vector of numeric pump IDs to subset from the neighborhoods de-
fined by pump.select. Negative selection possible. NULL uses all pumps in
pump.select.
pump.select Numeric. Numeric vector of pumps to define possible pump neighborhoods (i.e.

the "population"). Negative selection is possible. NULL selects all "observed"
pumps (i.e., pumps with at least one case).

vestry Logical. TRUE uses the 14 pumps from the Vestry Report. FALSE uses the 13
from the original map.

unit Character. Milepost unit of measurement: "distance" or "time".
interval Numeric. Interval between mileposts: 50 meters for "distance"; 60 seconds for
"time".

walking.speed Numeric. Walking speed in km/hr.
type Character. "arrows" or "points".

multi.core Logical or Numeric. TRUE uses parallel::detectCores(). FALSE uses one,
single core. You can also specify the number logical cores. See vignette(”Parallelization”)
for details.

dev.mode Logical. Development mode uses parallel::parLapply().

Value

R base graphics arrows or points.

addNeighborhoodCases 11

addNeighborhoodCases Add observed cases by neighborhood.

Description

Add cases to a plot as "address" or "fatalities" and as points or IDs.

Usage

addNeighborhoodCases(pump.subset = NULL, pump.select = NULL,
metric = "walking"”, type = "stack.base"”, token = "point",
text.size = 0.5, pch = 16, point.size = 0.5, vestry = FALSE,
weighted = TRUE, color = NULL, case.location = "nominal”,
alpha.level = 0.5, multi.core = FALSE)

Arguments

pump. subset Numeric. Vector of numeric pump IDs to subset from the neighborhoods de-
fined by pump.select. Negative selection possible. NULL uses all pumps in
pump.select.

pump.select Numeric. Numeric vector of pump IDs that define which pump neighborhoods
to consider (i.e., specify the "population"). Negative selection possible. NULL
selects all pumps.

metric Character. Type of neighborhood: "euclidean" or "walking".

type Character. Type of case: "stack.base" (base of stack), or "stack” (entire stack).
For observed = TRUE.

token Character. Type of token to plot: "point” or "id".

text.size Numeric. Size of case ID text.

pch Numeric.

point.size Numeric.

vestry Logical. TRUE uses the 14 pumps from the Vestry Report. FALSE uses the 13 in
the original map.

weighted Logical. TRUE computes shortest walking path weighted by road length. FALSE
computes shortest walking path in terms of the number of nodes.

color Character. Use a single color for all paths. NULL uses neighborhood colors

defined by snowColors().

case.location Character. For metric = "euclidean”: "address" uses ortho.proj; "nominal"
uses fatalities.

alpha.level Numeric. Alpha level transparency for area plot: a value in [0, 1].

multi.core Logical or Numeric. TRUE uses parallel::detectCores(). FALSE uses one,

single core. You can also specify the number logical cores. See vignette("Parallelization”)

for details.

12 addNeighborhoodEuclidean

Examples

snowMap (add. cases = FALSE)

addNeighborhoodCases (pump.subset = c(6, 10))
snowMap (add. cases = FALSE)
addNeighborhoodCases (pump.select = c(6, 10))

addNeighborhoodEuclidean
Add expected Euclidean pump neighborhoods.

Description

Add expected Euclidean pump neighborhoods.

Usage

addNeighborhoodEuclidean(pump.subset = NULL, pump.select = NULL,
vestry = FALSE, case.location = "nominal”, type = "star”,

alpha.level = 0.5, multi.core = FALSE, dev.mode = FALSE)
Arguments

pump. subset Numeric. Vector of numeric pump IDs to subset from the neighborhoods de-
fined by pump.select. Negative selection possible. NULL selects all pumps in
pump.select.

pump.select Numeric. Vector of numeric pump IDs to define pump neighborhoods (i.e., the
"population"). Negative selection possible. NULL selects all pumps.

vestry Logical. TRUE uses the 14 pumps from the Vestry Report. FALSE uses the 13 in

the original map.

case.location Character. "address" or "nominal". "address" is the x-y coordinates of sim.ortho.proj.
"nominal" is the x-y coordinates of regular.cases.

type Character. Type of plot: "star", "area.points" or "area.polygons".
alpha.level Numeric. Alpha level transparency for area plot: a value in [0, 1].
multi.core Logical or Numeric. TRUE uses parallel::detectCores(). FALSE uses one,

single core. You can also specify the number logical cores. See vignette(”Parallelization”)
for details.

dev.mode Logical. Development mode uses parallel::parLapply().

Value

R graphic elements.

addNeighborhoodWalking 13

Examples

add.subtitle =

addNeighborhoodEuclidean()

streetNameLocator(”marshall street”, zoom = @.5, highlight = FALSE,
FALSE)
streetNamelLocator(”"marshall street”, zoom = 0.5, highlight = FALSE,

add.subtitle =

FALSE)

addNeighborhoodEuclidean(type = "area.points")

addNeighborhoodWalking

Add expected walking neighborhoods.

Description

Add expected walking neighborhoods.

Usage

addNeighborhoodWalking(pump.subset = NULL, pump.select = NULL,
vestry = FALSE, weighted = TRUE, path = NULL, path.color = NULL,

path.width =

3, alpha.level = 0.25, polygon.type = "solid",

polygon.col = NULL, polygon.lwd = 2, multi.core = FALSE,
dev.mode = FALSE)

Arguments

pump.subset

pump.select

vestry

weighted

path

path.color

path.width
alpha.level

polygon.type

Numeric. Vector of numeric pump IDs to subset from the neighborhoods de-
fined by pump.select. Negative selection possible. NULL uses all pumps in
pump.select.

Numeric. Numeric vector of pump IDs that define which pump neighborhoods
to consider (i.e., specify the "population"). Negative selection possible. NULL
selects all pumps.

Logical. TRUE uses the 14 pumps from the Vestry Report. FALSE uses the 13 in
the original map.

Logical. TRUE computes shortest path weighted by road length. FALSE computes
shortest path in terms of the number of nodes.

Character. "expected" or "observed".

Character. Use a single color for all paths. NULL uses neighborhood colors
defined by snowColors().

Numeric. Set width of paths.
Numeric. Alpha level transparency for area plot: a value in [0, 1].

Character. "perimeter" or "solid".

14

polygon.col
polygon.lwd
multi.core

dev.mode

Examples

addPlaguePit

Character.
Numeric.

Logical or Numeric. TRUE uses parallel::detectCores(). FALSE uses one,
single core. You can also specify the number logical cores. See vignette(”Parallelization”)
for details.

Logical. Development mode uses parallel::parLapply().

streetNameLocator("marshall street”, zoom = 0.5)
addNeighborhoodWalking()

addPlaguePit

Add plague pit (Marshall Street).

Description

Draws a polygon that approximates the plague pit located around Marshall Street. From Vestry

Report map.

Usage

addPlaguePit(color = "black”, line.type = "solid")

Arguments

color

line.type

Value

Character. Color of polygon.
Character. Polygon line type.

Adds a polygon to a graphics plot.

Note

In progress.

Examples

snowMap(add. landmarks = FALSE)

addPlaguePit ()

addPump 15

addPump Add selected pump(s) to plot.

Description

Add selected pump(s) to plot.

Usage

addPump(pump.select = NULL, vestry = FALSE, col = NULL, pch = 24,

label = TRUE, pos = 1)
Arguments
pump.select Numeric or Integer. Vector of water pump numerical ID(s). With vestry =
TRUE, whole number(s) between 1 and 14. With vestry = FALSE, whole num-
ber(s) between 1 and 13. See pumps.vestry and pumps for IDs and details
about specific pumps. NULL plots all pumps. Negative selection allowed.
vestry Logical. TRUE for the 14 pumps from Vestry Report. FALSE for the original 13
pumps.
col Character. Color of pump points.
pch Numeric. Shape of point character.
label Logical. TRUE adds text label.
pos Numeric. Position of label.
addRoads Add all streets and roads to plot.
Description

Add all streets and roads to plot.

Usage

addRoads(col = "gray")

Arguments

col Character. Color

16

addVoronoi

addSnow

Adds Snow’s graphical annotation of the Broad Street pump walking
neighborhood.

Description

Adds Snow’s graphical annotation of the Broad Street pump walking neighborhood.

Usage

addSnow(type =
line.width =

Arguments

type
color
alpha.level

line.width

Examples

"area", color = "dodgerblue”, alpha.level = 0.25,
2)

non

Character. Type of annotation plot: "area", "perimeter" or "street".
Character. Neighborhood color.
Numeric. Alpha level transparency: a value in [0, 1].

Numeric. Line width for type = "street” and type = "perimeter”.

plot(neighborhoodVoronoi())

addSnow()

addVoronoi

Add Voronoi cells.

Description

Add Voronoi cells.

