
Package ‘cchsflow’
March 30, 2020

Type Package

Title Transforming and Harmonizing CCHS Variables

Version 1.6.0

Date 2020-03-30

Depends R (>= 3.2), haven (>= 1.1.2), dplyr (>= 0.8.2), sjlabelled (>=
1.0.17), stringr (>= 1.2.0), magrittr

Description Supporting the use of the Canadian Community Health Survey
(CCHS) by transforming variables from each cycle into harmonized,
consistent versions that span survey cycles (currently, 2001 to
2014). CCHS data used in this library is accessed and adapted in
accordance to the Statistics Canada Open Licence Agreement. This
package uses rec_with_table(), which was developed from 'sjmisc'
rec(). Lüdecke D (2018). ``sjmisc: Data and Variable Transformation
Functions''. Journal of Open Source Software, 3(26), 754.
<doi:10.21105/joss.00754>.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

URL https://github.com/Big-Life-Lab/cchsflow

BugReports https://github.com/Big-Life-Lab/cchsflow/issues

RoxygenNote 7.1.0

Suggests testthat (>= 2.1.0)

NeedsCompilation no

Author Doug Manuel [aut, cph] (<https://orcid.org/0000-0003-0912-0845>),
Warsame Yusuf [aut, cre],
Rostyslav Vyuha [aut],
Carol Bennett [aut],
Yulric Sequeira [ctb],
The Ottawa Hospital [cph]

Maintainer Warsame Yusuf <waryusuf@ohri.ca>

Repository CRAN

Date/Publication 2020-03-30 17:10:02 UTC

1

https://github.com/Big-Life-Lab/cchsflow
https://github.com/Big-Life-Lab/cchsflow/issues

2 R topics documented:

R topics documented:

adl_fun . 3
age_cat_fun . 5
ALCDTTM . 6
ALCDTYP . 7
ALWDDLY . 8
ALWDWKY . 8
binge_drinker_fun . 9
bmi_fun . 11
cchs2001_p . 13
cchs2003_p . 14
cchs2005_p . 14
cchs2007_2008_p . 15
cchs2009_2010_p . 16
cchs2010_p . 17
cchs2011_2012_p . 17
cchs2012_p . 18
cchs2013_2014_p . 19
cchs2014_p . 20
compare_value_based_on_interval . 20
food_insecurity_der . 21
GEN_02A2 . 22
get_data_variable_name . 23
if_else2 . 24
is_equal . 25
label_data . 26
multiple_conditions_fun1 . 26
multiple_conditions_fun2 . 28
pack_years_fun . 30
pct_time_fun . 32
RACDPAL_fun . 33
recode_columns . 35
rec_with_table . 36
resp_condition_fun1 . 38
resp_condition_fun2 . 40
resp_condition_fun3 . 41
set_data_labels . 43
variables . 44
variable_details . 44

Index 45

adl_fun 3

adl_fun Derived needs help with tasks

Description

This derived variable (ADL_der) is based on the CCHS derived variable ADLF6R which flags
respondents who need help with tasks based on their response to the various activities of daily
living (ADL) variables.

Usage

adl_fun(ADL_01, ADL_02, ADL_03, ADL_04, ADL_05)

Arguments

ADL_01 Needs help preparing meals

ADL_02 Needs help getting to appointments/errands

ADL_03 Needs help doing housework

ADL_04 Needs help doing personal care

ADL_05 Needs help moving inside house

Details

The CCHS derived variable ADLF6R uses different ADL variables across the various CCHS survey
cycles. This newly derived variable (ADL_der) uses ADL variables that are consistent across CCHS
cycles.

