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1 Types of threshold effects

1.1 Continuous threshold effects

The continuous threshold effects supported in the chngpt package (Figure 1.1) are

η = α1 + αT2 z + β1 (x− e)+ (hinge, M01)

η = α1 + αT2 z + β1 (x− e)+ + β2 (x− e)2+ (M02)

η = α1 + αT2 z + β1 (x− e)+ + β2 (x− e)2+ + β3 (x− e)3+ (M03)

η = α1 + αT2 z + β1 (x− e)− (upper hinge, M01)

η = α1 + αT2 z + β1 (x− e)− + β2 (x− e)2− (M20)

η = α1 + αT2 z + β1 (x− e)− + β2 (x− e)2− + β3 (x− e)3− (M30)

η = α1 + αT2 z + γx+ β1 (x− e)+ (segmented, M11)

η = α1 + αT2 z + γx+ β1 (x− e)+ + β2 (x− e)2+ (M12)

η = α1 + αT2 z + γx+ β1 (x− e)+ + β2 (x− e)2+ + β3 (x− e)3+ (M13)

η = α1 + αT2 z + γx+ β1 (x− e)− + β2 (x− e)2− (M21)

η = α1 + αT2 z + γx+ β1 (x− e)− + β2 (x− e)2− + β3 (x− e)3− (M31)

η = α1 + αT2 z + β1,− (x− e)− + β1,+ (x− e)+ + β2,− (x− e)2− + β2,+ (x− e)2+ (M22)

η = α1 + αT2 z + γx+ β2,− (x− e)2− + β2,+ (x− e)2+ (M22c)

η = α1 + αT2 z + γx+ β2 (x− e)2 + β3,− (x− e)3− + β3,+ (x− e)3+ (M33c)

where e denote the threshold parameter, x is the predictor with threshold effect, z denote a
vector of additional predictors, and

(x− e)+ =

{
x− e if x > e
0 if otherwise

(x− e)− =

{
0 if x > e

x− e if otherwise
.

Hinge and segmented models are studied in Fong et al. (2017b). Upper hinge models are
studied in Elder and Fong (2019). Manuscript describing the estimation and inference of
other models are under preparation.
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Figure 1.1: Types of continuous threshold effects supported in chngpt.
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1.2 Discontinuous threshold effects

The discontinuous threshold effects supported in the chngpt package (Figure 1.2) are:

η = α1 + αT2 z + β1I (x > e) (step)

η = α1 + αT2 z + β1 (x− e)+ + γx+ β2I (x > e) , (stegmented)

where e denote the threshold parameter, x is the predictor with threshold effect, z denote a
vector of additional predictors, and

I (x > e) =

{
1 if x > e
0 if otherwise

step stegmented

Figure 1.2: Types of discontinuous threshold effects supported in chngpt.
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2 Examples

The examples below are organized by type of threshold effects and regression models. Before
we get into specific examples, here are some notes that are of general interest:

• The fitted model has a component named best.fit, which is the glm or coxph fit at
the estimated threshold parameter. This could be useful to know if one would like to
extract information from model.

2.1 Continuous threshold linear regression

For continuous threshold linear regression, we have developed a grid search method for esti-
mation that is super fast (Fong, 2018). Together with the observation that bootstrap con-
fidence intervals have better coverage than robust analytical confidence intervals (Fong et al.,
2017b) for continuous threshold linear models, we recommend setting est.method="fastgrid"
and var.type="bootstrap" in the call to chngptm.

2.1.1 Example 1. The MTCT dataset, segmented model

To estimate a threshold linear regression model with a segmented-type change point for the
relationship between V3_BioV3B and NAb_score in the MTCT dataset, we call

fit=chngptm (formula.1=V3_BioV3B∼1, formula.2=∼NAb_score, dat.mtct.2,
type="segmented", family="gaussian",
est.method="fastgrid", var.type="bootstrap", save.boot=TRUE)

• formula.2 and formula.1: threshold variable and the rest of the model
• type: type of threshold model to fit
• est.method defaults to fastgrid and is recommended
• var.type: bootstrap method is recommended here
• save.boot: saves bootstrap samples for plotting bootstrap distributions

