
Package ‘celltrackR’
March 31, 2020

Type Package

Title Motion Trajectory Analysis

Date 2020-03-30

Version 0.3.1

Author Johannes Textor [aut, cre],
Katharina Dannenberg [aut],
Jeffrey Berry [aut],
Gerhard Burger [aut],
Inge Wortel [aut]

Maintainer Johannes Textor <johannes.textor@gmx.de>

Description Provides methodology to analyze cells that move in a two- or three-dimensional
space. Available measures include displacement, confinement ratio, autocorrelation,
straightness, turning angle, and fractal dimension. Measures can be applied to entire tracks,
steps, or subtracks with varying length. While the methodology has been developed for
cell trajectory analysis, it is applicable to anything that moves including animals,
people, or vehicles.
Some of the methodology implemented in this packages was described by:
Beauchemin, Dixit, and Perelson (2007) <doi:10.4049/jimmunol.178.9.5505>,
Beltman, Maree, and de Boer (2009) <doi:10.1038/nri2638>,
Gneiting and Schlather (2004) <doi:10.1137/S0036144501394387>,
Mokhtari, Mech, Zitzmann, Hasenberg, Gun-
zer, and Figge (2013) <doi:10.1371/journal.pone.0080808>,
Moreau, Lemaitre, Terriac, Azar, Piel, Lennon-
Dumenil, and Bousso (2012) <doi:10.1016/j.immuni.2012.05.014>,
Textor, Peixoto, Henrickson, Sinn, von Andrian, and Wester-
mann (2011) <doi:10.1073/pnas.1102288108>,
Textor, Sinn, and de Boer (2013) <doi:10.1186/1471-2105-14-S6-S10>,
Textor, Henrickson, Mandl, von Andrian, Westermann, de Boer, and Belt-
man (2014) <doi:10.1371/journal.pcbi.1003752>.

Depends R (>= 3.4.0)

License GPL-2

Encoding UTF-8

LazyData true

1

2 R topics documented:

URL http://www.motilitylab.net

Imports stats, grDevices, graphics, utils, ellipse

Suggests pracma, scatterplot3d, fractaldim, testthat, wordspace,
knitr, rmarkdown, uwot, dendextend, ggplot2, ggbeeswarm,
gridExtra

RoxygenNote 7.0.2

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2020-03-31 10:30:05 UTC

R topics documented:
aggregate.tracks . 3
analyzeCellPairs . 6
analyzeStepPairs . 7
AngleAnalysis . 8
angleCells . 10
angleSteps . 10
angleToDir . 11
angleToPlane . 12
angleToPoint . 14
applyStaggered . 15
as.data.frame.tracks . 16
as.list.tracks . 17
as.tracks.data.frame . 18
BCells . 19
beaucheminTrack . 20
bootstrapTrack . 21
boundingBox . 22
brownianTrack . 23
cellPairs . 24
celltrackR . 24
cheatsheet . 26
clusterTracks . 27
distanceCells . 28
distanceSteps . 29
distanceToPlane . 30
distanceToPoint . 31
filterTracks . 32
getFeatureMatrix . 32
hotellingsTest . 33
interpolateTrack . 34
maxTrackLength . 35
Neutrophils . 36

http://www.motilitylab.net

aggregate.tracks 3

normalizeToDuration . 37
normalizeTracks . 37
plot.tracks . 38
plot3d . 39
plotTrackMeasures . 39
prefixes . 41
projectDimensions . 42
read.tracks.csv . 42
repairGaps . 44
selectSteps . 45
selectTracks . 46
simulateTracks . 46
sort.tracks . 47
splitTrack . 48
staggered . 48
stepPairs . 49
subsample . 50
subtracks . 50
subtracksByTime . 51
TCells . 52
timePoints . 53
timeStep . 54
trackFeatureMap . 55
TrackMeasures . 56
tracks . 59
vecAngle . 60
wrapTrack . 61

Index 62

aggregate.tracks Compute Summary Statistics of Subtracks

Description

Computes a given measure on subtracks of a given track set, applies a summary statistic for each
subtrack length, and returns the results in a convenient form. This important workhorse function
facilitates many common motility analyses such as mean square displacement, turning angle, and
autocorrelation plots.

Usage

S3 method for class 'tracks'
aggregate(
x,
measure,
by = "subtracks",
FUN = mean,

4 aggregate.tracks

subtrack.length = seq(1, (maxTrackLength(x) - 1)),
max.overlap = max(subtrack.length),
na.rm = FALSE,
filter.subtracks = NULL,
count.subtracks = FALSE,
...

)

Arguments

x the tracks object whose subtracks are to be considered. If a single track is given,
it will be coerced to a tracks object using wrapTrack (but note that this requires
an explicit call aggregate.tracks).

measure the measure that is to be computed on the subtracks.

by a string that indicates how grouping is performed. Currently, two kinds of group-
ing are supported:

• "subtracks" Apply measure to all subtracks according to the parameters
subtrack.length and max.overlap.

• "prefixes" Apply measure to all prefixes (i.e., subtracks starting from a
track’s initial position) according to the parameter subtrack.length.

FUN a summary statistic to be computed on the measures of subtracks with the same
length. Can be a function or a string. If a string is given, it is first matched to
the following builtin values:

• "mean.sd" Outputs the mean and mean − sd as lower and mean + sd as
upper bound

• "mean.se" Outputs the mean and mean − se as lower and mean + se as
upper bound

• "mean.ci.95" Outputs the mean and upper and lower bound of a parametric
95 percent confidence intervall.

• "mean.ci.99" Outputs the mean and upper and lower bound of a parametric
95 percent confidence intervall.

• "iqr" Outputs the interquartile range, that is, the median, and the 25-percent-
quartile as a lower and and the 75-percent-quartile as an upper bound

If the string is not equal to any of these, it is passed on to match.fun.
subtrack.length

an integer or a vector of integers defining which subtrack lengths are consid-
ered. In particular, subtrack.length=1 corresponds to a "step-based analysis"
(Beltman et al, 2009).

max.overlap an integer controlling what to do with overlapping subtracks. A maximum over-
lap of max(subtrack.length) will imply that all subtracks are considered. For
a maximum overlap of 0, only non-overlapping subtracks are considered. A neg-
ative overlap can be used to ensure that only subtracks a certain distance apart
are considered. In general, for non-Brownian motion there will be correlations
between subsequent steps, such that a negative overlap may be necessary to get
a proper error estimate.

aggregate.tracks 5

na.rm logical. If TRUE, then NA’s and NaN’s are removed prior to computing the sum-
mary statistic.

filter.subtracks

a function that can be supplied to exclude certain subtracks from an analysis.
For instance, one may wish to compute angles only between steps of a certain
minimum length (see Examples).

count.subtracks

logical. If TRUE, the returned dataframe contains an extra column ntracks
showing the number of subtracks of each length. This is useful to keep track
of since the returned value estimates for high i are often based on very few
subtracks.

... further arguments passed to or used by methods.

Details

For every number of segments i in the set defined by subtrack.length, all subtracks of any track
in the input tracks object that consist of exactly i segments are considered. The input measure is
applied to the subtracks individually, and the statistic is applied to the resulting values.

Value

A data frame with one row for every i specified by subtrack.length. The first column contains
the values of i and the remaining columns contain the values of the summary statistic of the measure
values of tracks having exactly i segments.

References

Joost B. Beltman, Athanasius F.M. Maree and Rob. J. de Boer (2009), Analysing immune cell
migration. Nature Reviews Immunology 9, 789–798. doi:10.1038/nri2638

Examples

A mean square displacement plot with error bars.
dat <- aggregate(TCells, squareDisplacement, FUN="mean.se")
with(dat ,{

plot(mean ~ i, xlab="time step",
ylab="mean square displacement", type="l")
segments(i, lower, y1=upper)

})

Note that the values at high i are often based on very few subtracks:
msd <- aggregate(TCells, squareDisplacement, count.subtracks = TRUE)
tail(msd)

Compute a turning angle plot for the B cell data, taking only steps of at least
1 micrometer length into account
check <- function(x) all(sapply(list(head(x,2),tail(x,2)), trackLength) >= 1.0)
plot(aggregate(BCells, overallAngle, subtrack.length=1:10,

filter.subtracks=check)[,2], type='l')

6 analyzeCellPairs

Compare 3 different variants of a mean displacement plot
1. average over all subtracks
plot(aggregate(TCells, displacement), type='l')
2. average over all non-overlapping subtracks
lines(aggregate(TCells, displacement, max.overlap=0), col=2)
3. average over all subtracks starting at 1st position
lines(aggregate(TCells, displacement, by="prefixes"), col=3)

analyzeCellPairs Find Distances and Angles for all Pairs of Tracks

Description

Find all pairs of cells and return the shortest distance between them at any point, as well as the angle
between their overall displacement vectors.

Usage

analyzeCellPairs(X, ...)

Arguments

X a tracks object

... further arguments passed on to angleCells

Details

Analyzing track angles at different distances can be useful to detect directional bias or local crowd-
ing effects; see (Beltman et al, 2009).

Internally, the function uses cellPairs, angleCells, and distanceCells.

Value

A dataframe with four columns: two for the indices of cellpairs, one for the distance between them,
and one for their angle.

References

Joost B. Beltman, Athanasius F.M. Maree and Rob. J. de Boer (2009), Analysing immune cell
migration. Nature Reviews Immunology 9, 789–798. doi:10.1038/nri2638

See Also

analyzeStepPairs to do something similar for single steps rather than entire tracks.

analyzeStepPairs 7

Examples

Plot distance versus angle for all cell pairs
pairs <- analyzeCellPairs(TCells)
scatter.smooth(pairs$dist, pairs$angle)

analyzeStepPairs Find Distances and Angles for all Pairs of Steps

Description

Find cell indices and timepoints where these cells both have a step, then return angles and distances
for each pair of steps.

Usage

analyzeStepPairs(X, filter.steps = NULL, ...)

Arguments

X a tracks object
filter.steps optional: a function used to filter steps on. See examples.
... further arguments passed on to angleSteps

Details

Analyzing step angles at different distances can be useful to detect directional bias or local crowding
effects; see (Beltman et al, 2009).

Internally, the function uses stepPairs, angleSteps, and distanceSteps.

Value

A dataframe with five columns: two for the indices of cellpairs that share a step, one for the time-
point at which they do so, one for the distance between them, and one for their angle.

References

Joost B. Beltman, Athanasius F.M. Maree and Rob. J. de Boer (2009), Analysing immune cell
migration. Nature Reviews Immunology 9, 789–798. doi:10.1038/nri2638

See Also

analyzeCellPairs to do something similar for entire tracks rather than single steps.

Examples

Plot distance versus angle for all step pairs, filtering for those that
displace at least 2 microns
pairs <- analyzeStepPairs(TCells, filter.steps = function(t) displacement(t) > 2)
scatter.smooth(pairs$dist, pairs$angle)

8 AngleAnalysis

AngleAnalysis Angle Analysis

Description

Analyzing angles to reference directions, points, or planes can be useful to detect artefacts and/or
directionality in tracking datasets (Beltman et al, 2009). All these functions take a track and a
reference (point/direction/plane) as input and return a distance or angle as output. Angles/distances
are by default computed to the first step in the given track.

