
DETAILS OF CHEBPOL

SIMEN GAURE

Abstract. chebpol is a package for multivariate interpolation. The name is a misnomer, the package

initially contained Chebyshev methods, now it contains several interpolation methods. Because the
author disapproves of hand waving of the type “this can also be done in higher dimensions”, all of them

are multivariate with any number of dimensions within the available resource limits.

Interpolation means that the approximating function it produces matches the original function in
prespecified points, and try to fill in between the gaps. Thus, it is not smoothing like the mgcv package.

The package produces R-functions which interpolates between given values, it is not intended for knot

editing, cubature or symbolic differentiation, or similar partakings. This document outlines how chebpol
works, and what it contains.

1. Introduction

We consider the problem of interpolating a continuous function f : [−1, 1] 7→ R based on its values in
n points {xi}i=1..n called knots. I.e. we want to find a reasonably behaved function Pnf defined on [−1, 1]

such that Pnf (xi) = f(xi) for i = 1..n.
A classical approach is to let Pnf be a polynomial of degree n− 1 and find the coefficients by solving

the linear system Pnf (xi) = f(xi) (i = 1..n). However, high-degree polynomials do not always behave

reasonably. In particular there is the Runge phenomenon: If the points xi are uniformly spaced in [−1, 1]
and one tries to interpolate the Runge function f : x 7→ (1 + 25x2)−1, there will be oscillations in Pnf
near the end-points. As n grows, the amplitude of these oscillations grow without bounds.

Most of the functionality in the package is reachable from the function ipol.

2. Chebyshev interpolation

The classical solution to the Runge phenomenon is to use a particular set of knots, the Chebyshev
knots xni = cos(π(i−0.5)/n) for i = 1..n. This will ensure that Pnf will converge uniformly to f as n→∞,
provided f is uniformly continuous. In this case one uses a special basis for the space of polynomials of
degree up to n− 1, the Chebyshev polynomials {Ti(x)}i=0..n−1, which are orthogonal w.r.t to a suitable
inner product. Due to a trigonometric identity, we have Ti(x) = cos(i cos−1(x)). The coefficients for
these polynomials may be computed by a variant of the DCT-II transform. Thus, the method is fast.

More modern methods use splines, where the idea is to glue pieces of simple functions together, either
low-degree polynomials or rational functions, subject to various constraints. Splines are in many respects
superior to Chebyshev-interpolation.

For the multivariate case, where f : [−1, 1]r → R, the DCT-II transform, being a variant of the Fourier
transform, factors over tensor-products, so a natural choice is to use this tensor-product transform in
the multivariate case. The knots are the Cartesian product of one-dimensional knots. This is a classical
way to interpolate multivariate real functions.

This procedure is available in package chebpol. Either we have the function to interpolate, or we have
the values in the Chebyshev-knots. Given a function f we may compute its Chebyshev approximation
and plot it:
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f <- function(x) cos(3*pi*x)/(1+25*(x-0.25)^2)

ch <- ipol(f,dims=15,method='chebyshev')

s <- seq(-1,1,length.out=401)

plot(s, f(s),type='l')

lines(s, ch(s), col='red')

kn <- chebknots(15)[[1]]

points(kn,f(kn))
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Even though there still are oscillations near the end points, their amplitude will diminish as n grows.
The knots are the locations where the curves intersect.

In the multivariate case, the dims argument is a vector of integers, the number of knots in each
dimension. If we have the values, not the function, we may pass those to ipol as an array with the dim

attribute correctly set.
If you look at the function ch returned by ipol, you’ll notice that it has two arguments. The first

one, x, is the point at which you want to evaluate the function. This x can also be a matrix where each
column is a point, the interpolation function can handle more than one point. In the special case with
a single argument function, any vector argument is treated as a matrix with one row, i.e. a series of
points, just like ordinary R-functions like exp or sin.

