USAGE NOTES FOR PACKAGE CHEBPOL

SIMEN GAURE

ABSTRACT. Here are some examples of how package chebpol is used, with description of differences between the methods.

1. INTRODUCTION

Interpolating a function f means to find a reasonably behaved function, an interpolant g which agrees with f on
some points. Le. given N € N we have {z;}}¥, in the domain of f, and the interpolant g satisifies g(x;) = f(x;) for
1 <1i < N. The points z; are often referred to as knots.

We limit ourselves to functions R — R, or even compactly supported functions [—1,1]" — R.

Which method to use depends first and foremost on one thing. Can we choose the points z; freely? If n > 1, can
we choose the points as a grid, i.e. a Cartesian product of single-dimension points?

Say we have a function f(x,y) defined in a square, i.e. for {(z,y)] —1 <2 <1land —1 <y < 1}. Can we pick
our knots exactly as we wish, e.g. as a Cartesian grid X xY = {(z,y) |z € X and y € Y} for some X and Y?

If we want our interpolant g to be a polynomial, there is a canonical way to do this. The knots should preferably
be the Cartesian product of Chebyshev knots. The Chebyshev knots are not uniform, but a special set of knots which
cluster near the end points.

If we are not free to choose the knots as we wish, but say we must stick to uniformly spaced knots, say X =
{-1,-0.9,-0.38,...,0.8,0.9,1.0}, it is not particularly wise to interpolate with a polynomial. The reason is that
polynomial interpolants can get gradually worse as the number of knots increases.

Some functions can, for some reason or the other, only be evaluated in irregular grids, or should have a denser grid
near certain areas. Some functions can’t be evaluated at all, they only come as values in some scattered points. Here
are typical examples in two dimensions.

library(chebpol)

par (mfrow=c(2,2))

grid <- list(x=seq(-1,1,length.out=12), y=seq(-1,1,length.out=10))
plot(y~x,data=expand.grid(grid) ,typ='p',col='blue',main='Uniform 2d-grid')

grid <- chebknots(c(x=12,y=10))

plot(y ~ x, data=expand.grid(grid), typ='p',col='blue',main='Chebyshev 2d-grid')
grid <- list(x=seq(-1,1,length.out=12)"3L, y=sort(c(0,runif(10,-1,1),1)))

plot(y ~ x, data=expand.grid(grid), typ='p',col='blue',main='Irregular 2d-grid')
data <- cbind(x=runif(120,-1,1),y=runif (120,-1,1))

plot(y ~ x, data=data, typ='p', col='blue', main='Scattered data')
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2. THE CHEBPOL PACKAGE

Since the generalization to multiple dimensions is fairly straightforward, we focus on the one-dimensional case. IL.e.
functions [—1,1] — R. We use the following function:

f <- function(x) 1/mean(loglp(0.5 + sin(0.8+2.3*pi*c(0.6,1.4)*(x+0.09)"°3)"2))
s <- seq(-1, 1, length.out=1000)
plot(s, sapply(s,f), typ='1l"')
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Since this is a toy function, we can illustrate all sorts of knots. The first one out is the traditional Chebyshev
interpolation. The oscillations are typical for polynomial interpolation with too few knots, that’s how polynomials
are.

ch30 <- ipol(f, dims=30, method='cheb')

ch60 <- ipol(f, dims=60, method='cheb')

plot(s, sapply(s,f), typ='1l"')

lines(s, ch30(s), col='blue', 1lty=2)

lines(s, ch60(s), col='red', 1lty=2)

legend('topleft',c('fun','30 knots','60 knots'),fill=c('black', 'blue','red'))
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We see that with 60 knots we follow the peaks quite well. There is another thing to note also. We can’t evaluate the
function £ in all points at once, with £ (s), we must sapply(s, f). However, the interpolants produced by package
chebpol can evaluate in a series of points. It is even able to parallelize the evaluation, if you have more than one CPU
in your computing contraption. It’s just to feed it a threads= argument.