Usage
addVoronoi (pump.select = NULL, vestry = FALSE,
case.location = "nominal”, color = "black”, line.type = "solid",
line.width = 1)

addWalkingPath 17

Arguments
pump.select Numeric. Default is NULL; all pumps are used. Otherwise, selection by a
vector of numeric IDs: 1 to 13 for pumps; 1 to 14 for pumps.vestry. Exclusion
(negative selection) is possible (e.g., -6).
vestry Logical. FALSE for original 13 pumps. TRUE for 14 pumps in Vestry Report.

case.location Character. For observed = FALSE: "address" or "nominal". "nominal" is the x-y
coordinates of regular.cases.

color Character. Color of cell edges.
line.type Character. Type of line for cell edges: Ity.
line.width Numeric. Width of cell edges: lwd.

Note

This function uses deldir: :deldir().

Examples

snowMap ()
addVoronoi ()

addWalkingPath Add the shortest walking path between a selected cases or pumps.

Description

Add the shortest walking path between a selected cases or pumps.

Usage

addWalkingPath(origin = 1, destination = NULL, type = "case-pump"”,
observed = TRUE, weighted = TRUE, vestry = FALSE,

distance.unit = "meter”, time.unit = "second”, walking.speed = 5,
unit.posts = "distance”, unit.interval = NULL, alpha.level = 1)
Arguments
origin Numeric or Integer. Numeric ID of case or pump.
destination Numeric or Integer. Numeric ID(s) of case(s) or pump(s). Exclusion is possible

via negative selection (e.g., -7). Default is NULL: this returns closest pump or
"anchor" case. Character landmark name (case insensitive).

type Character "case-pump", "cases" or "pumps".
observed Logical. Use observed or "simulated" expected data.
weighted Logical. TRUE computes shortest path in terms of road length. FALSE computes

shortest path in terms of nodes.

18 addWhitehead

vestry Logical. TRUE uses the 14 pumps from the Vestry Report. FALSE uses the 13 in
the original map.

"non

distance.unit Character. Unit of distance: "meter", "yard" or "native". "native" returns the
map’s native scale. unit is meaningful only when "weighted" is TRUE. See
vignette("roads") for information on unit distances.

time.unit Character. "hour", "minute", or "second".
walking.speed Numeric. Walking speed in km/hr.
unit.posts Character. "distance" for mileposts; "time" for timeposts.

unit.interval Numeric. Sets interval between posts: for "distance", the default is 50 meters;
for "time", the default is 60 seconds.

alpha.level Numeric. Alpha level transparency for path: a value in [0, 1].

Value

An R list with two elements: a character vector of path nodes and a data frame summary.

Note

The function uses a case’s "address" (i.e., a stack’s "anchor" case) to compute distance. Time is
computed using cholera::distanceTime(). Adam and Eve Court, and Falconberg Court and Falcon-
berg Mews, are disconnected from the larger road network; they form two isolated subgraphs. This
has two consequences: first, only cases on Adam and Eve Court can reach pump 2 and those cases
cannot reach any other pump; second, cases on Falconberg Court and Mews cannot reach any pump.
Unreachable pumps will return distances of Inf. Arrow points represent mileposts or timeposts to
the destination.

Examples

streetNamelLocator("broad street”, zoom = TRUE, highlight = FALSE,
add.subtitle = FALSE)
addWalkingPath(447)

addWhitehead Add Rev. Henry Whitehead’s Broad Street pump neighborhood.

Description

A circle (polygon), centered around a desired pump with a radius of 210 yards. The Broad Street
pump is the default.

Usage

addWhitehead(pump = "Broad Street”, radius = 210,
distance.unit = "yard"”, color = "black”, line.type = "solid”,
vestry = FALSE, add.subtitle = FALSE, walking.speed = 5)

anchor.case 19

Arguments
pump Character or Numeric. Name (road name) or numerical ID of selected pump.
See pumps or pumps.vestry.
radius Numeric. Distance from a pump.

"non

distance.unit Character. Unit of distance: "meter", "yard" or "native". "native" returns the
map’s native scale. See vignette(”roads") for information on conversion.

color Character. Color of circle.
line. type Character. Circle line type.
vestry Logical. TRUE uses the 14 pumps and locations from Vestry report. FALSE uses

original 13 pumps.
add.subtitle Logical. Add subtitle with estimated "walking" time in seconds.

walking.speed Numeric. Walking speed in km/hr.

Value

Adds a circle (polygon) to a graphics plot.

Examples

snowMap (add. landmarks = FALSE)
addWhitehead ()

anchor.case Anchor or base case of each stack of fatalities.

Description

Data frame that links a fatality to its stack, a stack’s base case. For use with caseLocator.

Usage

anchor.case

Format

case numerical case ID

anchor numerical case ID of anchor.case

Note

unstackFatalities documents the code for these data.

20 caseLocator

border Numeric IDs of line segments that create the map’s border frame.

Description
Vector of ordered numbers that identify the line segments that make up the frame of the map. For
use with sp::Polygon().

Usage

border

Format

border numerical ID

caselocator Locate case by numerical ID.

Description

Highlight selected observed or simulated case and its home road segment.

Usage
caselocator(case = 1, zoom = 1, observed = TRUE, add.title = TRUE,
highlight.segment = TRUE, data = FALSE, add = FALSE, col = "red")
Arguments
case Numeric or Integer. Whole number between 1 and 578.
zoom Logical or Numeric.A numeric value >= O controls the degree of zoom. The
default is 1.
observed Logical. TRUE for observed. FALSE for simulated.
add.title Logical. Include title.

highlight.segment
Logical. Highlight case’s segment.

data Logical. Output data.
add Logical. Add to existing plot or separate plot.
col Character. Point color.

Value

A base R graphics plot.

classifierAudit

Examples

caselLocator(290)
caselLocator (290, zoom = TRUE)
caselLocator (290, observed = FALSE)

21

classifierAudit Test if case is orthogonal to segment.

Description

Diagnostic to check classification of case to a road segment.

Usage

classifierAudit(case = 483, segment = "326-2", observed = TRUE,
coordinates = FALSE)

Arguments
case Numeric or Integer. Numeric ID of observed case.
segment Character. Segment ID. See road. segments.
observed Logical. FALSE observed case; TRUE simulated case (regular.cases).
coordinates Logical. Orthogonal projection coordinates.
Value

Logical TRUE or FALSE

Note

This function is a diagnostic. It is not a guarantee of correct classification.

Examples

classifierAudit(case = 483, segment = "326-2")
plot(classifierAudit(case = 483, segment = "326-2"))

22 euclideanPath

distanceTime Convert distance to elapsed time.

Description

Convert distance to elapsed time.

Usage

distanceTime(x, distance.unit = "meter”, time.unit = "second”,
walking.speed = 5)

Arguments

X Numeric. Nominal map distance.

distance.unit Character. Unit of distance: "meter", "yard" or "native". "native" returns the
map’s native scale. See vignette("roads") for information on conversion.

time.unit Character. Unit of measurement: "hour", "minute" or "second".

k)

walking.speed Numeric. Walking speed in km/hr.

Value

An R vector.

euclideanPath Compute path of the Euclidean distance between cases and/or pumps.

Description

Compute path of the Euclidean distance between cases and/or pumps.

Usage
euclideanPath(origin = 1, destination = NULL, type = "case-pump”,
observed = TRUE, case.location = "nominal”, landmark.cases = TRUE,
vestry = FALSE, distance.unit = "meter"”, time.unit = "second”,

walking.speed = 5)

euclideanPath 23

Arguments
origin Numeric or Character. Numeric ID of case or pump. Character landmark name.
destination Numeric or Character. Numeric ID(s) of case(s) or pump(s). Exclusion is pos-
sible via negative selection (e.g., -7). Default is NULL, which returns the closest
pump, "anchor" case or landmark.
type Character "case-pump", "cases" or "pumps".
observed Logical. Use observed or "simulated" expected data.

case.location Character. For observed = FALSE: "address" or "nominal". "nominal" is the x-y
coordinates of regular.cases.

landmark.cases Logical. TRUE includes landmarks as cases.

vestry Logical. TRUE uses the 14 pumps from the Vestry Report. FALSE uses the 13
pumps from the original map.

distance.unit Character. Unit of distance: "meter", "yard" or "native". "native" returns the
map’s native scale. See vignette("roads") for information on unit distances.

non

time.unit Character. "hour", "minute", or "second".

walking.speed Numeric. Default is 5 km/hr.

Value
An R list with 3 data frames: x-y coordinates for the origin and destination, and a summary of
results.

Note
The function uses a case’s "address" (i.e., "anchor" case of a stack) to compute distance. Time is

computed using distanceTime().

Examples

path from case 1 to nearest pump.
euclideanPath(1)

path from pump 1 to nearest case.
euclideanPath(NULL, 1)

path from case 1 to pump 6.
euclideanPath(1, 6)

exclude pump 7 from consideration.
euclideanPath(1, -7)

path from case 1 to case 6.
euclideanPath(1, 6, type = "cases")

path from pump 1 to pump 6.
euclideanPath(1, 6, type = "pumps")

24 fatalities

compute multiple cases.
lapply(1:3, euclideanPath)

plot path
plot(euclideanPath(1))

fatalities Amended Dodson and Tobler’s cholera data.

Description

An amended version of Dodson and Tobler’s digitization of John Snow’s map of the 1854 London
cholera outbreak. It removes 3 duplicate observations and imputes the location for 3 "missing"
observation. This information is also available in HistData::Snow.deaths2 (>= ver. 0.7-8).