The second argument to ch is called threads, it defaults to getOption(’chebpol.threads’), and
is the number of parallel threads which should be used to compute the interpolations. Thus, above we
could have written lines(s, ch(s,8)) to compute the 401 points in s in 8 threads. There is nothing
to gain from specifying more threads than there are CPUs in your computer, nor more than there are
input vectors. The interpolants produced by chebpol has a threads-argument. The chebpol.threads

option is initialized from the environment variable CHEBPOL THREADS when the package is loaded.
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3. Uniformly spaced grids

In some applications it is not feasible to evaluate the function f in the Chebyshev knots. Rather
it may have to be evaluated on a uniformly spaced grid. To avoid the Runge phenomenon, chebpol
transforms the domain of the function as follows.

A fairly simple function exists which monotonically maps uniform grid points into Chebyshev knots.

It’s g : x 7→ sin
(
πx(1−n)

2n

)
. We omit the dependence on n to avoid clutter. This g has the property that

for Chebyshev knots xni and a uniform grid yni = −1 + 2(i− 1)/(n− 1) we have g(yni ) = xni for i = 1..n.
Thus, given a function f to interpolate on a uniform grid, we construct the function h : x 7→ f(g−1(x)).

We then create the Chebyshev approximation Pnh which requires h to be evaluated in the Chebyshev
knots xni , but g−1(xni ) = yni are the uniform grid points, so f is evaluated there. We then use the function
Qn : x 7→ Pnh (g(x)) for interpolation.

It is readily verified that for i = 1..n we have Qn(yni ) = f(yni ), thus Qn agrees with the function
f on the uniform grid. This is no longer a polynomial interpolation, so the Runge phenomenon is not
necessarily present.

Continuing the former example, we have

plot(s,f(s),type='l')

lines(s,ch(s), col='red')

points(kn,f(kn))

uc <- ipol(f, dims=15, method='uniform')

lines(s,uc(s),col='blue')
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For the multivariate case, a separate map function g is created for each dimension, which may have
different number of knots. One could imagine a case where some dimensions are evaluated on Chebyshev
grids, whereas other dimensions are evaluated on uniform grids. Although chebpol has no ready-made
wrapper function to do this, it is not particularly difficult to achieve.
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4. Non-standard hypercubes

Often, the domain of the function is not [−1, 1], but rather some other interval [a, b]. This interval may
be affinely mapped onto [−1, 1] by x 7→ (2x− (a + b))/(b− a). For the multidimensional case this may
be done for each dimension separately. The functions in chebpol have an optional intervals argument,
a list of such intervals, one for each dimension, to support such hyper-rectangles.

In principle, the same could be done with infinite intervals, with e.g. a mapping (−∞,∞) 7→ (−1, 1)
like x 7→ 2

π tan−1(x), but chebpol does not implement it.

4.1. A multivariate example. Let f be the function f : (x, y) 7→ log(x)
√
y/ log(x + y) defined on

[1, 2]× [15, 20]. Let’s approximate it with 5 knots in x and 8 in y and see how it fares in a random point:

library(chebpol)

f <- function(x) log(x[[1]])*sqrt(x[[2]])/log(sum(x))

ch <- ipol(f, dims=c(5,8), intervals=list(c(1,2), c(15,20)), method='chebyshev')

uc <- ipol(f, dims=c(5,8), intervals=list(c(1,2), c(15,20)), method='uniform')

tp <- c(runif(1,1,2), runif(1,15,20))

cat('arg:',tp,'true:', f(tp), 'ch:', ch(tp), 'uc:',uc(tp),'\n')
## arg: 1.729104 15.33879 true: 0.7559129 ch: 0.7558624 uc: 0.7536055

5. Arbitrarily spaced grids

In some applications not even uniformly spaced grids are feasible. In this case we do something similar
as in the uniformly spaced case. We have grid-points {yi}i=1..n in ascending or descending order. We
then use splinefun in package stats with method=’hyman’ to create a monotone function g from the
grid-points {yi}i=1..n to the Chebyshev knots {xni }i=1..n. Otherwise, the same method as for uniform
grids are used.