Then, what if we can’t pick Chebyshev knots, but for some reason have to stick to uniformly spaced knots, say 20
or 40 of them. We then have a couple of methods to choose from. One is called "uniform" and is a trigonometric
mapping of the uniformly spaced knots into Chebyshev knots. Another is piecewise linear. Then there is the Floater-
Hormann rational interpolation from [I]. The F.H. interpolation comes with an integer parameter which is the degree
of certain blending polynomials. In theory it works with any degree below the number of knots, but in practice high
degrees introduce round off errors, so we better keep it small. We see some of the methods here:

plot(s, sapply(s,f), typ='1l"')

uni <- ipol(f, dims=20, method='uniform')

grid <- seq(-1,1,len=20)

ml <- ipol(f, grid=grid, method='multilinear')

fh <- ipol(f, grid=grid, method='fh', k=3)

lines(s, uni(s), col='blue', 1lty=2)

lines(s, ml(s), col='green', lty=2)

lines(s, fh(s, threads=4), col='red', lty=2)

legend('topleft',c('fun','uni', 'ml','fh'),fill=c('black', 'blue', 'green', 'red'))

sapply(s, f)

3. MULTIDIMENSIONAL DATA

All of the above methods work with more than one dimension via a standard tensor product construction, but
that presupposes that the function can be evaluated on a Cartesian grid. The Chebyshev and uniform methods use
particular grids. The method "general" is similar to "uniform" in that it transforms an arbitrary Cartesian grid into
a Chebyshev grid by means of a monotonic spline in each dimension. The multilinear and Floater-Hormann methods
also work on arbitrary Cartesian grids.

To illustrate how this works, here is a quite nice function on [—1,1]? and contour plots of it and the 9 x 9 Chebyshev
interpolation, a homegrown “stalker” spline (described in a vignette) and the Floater-Hormann methods on a uniform
9 x 9 grid.

f1 <- function(x) 1.5/1log(5+sin(pi/2*(x[1]°2-2%x[2]"2)))
chl <- ipol(f1, dims=c(9,9), method='cheb')

igrid <- list(x=seq(-1,1,len=9), y=seq(-1,1,len=9))

stl <- ipol(f1, grid=igrid, method='hstalker')
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fhl <- ipol(fl, grid=igrid, method='fh', k=3)

y <- x <- seq(-1,1,1len=70)

testset <- expand.grid(list(x=x,y=y))

data <- cbind(testset,fun= apply(testset,1,f1), cheb=chl(t(testset)),
stalker=stl1(t(testset)), F.H.=fhil(t(testset)))

lattice::contourplot(stalker+F.H.+fun+cheb ~ x+y, data=data, cuts=10,
labels=FALSE, layout=c(2,2),
main='Level plots of function and interpolations')

Level plots of function and interpolations
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The stalker spline is not designed for smooth surfaces, but for following first order features (monotonicity and local
extrema) along the grid lines.

There are two interpolation methods we have not mentioned yet. If the data are scattered in two or more dimensions,
none of the methods above will work. They need a Cartesian product grid. The chebpol package contains two methods
for scattered data also, the most versatile being the polyharmonic spline (see [2]). It is parametric with an integer
k € N. For free we also throw in a Gaussian radial basis function interpolation for negative k € R™. Here we create
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two functions and plot level plots of them and their polyharmonic interpolations. One of the functions is quite smooth,
the other is quite wobbly and requires a lot of scattered points.

f2 <- function(x) 1.2/mean(log(3.1 + sin(0.7+1.8*pi*(x+0.39*x[1]"2-x[2]72))"2))
phl <- ipol(f1l, knots=matrix(runif(200,-1,1),2), method='polyharmonic', k=2)
ph2 <- ipol(f2, knots=matrix(runif(4000,-1,1),2), method='polyharmonic', k=3)
data <- cbind(testset,funl= apply(testset,1,f1), polyl=phl(t(testset)),
fun2=apply(testset,1,f2), poly2=ph2(t(testset)))

lattice: :contourplot (fun2+poly2+funl+polyl ~ x+y, data=data, cuts=10,
labels=FALSE, layout=c(2,2),
main='Level plots of functions and interpolations')

Level plots of functions and interpolations
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vectorInterface=TRUE, absError=1e-6)$integral/4)
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## [1] 0.002618839

The polyharmonic spline method is quite slow. It requires solving a K x K dense linear system, where K is the
number of knots. It helps a lot to use a tuned and parallel BLAS with R, such as Intel’s MKL.