In the 2001 CCHS survey cycle, the ADLF6R variable examines the following ADL variables:

1. ADL_01 - Needs help preparing meals

2. ADL_02 - Needs help getting to appointments/errands

3. ADL_03 - Needs help doing housework

4. ADL_04 - Needs help doing personal care

5. ADL_05 - Needs help moving inside house

6. ADL_07 - Needs help doing heavy household chores

In the 2003-2005 CCHS survey cycles, the ADLF6R variable examines the following ADL vari-
ables:

1. ADL_01 - Needs help preparing meals

2. ADL_02 - Needs help getting to appointments/errands

3. ADL_03 - Needs help doing housework

4. ADL_04 - Needs help doing personal care

5. ADL_05 - Needs help moving inside house

6. ADL_06 - Needs help doing finances

4 adl_fun

7. ADL_07 - Needs help doing heavy household chores

In the 2007-2014 CCHS survey cycles, the ADLF6R variable examines the following ADL vari-
ables:

1. ADL_01 - Needs help preparing meals

2. ADL_02 - Needs help getting to appointments/errands

3. ADL_03 - Needs help doing housework

4. ADL_04 - Needs help doing personal care

5. ADL_05 - Needs help moving inside house

6. ADL_06 - Needs help doing finances

This newly derived variable (ADL_der) uses ADL_01 to ADL_05 which are consistent across all
survey cycles. For any single CCHS survey year, it is appropriate to use ADLF6R. ADL_der is
recommended when using multiple survey cycles.

Value

A derived variable (ADL_der) with 2 categories:

1. - Needs help with tasks

2. - Does not need help with tasks

Examples

Using adl_fun() to create ADL_der values across CCHS cycles
adl_fun() is specified in variable_details.csv along with the
CCHS variables and cycles included.

To transform ADL_der, use rec_with_table() for each CCHS cycle
and specify ADL_der, along with the various ADL variables.
Then by using bind_rows() you can combine ADL_der across cycles.

library(cchsflow)
adl2001 <- rec_with_table(

cchs2001_p, c(
"ADL_01", "ADL_02", "ADL_03", "ADL_04", "ADL_05", "ADL_der"

)
)

head(adl2001)

adl2009_2010 <- rec_with_table(
cchs2009_2010_p, c(

"ADL_01", "ADL_02", "ADL_03", "ADL_04", "ADL_05", "ADL_der"
)

)

tail(adl2009_2010)

combined_adl <- bind_rows(adl2001, adl2009_2010)

age_cat_fun 5

head(combined_adl)

tail(combined_adl)

Using adl_fun() to generate to ADL_der based on user inputted values.
#
Let's say you do not need help preparing meals, you need help getting to
appointments or errands, you need help doing housework, do not need help
doing personal care, and do not need help moving inside the house. Using
adl_fun() we can check if you need help doing tasks

ADL_der <- adl_fun(2, 1, 1, 2, 2)

print(ADL_der)

age_cat_fun Derived categorical age

Description

This is a derived categorical age variable (DHHGAGE_C) that groups various age categories across
all CCHS cycles. This is based on the continuous age variable (DHHGAGE_cont) that is harmo-
nious across all CCHS cycles.

The categories of this new age variable are as follows:

1. 12 to 14 years

2. 15 to 17 years

3. 18 to 19 years

4. 20 to 24 years

5. 25 to 29 years

6. 30 to 34 years

7. 35 to 39 years

8. 40 to 44 years

9. 45 to 49 years

10. 50 to 54 years

11. 55 to 59 years

12. 60 to 64 years

13. 65 to 69 years

14. 70 to 74 years

15. 75 to 79 years

16. 80 years or more

6 ALCDTTM

Usage

age_cat_fun(DHHGAGE_cont)

Arguments

DHHGAGE_cont continuous age variable

Details

The categories in the grouped age variable (DHHGAGE) vary between CCHS cycles. As such,
a continuous age variable (DHHGAGE_cont) was created that harmonized age across all CCHS
cycles by taking the midpoint of each age category. This new age variable (DHHGAGE_C) catego-
rizes age based on the categories used in CCHS cycles from 2007 to 2014.

Value

a categorical age variable (DHHGAGE_C)

Examples

Using age_cat_fun() to create categorical age values from DHHGAGE_cont
age_cat_fun() is specified in variable_details.csv along with the CCHS
variables and cycles included.