The method "general" performs this procedure. In the multivariate case, it is assumed that the grid
in each dimension is arbitrary, but the multi-dimensional grid is still a Cartesian product of these. We
may test this on a non-uniform grid.

f <- function(x) cos(3*pi*x)/(1+25*(x-0.25)^2)

gr <- log(seq(exp(-1),exp(1),length=15))

chg <- ipol(f, grid=gr, method='general')

plot(s, f(s), col='black', type='l')

lines(s, chg(s), col='blue')

points(gr,f(gr))
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6. Floater-Hormann interpolation

An old interpolation method due to Lagrange is polynomial, but written so that one does not need
to see any polynomial. Given function values fi = f(xi) in some points (xi)

N
i=0, the interpolant can be

written in barycentric form:

L(x) =

∑N
i=0 fi

wi

(x−xi)∑N
i=0

wi

(x−xi)

,

where the wi’s are weights. It so happens that if the points xi are xi = cos(iπ/N), the Chebyshev points
of the second kind, the weights have alternating signs, with absolute values |w0| = |wN | = 1, and |wi| = 2
for 0 < i < N . See e.g. [1]. In [2, eq. 18] another set of weights which corresponds to certain blending
polynomials in rational interpolants are found. This is used in method "fh". Here is an example with a
Runge function. The depicted “stalker” interpolation is an attempt at a shape preserving interpolation
described in another vignette.

f <- function(x) 1/(1+25*x^2)

# Uniform grid:

unigrid <- list(seq(-3,2,length.out=20))

uni <- ipol(f, grid=unigrid, k=2, method='fh')

st <- ipol(f, grid=unigrid, method='hstalker')

ch <- ipol(f, dims=20, intervals=c(-3,2), method='chebyshev')

s <- seq(-3,2,length.out=1000)

plot(s,f(s),ylim=range(uni(s),f(s),ch(s)),typ='l')

lines(s,uni(s),col='blue')

points(unigrid[[1]],uni(unigrid[[1]]),col='blue',pch=20)

lines(s,ch(s),col='green')



6 SIMEN GAURE

lines(s,st(s),col='red',lty=2)

legend('topleft',c('function','FH','chebyshev','stalker'),fill=c('black','blue','green','red'))
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7. Multilinear interpolation

For demanding functions chebpol also contains a multilinear interpolation. A multilinear function is a
function f(x1, x2, ..., xn) such that for each i = 1..n the function gi(x) = f(x1, ..., xi−1, x, xi+1, ..., xn) is
of the form ax+b for every choice of the xis. A typical example is f(x, y, z) = xyz+xy+2yz−x+2. The
method "multilinear" may take either a function or function values as its first argument and create
a piecewise multilinear interpolation. It is a straightforward implementation which interpolates a point
by a convex combination of the function values in the corners of the surrounding hypercube. We try it
out on an intricate function on [−1, 1]4 and evaluate the result along an intricate parametric curve. Of
course, if one is interested in this particular curve, one could interpolate along it instead. This is just an
example of multilinear interpolation.

f <- function(x) sign(sum(x^3)-0.1)*

sqrt(abs(25*prod(x)-4))/

(1+25*sum(x)^2)

grid <- replicate(4,list(seq(-1,1,length=15)))

ml <- ipol(f, grid=grid, method='multilinear')
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st <- ipol(f, grid=grid, method='hstalker')

s <- seq(-1,1,length=400)

curve <- function(x) c(cos(1.2*pi*x),

sin(1.5*pi*x^3),

x^2, -x/(1+x^2))

wf <- sapply(s,function(x) f(curve(x)))

wml <- sapply(s,function(x) ml(curve(x)))

wst <- sapply(s,function(x) st(curve(x)))

plot(s,wf,typ='l') # function

lines(s,wml,col='blue') # multilinear interpolation

lines(s,wst,col='green',lty=2) # hyperbolic stalker
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8. Scattered data

In some cases multidimensional data points are not organized in a grid, rather they are scattered. For
this case, chebpol has two methods.