In Figure [1] are various interpolated 3d-pictures of the Maungawhau volcano (Mt. Eden, Auckland, New Zealand).
We illustrate the other method which works on scattered data, it is piecewise linear on triangles (more generally on
simplices).

data(volcano)
volc <- volcano[seq(l,nrow(volcano),3),seq(l,ncol(volcano),3)]1/10
grid <- list(x=as.numeric(seq_len(nrow(volc))), y=as.numeric(seq_len(ncol(volc))))
fh <- ipol(volc, grid=grid, method='fh', k=0)
knots <- t(expand.grid(grid))
sl <- ipol(volc, knots=knots, method='simplex')
ph <- ipol(volc, knots=knots, method='poly')
g <- list(x=seq(1l,nrow(volc), len=50), y=seq(l,ncol(volc),len=50))
par (mar=rep(0,4)); col <- 'green'
light <- list(specular=0.2,ambient=0.0,diffuse=0.6)
plot3D: :persp3D(grid$x, grid$y, volc, colvar=NULL, lighting=light,
theta=135, ltheta=90, lphi=40, col=col, axes=FALSE, bty='n',kscale=FALSE)
for(f in list(ph, fh, s1)) {
plot3D: :persp3D(g$x, g8y, evalongridV(f,grid=g), colvar=NULL, lighting=light,
theta=135, ltheta=90, lphi=40, col=col, axes=FALSE, bty='n', scale=FALSE)
}

4. RADIAL BASIS FUNCTIONS WITH COMPACT SUPPORT (ALGLIB)

The ALGLIB library (http://www.alglib.net/interpolation/fastrbf.php) contains an implementation of com-
pact support radial basis function interpolation on scattered data. It is available with ipol(..., method=’crbf’) if
ALGLIB was available at build time.

By default, this is not true for Windows. However if ALGLIB is available, chebpol can be built with it from source
by editing the file src/Makevars.win. The library must be put into the make variable PKG_LIBS as something like
-LC:/somewhere/libs -lalglib, and the compiler must be told where to find ALGLIB’s include file by inserting
something like -IC:/somewhere/include -DHAVE_ALGLIB in the PKG_CPPFLAGS.

On linux and other unix-variants, ALGLIB should be put into the pkg-config database so that the command
pkg-config --1ibs alglib reports the link and compiler flags. This amounts to creating a file alglib.pc in
the search path of pkg-config with the necessary content (Libs: and Cflags:) The author has put ALGLIB
in /usr/local, and alglib.pc contains:

prefix=/usr/local
exec_prefix=${prefix}
libdir=${prefix}/1ib
includedir=${prefix}/include/alglib

Name: ALGLIB
Description: Various numerical mathematics
Version: 3.14.0
Libs: -L${libdir} -lalglib
Cflags: -I${includedir}
When this works, chebpol will be built with ALGLIB when you do an install.packages(’chebpol’).
As of version 2.1, ALGLIB support has been removed from chebpol because CRAN does not support OpenMP in
both C and C++, and alglib requires C++.

5. SPEED CONSIDERATIONS

There are two parts to interpolation. Creating the interpolant, and using it. Both of these take some time. The
time depends on the method, as well as the dimension r of the problem, and the number of grid points n along a
dimension, or the number of knots K. For the Cartesian grids, the number of knots is n”.

Traditionally, Chebyshev interpolation has been favoured for two reasons. The Chebyshev interpolation is the right
way to do polynomial interpolation, due to certain analytical facts. The Chebyshev coefficients can also be calculated
by a (possibly multi dimensional) Fast Fourier Transform (FFT). This is much faster than solving a large linear system
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FIGURE 1. Volcanoes

which is the pedestrian approach for finding polynomial interpolants. chebpol uses the FFT from the software package
FFTW, if it was available during compilation. Otherwise a slower matrix method is used. Creation with FF'T typically
takes of the order O(n"logn). The evaluation of Chebyshev interpolants is not particularly fast, chebpol uses the
Clenshaw algorithm, which is a variant of Horner’s method for evaluating polynomials. It typically goes in time n for
each dimension, but they must be combined, so O(n").