To generate DHHGAGE_C in a cycle, use rec_with_table() and specify
DHHGAGE_C along with DHHGAGE_cont.

library(cchsflow)

cat_age2009_2010 <- rec_with_table(
cchs2009_2010_p, c(

"DHHGAGE_cont", "DHHGAGE_C"
)

)

ALCDTTM Type of drinker (12 months)

Description

NOTE: this is not a function.

This is a categorical variable derived by Statistics Canada that uses various intermediate alcohol
variables to categorize individuals into 3 distinct groups:

1. Regular Drinker

2. Occasional Drinker

3. No drink in the last 12 months.

ALCDTYP 7

Usage

ALCDTTM(ALCDTTM)

Arguments

ALCDTTM cchsflow variable name for type of drinker (12 months)

Details

This variable was introduced in the 2007-2008 cycle of the CCHS, and became the sole derived
variable that categorized people into various drinker types from 2009 onwards. Unlike ALCDTYP,
this variable does not distinguish between former and never drinkers.

Examples

library(cchsflow)
?ALCDTTM

ALCDTYP Type of drinker

Description

NOTE: this is not a function.

This is a categorical variable derived by Statistics Canada that uses various intermediate alcohol
variables to categorize individuals into 4 distinct groups:

1. Regular Drinker
2. Occasional Drinker
3. Former Drinker
4. Never Drinker

Usage

ALCDTYP(ALCDTYP)

Arguments

ALCDTYP cchsflow variable name for type of drinker

Details

This variable is used in CCHS cycles from 2001 to 2007. How it was derived remained consistent
during these years.

Starting in 2007, Statistics Canada created a derived variable that looked at drinking type in the
last 12 months. This new derived variable did not distinguish between former and never drinkers.
If your research requires you to differentiate between former and never drinkers, we recommend
using earlier cycles of the CCHS.

8 ALWDWKY

Examples

library(cchsflow)
?ALCDTYP

ALWDDLY Average daily alcohol consumption

Description

NOTE: this is not a function.

This is a continuous variable derived by Statistics Canada that quantifies the mean daily consump-
tion of alcohol. This takes the value of ALWDWKY and divides it by 7.

Usage

ALWDDLY(ALWDDLY)

Arguments

ALWDDLY cchsflow variable name for average daily alcohol consumption

Details

This variable is present in every CCHS cycle used in cchsflow, and how it was derived remains
consistent.

Examples

library(cchsflow)
?ALWDDLY

ALWDWKY Number of drinks consumed in the past week

Description

NOTE: this is not a function.

This is a continuous variable derived by Statistics Canada that quantifies the amount of alcohol that
is consumed in a week. This is calculated by adding the number of drinks consumed each day in
the past week. Respondents of each CCHS cycle are asked how much alcohol they have consumed
each day in the past week (ie. how much alcohol did you consume on Sunday, how much did you
consume on Monday etc.). Each day is considered an individual variable and ALWDWKY takes
the sum of all daily variables.

binge_drinker_fun 9

Usage

ALWDWKY(ALWDWKY)

Arguments

ALWDWKY cchsflow variable name for number of drinks consumed in the past week

Details

This variable is present in every CCHS cycle used in cchsflow, and how it was derived remains
consistent.

Examples

library(cchsflow)
?ALWDWKY

binge_drinker_fun Binge drinking

Description

This function creates a derived categorical variable that flags for binge drinking based on the number
drinks consumed on a single day.

Usage

binge_drinker_fun(
DHH_SEX,
ALW_1,
ALW_2A1,
ALW_2A2,
ALW_2A3,
ALW_2A4,
ALW_2A5,
ALW_2A6,
ALW_2A7

)

Arguments

DHH_SEX sex of respondent (1 - male, 2 - female)

ALW_1 Drinks in the last week (1 - yes, 2 - no)

ALW_2A1 Number of drinks on Sunday

ALW_2A2 Number of drinks on Monday

10 binge_drinker_fun

ALW_2A3 Number of drinks on Tuesday

ALW_2A4 Number of drinks on Wednesday

ALW_2A5 Number of drinks on Thursday

ALW_2A6 Number of drinks on Friday

ALW_2A7 Number of drinks on Saturday

Details

In health research, binge drinking is defined as having an excess amount of alcohol in a single day.
For males, this is defined as having five or more drinks; and for females it is four or more drinks.
In the CCHS, respondents are asked to count the number of drinks they had during each day of the
last week.