Details

angleToPoint and distanceToPoint return the angle/distance of the track to the reference point.
The distance returned is between the first coordinate in the track and the reference point. The angle
is between the direction of the first step in the track and the line between its first coordinate and the
reference point. Angles are by default returned in degrees, use degrees=FALSE to obtain radians.
These functions are useful to detect directional bias towards a point of interest, which would result
in an average angle of less than 90 degrees with the reference point (especially for tracks at a small
distance to the reference point).

angleToPlane and distanceToPlane return the angle/distance of the track to a plane of interest.
This plane must be specified by three points lying on it. The distance returned is between the first
coordinate in the track and the reference point. The angle is between the direction of the first step
in the track and the plane of interest. These functions are useful to detect tracking artefacts near the
borders of the imaging volume. Use boundingBox to guess where those borders are. Angles are by
default returned in degrees, use degrees=FALSE to obtain radians.

angleToDir returns the angle of the first step in a track to a direction of interest. This function
is useful to detect directionality in cases where the direction of the bias is known in advance (e.g.
when cells are known to move up a chemotactic gradient): in that case, the average angle to the
reference direction should be less than 90 degrees. Angles are by default returned in degrees, use
degrees=FALSE to obtain radians.

angleSteps and distanceSteps return the angle/distance between a pair of steps in the data that
occur at the same timepoint. Angles are in degrees by default, use degrees=FALSE to obtain
radians. Use stepPairs to extract all pairs of steps that occur at the same timepoint, and use
analyzeStepPairs to do this and then also obtain the angles and distances for each of these pairs.

angleCells and distanceCells return the angle/distance between a pair of tracks in the data.
The computed angles are between the overall displacement vectors of the tracks, the distance is the
shortest distance between them at any timepoint they share. Angles are in degrees by default, use
degrees=FALSE to obtain radians. Use cellPairs to extract all pairs of cells in the data, and use
analyzeCellPairs to do this and then also obtain the angles and distances for each of these pairs.

Value

This page is for documentation only and provides an overview of angle analysis functions and their
use cases. The return values of each of these functions are documented separately; please follow
the link to the documentation page of that specific function.

AngleAnalysis 9

References

Joost B. Beltman, Athanasius F.M. Maree and Rob. J. de Boer (2009), Analysing immune cell
migration. Nature Reviews Immunology 9, 789–798. doi:10.1038/nri2638

See Also

TrackMeasures for other measures that can be used to quantify tracks.

See the vignettes on Quality Control and Track Analysis for more detailed examples of angle anal-
yses. browseVignettes(package = "celltrackR")

Examples

Plotting the angle versus the distance to a reference point can be informative to
detect biased movement towards that point. We should be suspicious especially
when small angles are more frequent at lower distances.
steps <- subtracks(Neutrophils, 1)
bb <- boundingBox(Neutrophils)
angles <- sapply(steps, angleToPoint, p = bb["max",-1])
distances <- sapply(steps, distanceToPoint, p = bb["max",-1])
scatter.smooth(distances, angles)
abline(h = 90, col = "red")

Get a distribution of Neutrophil step angles with the reference direction
in positive y direction. The histogram is enriched for low angles, suggesting
directed movement:
hist(sapply(steps, angleToDir, dvec=c(0,1,0)))

Plotting the angle versus the distance to a reference plane can be informative to
detect tracking artefacts near the border of the imaging volume.
We should be suspicious especially when small angles are more frequent at low distances
to the border planes.
steps <- subtracks(TCells, 1)
minz <- boundingBox(TCells)["min","z"]
Compute angles and distances to the lower plane in z-dimension
angles <- sapply(steps, angleToPlane, p1 = c(0,0,minz), p2 = c(1,0,minz), p3 = c(0,1,minz))
distances <- sapply(steps, distanceToPlane, p1 = c(0,0,minz), p2 = c(1,0,minz), p3 = c(0,1,minz))
scatter.smooth(distances, angles)
abline(h = 32.7, col = "red")

Plot distance versus angle for all cell pairs
pairs <- analyzeCellPairs(TCells)
scatter.smooth(pairs$dist, pairs$angle)
abline(h = 90, col = "red")

Plot distance versus angle for all step pairs, filtering for those that
displace at least 2 microns
pairs <- analyzeStepPairs(TCells, filter.steps = function(t) displacement(t) > 2)
scatter.smooth(pairs$dist, pairs$angle)
abline(h = 90, col = "red")

10 angleSteps

angleCells Angle between Two Tracks

Description

Compute the angle between the displacement vectors of two tracks in the dataset.

Usage

angleCells(X, cellids, degrees = TRUE)

Arguments

X a tracks object

cellids a vector of two indices specifying the tracks to get steps from.

degrees logical; should angle be returned in degrees instead of radians? (defaults to
TRUE)

Value

A single angle.

See Also

distanceCells to compute the minimum distance between the tracks, and AngleAnalysis for
other methods to compute angles and distances.

Examples

Find the angle between the tracks with ids 1 and 2
angleCells(TCells, c("1","2"))

angleSteps Angle between Two Steps

Description

Compute the angle between two steps in the dataset that occur at the same timepoint.

Usage

angleSteps(X, trackids, t, degrees = TRUE, quietly = FALSE)

angleToDir 11

Arguments

X a tracks object
trackids a vector of two indices specifying the tracks to get steps from.
t the timepoint at which the steps should start.
degrees logical; should angle be returned in degrees instead of radians? (defaults to

TRUE)
quietly logical; should a warning be returned if one or both of the steps are missing in

the data and the function returns NA?

Value

A single angle, or NA if the desired timepoint is missing for one or both of the tracks.

See Also

distanceSteps to compute the distance between the step starting points, timePoints to list all
timepoints in a dataset, and AngleAnalysis for other methods to compute angles and distances.

Examples

Find the angle between the steps of the tracks with ids 1 and 2, at the 3rd
timepoint in the dataset.
t <- timePoints(TCells)[3]
angleSteps(TCells, c("1","2"), t)

angleToDir Angle with a Reference Direction

Description

Compute the angle between the first step of a track and a reference direction. Useful to detect biased
movement when the directional bias is known (see examples).

Usage

angleToDir(x, dvec = c(1, 1, 1), from = 1, xdiff = diff(x), degrees = TRUE)

Arguments

x a single input track; a matrix whose first column is time and whose remaining
columns are a spatial coordinate.

dvec numeric vector specifying a reference direction to compute angles to.
from index, or vector of indices, of the first row of the track. If from is a vector, angles

are returned for all steps starting at the indices in from.
xdiff row differences of x.
degrees logical; should angles be returned in degrees rather than radians? (default =

TRUE).

12 angleToPlane

Details

The average angle of steps to a reference direction should be 90 degrees if there is no bias towards
movement in the direction of the reference point. If there is such a bias, there should be an enrich-
ment of smaller angles. The expected distribution without bias is a uniform distribution in 2D or a
sine distribution in 3D (Beltman et al, 2009).

Value

A single angle.

References

Joost B. Beltman, Athanasius F.M. Maree and Rob. J. de Boer (2009), Analysing immune cell
migration. Nature Reviews Immunology 9, 789–798. doi:10.1038/nri2638

See Also

AngleAnalysis for other methods to compute angles and distances.

Examples

Get a distribution of Neutrophil step angles with the reference direction in positive
y direction. The histogram is enriched for low angles, suggesting directed movement:
steps <- subtracks(Neutrophils, 1)
hist(sapply(steps, angleToDir, dvec=c(0,1,0)))

angleToPlane Angle with a Reference Plane

Description

Compute the angle between the first step of a track and a reference plane. Useful to detect directed
movement and/or tracking artefacts.

Usage

angleToPlane(
x,
p1 = c(0, 0, 0),
p2 = c(0, 1, 0),
p3 = c(1, 0, 0),
from = 1,
xdiff = diff(x),
degrees = TRUE

)

angleToPlane 13

Arguments

x a single input track; a matrix whose first column is time and whose remaining
columns are a spatial coordinate.

p1, p2, p3 numeric vectors of coordinates of three points specifying a reference plane to
compute distances to.

from index, or vector of indices, of the first row of the track. If from is a vector, angles
are returned for all steps starting at the indices in from.

xdiff row differences of x.

degrees logical; should angles be returned in degrees rather than radians? (default =
TRUE).

Details

The average angle of steps to a reference plane should be roughly 32.7 degrees. Lower angles
to the border planes of an imaging volume can be indicative of tracking artefacts, and systematic
deviations from 32.7 can indicate a directional bias (Beltman et al, 2009).

Value

A single angle.

References

Joost B. Beltman, Athanasius F.M. Maree and Rob. J. de Boer (2009), Analysing immune cell
migration. Nature Reviews Immunology 9, 789–798. doi:10.1038/nri2638

See Also

distanceToPlane to compute the distance to the reference plane, and AngleAnalysis for other
methods to compute angles and distances.

Examples

Plotting the angle versus the distance to a reference plane can be informative to
detect tracking artefacts near the border of the imaging volume.
We should be suspicious especially when small angles are more frequent at low distances
to the border planes.
steps <- subtracks(TCells, 1)
minz <- boundingBox(TCells)["min","z"]
Compute angles and distances to the lower plane in z-dimension
angles <- sapply(steps, angleToPlane, p1 = c(0,0,minz), p2 = c(1,0,minz), p3 = c(0,1,minz))
distances <- sapply(steps, distanceToPlane, p1 = c(0,0,minz), p2 = c(1,0,minz), p3 = c(0,1,minz))
scatter.smooth(distances, angles)
abline(h = 32.7, col = "red")

14 angleToPoint

angleToPoint Angle with a Reference Point

Description

Compute the angle between the first step of a track and a reference point. Useful to detect directed
movement towards a point (see examples).

Usage

angleToPoint(x, p = c(1, 1, 1), from = 1, xdiff = diff(x), degrees = TRUE)

Arguments

x a single input track; a matrix whose first column is time and whose remaining
columns are a spatial coordinate.

p numeric vector of coordinates of the reference point p to compute angles/distances
to.

from index, or vector of indices, of the first row of the track. If from is a vector, angles
are returned for all steps starting at the indices in from.

xdiff row differences of x.

degrees logical; should angles be returned in degrees rather than radians? (default =
TRUE).

Details

The average angle of steps to a reference point should be 90 degrees if there is no bias towards
movement in the direction of the reference point. If there is such a bias, there should be an enrich-
ment of smaller angles. The expected distribution without bias is a uniform distribution in 2D or a
sine distribution in 3D (Beltman et al, 2009).

Value

A single angle.

References

Joost B. Beltman, Athanasius F.M. Maree and Rob. J. de Boer (2009), Analysing immune cell
migration. Nature Reviews Immunology 9, 789–798. doi:10.1038/nri2638

See Also

distanceToPoint to compute the distance to the reference point, and AngleAnalysis for other
methods to compute angles and distances.

applyStaggered 15

Examples

Get a distribution of step angles with a reference point
Use bb to get the corner with highest x,y,and z value
The histogram is enriched for low angles, suggesting directed movement:
steps <- subtracks(Neutrophils, 1)
bb <- boundingBox(Neutrophils)
hist(sapply(steps, angleToPoint, p = bb["max",-1]))

The same does not hold for movement of T cells towards the point (0,0,0)
steps <- subtracks(TCells, 1)
hist(sapply(steps, angleToPoint, p = c(0,0,0)))

Plotting the angle versus the distance to the reference point can also be informative,
especially when small angles are more frequent at lower distances.
angles <- sapply(steps, angleToPoint, p = bb["max",-1])
distances <- sapply(steps, distanceToPoint, p = bb["max",-1])
scatter.smooth(distances, angles)
abline(h = 90, col = "red")

applyStaggered Compute a Measure on a Track in a Staggered Fashion

Description

Computes a measure on all subtracks of a track and return them either as a matrix or return their
mean.

Usage

applyStaggered(x, measure, matrix = FALSE, min.segments = 1)

Arguments

x the track for which the measure is to be computed.

measure the measure that is to be computed.

matrix a logical indicating whether the whole matrix of values for the measure for each
of the input track’s subtracks is to be returned. Otherwise only the mean is
returned.

min.segments the number of segments that each regarded subtrack should at least consist of.
Typically, this value would be set to the minimum number of segments that a
(sub)track must have in order for the measure to be decently computed. For
example, at least two segments are needed to compute the overallAngle.