Usage

fatalities

Format

A data frame with 3 variable that records the position and the nearest pump for the 578 bars on
Snow’s map.

case numeric case ID

x x-coordinate

y y-coordinate

Note

fixFatalities documents the code for these data. For details, see vignette("duplicate.missing.cases").

See Also

caselocator
streetNamelLocator
streetNumberLocator
caselocator
streetNamelLocator

streetNumberlLocator

fatalities.address 25

fatalities.address "Unstacked" amended cholera data with address as unit of observa-
tion.

Description

An "unstacked" version of the fatalities dataset. It changes the unit of observation from the case
(bar) to the "address", the x-y coordinates of the case at the base of a stack, and makes the number
of fatalities an attribute of the "address".

Usage

fatalities.address

Format
A data frame with 4 variables for 321 addresses

anchor numerical case ID of address
X Xx-coordinate
y y-coordinate

case.count number of fatalities at address

Note

unstackFatalities documents the code for these data. For details, see vignette("unstacking.fatalities").

See Also

caselocator
streetNamelLocator

streetNumberlLocator

fatalities.unstacked "Unstacked" amended cholera fatalities data with fatality as unit of
observation.

Description

An "unstacked" version of the fatalities dataset. It changes the unit of observation from the case
(bar) to the "address", the x-y coordinates of the case at the base of a stack, and assigns the base
case’s coordinates to all cases in the stack.

Usage

fatalities.unstacked

26 fixFatalities

Format
A data frame with 3 variable that records the position of the 578 bars on Snow’s map.
case numerical case ID

X Xx-coordinate

y y-coordinate

Note

unstackFatalities documents the code for these data. For details, see vignette("unstacking.fatalities").

See Also

caselocator
streetNamelLocator

streetNumberlLocator

fixFatalities Fix errors in Dodson and Tobler’s digitization of Snow’s map.

Description

Fixes two apparent coding errors using three misplaced cases.

Usage

fixFatalities()

Value

An R data frame.

See Also

vignette("duplicate.missing.cases")

landmark.squares 27

landmark. squares Centers of city squares.

Description

Centers of city squares.

Usage

landmark. squares

Format

A data frame with 6 variables that records the position of the orthogonal projection of landmarks
onto the network of roads.

name square name

X Xx-coordinate

y y-coordinate

case numeric case ID

landmarkData Landmark data.

Description

Nominal and orthogonal coordinates

Usage

landmarkData(multi.core = FALSE, dev.mode = FALSE)

Arguments

multi.core Logical or Numeric. TRUE uses parallel::detectCores(). FALSE uses one,
single core. You can also specify the number logical cores. See vignette(”Parallelization”)
for details.

dev.mode Logical. Development mode uses parallel::parLapply().

28 mapRange

landmarks Orthogonal projection of landmarks onto road network.

Description

Orthogonal projection of landmarks onto road network.

Usage

landmarks

Format

A data frame with 6 variables that records the position of the orthogonal projection of landmarks
onto the network of roads.

road.segment "address" road segment

x.proj orthogonal x-coordinate

y.proj orthogonal y-coordinate

ortho.dist orthogonal distance to home road segment

x nominal x-coordinate

y nominal y-coordinate

name landmark name

case numeric case ID

Note

landmarkData documents the code for these data.

mapRange Compute xlim and ylim of Snow’s map.

Description

Compute xlim and ylim of Snow’s map.

Usage

mapRange ()

nearestPump

29

nearestPump

Compute shortest distances or paths to selected pumps.

Description

Compute shortest distances or paths to selected pumps.

Usage
nearestPump(pump.select = NULL, metric = "walking”, vestry = FALSE,
weighted = TRUE, case.set = "observed”, distance.unit = "meter”,
time.unit = "second”, walking.speed = 5, multi.core = FALSE,
dev.mode = FALSE)
Arguments

pump.select

metric

vestry

weighted

case.set

distance.unit

time.unit
walking. speed
multi.core

dev.mode

Value

Numeric. Pump candidates to consider. Default is NULL: all pumps are used.
Otherwise, selection by a vector of numeric IDs: 1 to 13 for pumps; 1 to 14 for
pumps.vestry. Negative selection allowed.

Character. "eucldidean" or "walking".

Logical. TRUE uses the 14 pumps from the Vestry Report. FALSE uses the 13 in
the original map.

Logical. TRUE computes shortest path in terms of road length. FALSE computes
shortest path in terms of the number of nodes.

Character. "observed", "expected", or "snow".

non

Character. Unit of distance: "meter", "yard" or "native". "native" returns the

map’s native scale. Meaningful only when "weighted" is TRUE. See vignette("roads")
for information on unit distances.

Character. "hour", "minute", or "second".

Numeric. Walking speed in km/hr.

Logical or Numeric. TRUE uses parallel::detectCores(). FALSE uses one,
single core. You can also specify the number logical cores. See vignette("Parallelization”)
for details.

Logical. Development mode uses parallel::parLapply().

An R data frame or list of ’igraph’ path nodes.

Note

Time is computed using distanceTime().

30 neighborhoodEuclidean

neighborhoodData Compute network graph of roads, cases and pumps.

Description

Assembles cases, pumps and road into a network graph.

Usage

neighborhoodData(vestry = FALSE, case.set = "observed”, embed = TRUE,
embed. landmarks = TRUE)

Arguments
vestry Logical. Use Vestry Report pump data.
case.set Character. "observed" or "expected", or "snow". "snow" captures John Snow’s
annotation of the Broad Street pump neighborhood printed in the Vestry report
version of the map.
embed Logical. Embed cases and pumps into road network.

embed. landmarks
Logical. Embed landmarks into road network.

Value

An R list of nodes, edges and an ’igraph’ network graph.

neighborhoodEuclidean Compute Euclidean path pump neighborhoods.

Description

Plots star graph from pump to its cases.

Usage

neighborhoodEuclidean(pump.select = NULL, vestry = FALSE,
case.location = "nominal”, case.set = "observed”,
multi.core = FALSE, dev.mode = FALSE)

neighborhood Voronoi

Arguments

pump.select

vestry

case.location

case.set

multi.core

dev.mode

Value

An R vector.

Examples

31

Numeric. Vector of numeric pump IDs to define pump neighborhoods (i.e., the
"population"). Negative selection possible. NULL selects all pumps.

Logical. TRUE uses the 14 pumps from the Vestry Report. FALSE uses the 13 in
the original map.

Character. "address" or "nominal". For observed = TRUE: "address" uses ortho.proj
and "nominal" uses fatalities. For observed = TRUE: "address" uses sim.ortho.proj
and "nominal" uses regular.cases.

Character. "observed" or "expected".

Logical or Numeric. TRUE uses parallel::detectCores(). FALSE uses one,
single core. You can also specify the number logical cores. See vignette("Parallelization”)
for details.

Logical. Development mode uses parallel::parLapply().

neighborhoodEuclidean()
neighborhoodEuclidean(-6)
neighborhoodEuclidean(pump.select = 6:7)

neighborhoodVoronoi Compute Voronoi pump neighborhoods.

Description

Group cases into neighborhoods using Voronoi tessellation.

Usage

neighborhoodVoronoi(pump.select = NULL, vestry = FALSE,

case.location

Arguments

pump.select

vestry

case.location

= "nominal”, polygon.vertices = FALSE)

Numeric. Vector of numeric pump IDs to define pump neighborhoods (i.e., the
"population"). Negative selection possible. NULL selects all pumps.

Logical. TRUE uses the 14 pumps from the Vestry report. FALSE uses the 13 in
the original map.

Character. For observed = FALSE: "address" or "nominal". "address" uses the x-
y coordinates of ortho.proj. "nominal" uses the x-y coordinates of fatalities.

32 neighborhoodWalking

polygon.vertices
Logical. TRUE returns a list of x-y coordinates of the vertices of Voronoi cells.
Useful for sp: :point.in.polygon() as used in print.voronoi() method.

Value

An R list with 12 objects.

* pump.id: vector of selected pumps

* voronoi: output from deldir::deldir().

* snow. colors: neighborhood color based on snowColors().
* x.rng: range of x for plot.

* y.rng: range of y for plot.

* select.string: description of "pump.select" for plot title.
* expected.data: expected neighborhood fatality counts, based on Voronoi cell area.
* coordinates: polygon vertices of Voronoi cells.

* statistic.data: observed neighborhood fatality counts.

* pump.select: "pump.select" from neighborhoodVoronoi().
* statistic: "statistic" from neighborhoodVoronoi().

* vestry: "vestry" from neighborhoodVoronoi().

Examples

neighborhoodVoronoi()

neighborhoodVoronoi(vestry = TRUE)
neighborhoodVoronoi(pump.select = 6:7)
neighborhoodVoronoi(pump.select = -6)

neighborhoodVoronoi (pump.select = -6, polygon.vertices = TRUE)

coordinates for vertices also available in the returned object.
dat <- neighborhoodVoronoi(pump.select = -6)
dat$coordinates

neighborhoodWalking Compute walking path pump neighborhoods.

Description

Group cases into neighborhoods based on walking distance.