Value

Categorical variable (binge_drinker) with two categories:

1. 1 - binge drinker

2. 2 - non-binge drinker

Examples

Using binge_drinker_fun() to create binge_drinker values across CCHS cycles
binge_drinker_fun() is specified in variable_details.csv along with the
CCHS variables and cycles included.

To transform binge_drinker, use rec_with_table() for each CCHS cycle
and specify binge_drinker, along with the various alcohol and sex
variables. Then by using bind_rows() you can combine binge_drinker
across cycles.

library(cchsflow)
binge2001 <- rec_with_table(

cchs2001_p, c(
"ALW_1", "DHH_SEX", "ALW_2A1", "ALW_2A2", "ALW_2A3", "ALW_2A4",
"ALW_2A5", "ALW_2A6", "ALW_2A7", "binge_drinker"

)
)

head(binge2001)

binge2009_2010 <- rec_with_table(
cchs2009_2010_p, c(

"ALW_1", "DHH_SEX", "ALW_2A1", "ALW_2A2", "ALW_2A3", "ALW_2A4",
"ALW_2A5", "ALW_2A6", "ALW_2A7", "binge_drinker"

)
)

tail(binge2009_2010)

bmi_fun 11

combined_binge <- bind_rows(binge2001, binge2009_2010)

head(combined_binge)

tail(combined_binge)

Using binge_drinker_fun() to generate binge_drinker with user-inputted
values.
#
Let's say you are a male, and you had drinks in the last week. Let's say
you had 3 drinks on Sunday, 1 drink on
Monday, 6 drinks on Tuesday, 0 drinks on Wednesday, 3 drinks on Thurday,
8 drinks on Friday, and 2 drinks on Saturday. Using binge_drinker_fun(),
we can check if you would be classified as a drinker.

binge <- binge_drinker_fun(DHH_SEX = 1, ALW_1 = 1, ALW_2A1 = 3, ALW_2A2 = 1,
ALW_2A3 = 6, ALW_2A4 = 0, ALW_2A5 = 3,
ALW_2A6 = 8, ALW_2A7 = 2)

print(binge)

bmi_fun Body Mass Index (BMI) derived variable

Description

This function creates a harmonized BMI variable. The BMI variable provided by the CCHS calcu-
lates BMI using methods that vary across cycles, leading to measurement error when using multiple
CCHS cycles. In certain CCHS cycles (2001-2003, 2007+), there are age restrictions in which re-
spondents under the age of 20 and over the age of 64 were not included. Across all CCHS cycles,
female respondents who identified as being pregnant were excluded; and in certain CCHS cycles
(2003-2007, 2013-2014), females who did not answer the pregnancy question were coded as NS
(not stated) for HWTGBMI. As well, in certain CCHS cycles (2001-2003, 2009-2014), respon-
dents outside certain height and weight ranges (0.914-2.108m for height, 0-260kg for weight) were
excluded from HWTGBMI.

bmi_fun() creates a derived variable (HWTGBMI_der) that is harmonized across all CCHS cycles.
This function divides weight by the square of height.

Usage

bmi_fun(HWTGHTM, HWTGWTK)

Arguments

HWTGHTM CCHS variable for height (in meters)

HWTGWTK CCHS variable for weight (in kilograms)

12 bmi_fun

Details

For HWTGBMI_der, there are no restrictions to age, height, weight, or pregnancy status. While
pregnancy was consistent across all CCHS cycles, its variable (MAM_037) was not available in the
PUMF CCHS datasets so it could not be harmonized and included into the function.

For any single CCHS survey year, it is appropriate to use the CCHS BMI variable (HWTGBMI)
that is also available on cchsflow. HWTGBMI_der is recommended when using multiple survey
cycles.

HWTGBMI_der uses the CCHS variables for height and weight that have been transformed by
cchsflow. In order to generate a value for BMI across CCHS cycles, height and weight must be
transformed and harmonized.