16 as.data.frame.tracks

Details

The measure is computed for each of the input track’s subtracks of length at least min.segments,
and the resulting values are either returned in a matrix (if matrix is set), or their mean is returned.
The computed matrix is symmetric since the direction along which a track is traversed is assumed
not to matter. The values at [i,i + j], where j is a nonnegative integer with j <min.segments,
(with the default value min.segments=1 this is exactly the main diagonal) are set to NA.

Value

If matrix is set, a matrix with the values of the measure for all the input track’s subtracks is re-
turned. The value of this matrix at position [i,j] corresponds to the subtrack that starts with the
input track’s jth point and ends at its ith. Thus, with increasing column number, the regarded sub-
track’s starting point is advanced on the original track, and the values for increasingly long subtracks
starting from this point can be found columnwise below the main diagonal, respectively. If ‘ma-
trix‘ is not set, the mean over the values of the measure for all subtracks of at least ‘min.segments‘
segments is retruned.

Examples

Compute the staggered matrix for overallAngle applied to all long enough
subtracks of the first T cell track
applyStaggered(TCells[[1]], overallAngle, matrix=TRUE, min.segments = 2)

as.data.frame.tracks Convert Tracks to Data Frame

Description

Converts tracks from the list-of-matrices format, which is good for efficient processing and therefore
the default in this package, to a single dataframe which is convenient for plotting or saving the data.

Usage

S3 method for class 'tracks'
as.data.frame(
x,
row.names = NULL,
optional = FALSE,
include.timepoint.column = FALSE,
idsAsFactors = TRUE,
...

)

as.list.tracks 17

Arguments

x the tracks object to be coerced to a data frame.

row.names NULL or a character vector giving row names for the data frame. Missing values
are not allowed.

optional logical. Required for S3 consistency, but has no effect: column names are al-
ways assigned to the resulting data frame regardless of the setting of this option.

include.timepoint.column

logical. If set to TRUE, then the resulting dataframe will contain a column that
consecutively numbers the positions according to their time. Note that this in-
formation is anyway implicitly present in the time information.

idsAsFactors logical. If TRUE, then the id column of the resulting dataframe will be a factor
column, otherwise a characeter column.

... further arguments to be passed from or to other methods.

Value

A single data frame containing all individual tracks from the input with a prepended column named
"id" containing each track’s identifier in ‘x‘.

Examples

Display overall average position of the T cell data
colMeans(as.data.frame(TCells)[-c(1,2)])

as.list.tracks Convert from Tracks to List

Description

Coerces a tracks object to a list.

Usage

S3 method for class 'tracks'
as.list(x, ...)

Arguments

x the tracks object to be coerced to a list.

... further arguments to be passed from or to other methods.

Value

A generic list of single tracks, where each track is a matrix with t/delta.t rows and 4 columns.
This looks a lot like a tracks object, except that its class is not "tracks" anymore.

18 as.tracks.data.frame

as.tracks.data.frame Convert from Data Frame to Tracks

Description

Get cell tracks from a data.frame. Data are expected to be organized as follows. One column
contains a track identifier, which can be numeric or a string, and determines which points belong to
the same track. Another column is expected to contain a time index or a time period (e.g. number
of seconds elapsed since the beginning of the track, or since the beginning of the experiment). Input
of dates is not (yet) supported, as absolute time information is frequently not available. Further
columns contain the spatial coordinates. If there are three or less spatial coordinates, their names
will by "x", "y", and "z" (depending on whether the tracks are 1D, 2D or 3D). If there are four or
more spatial coordinates, their names will be "x1", "x2", and so on. The names or indices of these
columns in the data.frame are given using the corresponding parameters (see below). Names and
indices can be mixed, e.g. you can specify id.column="Parent" and pos.columns=1:3

Usage

S3 method for class 'data.frame'
as.tracks(
x,
id.column = 1,
time.column = 2,
pos.columns = c(3, 4, 5),
scale.t = 1,
scale.pos = 1,
...

)

Arguments

x the data frame to be coerced to a tracks object.

id.column index or name of the column that contains the track ID.

time.column index or name of the column that contains elapsed time.

pos.columns vector containing indices or names of the columns that contain the spatial coor-
dinates. If this vector has two entries and the second entry is NA, e.g. c('x',NA)
or c(5,NA) then all columns from the indicated column to the last column are
used. This is useful when reading files where the exact number of spatial dimen-
sions is not known beforehand.

scale.t a value by which to multiply each time point. Useful for changing units, or for
specifying the time between positions if this is not contained in the file itself.

scale.pos a value, or a vector of values, by which to multiply each spatial position. Useful
for changing units.

... further arguments to be passed to read.csv, for instance sep="\t" can be use-
ful for tab-separated files.

BCells 19

Value

A tracks object.

BCells Two-Photon Data: B Cells in a Lymph Node

Description

Labelled B cells were adoptively transfered and intravitally imaged (using two-photon microscopy)
inside a peripheral lymph node of the recipient mouse. These data illustrate the characteristic
"random-walk-like" motion pattern of B cells in lymph nodes.

Usage

data("BCells")

Format

An S3 object of class "tracks"; a list with 24 elements. Each element name identifies a cell track.
Each element is a matrix containing the following four columns.

t the time (in seconds)
x The X coordinate (in micrometers)
y The Y coordinate (in micrometers)
z The Z coordinate (in micrometers)

Source

Data were generated in 2012 in the Mark J. Miller Lab, Department of Medicine, Washington
University in St Louis, USA.

References

Zinselmeyer BH, Dempster J, Wokosin DL, Cannon JJ, Pless R, Parker I and Miller MJ (2009),
Two-photon microscopy and multi-dimensional analysis of cell dynamics. Methods in Enzymology,
461:349–78. doi:10.1016/S0076-6879(09)05416-0

Konjufca V and Miller MJ (2009), Imaging Listeria monocytogenes infection in vivo. Current
Topics in Microbiology and Immunology, 334:199–226. doi:10.1007/978-3-540-93864-4_9

Kreisel D, Nava RG, Li W, Zinselmeyer BH, Wang B, Lai J, Pless R, Gelman AE, Krupnick AS, and
Miller MJ (2010), In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasa-
tion during pulmonary inflammation. PNAS, 107(42):18073–18078. doi:10.1073/pnas.1008737107

Examples

load the tracks
data(BCells)
visualize the tracks (calls function plot.tracks)
plot(BCells)

20 beaucheminTrack

beaucheminTrack Simulate a 3D Cell Track Using the Beauchemin Model

Description

The Beauchemin model is a simple, particle-based description of T cell motion in lymph node in
the absence of antigen, which is similar to a random walk (Beauchemin et al, 2007).

Usage

beaucheminTrack(
sim.time = 10,
delta.t = 1,
p.persist = 0,
p.bias = 0.9,
bias.dir = c(0, 0, 0),
taxis.mode = 1,
t.free = 2,
v.free = 18.8,
t.pause = 0.5

)

Arguments

sim.time specifies the duration of the track to be generated

delta.t change in time between each timepoint.

p.persist indicates how probable a change in direction is. With p.persist = 1, the direction
never changes between steps and with p.persist = 0, a new direction is sampled
at every step.

p.bias strength of movement in the direction of bias.dir.

bias.dir a 3D vector indicating the direction along which there is a preference for move-
ment.

taxis.mode specified mode of movement. 1 := orthotaxis, 2 := topotaxis, 3 := klinotaxis.

t.free time interval for how long the cell is allowed to move between turns.

v.free speed of the cell during the free motion.

t.pause time that it takes the cell to adjust movement to new direction.

Details

In the Beauchemin model, cells move into a fixed direction for a fixed time t.free at a fixed speed
v.free. They then switch to a different direction, which is sampled at uniform from a sphere. The
change of direction takes a fixed time t.pause, during which the cell does not move. Thus, the
Beauchemin model is identical to the freely jointed chain model of polymer physics, except for the
explicit "pause phase" between subsequent steps.

bootstrapTrack 21

The default parameters implemented in this function were found to most accurately describe ’de-
fault’ T cell motion in lymph nodes using least-squares fitting to the mean displacement plot (Beau-
chemin et al, 2007).

This function implements an extended version of the Beauchemin model, which can also simulate
directionally biased motion. For details, see Textor et al (2013).

Value

A track, i.e., a matrix with t/delta.t rows and 4 columns.

References

Catherine Beauchemin, Narendra M. Dixit and Alan S. Perelson (2007), Characterizing T cell
movement within lymph nodes in the absence of antigen. Journal of Immunology 178(9), 5505-
5512. doi:10.4049/jimmunol.178.9.5505

Johannes Textor, Mathieu Sinn and Rob J. de Boer (2013), Analytical results on the Beauchemin
model of lymphocyte migration. BMC Bioinformatics 14(Suppl 6), S10. doi:10.1186/1471-2105-
14-S6-S10

Examples

Create track with model parameters and return matrix of positions
out <- beaucheminTrack(sim.time=20,p.persist = 0.3,taxis.mode = 1)
Plot X-Y projection
plot(wrapTrack(out))

Create 20 tracks and plot them all
out <- simulateTracks(20, beaucheminTrack(sim.time=10,

bias.dir=c(-1,1,0),p.bias=10,taxis.mode = 2,
p.persist = 0.1,delta.t = 1))

plot(out)

bootstrapTrack Simulate Tracks via Bootstrapping of Speed and Turning Angle from a
Real Track Dataset

Description

Returns a simulated dataset by sampling from the speed and turning angle distributions from an
original track dataset (only in 2 or 3 dimensions)

Usage

bootstrapTrack(nsteps, trackdata)

22 boundingBox

Arguments

nsteps desired number of steps (e.g. 10 steps generates a track with 11 positions).

trackdata a tracks object to extract speeds and turning angles from.

Details

The number of dimensions is kept the same as in the original data (if data is 3D but simulated
tracks should be 2D, consider calling projectDimensions on the input data before supplying it to
bootstrapTrack). The time interval between "measurements" of the simulated track equals that
in the real data and is found via timeStep. The first step starts at the origin in a random direction,
with a speed sampled from the speed distribution to determine its displacement. All subsequent
steps also have their turning angles sampled from the turning angle distribution in the data.

Value

A data frame containing in cell track with nsteps steps in the same number of dimensions as the
original data is returned.

Generate bootstrapped tracks of the TCell data; compare its speed distribution to the ## original
data (should be the same). T.bootstrap <- bootstrapTrack(100, TCells) step.speeds.real <- sapply(
subtracks(TCells,1), speed) step.speeds.bootstrap <- sapply(subtracks(T.bootstrap, 1), speed)
qqplot(step.speeds.real, step.speeds.bootstrap)

boundingBox Bounding Box of a Tracks Object

Description

Computes the minimum and maximum coordinates per dimension (including time) for all positions
in a given list of tracks.

Usage

boundingBox(x)

Arguments

x the input tracks object.

Value

Returns a matrix with two rows and d + 1 columns, where d is the number of spatial dimensions
of the tracks. The first row contains the minimum and the second row the maximum value of any
track in the dimension given by the column.

brownianTrack 23

Examples

Use bounding box to set up plot window
bb <- boundingBox(c(TCells,BCells,Neutrophils))
plot(Neutrophils, xlim=bb[,"x"], ylim=bb[,"y"], col=1)
plot(BCells, col=2, add=TRUE)
plot(TCells, col=3, add=TRUE)

brownianTrack Simulate an Uncorrelated Random Walk

Description

Generates a random track with nsteps steps in dim dimensions.