Usage

neighborhoodWalking(pump.select = NULL, vestry = FALSE,
weighted = TRUE, case.set = "observed”, multi.core = FALSE,
dev.mode = FALSE)

ortho.proj 33

Arguments
pump.select Numeric. Vector of numeric pump IDs to define pump neighborhoods (i.e.,
the "population"). Negative selection possible. NULL selects all pumps. Note
that you can’t just select the pump on Adam and Eve Court (#2) because it’s
technically an isolate.
vestry Logical. TRUE uses the 14 pumps from the Vestry report. FALSE uses the 13 in
the original map.
weighted Logical. TRUE computes shortest path weighted by road length. FALSE computes
shortest path in terms of the number of nodes.
case.set Character. "observed", "expected" or "snow". "snow" captures John Snow’s
annotation of the Broad Street pump neighborhood printed in the Vestry report
version of the map.
multi.core Logical or Numeric. TRUE uses parallel::detectCores(). FALSE uses one,
single core. You can also specify the number logical cores. See vignette(”Parallelization”)
for details.
dev.mode Logical. Development mode uses parallel::parLapply().
Value

An R list with 7 objects:

* paths: list of paths to nearest or selected pump(s).

* cases: list of cases by pump.

e vestry: "vestry" from neighborhoodWalking().

* observed: "observed" from neighborhoodWalking().

* pump.select: "pump.select” from neighborhoodWalking().
* cores: number of cores to use for parallel implementation.

* metric: incremental metric used to find cut point on split road segments.
Examples

neighborhoodWalking()
neighborhoodWalking(pump.select = -6)

ortho.proj Orthogonal projection of observed cases onto road network.

Description

Orthogonal projection of observed cases onto road network.

34 ortho.proj.pump

Usage

ortho.proj

Format

A data frame with 5 variables that records the position of the orthogonal projection of the 578 cases
onto the network of roads.

road.segment "address" road segment

X.proj x-coordinate

y.proj y-coordinate

ortho.dist orthogonal distance to home road segment

case numeric case ID

Note

unstackFatalities documents the code for these data.

ortho.proj.pump Orthogonal projection of 13 original pumps.

Description

Orthogonal projection of 13 original pumps.

Usage

ortho.proj.pump

Format

A data frame with 6 variables that records the position of the orthogonal projection of the 13 original
pumps onto the network of roads.

road.segment "address" road segment

X.proj x-coordinate

y.proj y-coordinate

ortho.dist orthogonal distance to home road segment

node node ID

pump.id numeric ID

Note

pumpData documents the code for these data.

ortho.proj.pump.vestry 35

ortho.proj.pump.vestry
Orthogonal projection of the 14 pumps from the Vestry Report.

Description

Orthogonal projection of the 14 pumps from the Vestry Report.

Usage

ortho.proj.pump.vestry

Format

A data frame with 6 variables that records the position of the orthogonal projection of the 14 pumps
onto the network of roads.

road.segment "address" road segment

X.proj x-coordinate

y.proj y-coordinate

ortho.dist orthogonal distance to home road segment

node node ID

pump.id numeric ID

Note

pumpData documents the code for these data.

orthogonalProjection Compute coordinates of orthogonal projection from case to road seg-
ment.

Description

Compute coordinates of orthogonal projection from case to road segment.

Usage

orthogonalProjection(case = 12, segment.id = "216-1",
observed = TRUE, use.pump = FALSE, vestry = FALSE,
case.data = NULL)

36

Arguments

case
segment.id
observed
use.pump
vestry

case.data

Value

An R data frame.

pearsonResiduals

Numeric. case ID from fatalities.

Character. Road segment ID.

Logical. FALSE observed case; TRUE simulated case (regular.cases).
Logical. Use pump ID as case.

Logical. Use vestry pump data.

Object. For use with simulateFatalities.

pearsonResiduals

Compute Pearson Residuals (prototype)

Description

Compute Pearson Residuals (prototype)

Usage

pearsonResiduals(x)

Arguments

X

Value

An R vector.

Examples

An object created by neighborhoodEuclidean(), neighborhoodVoronoi()
or neighborhoodWalking().

pearsonResiduals(neighborhoodEuclidean())
pearsonResiduals(neighborhoodVoronoi())
pearsonResiduals(neighborhoodWalking())

plague.pit 37

plague.pit Plague pit coordinates.

Description

Coordinates for polygon() or sp::Polygon(). In progress.

Usage

plague.pit

Format
A data frame with 13 observations and 2 variables.

X x-coordinate

y y-coordinate

plot.classifier_audit Plot result of classifierAudit().

Description

Plot case, segment and orthogonal projector.

Usage
S3 method for class 'classifier_audit'’
plot(x, zoom = 0.5, unit = "meter”, ...)
Arguments
X An object of class "classifier_audit" created by classifierAudit().
zoom Logical or Numeric. A numeric value >= 0 controls the degree of zoom. The
default is 0.5.
unit Character. Unit of distance: "meter" (the default), "yard" or "native". "native"

returns the map’s native scale. "unit" is meaningful only when "weighted" is
TRUE. See vignette("roads") for information on unit distances.

Additional parameters.

Value

A base R graphic.

Examples

plot(classifierAudit(case = 483, segment = "326-2"))

38 plot.euclidean

plot.euclidean Plot method for neighborhoodEuclidean().

Description

Plot method for neighborhoodEuclidean().

Usage

S3 method for class 'euclidean'
plot(x, type = "star”, add.observed.points = TRUE,

msg = FALSE, ...)
Arguments
X An object of class "euclidean" created by neighborhoodEuclidean().
type Character. "star", "area.points" or "area.polygons". "area" flavors only valid

when case.set = "expected”.
add.observed.points
Logical. Add observed fatality "addresses".

msg Logical. Toggle in-progress messages.

Additional plotting parameters.

Value

A base R plot.

Note

This uses an approximate computation of polygons, using the TSP’ package, that may produce
non-simple and/or overlapping polygons.

Examples

plot(neighborhoodEuclidean())

plot(neighborhoodEuclidean(-6))

plot(neighborhoodEuclidean(pump.select = 6:7))
plot(neighborhoodEuclidean(case.set = "expected”), type = "area.points")
plot(neighborhoodEuclidean(case.set = "expected”), type = "area.polygons")

plot.euclidean_path

39

plot.euclidean_path Plot the path of the Euclidean distance between cases and/or pumps.

Description

Plot the path of the Euclidean distance between cases and/or pumps.

Usage

S3 method for class 'euclidean_path'

plot(x, zoom = 0.5, unit.posts = "distance”,
unit.interval = NULL, ...)
Arguments
X An object of class "euclidean_path" created by euclideanPath().
zoom Logical or Numeric. A numeric value >= 0 controls the degree of zoom. The
default is 0.5.
unit.posts Character. "distance" for mileposts; "time" for timeposts; NULL for no posts.

unit.interval

Value

A base R plot.

Examples

Numeric. Setinterval between posts. When unit.postsis "distance",unit.interval
automatically defaults to 50 meters. When unit.postsis "time",unit.interval
automatically defaults to 60 seconds.

Additional plotting parameters.

plot(euclideanPath(15))
plot(euclideanPath(15), unit.posts = "time")

plot.neighborhood_data

Plot method for neighborhoodData().

Description

Visualize underlying road network (with or without cases and pumps).

Usage

S3 method for class 'neighborhood_data'

plot(x, ...)

40 plot.time_series

Arguments
X An’igraph’ object of class "neighborhood_data" created by neighborhoodData().
Additional plotting parameters.
Value
A base R plot.
Examples

plot(neighborhoodData())
plot(neighborhoodData(embed = FALSE))

plot.profile_perspective
Plot method for profilePerspective().

Description

Plot method for profilePerspective().

Usage

S3 method for class 'profile_perspective'

plot(x, ...)
Arguments

X An object of class "profile" created by profilePerspective().

Additional plotting parameters.
plot.time_series Plot aggregate time series data from Vestry report.

Description

Plot aggregate fatality data and indicates the date of the removal of the handle of the Broad Street
pump.

Usage

S3 method for class 'time_series'

plot(x, statistic = "fatal.attacks”,
pump.handle = TRUE, main = "Removal of the Broad Street Pump Handle”,
type = "0", xlab = "Date”, ylab = "Fatalities”, ...)

plot.voronoi 41

Arguments
X An object of class "time_series" from timeSeries().
statistic Character. Fatality measure: either "fatal.attacks" or "deaths".
pump. handle Logical. Indicate date of removal of Broad Street pump handle.
main Character. Title of graph.
type Character. R plot type.
x1lab Character. x-axis label.
ylab Character. y-axis label.
Additional plotting parameters.
See Also
timeSeries
Examples
plot(timeSeries())

plot(timeSeries(), statistic = "deaths")
plot(timeSeries(), bty = "n", type = "h", lwd = 4)

plot.voronoi Plot Voronoi neighborhoods.

Description

Plot Voronoi neighborhoods.

Usage

S3 method for class 'voronoi'
plot(x, voronoi.cells = TRUE,
delauny.triangles = FALSE, euclidean.paths = FALSE, ...)