Value

numeric value for BMI in the HWTGBMI_der variable

Note

In earlier CCHS cycles (2001 and 2003), height was collected in inches; while in later CCHS cycles
(2005+) it was collected in meters. To harmonize values across cycles, height was converted to
meters (to 3 decimal points). Weight was collected in kilograms across all CCHS cycles, so no
transformations were required in the harmonization process.

Examples

Using bmi_fun() to create BMI values between cycles
bmi_fun() is specified in variable_details.csv along with the
CCHS variables and cycles included.

To transform the derived BMI variable, use rec_with_table() for each cycle
and specify HWTGBMI_der, along with height (HWTGHTM) and weight (HWTGWTK).
Then by using dplyr::bind_rows(), you can combined HWTGBMI_der across
cycles.

library(cchsflow)
bmi2001 <- rec_with_table(

cchs2001_p, c(
"HWTGHTM",
"HWTGWTK", "HWTGBMI_der"

)
)

head(bmi2001)

bmi2011_2012 <- rec_with_table(
cchs2011_2012_p, c(

"HWTGHTM",
"HWTGWTK", "HWTGBMI_der"

)
)

cchs2001_p 13

tail(bmi2011_2012)

combined_bmi <- bind_rows(bmi2001, bmi2011_2012)
head(combined_bmi)
tail(combined_bmi)

Using bmi_fun() to generate a BMI value with user inputted height and
weight values. bmi_fun() can also generate a value for BMI if you input a
value for height and weight. Let's say your height is 170cm (1.7m) and
your weight is 50kg, your BMI can be calculated as follows:

library(cchsflow)
BMI <- bmi_fun(HWTGHTM = 1.7, HWTGWTK = 50)
print(BMI)

cchs2001_p 2001 CCHS PUMF subset data (200 respondents)

Description

This is a subset of 200 observations from the 2001 cycle of the Canadian Community Health Survey
(CCHS) Public Use Microdata file (PUMF) dataset. The CCHS survey is conducted by Statistics
Canada.

Details

See here for the open license. Source from Statistics Canada, Canadian Community Health Survey
PUMF, accessed Jan 2020. Reproduced and distributed on an "as is" basis with the permission of
Statistics Canada.

Long name: cchs-82M0013-E-2001-c1-1-general-file

DDI: https://osf.io/jtd9h/

Additional documentation (PDFs): https://osf.io/hkuy3/

Value

cchs2001_p a data frame

Source

http://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=3359

Examples

data(cchs2001_p)
str(cchs2001_p)

https://www.statcan.gc.ca/eng/reference/licence
https://osf.io/jtd9h/
https://osf.io/hkuy3/
http://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=3359

14 cchs2005_p

cchs2003_p 2003 CCHS PUMF subset data (200 respondents)

Description

This is a subset of 200 observations from the 2003 cycle of the Canadian Community Health Survey
(CCHS) Public Use Microdata file (PUMF) dataset. The CCHS survey is conducted by Statistics
Canada.

Details

See here for the open license. Source from Statistics Canada, Canadian Community Health Survey
PUMF, accessed Jan 2020. Reproduced and distributed on an "as is" basis with the permission of
Statistics Canada.

Long name: cchs-82M0013-E-2003-c2-1-General File

DDI: https://osf.io/nzq37/

Additional documentation (PDFs): https://osf.io/hkuy3/

Value

cchs2003_p a data frame

Source

http://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=4995

Examples

data(cchs2003_p)
str(cchs2003_p)

cchs2005_p 2005 CCHS PUMF subset data (200 respondents)

Description

This is a subset of 200 observations from the 2005 cycle of the Canadian Community Health Survey
(CCHS) Public Use Microdata file (PUMF) dataset. The CCHS survey is conducted by Statistics
Canada.

https://www.statcan.gc.ca/eng/reference/licence
https://osf.io/nzq37/
https://osf.io/hkuy3/
http://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=4995

cchs2007_2008_p 15

Details

See here for the open license. Source from Statistics Canada, Canadian Community Health Survey
PUMF, accessed Jan 2020. Reproduced and distributed on an "as is" basis with the permission of
Statistics Canada.