Usage

brownianTrack(nsteps = 100, dim = 3, mean = 0, sd = 1)

Arguments

nsteps desired number of steps (e.g. 10 steps generates a track with 11 positions).

dim desired number of dimensions.

mean stepwise mean drift per dimension; use 0 for an unbiased Brownian motion and
other values for Brownian motion with drift.

sd stepwise standard deviation per dimension.

Details

In in every step an for each dimension, a normally distributed value with mean mean and standard
deviation sd is added to the previous cell position.

Value

A data frame containing in cell track with nsteps steps in dim dimensions is returned.

The Hurst exponent of a 1D Brownian track should be near 0.5 hurstExponent(brownianTrack(
100, 1))

24 celltrackR

cellPairs Find Pairs of Tracks

Description

Get all unique combinations of two track ids.

Usage

cellPairs(X)

Arguments

X a tracks object

Value

A dataframe with two columns: one for each of the track ids in the pair. Each row represents a pair.

Examples

Find all pairs of cells in the T cell data
pairs <- cellPairs(TCells)

celltrackR celltrackR: Quantitative analysis of motion.

Description

The CelltrackR package is designed for analyzing cell tracks acquired by time-lapse microscopy
(like those provided in the included datasets TCells, BCells and Neutrophils). But it can of
course process any x-y-(z)-t data, and we hope that it may be useful for other purposes as well.

Details

For a complete list of functions, use help(package="celltrackR"). A handy cheat sheet is
available in pdf. You can open it by calling the function cheatsheet.

Data structure

The basic data structure that most functions in this package operate on is a set of tracks. A track is
a list of spatial coordinates that are recorded at fixed time intervals; the function timeStep can be
used to check for fluctuations of the recording intervals.

We expect tracks to be stored in a matrix (or data frame, but this is discouraged for efficiency
reasons) whose first column denotes a time interval (e.g. seconds elapsed since the beginning of the
experiment), and whose remaining columns denote a spatial coordinate. A set of tracks is stored
as a list with S3 class tracks. CelltrackR provides some S3 methods for this class, which are
explained in tracks as well as plot.tracks, sort.tracks and as.list.tracks.

celltrackR 25

Track analysis in celltrackR

A wide range of common track measures are included in the package. These are all functions that
take a single track as an input, and output one or several numbers. For instance, the function speed
estimates the average instantaneous speed of the track by linear interpolation, and straightness
computes the start-to-end distance divided by the trajectory length (a number between 0 and 1,
where 1 indicates a perfectly straight track). See TrackMeasures for an overview of measures that
can be analyzed on tracks. Also see AngleAnalysis for an overview of functions that can help
detect directional bias and tracking artefacts (see Beltman et al, 2009).

CelltrackR is designed to support various flavors of track analysis that have been suggested in the
literature. The simplest kind is a track-based analysis, where we compute a single statistic for each
track in a dataset (Beltman et al, 2009). Because track sets are lists, this is achieved simply by using
lapply or sapply together with the track measure (see Examples).

In step-based analyses (Beltman et al, 2009), we chop each track up into segments of the same
length and then apply our measures to those segments. This can help to avoid biases that arise from
variations in track length (which are always present in cell tracking experiments). In CelltrackR,
step-based analyses are performed by using the subtracks function. Often we want to perform
such step-based analyses for all possible subtrack lengths simultaneously, and plot the result as a
function of the subtrack length; a famous example is the mean square displacement plot. This can
be achieved by using the aggregate.tracks function, which has options to control which subtrack
lengths are considered and whether overlapping subtracks are considered.

In a staggered staggered analysis (Mokhtari et al, 2013), we analyse all subtracks (of any length)
of a single track, and typically plot the result as a matrix. This can reveal dynamic patterns along a
single track, e.g. turning behaviour or local slowdowns. Staggered analyses can be performed using
the applyStaggered function.

Simulating tracks in celltrackR

Lastly, in addition to data analysis, the package contains some function to generate cell tracks by
simulation. This is useful to develop and benchmark track analysis methodology (Textor et al,
2011), and for computational biology studies that try to extrapolate the long-term consequences of
observed cell migration behaviour. Alongside a simple uncorrelated random walk (brownianTrack),
this package implements a simulation model proposed by Beauchemin et al (2007) in the function
beaucheminTrack. That model can also simulate directionally biased motion.

Author(s)

Johannes Textor, Katharina Dannenberg, Jeffrey Berry, Gerhard Burger, Inge Wortel Maintainer:
Johannes Textor <johannes.textor@gmx.de>

References

Joost B. Beltman, Athanasius F.M. Maree and Rob. J. de Boer (2009), Analysing immune cell
migration. Nature Reviews Immunology 9, 789–798. doi:10.1038/nri2638

Zeinab Mokhtari, Franziska Mech, Carolin Zitzmann, Mike Hasenberg, Matthias Gunzer and Marc
Thilo Figge (2013), Automated Characterization and Parameter–Free Classification of Cell Tracks
Based on Local Migration Behavior. PLoS ONE 8(12), e80808. doi:10.1371/journal.pone.0080808

26 cheatsheet

Johannes Textor, Antonio Peixoto, Sarah E. Henrickson, Mathieu Sinn, Ulrich H. von Andrian and
Juergen Westermann (2011), Defining the Quantitative Limits of Intravital Two-Photon Lymphocyte
Tracking. PNAS 108(30):12401–12406. doi:10.1073/pnas.1102288108

Catherine Beauchemin, Narendra M. Dixit and Alan S. Perelson (2007), Characterizing T cell
movement within lymph nodes in the absence of antigen. Journal of Immunology 178(9), 5505-
5512. doi:10.4049/jimmunol.178.9.5505

See Also

The package vignettes, available from browseVignettes(package="celltrackR"). Make sure
you have installed the package with option build_vignettes = TRUE, or vignettes will not be visi-
ble. Also check out the package cheat sheet, which is available by calling the function cheatsheet.

Examples

track-based speed comparison
boxplot(sapply(Neutrophils, straightness), sapply(BCells, straightness))

step-based turning angle comparison
boxplot(sapply(subtracks(Neutrophils, 2), overallAngle),

sapply(subtracks(BCells, 2), overallAngle))

mean square displacement plot; a step-based displacement analysis for all step lengths
plot(aggregate(TCells, squareDisplacement)[,"value"])

'staggered' analysis of displacement over whole track. Reveals that this track
slows down near its beginning and near its end.
filled.contour(applyStaggered(TCells[[4]], displacement, matrix=TRUE))

a simple hierarchical clustering based on 2D asphericity

tag track IDs so we can identify them later
names(TCells) <- paste0("T",names(TCells))
names(BCells) <- paste0("B",names(BCells))
names(Neutrophils) <- paste0("N",names(Neutrophils))
project all tracks down to 2D
cells <- projectDimensions(c(TCells,BCells,Neutrophils), c("x","y"))

compute asphericity
asph <- lapply(cells, asphericity)

plot clustering
plot(hclust(dist(asph)))

cheatsheet Open the package cheat sheet

clusterTracks 27

Description

Running this function will open the package cheat sheet (a pdf) via a call to system().

Usage

cheatsheet(opencmd = NULL)

Arguments

opencmd The command used to open pdfs from the command line.

Value

None

clusterTracks Cluster Tracks

Description

Perform a quick clustering visualization of a set of tracks according to a given vector of track
measures.

Usage

clusterTracks(
tracks,
measures,
scale = TRUE,
labels = NULL,
method = "hclust",
return.clust = FALSE,
...

)

Arguments

tracks the tracks that are to be clustered.
measures a function, or a vector of functions (see TrackMeasures). Each function is ex-

pected to return a single number given a single track.
scale logical indicating whether the measures values shall be scaled using the function

scale before the clustering.
labels optional: a vector of labels of the same length as the track object. These are

used to color points in the visualization.
method "hclust" for hierarchical clustering, or "kmeans" for k-means clustering.
return.clust logical: return the clustering object instead of only the plot? (defaults to FALSE).
... additional parameters to be passed to the corresponding clustering function:

hclust or kmeans.

28 distanceCells

Details

The measures are applied to each of the tracks in the given tracks object. According to the resulting
values, the tracks are clustered using the chosen clustering method. If scale is TRUE, the measure
values are scaled to mean value 0 and standard deviation 1 (per measure) before the clustering.

Method hclust plots a dendrogram of the clustering.

Method kmeans plots each computed cluster (x-axis) versus each of the track measures in the
measures vector, producing one panel per measure. If labels are given, points are colored according
to their "true" label.

Value

By default, only returns a plot. If return.clust=TRUE, also returns a clustering object as returned
by hclust or kmeans. output object.

See Also

getFeatureMatrix to obtain a feature matrix that can be used for manual clustering and plotting,
and trackFeatureMap to visualize high-dimensional track feature data via dimensionality reduc-
tion.

Examples

Cluster tracks according to the mean of their Hust exponents along X and Y
using hierarchical clustering

cells <- c(TCells,Neutrophils)
real.celltype <- rep(c("T","N"),c(length(TCells),length(Neutrophils)))
Prefix each track ID with its cell class to evaluate the clustering visually
names(cells) <- paste0(real.celltype,seq_along(cells))
clust <- clusterTracks(cells, hurstExponent, method = "hclust",
return.clust = TRUE)

How many cells are "correctly" clustered?
sum(real.celltype == c("T","N")[cutree(clust,2)])

distanceCells Minimum Distance between Two Cells

Description

Compute the minimum distance between two cells in the dataset (minimum over all) the timepoints
where they were both measured.

Usage

distanceCells(X, cellids)

distanceSteps 29

Arguments

X a tracks object

cellids a vector of two indices specifying the tracks to compute distance between.

Value

A single distance, or NA if the the tracks do not have overlapping timepoints.

See Also

angleCells to compute the angle between the track displacement vectors, and AngleAnalysis for
other methods to compute angles and distances.

Examples

Find the minimum distance between the tracks with ids 1 and 2
distanceCells(TCells, c("1","2"))

distanceSteps Distance between Two Steps

Description

Compute the distance between two steps in the dataset that occur at the same timepoint. The dis-
tance is the distance between the step starting points.

Usage

distanceSteps(X, trackids, t, quietly = FALSE)

Arguments

X a tracks object

trackids a vector of two indices specifying the tracks to get steps from.

t the timepoint at which the steps should start.

quietly logical; should a warning be returned if one or both of the steps are missing in
the data and the function returns NA?

Value

A single distance, or NA if the desired timepoint is missing for one or both of the tracks.

See Also

angleSteps to compute the angle between the steps, timePoints to list all timepoints in a dataset,
and AngleAnalysis for other methods to compute angles and distances.

30 distanceToPlane

Examples

Find the distance between the steps of the tracks with ids 1 and 2, at the 3rd
timepoint in the dataset.
t <- timePoints(TCells)[3]
distanceSteps(TCells, c("1","2"), t)

distanceToPlane Distance to a Reference Plane

Description

Compute the (shortest) distance between the starting point of a track and a reference plane. Useful
to detect directed movement and/or tracking artefacts.

Usage

distanceToPlane(x, p1 = c(0, 0, 0), p2 = c(0, 1, 0), p3 = c(1, 0, 0), from = 1)

Arguments

x a single input track; a matrix whose first column is time and whose remaining
columns are a spatial coordinate.

p1, p2, p3 numeric vectors of coordinates of three points specifying a reference plane to
compute distances to.

from index, or vector of indices, of the first row of the track. If from is a vector,
distances are returned for all steps starting at the indices in from.

Value

A single distance.

See Also

angleToPlane to compute the angle to the plane, and AngleAnalysis for other methods to compute
angles and distances.