8.1. Simplex linear interpolation. The first one is linear in simplices. A Delaunay triangulation
is created from the scattered data, i.e. a simplicial complex (a collection of triangles, tetrahedra, and
their higher dimensional analogues). When evaluating the interpolant, the simplex enclosing the point
is found, and the value in the point is a convex combination of the function values in the corners of the
simplex, with the weights being the barycentric coordinates of the point. We create a function defined
on the unit circle, and put some random knots in there, and see what the Delaunay triangulation looks
like.

f <- function(x) sqrt(1-sum(x^2))

theta <- runif(200, 0, 2*pi)
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r <- sqrt(runif(200))

knots <- rbind(r*cos(theta), r*sin(theta))

g <- ipol(f, knots=knots, method='simplexlinear')

# yank out the simplices for drawing

simp <- get('dtri', environment(get('fun', environment(g))))

drawtri <- function(pts,col) lines(c(pts[1,],pts[1,1]), c(pts[2,],pts[2,1]), col=col)

plot(knots[1,], knots[2,], typ='p', pch=20, xlab='x', ylab='y', main='Triangulation')

invisible(apply(simp,2,function(kn) drawtri(knots[,kn], col='blue')))
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theta <- runif(7, 0, 2*pi)

r <- sqrt(runif(7))

test <- rbind(r*cos(theta), r*sin(theta))

rbind(true=apply(test,2,f), sl=g(test,epol=TRUE))

## [,1] [,2] [,3] [,4] [,5] [,6] [,7]

## true 0.8573409 0.9569339 0.7836407 0.9354700 0.6468739 0.8716940 0.5273634

## sl 0.8394309 0.9476747 0.7543278 0.9308245 0.6273019 0.8610124 0.4966036
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The main shortcoming of this method is visible in the Delaunay triangulation. Some of the triangles
near the borders are very stretched out. This can happen even if we have a large number of knots.
This is because the triangles must cover the convex hull, and there is no other way to do that. Such
long simplices will lead to poor linear approximation if second derivatives there are large. Another
shortcoming is that the entire triangulation is computed when the interpolant is created, not only the
parts needed for interpolating specific points. The number of simplices grows with the dimension d,
typically as d!. This quickly gets out of hand when d grows.

By default, the interpolant will return NA for inputs which are outside the convex hull of the knots,
but an extrapolation from the nearest simplex will be done if the argument epol=TRUE is specified.

8.2. Polyharmonic splines. The other scattered method is polyharmonic splines in the method "polyharmonic".
It accepts a function, or function values, and a matrix of centres (knots), one centre in each column.
Here is a 20-dimensional example with 3000 randomly placed knots:

r <- runif(20)

r <- r/sum(r)

f <- function(x) 1/mean(log1p(r*x))

knots <- matrix(runif(60000), 20)

phs <- ipol(f, knots=knots, k=3, method='polyharmonic')

rr <- runif(20)

curve <- function(x) abs(cos(5*pi*rr*x))

s <- seq(0,1,length.out=1000)

plot(s,sapply(s,function(x) f(curve(x))),typ='l')

lines(s,sapply(s,function(x) phs(curve(x))),col='blue',lty=2)
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The "polyharmonic" method fits a function of the form P (x) =
∑n
i=1 wiφ(‖x− ci‖) + L(x) + c such

that P (ci) = f(ci) for each i where the ci ∈ Rd are the knots, ‖ · ‖ is the Euclidean norm on Rd, wi ∈ R
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are weights, L is linear Rd 7→ R, and c ∈ R is a constant. φ is the function R+ 7→ R

φ(x) =


xk when k ∈ N is odd,

xk log(x) when k ∈ N is even,

exp(kx2) when k < 0.

Note that this differs from some other expositions, which use 2m− d as exponent for a natural number
m.

For k = 2, we get the thin plate spline. Note that the fitting may fail, in particular for k < 0 and
irregular data. In this case a least squares fit is used, and a warning is issued. The k parameter then
may need to be tuned for the problem at hand. Note that by default the knots and coordinates are
transformed into a unit hypercube if any of the knots are outside. Note also that for positive k the
theory in [3, Proposition 6] says that there are enough splines even if we do not scale, but the numerics
may be more favourable when we scale. There is more about polyharmonic splines in [4].

There do exist some acceleration schemes for low dimensions, but the current implementation does
not use any. It is an entirely straightforward implementation which fits by solving a linear system, and
evaluates the P (x) directly.
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