Long name: cchs-82M0013-E-2005-c3-1-main-file

DDI: https://osf.io/35mhq/

Additional documentation (PDFs): https://osf.io/hkuy3/

Value

cchs2005_p a data frame

Source

http://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=22642

Examples

data(cchs2005_p)
str(cchs2005_p)

cchs2007_2008_p 2007-2008 CCHS PUMF subset data (200 respondents)

Description

This is a subset of 200 observations from the 2007-2008 cycle of the Canadian Community Health
Survey (CCHS) Public Use Microdata file (PUMF) dataset. The CCHS survey is conducted by
Statistics Canada.

Details

See here for the open license. Source from Statistics Canada, Canadian Community Health Survey
PUMF, accessed Jan 2020. Reproduced and distributed on an "as is" basis with the permission of
Statistics Canada.

Long name: cchs-E-2007-2008-AnnualComponent

DDI: https://osf.io/emzsp/

Additional documentation (PDFs): https://osf.io/hkuy3/

Value
cchs2007_2008_p

a data frame

Source

http://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=29539

https://www.statcan.gc.ca/eng/reference/licence
https://osf.io/35mhq/
https://osf.io/hkuy3/
http://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=22642
https://www.statcan.gc.ca/eng/reference/licence
https://osf.io/emzsp/
https://osf.io/hkuy3/
http://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=29539

16 cchs2009_2010_p

Examples

data(cchs2007_2008_p)
str(cchs2007_2008_p)

cchs2009_2010_p 2009-2010 CCHS PUMF subset data (200 respondents)

Description

This is a subset of 200 observations from the 2009-2010 cycle of the Canadian Community Health
Survey (CCHS) Public Use Microdata file (PUMF) dataset. The CCHS survey is conducted by
Statistics Canada.

Details

See here for the open license. Source from Statistics Canada, Canadian Community Health Survey
PUMF, accessed Jan 2020. Reproduced and distributed on an "as is" basis with the permission of
Statistics Canada.

Long name: CCHS-82M0013-E-2009-2010-Annualcomponent

DDI: https://osf.io/ynzpe/

Additional documentation (PDFs): https://osf.io/hkuy3/

Value

cchs2009_2010_p

a data frame

Source

http://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=67251

Examples

data(cchs2009_2010_p)
str(cchs2009_2010_p)

https://www.statcan.gc.ca/eng/reference/licence
https://osf.io/ynzpe/
https://osf.io/hkuy3/
http://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=67251

cchs2010_p 17

cchs2010_p 2010 CCHS PUMF subset data (200 respondents)

Description

This is a subset of 200 observations from the 2010 cycle of the Canadian Community Health Survey
(CCHS) Public Use Microdata file (PUMF) dataset. The CCHS survey is conducted by Statistics
Canada.

Details

NOTE: this subset of respondents may also be in the 2009-2010 PUMF subset. Please see the
"CCHS datasets that overlap each other" article to see how the two datasets contain overlap.

See here for the open license. Source from Statistics Canada, Canadian Community Health Survey
PUMF, accessed Jan 2020. Reproduced and distributed on an "as is" basis with the permission of
Statistics Canada.

Long name: CCHS-82M0013-E-2010-AnnualComponent

DDI: https://osf.io/7stpz/

Additional documentation (PDFs): https://osf.io/hkuy3/

Value

cchs2010_p a data frame

Source

http://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=81424

Examples

data(cchs2010_p)
str(cchs2010_p)

cchs2011_2012_p 2011-2012 CCHS PUMF subset data (200 respondents)

Description

This is a subset of 200 observations from the 2011-2012 cycle of the Canadian Community Health
Survey (CCHS) Public Use Microdata file (PUMF) dataset. The CCHS survey is conducted by
Statistics Canada.

https://www.statcan.gc.ca/eng/reference/licence
https://osf.io/7stpz/
https://osf.io/hkuy3/
http://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=81424

18 cchs2012_p

Details

See here for the open license. Source from Statistics Canada, Canadian Community Health Survey
PUMF, accessed Jan 2020. Reproduced and distributed on an "as is" basis with the permission of
Statistics Canada.