Examples

Plotting the angle versus the distance to a reference plane can be informative to
detect tracking artefacts near the border of the imaging volume.
We should be suspicious especially when small angles are more frequent at low distances
to the border planes.
steps <- subtracks(TCells, 1)
minz <- boundingBox(TCells)["min","z"]
Compute angles and distances to the lower plane in z-dimension
angles <- sapply(steps, angleToPlane, p1 = c(0,0,minz), p2 = c(1,0,minz), p3 = c(0,1,minz))
distances <- sapply(steps, distanceToPlane, p1 = c(0,0,minz), p2 = c(1,0,minz), p3 = c(0,1,minz))
scatter.smooth(distances, angles)
abline(h = 32.7, col = "red")

distanceToPoint 31

distanceToPoint Distance to a Reference Point

Description

Compute the distance between the starting point of a track and a reference point. Useful to detect
directed movement towards a point (see examples).

Usage

distanceToPoint(x, p = c(0, 0, 0), from = 1)

Arguments

x a single input track; a matrix whose first column is time and whose remaining
columns are a spatial coordinate.

p numeric vector of coordinates of the reference point p to compute distances to.

from index, or vector of indices, of the first row of the track. If from is a vector,
distances are returned for all steps starting at the indices in from.

Value

A single distance.

See Also

angleToPoint to compute the angle to the reference point, and AngleAnalysis for other methods
to compute angles and distances.

Examples

Plotting the angle versus the distance to a reference point can be informative to
detect biased movement towards that point. We should be suspicious especially
when small angles are more frequent at lower distances.
steps <- subtracks(Neutrophils, 1)
bb <- boundingBox(Neutrophils)
angles <- sapply(steps, angleToPoint, p = bb["max",-1])
distances <- sapply(steps, distanceToPoint, p = bb["max",-1])
scatter.smooth(distances, angles)
abline(h = 90, col = "red")

32 getFeatureMatrix

filterTracks Filter Tracks

Description

Extracts subtracks based on a given function.

Usage

filterTracks(f, x, ...)

Arguments

f a function that accepts a single track as its first argument and returns a logical
value (or a value that can be coerced to a locical).

x a tracks object.
... further arguments to be passed on to f.

Value

A tracks object containing only those tracks from x for which f evaluates to TRUE.

Examples

Remove short tracks from the T cells data
plot(filterTracks(function(t) nrow(t)>10, TCells))

getFeatureMatrix Obtaining A Feature Matrix

Description

Applies a given vector of track measures directly on a set of tracks, returning output in a matrix
with a column for each measure and a row for each track. Can also return a distance matrix, which
some clustering methods require.

Usage

getFeatureMatrix(tracks, measures, dist = FALSE, ...)

Arguments

tracks the tracks that are to be analyzed.
measures a function, or a vector of functions (see TrackMeasures). Each function is ex-

pected to return a single number given a single track.
dist should a distance matrix rather than a feature matrix be returned?
... further arguments passed on to "dist"

hotellingsTest 33

Value

A matrix with a row for each track and a column for each measure.

See Also

clusterTracks for a quick method to compute the feature matrix and a clustering, and trackFeatureMap
to perform dimensionality reduction methods on a set of track features.

Examples

Get speed, meanTurningAngle, and straightness for T cell tracks
fm <- getFeatureMatrix(TCells, c(speed,meanTurningAngle,straightness))
str(fm)

hotellingsTest Test Unbiasedness of Motion

Description

Test the null hypothesis that a given set of tracks originates from an uncorrelated and unbiased type
of motion (e.g., a random walk without drift). This is done by testing whether the mean step vector
is equal to the null vector.

Usage

hotellingsTest(
tracks,
dim = c("x", "y"),
step.spacing = 0,
plot = FALSE,
add = FALSE,
ellipse.col = "blue",
ellipse.border = "black",
conf.level = 0.95,
...

)

Arguments

tracks the tracks whose biasedness is to be determined.

dim vector with the names of the track’s dimensions that are to be considered. By
default c("x", "y").

step.spacing How many positions are to be left out between the steps that are considered
for the test. For persistent motion, subsequent steps will be correlated, which
leads to too low p-values because Hotelling’s test assumes that the input data
is independent. To avoid this, the resulting p-value should either be corrected

34 interpolateTrack

for this dependence (e.g. by adjusting the degrees of freedom accordingly), or
‘step.spacing‘ should be set to a value high enough to ensure that the considered
steps are approximately independent.

plot logical indicating whether the scatter of the step’s directions, origin of ordinates
(green circle) and the mean of the data points (green cross) are to be plotted.
(In one dimension also the bounds of the condfidence interval are given.) Plot
works only in one or two dimensions.

add whether to add the plot to the current plot (TRUE) or create a

ellipse.col color with which to draw the confidence ellipse of the mean (for 1D, this corre-
sponds to the confidence interval of the mean). Use NA to omit the confidence
ellipse.

ellipse.border color of the confidence ellipse border. Use NA to omit the border.

conf.level the desired confidence level for the confidence ellipse.

... further arguments passed on to plot.

Details

Computes the displacement vectors of all segments in the tracks given in tracks, and performs
Hotelling’s T-square Test on that vector.

Value

A list with class htest.

References

Johannes Textor, Antonio Peixoto, Sarah E. Henrickson, Mathieu Sinn, Ulrich H. von Andrian and
Juergen Westermann (2011), Defining the Quantitative Limits of Intravital Two-Photon Lymphocyte
Tracking. PNAS 108(30):12401–12406. doi:10.1073/pnas.1102288108

Examples

Test H_0: T-cells migrate by uncorrelated random walk on x and y coordinates,
and report the p-value.
hotellingsTest(TCells)$p.value

interpolateTrack Interpolate Track Positions

Description

Approximates the track positions at given time points using linear interpolation (via the approx
function).

maxTrackLength 35

Usage

interpolateTrack(x, t, how = "linear")

Arguments

x the input track (a matrix or data frame).

t the times at which to approximate track positions. These must lie within the
interval spanned by the track timepoints.

how specifies how to perform the interpolation. Possible values are "linear" (which
uses approx with default values) and "spline" (which uses spline with default
values).

Value

The interpolated track (a matrix or data frame).

Examples

Compare interpolated and non-interpolated versions of a track
bb <- boundingBox(TCells[2])
plot(TCells[2])
t2i <- interpolateTrack(TCells[[2]], seq(bb[1,"t"],bb[2,"t"],length.out=100),"spline")
plot(tracks(t2i), add=TRUE, col=2)

maxTrackLength Length of Longest Track

Description

Determines the maximum number of positions over the tracks in x.

Usage

maxTrackLength(x)

Arguments

x the tracks object the tracks in which are to be considered.

Value

The maximum number of rows of a track in x

36 Neutrophils

Neutrophils Two-Photon Data: Neutrophils in an Infected Lung

Description

Labelled neutrophils were adoptively transfered and intravitally imaged (using two-photon mi-
croscopy) inside the lung of the recipient mouse. These cells display a fairly directed kind of
motion, as they move towards infection foci.

Usage

data("Neutrophils")

Format

An S3 object of class "tracks"; a list with 10 elements. Each element name identifies a cell track.
Each element is a matrix containing the following four columns.

t the time (in seconds)

x The X coordinate (in micrometers)

y The Y coordinate (in micrometers)

z The Z coordinate (in micrometers)

Source

Data were generated in 2012 in the Mark J. Miller Lab, Department of Medicine, Washington
University in St Louis, USA.

References

Zinselmeyer BH, Dempster J, Wokosin DL, Cannon JJ, Pless R, Parker I and Miller MJ (2009),
Two-photon microscopy and multi-dimensional analysis of cell dynamics. Methods in Enzymology,
461:349–78. doi:10.1016/S0076-6879(09)05416-0

Konjufca V and Miller MJ (2009), Imaging Listeria monocytogenes infection in vivo. Current
Topics in Microbiology and Immunology, 334:199–226. doi:10.1007/978-3-540-93864-4_9

Kreisel D, Nava RG, Li W, Zinselmeyer BH, Wang B, Lai J, Pless R, Gelman AE, Krupnick AS, and
Miller MJ (2010), In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasa-
tion during pulmonary inflammation. PNAS, 107(42):18073–18078. doi:10.1073/pnas.1008737107

Examples

load the tracks
data(Neutrophils)
visualize the tracks (calls function plot.tracks)
plot(Neutrophils)

normalizeToDuration 37

normalizeToDuration Normalize a Measure to Track Duration

Description

Returns a measure that divides the input measure by the duration of its input track.

Usage

normalizeToDuration(x)

Arguments

x a track measure (see TrackMeasures).

Value

A function that computes the input measure for a given track and returns the result divided by the
track’s duration.

Examples

normalizeToDuration(displacement) can be used as an indicator
for the motion's efficiency
sapply(TCells, normalizeToDuration(displacement))

normalizeTracks Normalize Tracks

Description

Translates each track in a given set of tracks such that the first position is the origin.

Usage

normalizeTracks(x)

Arguments

x the input tracks object.

Value

an output tracks object with all tracks shifted such that their starting position lies at the origin of
the coordinate system.

38 plot.tracks

Examples

normalization of Neutrophil data reveals upward motion
plot(normalizeTracks(Neutrophils))

plot.tracks Plot Tracks in 2D

Description

Plots tracks contained in a "tracks" object into a twodimensional space pallelel to the data’s axes.

Usage

S3 method for class 'tracks'
plot(
x,
dims = c("x", "y"),
add = F,
col = order(names(x)),
pch.start = 1,
pch.end = NULL,
cex = 0.5,
...

)

Arguments

x the tracks to be plotted.

dims a vector giving the dimensions of the track data that shall be plotted, e.g. c('x','y')
for the x and y dimension.

add boolean value indicating whether the tracks are to be added to the current plot.

col a specification of the color(s) to be used. This can be a vector of size length(x),
where each entry specififes the color for the corresponding track.

pch.start point symbol with which to label the first position of the track (see points).

pch.end point symbol with which to label the last position of the track

cex point size for positions on the tracks.

... additional parameters (e.g. xlab, ylab). to be passed to plot (for add=FALSE) or
points (for add=TRUE), respectively.

Details

One dimension of the data (by default y) is plotted against another (by default x). The dimesions
can be chosen by means of the parameter dims and the axes can be labeled accordingly with the aid
of xlab and ylab. The color can be set through col. If the tracks should be added to an existing
plot, add is to be set to TRUE.

plot3d 39

Value

None

See Also

plot3d

plot3d Plot Tracks in 3D

Description

Takes an input tracks object and plots them in 3D using the scatterplot3d function.

Usage

plot3d(x, ...)

Arguments

x the tracks which will be plotted in 3d

... further arguments to be passed on to scatterplot3d

Value

None.

Examples

if(require("scatterplot3d",quietly=TRUE)){
plot3d(TCells)

}

plotTrackMeasures Bivariate Scatterplot of Track Measures

Description

Plots the values of two measures applied on the given tracks against each other.

40 plotTrackMeasures

Usage

plotTrackMeasures(
x,
measure.x,
measure.y,
add = FALSE,
xlab = deparse(substitute(measure.x)),
ylab = deparse(substitute(measure.y)),
ellipse.col = "red",
ellipse.border = "black",
conf.level = 0.95,
...

)

Arguments

x the input tracks object.

measure.x the measure to be shown on the X axis (see TrackMeasures).

measure.y the measure to be shown on the Y axis.

add a logical indicating whether the tracks are to be added to an existing plot via
points.

xlab label of the x-axis. By default the name of the input function measure.x.

ylab label of the y-axis. By default the name of the input function measure.y.

ellipse.col color with which to draw the confidence ellipse of the mean (for 1D, this corre-
sponds to the confidence interval of the mean). Use NA to omit the confidence
ellipse.

ellipse.border color of the confidence ellipse border. Use NA to omit the border.

conf.level the desired confidence level for the confidence ellipse.