Calling summary(fit), we get

Change point model type: segmented

Coefficients:
est p.value* (lower upper)

(Intercept) -22.33152 1.593423e-08 -30.07675 -14.58628
NAb_score 67.23925 2.212981e-14 49.98398 84.49452
(NAb_score-chngpt)+ -64.83129 3.692679e-14 -81.61413 -48.04845

Threshold:
est (lower upper)

0.4653923 0.4535000 0.4772845
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In the output above, the row starting with (NAb_score-chngpt)+ corresponds to β1 in
equation (??). In other words, it is the change in slope as the covariate NAb_score crosses
the threshold.
Note that we there is an asterisk next to p.value. This is because bootstrap procedures

to generate confidence intervals do not readily lead to p values. The presented p values are
approximations, obtained assuming that the bootstrap sampling distributions are normal.

To get an estimate of the slope after threshold, we call

est=lincomb(fit, comb=c(0,1,1), alpha=0.05); print(est)

and get

95% 95%
2.40795883 -0.06780353 4.88372120

Calling plot(fit, which=1) and plot(fit, which=3), we get the two plots on the
left-hand side of Figure 2.1. Changing est.method to smoothapprox in the model fit led us
to the two plots on the right-hand side.
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Figure 2.1: This is a replicate of Fong (2018) Figure 1. Left: results by fast grid search;
right: results by smooth approximation search. Top: scatterplots with fitted models (gray
lines); bottom: bootstrap distributions of the threshold estimate from 103 replicates. The
dashed lines correspond to the 95% symmetric bootstrap confidence interval.
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2.1.2 Example 2. The trees dataset, segmented model

To estimate a threshold linear regression model with a segmented-type change point in Girth
for the trees dataset, we call

fit=chngptm(formula.1=Volume∼1, formula.2=∼Girth, data=trees,
type="segmented", family="gaussian",
var.type="bootstrap", weights=NULL)

• formula.2 and formula.1: threshold variable and the rest of the model
• type: type of threshold model to fit
• var.type: bootstrap method is recommended for confidence interval
• weights can be supplied

Calling summary(fit), we get

Change point model type: segmented

Coefficients:
est p.value* (lower upper)

(Intercept) -24.614440 1.985482e-04 -37.580354 -11.648527
Girth 3.993966 9.288973e-11 2.785558 5.202373
(Girth-chngpt)+ 4.266618 8.261144e-04 1.765770 6.767467

Threshold:
est (lower upper)
16.0 12.9 19.1

Calling plot(fit), we get Figure 2.2.

To test whether there is a change point (Fong et al., 2015), we call

test=chngpt.test(formula.null=Volume∼1, formula.chngpt=∼Girth, trees,
type="segmented", family="gaussian")

When printed, we get

Maximum of Likelihood Ratio Statistics

data: trees
Maximal statistic = 17.694, change point = 15.388, p-value = 0.00014
alternative hypothesis: two-sided

The first line gives the type of test carried out, and it is maximal likelihood ratio test
here, which is the default. In addition, a plot function can be called on the test object to
show the score or likelihood ratio statistic as a function of candidate change points.
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Figure 2.2: (a) Scatterplot of timber volume vs girth. The gray line shows the fitted seg-
mented model. (b) Log likelihood of the submodel versus threshold parameter.

2.1.3 Example 3. The vapor pressure dataset, hinge quadratic model

To estimate a hinge quadratic linear regression model in temperature for the pressure dataset,
we call

fit=chngptm(formula.1=pressure∼1, formula.2=∼temperature, data=pressure,

type="quadhinge", family="gaussian", var.type="bootstrap")
Calling summary(fit), we get

Change point model threshold.type: hingequad

Coefficients:
est p.value* (lower upper)

(Intercept) 8.278463507 0.4733673 -14.35129837 30.9082254
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(temperature-chngpt)+ 0.007124705 0.9944183 -2.00325636 1.9890069
I((temperature-chngpt)+^2) 0.039305656 0.3644561 -0.04564143 0.1242527

Threshold:
est (lower upper)
220 -680 240
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2.2 Continuous threshold logistic regression