Arguments

X An object of class "voronoi" created by neighborhoodVoronoi().

voronoi.cells Logical. Plot Voronoi tessellation cells.

delauny.triangles
Logical. Plot Delauny triangles.

euclidean.paths
Logical. Plot all Euclidean paths (star graph).

Additional plotting parameters.

42 plot.walking

Value

A base R graph.

See Also

neighborhoodVoronoi ()

addVoronoi()

Examples

plot(neighborhoodVoronoi())

plot.walking Plot method for neighborhoodWalking().

Description

Plot method for neighborhoodWalking().

Usage
S3 method for class 'walking'
plot(x, type = "road”, msg = FALSE, ...)
Arguments
X An object of class "walking" created by neighborhoodWalking().
type Character. "road", "area.points" or "area.polygons”. "area" flavors only valid

when case.set = "expected”.
msg Logical. Toggle in-progress messages.

Additional plotting parameters.

Value

A base R plot.

Note

When plotting area graphs with simulated data (i.e., case.set = "expected”), there may be dis-
crepancies between observed cases and expected neighborhoods, particularly between neighbor-
hoods.

plot.walking_path 43

Examples

plot(neighborhoodWalking())

plot(neighborhoodWalking(case.set = "expected"))
plot(neighborhoodWalking(case.set = "expected”), type = "area.points")
plot(neighborhoodWalking(case.set = "expected"”), type = "area.polygons")

plot.walking_path Plot the walking path between selected cases and/or pumps.

Description

Plot the walking path between selected cases and/or pumps.

Usage
S3 method for class 'walking_path'
plot(x, zoom = 0.5, unit.posts = "distance",
unit.interval = NULL, alpha.level =1, ...)
Arguments
X An object of class "walking_path" created by walkingPath().
zoom Logical or Numeric. A numeric value >= 0 controls the degree of zoom. The
default is 0.5.
unit.posts Character. "distance" for mileposts; "time" for timeposts; NULL for no posts.

unit.interval Numeric. Setinterval between posts. When unit.posts = "distance”, unit.interval
defaults to 50 meters. When unit.posts = "time", unit.interval defaults to
60 seconds.

alpha.level Numeric. Alpha level transparency for path: a value in [0, 1].

Additional plotting parameters.

Value

A base R plot.

Note

Arrows represent mileposts or timeposts to the destination.

Examples

plot(walkingPath(15))
plot(walkingPath(15), unit.posts = "time")

44 print.euclidean

print.classifier_audit
Return result of classifierAudit().

Description

Return result of classifierAudit().

Usage
S3 method for class 'classifier_audit'
print(x, ...)

Arguments

X An object of class "classifier_audit" created by classifierAudit().

Additional parameters.

Value

An R data frame.

Examples

classifierAudit(case = 483, segment = "326-2")
print(classifierAudit(case = 483, segment = "326-2"))

print.euclidean Print method for neighborhoodEuclidean().

Description

Parameter values for neighborhoodEuclidean().

Usage
S3 method for class 'euclidean'
print(x, ...)
Arguments
X An object of class "euclidean" created by neighborhoodEuclidean().

Additional parameters.

print.euclidean_path

Value

A list of argument values.

Examples

neighborhoodEuclidean()
print(neighborhoodEuclidean())

45

print.euclidean_path Print method for euclideanPath().

Description

Summary output.
Usage
S3 method for class 'euclidean_path'

print(x, ...)

Arguments

X An object of class "euclidean_path" created by euclideanPath().

Additional parameters.

Value

An R data frame.

Examples

euclideanPath(1)
print(euclideanPath(1))

46 print.voronoi

print.time_series Print summary data for timeSeries().

Description

Return summary results.

Usage
S3 method for class 'time_series'
print(x, ...)
Arguments
X An object of class "time_series" created by timeSeries().
Additional parameters.
Value

An R data frame.

Examples

timeSeries()
print(timeSeries())

print.voronoi Print method for neighborhoodVoronoi().

Description

Parameter values for neighborhoodVoronoi().

Usage
S3 method for class 'voronoi'
print(x, ...)
Arguments
X An object of class "voronoi" created by neighborhoodVoronoi().
Additional arguments.
Value

A list of argument values.

print.walking

Examples

neighborhoodVoronoi()
print(neighborhoodVoronoi())

47

print.walking Print method for neighborhoodWalking().

Description

Parameter values for neighborhoodWalking().

Usage
S3 method for class 'walking'
print(x, ...)
Arguments
X An object of class "walking" created by neighborhoodWalking().
Additional parameters.
Value

A list of argument values.

Examples

neighborhoodWalking()
print(neighborhoodWalking())

print.walking_path Print method for walkingPath().

Description

Summary output.

Usage

S3 method for class 'walking_path'
print(x, ...)

48

Arguments

X

Value

An R data frame.

Examples

walkingPath()

profile2D

An object of class "walking_path" created by walkingPath().

Additional parameters.

print(walkingPath())

profile2D

2D Profile .

Description

2D Profile .

Usage

profile2D(angle

= 0, pump = 7, vestry = FALSE, type = "base",

multi.core = FALSE)

Arguments
angle

pump

vestry

type

multi.core

Examples

profile2D(angle

profile2D(angle =

Numeric. Angle of perspective axis in degrees.
Numeric. Select pump as focal point.

Logical. TRUE uses the 14 pumps from the Vestry Report. FALSE uses the 13 in
the original map.

Character. Type of graphic: "base" or "ggplot2".

Logical or Numeric. TRUE uses parallel::detectCores(). FALSE uses one,
single core. You can also specify the number logical cores. See vignette(”Parallelization”)
for details.

30)
30, type = "ggplot2")

profile3D 49

profile3D 3D Profile.

Description

3D Profile.

Usage

profile3D(pump.select = NULL, pump.subset = NULL, vestry = FALSE,
drop.neg.subset = FALSE, multi.core = FALSE)

Arguments
pump.select Numeric. Vector of numeric pump IDs to define pump neighborhoods (i.e., the
"population"). Negative selection possible. NULL selects all pumps.
pump.subset Numeric. Vector of numeric pump IDs to subset from the neighborhoods de-
fined by pump.select. Negative selection possible. NULL selects all pumps in
pump.select.
vestry Logical. TRUE uses the 14 pumps from the Vestry Report. FALSE uses the 13 in

the original map.
drop.neg.subset
Logical. Drop negative subset selection
multi.core Logical or Numeric. TRUE uses parallel::detectCores(). FALSE uses one,

single core. You can also specify the number logical cores. See vignette(”Parallelization”)
for details.

Examples

profile3D(pump.select = 6:7)
profile3D(pump.subset = -7)
profile3D(pump.subset = -7, drop.neg.subset = TRUE)

pumpCase Extract numeric case IDs by pump neighborhood.

Description

Extract numeric case IDs by pump neighborhood.

Usage

pumpCase(x, case)

50 pumpData

Arguments
X An object created by neighborhoodEuclidean(), neighborhoodVoronoi ()
or neighborhoodWalking().
case Character. "address" or "fatality"
Value

An R list of numeric ID of cases by pump neighborhoods.

Examples

pumpCase (neighborhoodEuclidean())
pumpCase (neighborhoodVoronoi())
pumpCase (neighborhoodWalking())

pumpData Compute pump coordinates.

Description
Returns either the set of x-y coordinates for the pumps themselves or for their orthogonally projected
"addresses" on the network of roads.

Usage

pumpData(vestry = FALSE, orthogonal = FALSE, multi.core = FALSE)

Arguments
vestry Logical. TRUE uses the 14 pumps from the Vestry report. FALSE uses the 13 in
the original map.
orthogonal Logical. TRUE returns pump "addresses": the coordinates of the orthogonal pro-
jection from a pump’s location onto the network of roads. FALSE returns pump
location coordinates.
multi.core Logical or Numeric. TRUE uses parallel::detectCores(). FALSE uses one,
single core. With Numeric, you specify the number logical cores (rounds with
as.integer()). See vignette("Parallelization”) for details.
Value

An R data frame.

pumpLocator 51

Note

Note: The location of the fourteenth pump, at Hanover Square, and the "correct" location of the
Broad Street pump are approximate. This function documents the code that generates pumps,
pumps.vestry, ortho.proj.pump and ortho.proj.pump.vestry.

See Also

pumpLocator

pumpLocator Locate water pump by numerical ID.

Description

Highlight selected water pump.

Usage

pumplLocator(id = 7, zoom = 1, vestry = FALSE, add.title = TRUE,
highlight.segment = TRUE, data = FALSE)

Arguments

id Numeric or Integer. With vestry = TRUE, a whole number between 1 and 14.
With vestry = FALSE, a whole number between 1 and 13. See cholera: :pumps.vestry
and cholera: : pumps for IDs and details about specific pumps.

zoom Logical or Numeric. A numeric value >= 0 controls the degree of zoom. The
default is 1.

vestry Logical. TRUE for the 14 pumps from Vestry Report. FALSE for the original 13
pumps.

add.title Logical. Include title.

highlight.segment
Logical. Highlight case’s segment.
data Logical. Output data.

Value

A base R graphics plot.