... additional parameters to be passed to plot (in case add=FALSE) or points
(add=TRUE).

Details

Plots the value of measurey applied to x against the value of measurey applied to y. This is useful
for "FACS-like" motility analysis, where clusters of cell tracks are identified based on their motility
parameters (Moreau et al, 2012; Textor et al, 2014).

Value

None

References

Moreau HD, Lemaitre F, Terriac E, Azar G, Piel M, Lennon-Dumenil AM, Bousso P (2012), Dy-
namic In Situ Cytometry Uncovers T Cell Receptor Signaling during Immunological Synapses and
Kinapses In Vivo. Immunity 37(2), 351–363. doi:10.1016/j.immuni.2012.05.014

prefixes 41

Johannes Textor, Sarah E. Henrickson, Judith N. Mandl, Ulrich H. von Andrian, J\"urgen West-
ermann, Rob J. de Boer and Joost B. Beltman (2014), Random Migration and Signal Integration
Promote Rapid and Robust T Cell Recruitment. PLoS Computational Biology 10(8), e1003752.
doi:10.1371/journal.pcbi.1003752

Examples

Compare speed and straightness of 3 example population tracks.
To make the comparison fair, analyze subtracks of fixed length.
plotTrackMeasures(subtracks(TCells,4,0), speed, straightness, ellipse.col="black")
plotTrackMeasures(subtracks(BCells,4,0), speed, straightness,

col=2, ellipse.col=2, pch=2, add=TRUE)
plotTrackMeasures(subtracks(Neutrophils,4,0), speed, straightness,

col=3, ellipse.col=3, pch=3, add=TRUE)

prefixes Get Track Prefixes

Description

Creates a tracks object consisting of all prefixes (i.e., subtracks starting with the first position of a
track) of ‘x‘ with ‘i‘ segments (i.e., ‘i‘+1 positions).

Usage

prefixes(x, i)

Arguments

x a single track or a tracks object.

i subtrack length. A single integer, lists are not supported.

Details

This function behaves exactly like subtracks except that only subtracks starting from the first
position are considered.

Value

A tracks object is returned which contains all the subtracks of any track in the input tracks object
that consist of exactly ‘i‘ segments and start at the first registered coordinate of the given track.

See Also

subtracks to extract all subtracks of a given length, subtracksByTime to extract all subtracks of
a given length starting at some fixed timepoint, and selectSteps to extract single steps starting at
a fixed timepoint from a subset of trackids.

42 read.tracks.csv

projectDimensions Extract Spatial Dimensions

Description

Projects tracks onto the given spatial dimensions.

Usage

projectDimensions(x, dims = c("x", "y"))

Arguments

x the input tracks object.

dims a character vector (for column names) or an integer vector (for column indices)
giving the dimensions to extract from each track. The time dimension (i.e., the
first column of all tracks) is always included.

Value

A tracks object is returned that contains only those dimensions of the input tracks that are given
in dims.

Examples

Compare 2D and 3D speeds
speed.2D <- mean(sapply(subtracks(projectDimensions(TCells, c("x","z")), 2), speed))
speed.3D <- mean(sapply(TCells, speed))

read.tracks.csv Read Tracks from Text File

Description

Reads cell tracks from a CSV or other text file. Data are expected to be organized as follows.
One column contains a track identifier, which can be numeric or a string, and determines which
points belong to the same track. Another column is expected to contain a time index or a time
period (e.g. number of seconds elapsed since the beginning of the track, or since the beginning of
the experiment). Input of dates is not (yet) supported, as absolute time information is frequently
not available. Further columns contain the spatial coordinates. If there are three or less spatial
coordinates, their names will by "x", "y", and "z" (depending on whether the tracks are 1D, 2D or
3D). If there are four or more spatial coordinates, their names will be "x1", "x2", and so on. The
names or indices of these columns in the CSV files are given using the corresponding parameters
(see below). Names and indices can be mixed, e.g. you can specify id.column="Parent" and
pos.columns=1:3

read.tracks.csv 43

Usage

read.tracks.csv(
file,
id.column = 1,
time.column = 2,
pos.columns = c(3, 4, 5),
scale.t = 1,
scale.pos = 1,
header = TRUE,
sep = "",
track.sep.blankline = FALSE,
...

)

Arguments

file the name of the file which the data are to be read from, a readable text-mode
connection or a complete URL (see read.table).

id.column index or name of the column that contains the track ID.

time.column index or name of the column that contains elapsed time.

pos.columns vector containing indices or names of the columns that contain the spatial coor-
dinates. If this vector has two entries and the second entry is NA, e.g. c('x',NA)
or c(5,NA) then all columns from the indicated column to the last column are
used. This is useful when reading files where the exact number of spatial dimen-
sions is not known beforehand.

scale.t a value by which to multiply each time point. Useful for changing units, or for
specifying the time between positions if this is not contained in the file itself.

scale.pos a value, or a vector of values, by which to multiply each spatial position. Useful
for changing units.

header a logical value indicating whether the file contains the names of the variables as
its first line. See read.table.

sep a character specifying how the colums of the data are separated. The default
value "" means columns are separated by tabs or other spaces. See read.table.

track.sep.blankline

logical. If set to TRUE, then tracks are expected to be separated by one or more
blank lines in the input file instead of being designated by a track ID column. In
this case, numerical track IDs are automatically generated.

... further arguments to be passed to read.csv, for instance sep="\t" can be use-
ful for tab-separated files.

Details

The input file’s first four fields are interpreted as id, pos, t and x, respectively, and, if available, the
fifth as y and the sixth as z. The returned object has the class tracks, which is a list of data frames
representing the single tracks and having columns t and x, plus y and z, if necessary. The tracks’
ids are retained in their position in the list, while the field pos will be unmaintained.

44 repairGaps

Value

An object of class tracks is returned, which is a list of matrices, each containing the positions of
one track. The matrices have a column t, followed by one column for each of the input track’s
coordinates.

repairGaps Process Tracks Containing Gaps

Description

Many common motility analyses, such as mean square displacement plots, assume that object po-
sitions are recorded at constant time intervals. For some application domains, such as intravital
imaging, this may not always be the case. This function can be used to pre-process data imaged at
nonconstant intervals, provided the deviations are not too extreme.

Usage

repairGaps(x, how = "split", tol = 0.05, split.min.length = 2)

Arguments

x the input tracks object.

how string specifying what do with tracks that contain gaps. Possible values are:

• "drop": the simplest option – discard all tracks that contain gaps.
• "split": split tracks around the gaps, e.g. a track for which the step between

the 3rd and 4th positions is too long or too short is split into one track cor-
responding to positions 1 to 3 and another track corresponding to position
3 onwards.

• "interpolate": approximate the track positions using linear interpolation
(see interpolateTrack). The result is a tracks object with constant step
durations.

tol nonnegative number specifying by which fraction each step may deviate from
the average step duration without being considered a gap. For instance, if the
average step duration (see timeStep) is 100 seconds and tol is 0.05 (the de-
fault), then step durations between 95 and 105 seconds (both inclusive) are not
considered gaps. This option is ignored for how="interpolate".

split.min.length

nonnegative integer. For how="split", this discards all resulting tracks shorter
than this many positions.

Value

A tracks object with gaps fixed according to the chosen method.

selectSteps 45

Examples

The Neutrophil data are imaged at rather nonconstant intervals
print(length(Neutrophils))
print(length(repairGaps(Neutrophils, tol=0.01)))

selectSteps Get Single Steps Starting at a Specific Time from a Subset of Tracks

Description

Obtain all single steps starting at a given timepoint t from a subset of tracks of interest.

Usage

selectSteps(X, trackids, t)

Arguments

X Tracks object to obtain subtracks from

trackids Character vector with the ids of tracks of interest

t Timepoint at which the subtracks should start

Value

A tracks object is returned which contains all the extracted steps.

See Also

subtracks to extract all subtracks of a given length, prefixes to extract all subtracks of a given
length starting from the first coordinate in each track, subtracksByTime to extract all subtracks of
a given length starting at some fixed timepoint, and timePoints to return all timepoints occurring
in the dataset.

Examples

Get and plot all steps starting at the third timepoint in tracks 1 and 3 of
the T cell dataset
subT <- selectSteps(TCells, c("1","5"), timePoints(TCells)[3])
plot(subT)

46 simulateTracks

selectTracks Select Tracks by Measure Values

Description

Given a tracks object, extract a subset based on upper and lower bounds of a certain measure. For
instance, extract all tracks with a certain minimum length.

Usage

selectTracks(x, measure, lower, upper)

Arguments

x the input tracks.

measure measure on which the selection is based (see TrackMeasures).

lower specifies the lower bound (inclusive) of the allowable measure.

upper specifies the upper bound (inclusive) of the allowable measure.

Value

A tracks object with the selected subset of tracks.

Examples

Slower half of T cells
slow.tcells <- selectTracks(TCells, speed, -Inf, median(sapply(TCells,speed)))

simulateTracks Generate Tracks by Simulation

Description

Generic function that executes expr, which is expected to return a track, n times and stores the
output in a tracks object. Basically, this works like replicate but for tracks.

Usage

simulateTracks(n, expr)

Arguments

n number of tracks to be generated.

expr the expression, usually a call, that generates a single track.

sort.tracks 47

Value

A tracks object containing n tracks.

Examples

Generate 10 tracks, 100 steps each, from a random walk with standard normally
distributed increments and plot them
plot(simulateTracks(10, brownianTrack(100,3)))

sort.tracks Sort Track Positions by Time

Description

Sorts the positions in each track in a tracks object by time.

Usage

S3 method for class 'tracks'
sort(x, decreasing = FALSE, ...)

Arguments

x the tracks object whose tracks are to be sorted by time.

decreasing logical. Should the sort be increasing or decreasing? Provided only for consis-
tency with the generic sort method. The positions in each track should be sorted
in increasing time order.

... further arguments to be passed on to order.

Details

Sorts the positions of each track (represented as a data frame) in the tracks object by time (given in
the column t).

Value

A tracks object that contains the tracks from the input object sorted by time is returned.

48 staggered

splitTrack Split Track into Multiple Tracks

Description

Split Track into Multiple Tracks

Usage

splitTrack(x, positions, id = NULL, min.length = 2)

Arguments

x the input track (a data frame or a matrix).

positions a vector of positive integers, given in ascending order.

id a string used to identify the resulting tracks; for instance, if id="X", then the
resulting tracks are named X_1, X_2 and so forth. Otherwise, they are simply
labelled with integer numbers.

min.length nonnegative integer. Resulting tracks that have fewer positions than the value of
this parameter are dropped.

Value

An object of class tracks with the resulting splitted tracks.

staggered Staggered Version of a Function

Description

Returns the "staggered" version of a track measure. That is, instead of computing the measure on
the whole track, the measure is averaged over all subtracks (of any length) of the track.

Usage

staggered(measure, ...)

Arguments

measure a track measure (see TrackMeasures).

... further parameters passed on to applyStaggered.

Details

This is a wrapper mainly designed to provide a convenient interface for track-based staggered com-
putations with lapply, see example.

stepPairs 49

Value

Returns a function that computes the given measure in a staggered fashion on that track.

References

Zeinab Mokhtari, Franziska Mech, Carolin Zitzmann, Mike Hasenberg, Matthias Gunzer and Marc
Thilo Figge (2013), Automated Characterization and Parameter–Free Classification of Cell Tracks
Based on Local Migration Behavior. PLoS ONE 8(12), e80808. doi:10.1371/journal.pone.0080808

Examples

hist(sapply(TCells, staggered(displacement)))

stepPairs Find Pairs of Steps Occurring at the Same Time

Description

Find cell indices and timepoints where these cells both have a step.