For continuous threshold logistic regression, a fast grid search method for estimation is not
yet available. In addition, we have observed that bootstrap confidence intervals have similar
coverage as robust analytical confidence intervals (Fong et al., 2017b). Thus, we recommend
either var.type="bootstrap" or var.type="robust" in the call to chngptm. Note that
when it is set to robust, an auxiliary fit needs to be supplied, which is generally a smooth
parametric model with enough but not too many degrees of freedom.
To estimate a logistic regression model with a hinge-type change point in NAb_SF162L

for the MTCT dataset, we call

library(splines)
fit=chngptm(formula.1=y∼birth, formula.2=∼NAb_SF162LS, dat.mtct,
type="hinge", family="binomial",
est.method="smoothapprox", var.type="robust",
aux.fit=glm(y∼birth + ns(NAb_SF162LS,3), dat.mtct, family="binomial"))

• formula.2 and formula.1: threshold variable and the rest of the model
• type: type of threshold model to fit
• est.method: smoothapprox is recommended
• var.type: robust is recommended for confidence interval
• aux.fit: required for robust variance estimation

Calling summary(fit), we get

Change point model type: hinge

Coefficients:
OR p.value (lower upper)

(Intercept) 0.7026523 0.341429662 0.3388366 1.4571044
birthVaginal 1.2397649 0.523159883 0.6393632 2.4039809
(NAb_SF162LS-chngpt)+ 0.6712371 0.001332547 0.5270730 0.8548327

Threshold:
26.3% (lower upper)

7.373374 5.472271 8.186464

To test whether there is a change point (Fong et al., 2015), we call

test=chngpt.test(formula.null=y∼birth, formula.chngpt=∼NAb_SF162LS, dat.mtct,
type="hinge", family="binomial", main.method="score")

When printed, we get
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Maximum of Score Statistics

data: dat.mtct
Maximal statistic = 3.3209, change point = 7.0347, p-value = 0.00284
alternative hypothesis: two-sided

The first line gives the type of test carried out, and it may be maximal likelihood ratio
test. In addition, a plot function can be called on the test object to show the score or
likelihood ratio statistic as a function of candidate change points.

2.2.1 cbind

The chngptm function supports the use of cbind in the formula, as the glm function does.
For example,

dat.2=sim.chngpt("thresholded", "step", n=200, seed=1, beta=1, alpha=-1,
x.distr="norm", e.=4, family="binomial")

dat.2$success=rbinom(nrow(dat.2), 10, 1/(1 + exp(-dat.2$eta)))
dat.2$failure=10-dat.2$success
fit.2a=chngptm(formula.1=cbind(success,failure)~z, formula.2=~x,
family="binomial", dat.2, type="step")

2.3 Continuous threshold Poisson regression

Only grid search method and bootstrap confidence intervals are supported, so getting the
model fit with confidence intervals could take some time.

counts <- c(18,17,15,20,10,20,25,13,12)
outcome <- as.integer(gl(3,1,9))
treatment <- gl(3,3)
print(d.AD <- data.frame(treatment, outcome, counts))
fit.4=chngptm(formula.1=counts ~treatment, formula.2=~outcome, data=d.AD,
family="poisson", type="segmented", var.type="bootstrap")

summary(fit.4)

2.4 Discontinuous threshold GLM

Confidence interval for discontinuous threshold regression models can be constructed by m-
out-of-n bootstrap. (The m.out.of.n argument is set to TRUE inside chngptm for the step
and stegmented models.) For example,

fit=chngptm(formula.1=mpg~hp, formula.2=~drat, mtcars, type="step",
family="gaussian", var.type="bootstrap", ci.bootstrap.size=100)
summary(fit)

The result:
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Change point model threshold.type: step

Coefficients:
est p.value* (lower upper)

(Intercept) 27.29298302 3.412465e-20 21.48163370 33.10433234
hp -0.05692654 2.675802e-05 -0.08349583 -0.03035726
I(drat>chngpt) 5.24824935 8.914610e-03 1.31503967 9.18145903

Threshold:
est (lower upper)
4.08 3.07 5.09

2.5 Threshold Cox regression

The chngpt package also provides some support for estimation of threshold Cox regression
models. What is missing, though, is confidence intervals for parameter estimates and hy-
pothesis testing methods. See the help page on chngpt for an example.