See Also

pumpData

Examples

pumpLocator ()
pumpLocator(zoom = TRUE)
pumpLocator(14, vestry = TRUE, zoom = TRUE)

52 pumps.vestry

pumps Dodson and Tobler’s pump data with street name.

Description

Adds and amends road locations for water pumps from John Snow’s map to Dodson and Tobler’s
street data. The latter are available at Michael Friendly’s HistData::Snow.streets.

Usage

pumps

Format
A data frame with 13 observations and 4 variables that describe the pumps on Snow’s map.

id pump number between 1 and 13
street nearest street
x x-coordinate

y y-coordinate

Note

pumpData documents the code for these data.

See Also

pumplLocator

pumps.vestry Vestry report pump data.

Description

These data include the fourteenth pump, at Hanover Square, and the "corrected" location of the
Broad Street pump that Snow includes in the second version of his map in the Vestry report.

Usage

pumps.vestry

regular.cases 53

Format

A data frame with 14 observations and 4 variables.

id pump number between 1 and 14
street nearest street
x x-coordinate

y y-coordinate

Note

pumpData documents the code for these data.

See Also

pumpLocator

regular.cases "Expected" cases.

Description
The result of using sp::spsample() and sp::Polygon() to generate 19,993 regularly spaced simulated
cases within the map’s borders.

Usage

regular.cases

Format

A data frame with 2 variable that records the position of 19,993 "expected" cases fitted by sp::spsample().

X x-coordinate

y y-coordinate

Note

simulateFatalities documents the code for these data.

54 road.segments

road.segments Dodson and Tobler’s street data transformed into road segments.

Description

This data set transforms Dodson and Tobler’s street data to give each straight line segment of a
"road" a unique ID.

Usage

road.segments

Format

A data frame with 657 observations and 7 variables. The data describe the straight line segments
used to recreate the roads on Snow’s map.

street numeric street ID, which range between 1 and 528

id character segment ID

name road name

x1 x-coordinate of first endpoint

y1 y-coordinate of first endpoint

x2 x-coordinate of second endpoint

y2 y-coordinate of second endpoint

Note

roadSegments documents the code for these data.

See Also

roads
vignette("road.names")
streetNamelLocator
streetNumberLocator

segmentlLocator

roads 55

roads Dodson and Tobler’s street data with appended road names.

Description

This data set adds road names from John Snow’s map to Dodson and Tobler’s street data. The latter
are also available from HistData::Snow.streets.

Usage

roads

Format

A data frame with 206 observations and 5 variables. The data describe the roads on Snow’s map.

street street segment number, which range between 1 and 528
n number of points in this street line segment

x x-coordinate

y y-coordinate

id unique numeric ID

name road name

See Also

road.segments
vignette("road.names")
streetNamelLocator
streetNumberLocator

segmentlLocator

roadSegments Reshape ’roads’ data frame into 'road.segments’ data frame.

Description

Used to integrate pumps and cases into road network when computing walking neighborhoods.

Usage

roadSegments()

56 segmentLength

Value

An R data frame.

Note

This function documents the code that generates road. segments.

segmentLength Compute length of road segment.

Description

Compute length of road segment.

Usage

segmentLength(id = "216-1", distance.unit = "meter")

Arguments

id Character. A concatenation of a street’s numeric ID, a whole number between 1
and 528, and a second number used to identify the sub-segments.

distance.unit Character. Unit of distance: "meter", "yard" or "native". "native" returns the
map’s native scale. See vignette(”roads") for information on conversion.

Value

An R vector of length one.

Examples

segmentLength("”242-1")
segmentlLength(”242-1", distance.unit = "yard")

segmentLocator 57

segmentLocator Locate road segment by ID.

Description

Highlights the selected road segment and its cases.

Usage

segmentLocator(id = "216-1", zoom = 0.5, cases = "address”,
distance.unit = "meter”, time.unit = "second”, walking.speed = 5,
add.title = TRUE, add.subtitle = TRUE, highlight = TRUE)

Arguments
id Character. A concatenation of a street’s numeric ID, a whole number between 1
and 528, and a second number to identify the segment.
zoom Logical or Numeric. A numeric value >= 0 controls the degree of zoom. The
default is 0.5.
cases Character. Plot cases: NULL, "address" or "fatality".

"non

distance.unit Character. Unit of distance: "meter", "yard" or "native". "native" returns the
map’s native scale. See vignette(”roads") for information on conversion.

time.unit Character. "hour", "minute", or "second".

walking.speed Numeric. Walking speed in km/hr.

add.title Logical. Print title.

add.subtitle Logical. Print subtitle.

highlight Logical. Highlight selected road and its cases.
Value

A base R graphics plot.
Note

With Dodson and Tobler’s data, a street (e.g., Broad Street) is often comprised of multiple straight
line segments. To identify each segment individually, an additional number is appended to form a
text string ID (e.g., "116-2"). See cholera: :road. segments.

Examples

segmentLocator(”190-1")
segmentLocator("216-1")
segmentlLocator(”216-1", distance.unit = "yard")

58 sim.pump.case

sim.ortho.proj Road "address" of simulated (i.e., "expected") cases.

Description

Road "address" of simulated (i.e., "expected") cases.

Usage

sim.ortho.proj

Format

A data frame with 6 variables that records the "address" of 19,993 simulate cases along the network
of roads.

road.segment "address" road segment

X.proj x-coordinate

y.proj y-coordinate

dist Euclidean or orthogonal distance to home road segment

type type of projection: Euclidean ("eucl") or orthogonal ("ortho")

case numeric case ID

Note

simulateFatalities documents the code for these data.

sim.pump.case List of "simulated" fatalities grouped by walking-distance pump neigh-
borhood.

Description

List of "simulated" fatalities grouped by walking-distance pump neighborhood.

Usage

sim.pump.case

Format

A list 4972 IDs spread over 13 vectors.

sim.pump.case numerical ID

sim.walking.distance 59

Note

neighborhoodWalking documents the code for these data. For details, see vignette("pump.neighborhoods").

Examples

pumpCase(neighborhoodWalking(case.set = "expected”))

sim.walking.distance Walking distance to Broad Street Pump (#7).

Description

Walking distance to Broad Street Pump (#7).

Usage

sim.walking.distance

Format
A data frames with 5 variables.

case case ID

pump pump ID

pump.name pump name

distance walking distance in meters

time walking time in seconds based on 5 km/hr walking speed

simulateFatalities Generate simulated fatalities.

Description

Places regularly spaced "simulated" or "expected" cases across the face of the map. The func-
tion finds the "addresses" of cases via orthogonal projection or simple proximity. These data are
used to generate "expected" pump neighborhoods. The function relies on sp: :spsample() and
sp::Polygon().

Usage

simulateFatalities(compute = FALSE, multi.core = FALSE,
simulated.obs = 20000L, dev.mode = FALSE)

60 simulateWalkingDistance

Arguments
compute Logical. TRUE computes data. FALSE uses pre-computed data. For replication of
data used in the package,
multi.core Logical or Numeric. TRUE uses parallel::detectCores(). FALSE uses one,

single core. With Numeric, you specify the number logical cores (rounds with
as.integer()). See vignette("Parallelization") for details.

simulated.obs Numeric. Number of sample cases.

dev.mode Logical. Development mode uses parallel::parLapply().

Value

An R list with two elements: sim.ortho.proj and regular.cases

Note

This function is computationally intensive. With "simulated.obs" set to 20,000 simulated cases (ac-
tually generating 19,993 cases). This function documents the code that generates sim.ortho.proj
and regular.cases. In real world terms, the distance between of these simulated cases is approxi-
mately 6 meters.

simulateWalkingDistance
Compute walking distance for simulated cases.

Description

Compute walking distance for simulated cases.

Usage

simulateWalkingDistance(pump.select = 7, multi.core = FALSE,
dev.mode = FALSE, compute = FALSE)

Arguments
pump.select Numeric.
multi.core Logical or Numeric. TRUE uses parallel::detectCores(). FALSE uses one,
single core. You can also specify the number logical cores.
dev.mode Logical. Development mode uses parallel::parLapply().
compute Logical.
Note

This function is computationally intensive. See vignette("”Parallelization”) for details. This
functions document the code that generates sim.walking.distance.

snow.neighborhood 61

snow. neighborhood Snow neighborhood fatalities.

Description
Numeric IDs of fatalities from Dodson and Tobler that fall within Snow’s Broad Street pump neigh-
borhood.

Usage

snow. neighborhood

Format

A vector with 384 observations.

snow.neighborhood numeric case ID

snowColors Create a set of colors for pump neighborhoods.

Description

Uses RColorBrewer: :brewer.pal().

Usage

snowColors(vestry = FALSE)

Arguments
vestry Logical. TRUE uses the 14 pumps in the Vestry Report. FALSE uses the original
13.
Value

A character vector of colors.

Note

Built with "RColorBrewer’ package.

62 snowMap

snowMap Plot John Snow’s cholera map.

Description

Plot John Snow’s cholera map.