Usage

stepPairs(X, filter.steps = NULL)

Arguments

X a tracks object

filter.steps optional: a function used to filter steps on. See examples.

Value

A dataframe with three columns: two for the indices of cellpairs that share a step, and one for the
timepoint at which they do so.

Examples

Find all pairs of steps in the T cell data that displace at least 2 microns.
pairs <- stepPairs(TCells, filter.steps = function(t) displacement(t) > 2)

50 subtracks

subsample Subsample Track by Constant Factor

Description

Make tracks more coarse-grained by keeping only every kth position.

Usage

subsample(x, k = 2)

Arguments

x an input track or tracks object.

k a positive integer. Every kth position of each input track is kept.

Value

A tracks object with the new, more coarse-grained tracks.

See Also

interpolateTrack, which can be used for more flexible track coarse-graining.

Examples

Compare original and subsampled versions of the T cell tracks
plot(TCells, col=1)
plot(subsample(TCells, 3), col=2, add=TRUE, pch.start=NULL)

subtracks Decompose Track(s) into Subtracks

Description

Creates a tracks object consisting of all subtracks of ‘x‘ with ‘i‘ segments (i.e., ‘i‘+1 positions).

Usage

subtracks(x, i, overlap = i - 1)

subtracksByTime 51

Arguments

x a single track or a tracks object.
i subtrack length. A single integer, lists are not supported.
overlap the number of segments in which each subtrack shall overlap with the previous

and next subtrack. The default i -1 returns all subtracks. Can be negative, which
means that space will be left between subtracks.

Details

The output is always a single tracks object, which is convenient for many common analyses. If
subtracks are to be considered separately for each track, use the function staggered together with
lapply. Subtrack extraction always starts at the first position of the input track.

Value

A tracks object is returned which contains all the subtracks of any track in the input tracks object
that consist of exactly ‘i‘ segments and overlap adjacent subtracks in ‘overlap‘ segments.

See Also

prefixes to extract all subtracks of a given length starting from the first coordinate in each track,
subtracksByTime to extract all subtracks of a given length starting at some fixed timepoint, and
selectSteps to extract single steps starting at a fixed timepoint from a subset of trackids.

subtracksByTime Extract Subtracks Starting at a Specific Time

Description

Obtain all subtracks of i steps (i+1 positions) starting at a given timepoint t.

Usage

subtracksByTime(X, t, i = 1, epsilon = 1e-04, tlo = t, thi = t)

Arguments

X Tracks object to obtain subtracks from.
t Timepoint at which the subtracks should start. This value is ignored if tlo and

thi are specified, see below.
i Subtrack length (in number of steps). Set this to NULL to obtain subtracks of

varying length but within a specified interval [tlo, thi] (see below).
epsilon Small error allowed when comparing timepoints because of numerical inaccura-

cies, see details. Timepoints in tracks are returned if they are within [tlo-epsilon,
thi+epsilon].

tlo, thi Interval specifying the timepoints to be returned. By default, these are not used
and tracks starting at timepoint t with exactly i steps are returned; see details.

52 TCells

Details

If i is specified, the given t is retrieved for all tracks in X that contain that timepoint, and any
subtracks starting from that time that have exactly i steps are returned. For numerical reasons,
timepoints in the data are allowed to deviate a small amount epsilon from t (because otherwise,
equal timepoints can seem unequal because of very small deviations).

If i is set to NULL, subtracks are returned with all timepoints lying in the interval [tlo - epsilon, thi
+ epsilon]. These subtracks do NOT have to be of equal length.

Value

A tracks object is returned which contains all the subtracks of any track in the input tracks object
that consist of exactly ‘i‘ segments and start at the given timepoint t, OR a tracks object with all the
timepoints of any track in the input tracks object that are between tlo and thi.

See Also

subtracks to extract all subtracks of a given length, prefixes to extract all subtracks of a given
length starting from the first coordinate in each track, selectSteps to extract single steps starting
at a fixed timepoint from a subset of trackids, and timePoints to return all timepoints occurring in
the dataset.

Examples

Get all the single steps (i=1) starting at the third timepoint in the T cell tracks.
subT <- subtracksByTime(TCells, timePoints(TCells)[3], 1)

These all have the same number of steps:
sapply(subT, nrow)

Or set i to NULL and return all subtracks within the five first timepoints:
subT2 <- subtracksByTime(TCells, NULL, i = NULL,

tlo = timePoints(TCells)[1], thi = timePoints(TCells)[5])

These are not all the same length:
sapply(subT2, nrow)

TCells Two-Photon Data: T Cells in a Lymph Node

Description

Labelled T cells were adoptively transfered and intravitally imaged (using two-photon microscopy)
inside a peripheral lymph node of the recipient mouse. These data represent the characteristic
"random-walk-like" motion pattern of T cells in lymph nodes.

Usage

data("TCells")

timePoints 53

Format

An S3 object of class "tracks"; a list with 22 elements. Each element name identifies a cell track.
Each element is a matrix containing the following four columns.

t the time (in seconds)

x The X coordinate (in micrometers)

y The Y coordinate (in micrometers)

z The Z coordinate (in micrometers)

Source

Data were generated in 2012 in the Mark J. Miller Lab, Department of Medicine, Washington
University in St Louis, USA.

References

Zinselmeyer BH, Dempster J, Wokosin DL, Cannon JJ, Pless R, Parker I and Miller MJ (2009),
Two-photon microscopy and multi-dimensional analysis of cell dynamics. Methods in Enzymology,
461:349–78. doi:10.1016/S0076-6879(09)05416-0

Konjufca V and Miller MJ (2009), Imaging Listeria monocytogenes infection in vivo. Current
Topics in Microbiology and Immunology, 334:199–226. doi:10.1007/978-3-540-93864-4_9

Kreisel D, Nava RG, Li W, Zinselmeyer BH, Wang B, Lai J, Pless R, Gelman AE, Krupnick AS, and
Miller MJ (2010), In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasa-
tion during pulmonary inflammation. PNAS, 107(42):18073–18078. doi:10.1073/pnas.1008737107

Examples

load the tracks
data(TCells)
visualize the tracks (calls function plot.tracks)
plot(TCells)

timePoints Find All Unique Time Points in a Track Dataset

Description

Return a vector of all the timepoints t found in any of the matrices in the tracks object.

Usage

timePoints(X)

Arguments

X a tracks object.

54 timeStep

Value

A numeric vector of unique timepoints.

Examples

Get all timepoints in the T cell dataset
tp <- timePoints(TCells)

timeStep Compute Time Step of Tracks

Description

Applies a summary statistics on the time intervals between pairs of consecutive positions in a track
dataset.

Usage

timeStep(x, FUN = median, na.rm = FALSE)

Arguments

x the input tracks.

FUN the summary statistic to be applied.

na.rm logical, indicates whether to remove missing values before applying FUN.

Details

Most track quantification depends on the assumption that track positions are recorded at constant
time intervals. If this is not the case, then most of the statistics in this package (except for some very
simple ones like duration) will not work. In reality, at least small fluctuations of the time steps can
be expected. This function provides a means for quality control with respect to the tracking time.

Value

Summary statistic of the time intervals between two consecutive positions in a track dataset.

Examples

Show tracking time fluctuations for the T cell data
d <- timeStep(TCells)
plot(sapply(subtracks(TCells, 1) , duration) - d, ylim=c(-d,d))

trackFeatureMap 55

trackFeatureMap Dimensionality Reduction on Track Features

Description

Perform a quick dimensionality reduction visualization of a set of tracks according to a given vector
of track measures.

Usage

trackFeatureMap(
tracks,
measures,
scale = TRUE,
labels = NULL,
method = "PCA",
return.mapping = FALSE,
...

)

Arguments

tracks the tracks that are to be clustered.

measures a function, or a vector of functions (see TrackMeasures). Each function is ex-
pected to return a single number given a single track.

scale logical indicating whether the measures values shall be scaled using the function
scale before the mapping is performed.

labels optional: a vector of labels of the same length as the track object. These are
used to color points in the visualization.

method "PCA" for a scatterplot along principal components, "MDS" for multidimensional
scaling, "UMAP" for a UMAP. Note that for "UMAP", the uwot package must be
installed.

return.mapping logical: return the mapping object instead of only the plot? (defaults to FALSE).

... additional parameters to be passed to the corresponding function: prcomp (for
method="PCA"), cmdscale (for method="MDS"), or umap (for method="UMAP").

Details

The measures are applied to each of the tracks in the given tracks object. According to the resulting
values, the tracks are mapped to fewer dimensions using the chosen method. If scale is TRUE,
the measure values are scaled to mean value 0 and standard deviation 1 (per measure) before the
mapping.

The dimensionality reduction methods PCA, MDS, and UMAP each produce a scatterplot of all
tracks as points, plotted along the principal component axes generated by the corresponding method.

56 TrackMeasures

Value

By default, only returns a plot. If return.clust=TRUE, also returns a clustering object as returned
by hclust, kmeans, prcomp (returns $x), cmdscale, or umap (returns $layout). See the documen-
tation of those functions for details on the output object.

See Also

getFeatureMatrix to obtain a feature matrix that can be used for manual clustering and plotting,
and clusterTracks to perform hierarchical or k-means clustering on a tracks dataset.

Examples

Map tracks according to speed, mean turning angle, straightness, and asphericity
using multidimensional scaling, and store output.

cells <- c(TCells,Neutrophils)
real.celltype <- rep(c("T","N"),c(length(TCells),length(Neutrophils)))
Prefix each track ID with its cell class to evaluate the clustering visually
names(cells) <- paste0(real.celltype,seq_along(cells))
map <- trackFeatureMap(cells, c(speed,meanTurningAngle,straightness, asphericity),
method = "MDS", return.mapping = TRUE)

TrackMeasures Track Measures

Description

Statistics that can be used to quantify tracks. All of these functions take a single track as input and
give a single number as output.

Usage

trackLength(x)

duration(x)

speed(x)

displacement(x, from = 1, to = nrow(x))

squareDisplacement(x, from = 1, to = nrow(x))

displacementVector(x)

maxDisplacement(x)

displacementRatio(x)

TrackMeasures 57

outreachRatio(x)

straightness(x)

overallAngle(x, from = 1, to = nrow(x), xdiff = diff(x), degrees = FALSE)

meanTurningAngle(x, degrees = FALSE)

overallDot(x, from = 1, to = nrow(x), xdiff = diff(x))

overallNormDot(x, from = 1, to = nrow(x), xdiff = diff(x))

asphericity(x)

hurstExponent(x)

fractalDimension(x)

Arguments

x a single input track; a matrix whose first column is time and whose remaining
columns are a spatial coordinate.

from index, or vector of indices, of the first row of the track.

to index, or vector of indices, of last row of the track.

xdiff row differences of x.

degrees logical; should angles be returned in degrees rather than radians?

Details

Some track measures consider only the first and last position (or steps) of a track, and are most
useful in conjunction with aggregate.tracks; for instance, squareDisplacement combined with
aggregate.tracks gives a mean square displacement plot, and overallAngle combined with
aggregate.tracks gives a turning angle plot (see the examples for aggregate.tracks). To speed
up computation of these measures on subtracks of the same track, the arguments from, to and
possibly xdiff are exploited by aggregate.tracks.