2.6 Models with interaction terms

In the following example we fit a model with an interaction term.

fit=chngptm(formula.1=mpg ~hp, formula.2=~hp*drat, mtcars, type="segmented",
family="gaussian", var.type="bootstrap", ci.bootstrap.size=100)
summary(fit)

The model being fitted is

η = β1 + β2z + β3x+ β4 (x− e)+ + β5zx+ β6z (x− e)+

The result:

Change point model threshold.type: segmented

Coefficients:
est p.value* (lower upper)

(Intercept) 71.0423961 0.5949231 -190.8328276 332.9176199
hp -0.5714405 0.4809352 -2.1605786 1.0176976
drat -14.3708279 0.7431579 -100.3306292 71.5889735
(drat-chngpt)+ 21.6073593 0.6806816 -81.3015235 124.5162420
hp:drat 0.1658607 0.5333802 -0.3560702 0.6877916
hp:(drat-chngpt)+ -0.1970979 0.5620552 -0.8633923 0.4691965
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Threshold:
est (lower upper)
3.23 2.35 4.11

In the following example we fit a model with two interaction terms.

fit=chngptm(formula.1=mpg~hp+wt, formula.2=~hp*drat+wt*drat, mtcars, type="step",
family="gaussian", var.type="bootstrap", ci.bootstrap.size=100)
summary(fit)

The model being fitted is

η = β1 + β2z1 + β3z2 + β4I (x > e) + β5z1I (x > e) + β6z2I (x > e)

The result:

Change point model threshold.type: step

Coefficients:
est p.value* (lower upper)

(Intercept) 30.83332346 1.458455e-06 18.2870806 43.3795663
hp -0.02389962 7.233212e-01 -0.1562164 0.1084172
wt -2.58756410 1.867228e-01 -6.4287268 1.2535986
I(drat>chngpt) 11.69827186 7.188926e-01 -52.0030753 75.3996190
hp:I(drat>chngpt) -0.00894615 9.652991e-01 -0.4119918 0.3940995
wt:I(drat>chngpt) -3.22148003 8.902722e-01 -48.9891600 42.5461999

Threshold:
est (lower upper)

3.730 3.237 4.223

3 Further considerations

3.1 Model choice

The choice of threshold effects is typically through a combination of domain knowledge and
modeling. One modeling approach is to first examine the relationship using local polynomial
regression.
To choose among the segmented, hinge, and upper hinge models formally, we can use

Wald tests. For example, if the question is framed as choosing between segmented and hinge
models, we can fit a segmented model and then look at the slope before threshold in the
summary function output. If the estimate is not significantly different from 0, then it is
justifiable to fit a hinge model. We can also look at the slope after threshold, which is not
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displayed as part of the summary function output, but can be obtained by calling lincomb
(see example in Section 2.1.1). If this estimate is not significantly different from 0, then it is
justifiable to fit an upper hinge model. If the hinge or upper hinge model is reasonable, it is
preferred over the segmented model because the model can be estimated with substantially
higher precision (Fong et al., 2017b; Elder and Fong, 2019).

3.2 Estimation and inference methods

There are three types of search methods for finding the MLE (maximum likelihood estima-
tor). Users generally do not need to worry about setting the argument, which is est.method,
since the function chooses the most appropriate one by default. In the order of development,
the three search methods are grid, smooth approximation, and fastgrid. The grid method
is the most general and the slowest; it is recommended when other methods are not avail-
able. The smooth approximation method (Fong et al., 2017a) involves approximating the
likelihood function with a differentiable function to allow gradient-based search; it is avail-
able for linear and logistic regression and mostly recommended for logistic regression only.
Fastgrid (Fong, 2018; Elder and Fong, 2019) is a new method that is super fast and gives
exact solutions; it is only available for certain threshold linear regression models.

Robust confidence interval methods are described in Fong et al. (2017b).

Hypothesis testing methods are described in Fong et al. (2015) and Fong et al. (2017a).
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