Usage

snowMap(vestry = FALSE, stacked = TRUE, add.cases = TRUE,
add.landmarks = FALSE, add.pumps = TRUE, add.roads = TRUE,
add.frame = TRUE, main = NA, case.col = "gray"”, case.pch = 15,

.
Arguments
vestry Logical. TRUE uses the 14 pumps from the map in the Vestry Report. FALSE uses
the 13 pumps from the original map.
stacked Logical. Use stacked fatalities.
add.cases Logical. Add observed cases.
add.landmarks Logical. Add landmarks.
add. pumps Logical. Add pumps.
add.roads Logical. Add roads.
add. frame Logical. Add map frame.
main Character. Title of graph.
case.col Character. Color of fatalities.
case.pch Character. Color of fatalities.
Additional plotting parameters.
Value
A base R graphics plot.
Note

Uses amended version of Dodson and Tobler’s data included in this package.

Examples

snowMap ()
snowMap(vestry = TRUE, stacked = FALSE)

snowNeighborhood 63

snowNeighborhood Plotting data for Snow’s graphical annotation of the Broad Street
pump neighborhood.

Description

Computes "missing" and split road segments data, and area plot data.

Usage

snowNeighborhood()

Value

An R list of edge IDs and simulated case IDs.

streetHighlight Highlight road by name.

Description

Highlight road by name.

Usage

streetHighlight(road.name)

Arguments
road.name Character vector. The functions tries to correct for case and to remove extra
spaces.
Value

A base R graphics segment(s).

Examples

snowMap ()
streetHighlight("Broad Street")

64 streetNamelL ocator

streetlLength Compute length of selected street.

Description

Compute length of selected street.

Usage
streetlLength(road = "Oxford Street”, distance.unit = "meter")
Arguments
road Character or Numeric. Road name or number. For names, the function tries to

correct for case and to remove extra spaces.

distance.unit Character. Unit of distance: "meter", "yard" or "native". "native" returns the
map’s native scale. See vignette("roads") for information on conversion.

Value

An R vector of length one.

Examples

streetLength("Oxford Street")
streetLength("oxford street”)

streetlLength(”"oxford street”, distance.unit = "yard")
streetNameLocator Locate road by name.
Description

Highlight a road and its cases. See the list of road names in vignette("road.names").

Usage

streetNameLocator(road.name = "Broad Street”, zoom = FALSE,
cases = "address”, token = "id"”, add.title = TRUE,
add.subtitle = TRUE, add.pump = TRUE, vestry = FALSE,
highlight = TRUE, distance.unit = "meter”, time.unit = "minute”,
walking.speed = 5)

streetNumberLocator 65

Arguments

road.name Character vector. Note that streetNameLocator() tries to correct for case and
to remove extra spaces.

zoom Logical or Numeric. A numeric value >= 0 controls the degree of zoom. The
default is FALSE, which is equivalent to zero.

cases Character. Plot cases: NULL, "address" or "fatality".

token Character. "id" or "point".

add.title Logical. Include title.

add.subtitle Logical. Include subtitle with road information.

add. pump Logical. Include nearby pumps.

vestry Logical. TRUE uses the 14 pumps from the Vestry report. FALSE uses the 13 in

the original map.

highlight Logical. Highlight selected road and its cases.

"non

distance.unit Character. Unit of distance: "meter", "yard" or "native". "native" returns the
map’s native scale. See vignette(”roads") for information on conversion.
" "

time.unit Character. "hour", "minute", or "second".

walking.speed Numeric. Walking speed in km/hr.

Value

A base R graphics plot.

Examples

streetNameLocator ("Oxford Street")
streetNameLocator ("oxford street”)
streetNameLocator(”Cambridge Street”, zoom = TRUE)
streetNameLocator("Cambridge Street”, zoom = 0.5)

streetNumberLocator Locate road by numerical ID.

Description

Highlight a road and its cases. See cholera: : roads for numerical IDs and vignette("road.names")
for details.

Usage

streetNumberLocator(road.number = 216, zoom = FALSE,
cases = "address”, token = "id"”, add.title = TRUE,
add.subtitle = TRUE, add.pump = TRUE, vestry = FALSE,
highlight = TRUE, distance.unit = "meter”, time.unit = "second”,
walking.speed = 5)

Arguments

road.number

zoom

cases
token
add.title
add.subtitle
add. pump

vestry

highlight

distance.unit

time.unit

walking. speed

Value

summary.euclidean

Numeric or integer. A whole number between 1 and 528.

Logical or Numeric. A numeric value >= 0 controls the degree of zoom. The
default is FALSE, which is equivalent to zero.

Character. Plot cases: NULL, "address" or "fatality".
Character. "id" or "point".

Logical. Include title.

Logical. Include subtitle with road information.
Logical. Include nearby pumps.

Logical. TRUE uses the 14 pumps from the Vestry report. FALSE uses the 13 in
the original map.

Logical. Highlight selected road and its cases.

Character. Unit of measurement: "meter" or "yard". Default is NULL, which
returns the map’s native scale.

non

Character. "hour", "minute", or "second".

Numeric. Walking speed in km/hr.

A base R graphics plot.

Examples

streetNumberLocator(243)

streetNumberLocator(243, zoom
streetNumberLocator(243, zoom

TRUE)
0.5)

summary.euclidean

Summary method for neighborhoodEuclidean().

Description

Return computed counts for Euclidean neighborhoods.

Usage

S3 method for class
summary (object,

Arguments

object

'euclidean’

)

Object. An object of class "euclidean" created by neighborhoodEuclidean().

Additional parameters.

summary.voronoi
Value

A vector of counts by neighborhood.

Examples

summary (neighborhoodEuclidean())

67

summary.voronoi Summary method for neighborhoodVoronoi().

Description

Return computed counts for Voronoi neighborhoods.

Usage
S3 method for class 'voronoi'
summary (object, ...)
Arguments
object Object. An object of class "voronoi" created by neighborhoodVoronoi ().

Additional arguments.

Value

A vector of counts by neighborhood.

See Also

addVoronoi() plot.voronoi()

Examples

summary (neighborhoodVoronoi())

68 timeSeries

summary.walking Summary method for neighborhoodWalking().

Description

Return computed counts for walking neighborhoods.

Usage
S3 method for class 'walking'
summary (object, ...)
Arguments
object Object. An object of class "walking" created by neighborhoodWalking().

Additional parameters.

Value

An R vector.

Examples

summary (neighborhoodWalking())

timeSeries Aggregate time series fatality data from the Vestry report.

Description

Aggregate time series fatality data from the Vestry report.

Usage

timeSeries(vestry = FALSE)

Arguments

vestry Logical. TRUE returns the data from the Vestry committee (Appendix B, p. 175).
FALSE returns John Snow’s contribution to the report (p.117).

unitMeter 69

Value
A R list with two objects: "data" and "source" ("snow" or "vestry").
* date: Calendar date.
* day: Day of the week.

* deaths: Measure of fatality.
» fatal.attacks: Measure of fatality.

Note

The "snow" data appears on p. 117 of the report; the "vestry" data appear in Appendix B on p.175.

See Also

plot.time_series, print.time_series, vignette("time.series")

Examples

timeSeries(vestry = TRUE)
plot(timeSeries())

unitMeter Convert nominal map distance to meters or yards.

Description

A best guess estimate.

Usage

unitMeter(x, distance.unit = "meter"”, yard.unit = 177/3,
meter.unit = 54)

Arguments

X Numeric. Nominal map distance.

distance.unit Character. Unit of distance: "meter", "yard" or "native". "native" returns the
map’s native scale. See vignette("roads") for information on conversion.

yard.unit Numeric. Estimate of yards per map unit.

meter.unit Numeric. Estimate of meters per map unit:.

70 unstackFatalities

unstackFatalities Unstack "stacks" in Snow’s cholera map.

Description

Unstacks fatalities data by 1) assigning the coordinates of the base case to all cases in a stack and
2) setting the base case as an "address" and making the number of fatalities an attribute.

Usage

unstackFatalities(multi.core = FALSE, compute = FALSE,
fatalities = fixFatalities(), dev.mode = FALSE)

Arguments
multi.core Logical or Numeric. TRUE uses parallel::detectCores(). FALSE uses one,
single core. With Numeric, you specify the number logical cores. See vignette("Parallelization”)
for details.
compute Logical. TRUE computes data. FALSE uses pre-computed data.
fatalities Corrected fatalities data from cholera::fixFatalities(). For original data,
use HistData: :Snow.deaths.
dev.mode Logical. Development mode uses parallel::parLapply().
Value

An R list that includes anchor . case, fatalities.address, fatalities.unstacked and ortho.proj.

Note

This function is computationally intensive. This function documents the code that generates anchor . case,
fatalities.address, fatalities.unstacked and ortho.proj.

See Also

vignette("unstacking.fatalities")

voronoiPolygons 71

voronoiPolygons Extract vertices of Delauny triangles and Dirichelet (Voronoi) tiles.

Description

For construction and plotting of Delauny and Voronoi polygons.

Usage
voronoiPolygons(sites, rw.data = NULL, rw = NULL, type = "tiles",
output = "vertices")
Arguments
sites Object. Data frame of sites to compute Delauny triangulation and Dirichelet
(Voronoi) tessellation with variables "x" and "y".
rw.data Object. Data frame of secondary source of data to set the rectangular window
or bounding box: observations, cases, etc. with variables "x" and "y".
rw Numeric. Alternative to rw.data: vector of corners to define the rectangular
window or bounding box: xmin, Xmax, ymin, ymax.
type Character. "tiles" (tessellation) or "triangles" (triangulation) vertices.
output Character. "vertices" or "polygons". "vertices" re "polygons" will draw base R

polygons() to an existing plot.