Value

trackLength sums up the distances between subsequent positsion; in other words, it estimates the
length of the underlying track by linear interpolation (usually an underestimation). The estimation
could be improved in some circumstances by using interpolateTrack. The function returns a
single, non-negative number.

duration returns the time elapsed between x’s first and last positions (a single, non-negative num-
ber).

speed simply divides trackLength by duration

58 TrackMeasures

displacement returns the Euclidean distance between the track endpoints and squareDisplacement
returns the squared Euclidean distance.

displacementVector returns the vector between the track endpoints. This vector has an element
(can be negative) for each (x,y,z) dimension of the coordinates in the track.

maxDisplacement computes the maximal Euclidean distance of any position on the track from the
first position.

displacementRatio divides the displacement by the maxDisplacement; outreachRatio divides
the maxDisplacement by the trackLength (Mokhtari et al, 2013). Both measures return values
between 0 and 1, where 1 means a perfectly straight track. If the track has trackLength 0, then
NaN is returned.

straightness divides the displacement by the trackLength. This gives a number between 0 and
1, with 1 meaning a perfectly straight track. If the track has trackLength 0, then NaN is returned.

asphericity is a different appraoch to measure straightness (Mokhtari et al, 2013): it computes
the asphericity of the set of positions on the track _via_ the length of its principal components.
Again this gives a number between 0 and 1, with higher values indicating straighter tracks. Unlike
straightness, however, asphericity ignores back-and-forth motion of the object, so something that
bounces between two positions will have low straightness but high asphericity. We define the
asphericity of every track with two or fewer positions to be 1. For one-dimensional tracks with one
or more positions, NA is returned.

overallAngle Computes the angle (in radians) between the first and the last segment of the given
track. Angles are measured symmetrically, thus the return values range from 0 to pi; for instance,
both a 90 degrees left and right turns yield the value pi/2. This function is useful to generate
autocorrelation plots (together with aggregate.tracks). Angles can also be returned in degrees,
in that case: set degrees = TRUE.

meanTurningAngle averages the overallAngle over all adjacent segments of a given track; a low
meanTurningAngle indicates high persistence of orientation, whereas for an uncorrelated random
walk we expect 90 degrees. Note that angle measurements will yield NA values for tracks in which
two subsequent positions are identical. By default returns angles in radians; use degrees = TRUE to
return angles in degrees instead.

overallDot computes the dot product between the first and the last segment of the given track.
This function is useful to generate autocovariance plots (together with aggregate.tracks).

overallNormDot computes the dot product between the unit vectors along the first and the last
segment of the given track. This function is useful to generate autocorrelation plots (together with
aggregate.tracks).

hurstExponent computes the corrected empirical Hurst exponent of the track. This uses the func-
tion hurstexp from the ‘pracma‘ package. If the track has less than two positions, NA is returned.
fractalDimension estimates the fractal dimension of a track using the function fd.estim.boxcount
from the ‘fractaldim‘ package. For self-affine processes in n dimensions, fractal dimension and
Hurst exponent are related by the formula H = n + 1 − D. For non-Brownian motion, however,
this relationship need not hold. Intuitively, while the Hurst exponent takes a global approach to
the track’s properties, fractal dimension is a local approach to the track’s properties (Gneiting and
Schlather, 2004).

tracks 59

References

Zeinab Mokhtari, Franziska Mech, Carolin Zitzmann, Mike Hasenberg, Matthias Gunzer and Marc
Thilo Figge (2013), Automated Characterization and Parameter–Free Classification of Cell Tracks
Based on Local Migration Behavior. PLoS ONE 8(12), e80808. doi:10.1371/journal.pone.0080808

Tillmann Gneiting and Martin Schlather (2004), Stochastic Models That Separate Fractal Dimen-
sion and the Hurst Effect. SIAM Review 46(2), 269–282. doi:10.1137/S0036144501394387

See Also

AngleAnalysis for methods to compute angles and distances between pairs of tracks, or of tracks
to a reference point, direction, or plane.

Examples

show a turning angle plot with error bars for the T cell data.
with((aggregate(BCells,overallDot,FUN="mean.se",na.rm=TRUE)),{

plot(mean ~ i, xlab="time step",
ylab="turning angle (rad)", type="l")
segments(i, lower, y1=upper)

})

tracks Tracks Objects

Description

The function tracks is used to create tracks objects. as.tracks coerces its argument to a tracks
object, and is.tracks tests for tracks objects. c can be used to combine (concatenate) tracks
objects.

Usage

as.tracks(x, ...)

S3 method for class 'list'
as.tracks(x, ...)

is.tracks(x)

S3 method for class 'tracks'
c(...)

tracks(...)

60 vecAngle

Arguments

x an object to be coerced or tested.

... for tracks, numeric matrices or objects that can be coerced to numeric matrices.
Each matrix contains the data of one track. The first column is the time, and the
remaining columns define a spatial position. Every given matrix has to contain
the same number of columns, and at least two columns are necessary.
For c, tracks objects to be combined.
For as.tracks, further arguments passed to methods (currently not used).

Details

Tracks objects are lists of matrices. Each matrix contains at least two columns; the first column is
time, and the remaining columns are a spatial coordinate. The following naming conventions are
used (and enforced by tracks): The time column has the name ‘t‘, and spatial coordinate columns
have names ‘x‘,‘y‘,‘z‘ if there are three or less coordinates, and ‘x1‘,...,‘xk‘ if there are k ≥ 4
coordinates. All tracks in an object must have the same number of dimensions. The positions in a
track are expected to be sorted by time (and the constructor tracks enforces this).

Value

A tracks object.

Examples

A single 1D track
x <- tracks(matrix(c(0, 8,
10, 9,
20, 7,
30, 7,
40, 6,
50, 5), ncol=2, byrow=TRUE))

Three 3D tracks
x2 <- tracks(rbind(
c(0,5,0), c(1,5,3), c(2,1,3), c(3,5,6)),
rbind(c(0,1,1),c(1,1,4),c(2,5,4),c(3,5,1),c(4,-3,1)),
rbind(c(0,7,0),c(1,7,2),c(2,7,4),c(3,7,7)))

vecAngle Angle Between Two Vectors

Description

Compute the angle between two vectors a and b, which can be numeric vectors or matrices in which
each row represents a numeric vector. In the last case, one angle is returned for each row. By
default, angles are returned in degrees – set degrees = TRUE to return radians.

wrapTrack 61

Usage

vecAngle(a, b, degrees = TRUE)

Arguments

a the first vector or set of vectors. Must be a numeric vector or a matrix where
each row represents a numeric vector.

b the second vector or set of vectors, for which angles with the vector (set) a must
be computed. Must have the same dimensions as a.

degrees logical: if TRUE (default), return angles in degrees instead of radians.

Value

A single angle (if a and b are single vectors) or a numeric vector of angles (if a and b are matrices;
in that case, the output vector contains one angle for each row in matrices a and b).

Examples

The angle between the vectors [0,1] and [1,0] is 90 degrees:
vecAngle(c(0,1), c(1,0))
The same holds for 3D angles:
vecAngle(c(0,1,0), c(1,0,0))

wrapTrack Create Track Object from Single Track

Description

Makes a tracks object containing the given track.

Usage

wrapTrack(x)

Arguments

x the input track.

Value

A list of class tracks containing only the input track x, which is assigned the name "1".

Index

∗Topic cluster
celltrackR, 24

∗Topic datasets
BCells, 19
Neutrophils, 36
TCells, 52

∗Topic spatial
celltrackR, 24

aggregate.tracks, 3, 25, 57, 58
analyzeCellPairs, 6, 7, 8
analyzeStepPairs, 6, 7, 8
AngleAnalysis, 8, 10–14, 25, 29–31, 59
angleCells, 6, 8, 10, 29
angleSteps, 7, 8, 10, 29
angleToDir, 8, 11
angleToPlane, 8, 12, 30
angleToPoint, 8, 14, 31
applyStaggered, 15, 25, 48
approx, 34, 35
as.data.frame.tracks, 16
as.list.tracks, 17, 24
as.tracks (tracks), 59
as.tracks.data.frame, 18
asphericity (TrackMeasures), 56

BCells, 19, 24
beaucheminTrack, 20, 25
bootstrapTrack, 21
boundingBox, 8, 22
brownianTrack, 23, 25

c.tracks (tracks), 59
cellPairs, 6, 8, 24
celltrackR, 24
cheatsheet, 24, 26, 26
clusterTracks, 27, 33, 56
cmdscale, 55, 56

displacement (TrackMeasures), 56

displacementRatio (TrackMeasures), 56
displacementVector (TrackMeasures), 56
distanceCells, 6, 8, 10, 28
distanceSteps, 7, 8, 11, 29
distanceToPlane, 8, 13, 30
distanceToPoint, 8, 14, 31
duration, 54, 57
duration (TrackMeasures), 56

fd.estim.boxcount, 58
filterTracks, 32
fractalDimension (TrackMeasures), 56

getFeatureMatrix, 28, 32, 56

hclust, 27, 28, 56
hotellingsTest, 33
hurstexp, 58
hurstExponent (TrackMeasures), 56

interpolateTrack, 34, 44, 57
is.tracks (tracks), 59

kmeans, 27, 28, 56

list, 24

match.fun, 4
maxDisplacement (TrackMeasures), 56
maxTrackLength, 35
meanTurningAngle (TrackMeasures), 56

Neutrophils, 24, 36
normalizeToDuration, 37
normalizeTracks, 37

outreachRatio (TrackMeasures), 56
overallAngle, 15
overallAngle (TrackMeasures), 56
overallDot (TrackMeasures), 56
overallNormDot (TrackMeasures), 56

62

INDEX 63

plot, 38, 40
plot.tracks, 24, 38
plot3d, 39, 39
plotTrackMeasures, 39
points, 38, 40
prcomp, 55, 56
prefixes, 41, 45, 51, 52
projectDimensions, 22, 42

read.table, 43
read.tracks.csv, 42
repairGaps, 44
replicate, 46

scale, 27, 55
scatterplot3d, 39
selectSteps, 41, 45, 51, 52
selectTracks, 46
simulateTracks, 46
sort.tracks, 24, 47
speed, 25
speed (TrackMeasures), 56
spline, 35
splitTrack, 48
squareDisplacement (TrackMeasures), 56
staggered, 48, 51
stepPairs, 7, 8, 49
straightness, 25, 58
straightness (TrackMeasures), 56
subsample, 50
subtracks, 25, 41, 45, 50, 52
subtracksByTime, 41, 45, 51, 51

TCells, 24, 52
timePoints, 11, 29, 45, 52, 53
timeStep, 22, 24, 44, 54
trackFeatureMap, 28, 33, 55
trackLength, 57
trackLength (TrackMeasures), 56
TrackMeasures, 9, 25, 27, 32, 37, 40, 46, 48,

55, 56
tracks, 24, 44, 46, 50, 59

umap, 55, 56

vecAngle, 60

wrapTrack, 4, 61

	aggregate.tracks
	analyzeCellPairs
	analyzeStepPairs
	AngleAnalysis
	angleCells
	angleSteps
	angleToDir
	angleToPlane
	angleToPoint
	applyStaggered
	as.data.frame.tracks
	as.list.tracks
	as.tracks.data.frame
	BCells
	beaucheminTrack
	bootstrapTrack
	boundingBox
	brownianTrack
	cellPairs
	celltrackR
	cheatsheet
	clusterTracks
	distanceCells
	distanceSteps
	distanceToPlane
	distanceToPoint
	filterTracks
	getFeatureMatrix
	hotellingsTest
	interpolateTrack
	maxTrackLength
	Neutrophils
	normalizeToDuration
	normalizeTracks
	plot.tracks
	plot3d
	plotTrackMeasures
	prefixes
	projectDimensions
	read.tracks.csv
	repairGaps
	selectSteps
	selectTracks
	simulateTracks
	sort.tracks
	splitTrack
	staggered
	stepPairs
	subsample
	subtracks
	subtracksByTime
	TCells
	timePoints
	timeStep
	trackFeatureMap
	TrackMeasures
	tracks
	vecAngle
	wrapTrack
	Index