The multilinear interpolation is the fastest in chebpol. Creating the interpolant takes little time at all, the grid
and function values are saved, as is, that’s all. Evaluation consists of computing a convex combination of the function
values in the corners of the surrounding hypercube. Typically an O(logn) task for each dimension, but there are 2"
corners for an r-dimensional problem, so O(r2" + rlogn).

The stalker and hyperbolic stalker interpolations are also local methods which are quite fast, both to create and to
evaluate. They have the same complexity as the multi linear, but slower by some constant.

Creation of the Floater-Hormann interpolation requires calculating the weights, roughly an O(rn?) task. Evaluation
is O(n"). Quite similar to the Chebyshev method.

The polyharmonic spline method is the most demanding. Creation requires calculating some weights which amounts
to solving a dense K x K linear system, an O(K3) task (or O(n®") to compare with the grid methods). Evaluation is
faster, of the order O(Kr) (or O(rn")).

Creation of the simplex linear interpolation requires calculation of the Delaunay triangulation of the knots. This is
usually quite fast, using the ghull library (http://www.qghull.org) available through package geometry. Evaluation
requires finding the enclosing simplex of the point, this is done linearly by filtering out bounding boxes which does not
include the point, this is quite fast, and then for the remaining simplices, by verifying that the barycentric coordinates
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of the point are in [0, 1]. It works reasonably fast for a few thousand knots and dimension below 4-5. With more knots,
or higher dimensions, both creation and evaluation is markedly slower due to exceedingly high numbers of simplices.

The compact radial basis functions approach of ALGLIB in method=’crbf’ requires tuning. The three parameters
is the base radius (rbase), the number of layers (layers), and a smoothing parameter (lambda). The ALGLIB docs
says that the base radius should be larger than the typical Euclidean distance between the knots. Each layer halves
the radius, and the final radius should be smaller than the minimal distance, to capture the most rapid changes. The
smoothing parameter A\ defaults to 0, but typical values can be around 1076 or 107°. The default in ipol is (2, 5,0),
but this may be a very bad choice for your data. A commercial variant of ALGLIB is available, with parallelization
and instruction-level optimizations, the author has not tried it.

To alleviate speed problems, parts of chebpol has been parallelized with OpenMP. The number of threads is taken
from getOption("chebpol.threads") which is initialized from the environment variable CHEBPOL_THREADS. It defaults
to 1. Some of the creation routines use parallelization, however the polyharmonic spline does not. It depends on the
underlying BLAS for solving the system, of course it helps if it is optimized and parallel.

Evaluation of the interpolants are parallelized if one evaluates more than one point. I.e. the interpolants can take
a matrix of column vectors, and may calculate values in parallel:

m <- matrix(runif(2%6,-1,1),2)

print (m)

## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] -0.9711147 0.04088274 -0.2114722 -0.3162226 -0.1854045 0.1936394
## [2,] -0.1570820 -0.52174500 -0.9379660 -0.1015732 0.6033676 0.6767862
print (ph2(m, threads=3))

## [1] 0.9369171 0.9713621 0.9770991 0.9693429 0.9133033 0.9146778

This means that even if one has a function available in R, it might be faster to use an interpolant since it’s
automatically parallelized. Even if one does not have more than one CPU, it is worthwile to use the matrix interface
if more than one point is to be evaluated (such as in the vector interface of package cubature), it is a lot faster with
ph2(m) than with apply(m,2,ph2).

f <- ipol(sin, grid=seq(-pi,pi,length.out=1000), method='hstalker"')

a <- runif(1e6)
system.time(sin(a))

#it user system elapsed
## 0.020 0.000 0.021

system.time(f (a,threads=8))

#Hit user system elapsed
## 0.239 0.000 0.033
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