Value

An R list of data frames or base R graphics polygon()’s’.

Note

This function relies on the ’deldir’ package.

Examples

snowMap ()
voronoiPolygons(pumps, output = "polygons")

snowMap ()
voronoiPolygons(pumps, roads, output = "polygons")

snowMap ()
voronoiPolygons(pumps, roads, type = "triangles”, output = "polygons")

vertices <- voronoiPolygons(pumps, roads)

snow.colors <- grDevices::adjustcolor(snowColors(), alpha.f = 1/3)

snowMap (add.cases = FALSE)

invisible(lapply(seg_along(vertices), function(i) {
polygon(vertices[[i]], col = snow.colors[[i]])

m

72

walkingPath

walkingPath

Compute the shortest walking path between cases and/or pumps.

Description

Compute the shortest walking path between cases and/or pumps.

Usage

walkingPath(origin = 1, destination = NULL, type = "case-pump”,
observed = TRUE, weighted = TRUE, vestry = FALSE,

distance.unit = "meter”, time.unit = "second”, walking.speed = 5)
Arguments

origin Numeric or Character. Numeric ID of case or pump. Character landmark name.

destination Numeric or Character. Numeric ID(s) of case(s) or pump(s). Exclusion is pos-
sible via negative selection (e.g., -7). Default is NULL: this returns closest pump
or "anchor" case. Character landmark name (case insensitive).

type Character "case-pump", "cases" or "pumps".

observed Logical. Use observed or "simulated" expected data.

weighted Logical. TRUE computes shortest path in terms of road length. FALSE computes
shortest path in terms of nodes.

vestry Logical. TRUE uses the 14 pumps from the Vestry report. FALSE uses the 13 in

distance.unit

time.unit

walking. speed

Value

the original map.

"non

Character. Unit of distance: "meter", "yard" or "native". "native" returns the
map’s native scale. "unit" is meaningful only when "weighted" is TRUE. See
vignette("roads") for information on unit distances.

non

Character. "hour", "minute", or "second".

Numeric. Walking speed in km/hr.

An R list with two elements: a character vector of path nodes and a data frame summary.

Note

The function uses a case’s "address" (i.e., a stack’s "anchor" case) to compute distance. Time is
computed using distanceTime(). Adam and Eve Court, and Falconberg Court and Falconberg
Mews, are disconnected from the larger road network; they form two isolated subgraphs. This
has two consequences: first, only cases on Adam and Eve Court can reach pump 2 and those cases
cannot reach any other pump; second, cases on Falconberg Court and Mews cannot reach any pump.
Unreachable pumps will return distances of "Inf".

withinRadius

Examples

path from case 1 to nearest pump.
walkingPath(1)

path from pump 1 to nearest case.
walkingPath(NULL, 1)

path from case 1 to pump 6.
walkingPath(1, 6)

exclude pump 7 from consideration.
walkingPath(1, -7)

path from case 1 to case 6.
walkingPath(1, 6, type = "cases")

path from pump 1 to pump 6.
walkingPath(1, 6, type = "pumps")

for multiple cases.
lapply(1:3, walkingPath)

path from case 1 to nearest pump.
plot(walkingPath(1))

path from John Snow's residence to Broad Street pump.
plot(walkingPath(”John Snow”, 7))

73

withinRadius Test whether point "b" is within a given radius of point "a".

Description

Test whether point "b" is within a given radius of point "a".

Usage

withinRadius(a, b, radius = 2)

Arguments
a Numeric. Data frame of x-y coordinates.
b Numeric. Data frame of x-y coordinates.

radius Numeric.

Index

+Topic datasets
anchor.case, 19
border, 20
fatalities, 24
fatalities.address, 25
fatalities.unstacked, 25
landmark.squares, 27
landmarks, 28
ortho.proj, 33
ortho.proj.pump, 34
ortho.proj.pump.vestry, 35
plague.pit, 37
pumps, 52
pumps.vestry, 52
regular.cases, 53
road.segments, 54
roads, 55
sim.ortho.proj, 58
sim.pump.case, 58
sim.walking.distance, 59
snow.neighborhood, 61

addCase, 5

addDelauny, 5
addEuclideanPath, 6
addFrame, 7

addIndexCase, 7
addKernelDensity, 8
addLandmarks, 9
addMilePosts, 10
addNeighborhoodCases, 11
addNeighborhoodEuclidean, 12
addNeighborhoodWalking, 13
addPlaguePit, 14
addPump, 15

addRoads, 15

addSnow, 16

addVoronoi, 16
addWalkingPath, 17
addWhitehead, 18

74

anchor.case, 19, 70
border, 20

caselocator, 19, 20, 24-26
cholera-package, 4
classifierAudit, 21

distanceTime, 22
euclideanPath, 22

fatalities, 24
fatalities.address, 25, 70
fatalities.unstacked, 25, 70
fixFatalities, 24, 26

landmark.squares, 27
landmarkData, 27, 28
landmarks, 28

mapRange, 28

nearestPump, 29
neighborhoodData, 30
neighborhoodEuclidean, 30
neighborhoodVoronoi, 31
neighborhoodWalking, 32, 59

ortho.proj, 33, 70
ortho.proj.pump, 34, 51
ortho.proj.pump.vestry, 35, 51
orthogonalProjection, 35

pearsonResiduals, 36
plague.pit, 37
plot.classifier_audit, 37
plot.euclidean, 38
plot.euclidean_path, 39
plot.neighborhood_data, 39
plot.profile_perspective, 40

INDEX

plot.time_series, 40, 69
plot.voronoi, 41
plot.walking, 42
plot.walking_path, 43
print.classifier_audit, 44
print.euclidean, 44
print.euclidean_path, 45
print.time_series, 46, 69
print.voronoi, 46
print.walking, 47
print.walking_path, 47
profile2D, 48
profile3D, 49
pumpCase, 49
pumpData, 34, 35, 50, 51-53
pumpLocator, 51, 51, 52, 53
pumps, 51, 52
pumps.vestry, 51,52

regular.cases, 53, 60
road. segments, 54, 55, 56
roads, 54, 55
roadSegments, 54, 55

segmentLength, 56
segmentlLocator, 54, 55, 57
sim.ortho.proj, 58, 60
sim.pump.case, 58
sim.walking.distance, 59, 60
simulateFatalities, 53, 58, 59
simulateWalkingDistance, 60
snow.neighborhood, 61
snowColors, 61

snowMap, 62

snowNeighborhood, 63
streetHighlight, 63
streetLength, 64
streetNamelLocator, 24-26, 54, 55, 64
streetNumberLocator, 24-26, 54, 55, 65
summary.euclidean, 66
summary.voronoi, 67
summary.walking, 68

timeSeries, 41, 68

unitMeter, 69
unstackFatalities, 19, 25, 26, 34, 70

voronoiPolygons, 71

walkingPath, 72
withinRadius, 73

75

	cholera-package
	addCase
	addDelauny
	addEuclideanPath
	addFrame
	addIndexCase
	addKernelDensity
	addLandmarks
	addMilePosts
	addNeighborhoodCases
	addNeighborhoodEuclidean
	addNeighborhoodWalking
	addPlaguePit
	addPump
	addRoads
	addSnow
	addVoronoi
	addWalkingPath
	addWhitehead
	anchor.case
	border
	caseLocator
	classifierAudit
	distanceTime
	euclideanPath
	fatalities
	fatalities.address
	fatalities.unstacked
	fixFatalities
	landmark.squares
	landmarkData
	landmarks
	mapRange
	nearestPump
	neighborhoodData
	neighborhoodEuclidean
	neighborhoodVoronoi
	neighborhoodWalking
	ortho.proj
	ortho.proj.pump
	ortho.proj.pump.vestry
	orthogonalProjection
	pearsonResiduals
	plague.pit
	plot.classifier_audit
	plot.euclidean
	plot.euclidean_path
	plot.neighborhood_data
	plot.profile_perspective
	plot.time_series
	plot.voronoi
	plot.walking
	plot.walking_path
	print.classifier_audit
	print.euclidean
	print.euclidean_path
	print.time_series
	print.voronoi
	print.walking
	print.walking_path
	profile2D
	profile3D
	pumpCase
	pumpData
	pumpLocator
	pumps
	pumps.vestry
	regular.cases
	road.segments
	roads
	roadSegments
	segmentLength
	segmentLocator
	sim.ortho.proj
	sim.pump.case
	sim.walking.distance
	simulateFatalities
	simulateWalkingDistance
	snow.neighborhood
	snowColors
	snowMap
	snowNeighborhood
	streetHighlight
	streetLength
	streetNameLocator
	streetNumberLocator
	summary.euclidean
	summary.voronoi
	summary.walking
	timeSeries
	unitMeter
	unstackFatalities
	voronoiPolygons
	walkingPath
	withinRadius
	Index