Long name: cchs-82M0013-E-2011-2012-Annual-component

DDI: https://osf.io/zk2vw/

Additional documentation (PDFs): https://osf.io/hkuy3/

Value
cchs2011_2012_p

a data frame

Source

http://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=114112

Examples

data(cchs2011_2012_p)
str(cchs2011_2012_p)

cchs2012_p 2012 CCHS PUMF subset data (200 respondents)

Description

This is a subset of 200 observations from the 2012 cycle of the Canadian Community Health Survey
(CCHS) Public Use Microdata file (PUMF) dataset. The CCHS survey is conducted by Statistics
Canada.

Details

NOTE: this subset of respondents may also be in the 2011-2012 PUMF subset. Please see the
"CCHS datasets that overlap each other" article to see how the two datasets contain overlap.

See here for the open license. Source from Statistics Canada, Canadian Community Health Survey
PUMF, accessed Jan 2020. Reproduced and distributed on an "as is" basis with the permission of
Statistics Canada.

Long name: cchs-82M0013-E-2012-Annual-component

DDI: https://osf.io/sbem8/

Additional documentation (PDFs): https://osf.io/hkuy3/

Value

cchs2012_p a data frame

https://www.statcan.gc.ca/eng/reference/licence
https://osf.io/zk2vw/
https://osf.io/hkuy3/
http://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=114112
https://www.statcan.gc.ca/eng/reference/licence
https://osf.io/sbem8/
https://osf.io/hkuy3/

cchs2013_2014_p 19

Source

http://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=135927

Examples

data(cchs2012_p)
str(cchs2012_p)

cchs2013_2014_p 2013-2014 CCHS PUMF subset data (200 respondents)

Description

This is a subset of 200 observations from the 2013-2014 cycle of the Canadian Community Health
Survey (CCHS) Public Use Microdata file (PUMF) dataset. The CCHS survey is conducted by
Statistics Canada.

Details

See here for the open license. Source from Statistics Canada, Canadian Community Health Survey
PUMF, accessed Jan 2020. Reproduced and distributed on an "as is" basis with the permission of
Statistics Canada.

Long name: cchs-82M0013-E-2013-2014-Annual-component

DDI: https://osf.io/gy25d/

Additional documentation (PDFs): https://osf.io/hkuy3/

Value
cchs2013_2014_p

a data frame

Source

http://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=144170

Examples

data(cchs2013_2014_p)
str(cchs2013_2014_p)

http://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=135927
https://www.statcan.gc.ca/eng/reference/licence
https://osf.io/gy25d/
https://osf.io/hkuy3/
http://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=144170

20 compare_value_based_on_interval

cchs2014_p 2014 CCHS PUMF subset data (200 respondents)

Description

This is a subset of 200 observations from the 2014 cycle of the Canadian Community Health Survey
(CCHS) Public Use Microdata file (PUMF) dataset. The CCHS survey is conducted by Statistics
Canada.

Details

NOTE: this subset of respondents may also be in the 2013-2014 PUMF subset. Please see the
"CCHS datasets that overlap each other" article to see how the two datasets contain overlap.

See here for the open license. Source from Statistics Canada, Canadian Community Health Survey
PUMF, accessed Jan 2020. Reproduced and distributed on an "as is" basis with the permission of
Statistics Canada.

Long name: cchs-82M0013-E-2014-Annual-component

DDI: https://osf.io/tbmdn/

Additional documentation (PDFs): https://osf.io/hkuy3/

Value

cchs2014_p a data frame

Source

http://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=164081

Examples

data(cchs2014_p)
str(cchs2014_p)

compare_value_based_on_interval

Compare Value Based On Interval

Description

Compare values on the scientific notation interval

https://www.statcan.gc.ca/eng/reference/licence
https://osf.io/tbmdn/
https://osf.io/hkuy3/
http://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=164081

food_insecurity_der 21

Usage

compare_value_based_on_interval(
left_boundary,
right_boundary,
data,
compare_columns,
interval

)

Arguments

left_boundary the min value
right_boundary the max value
data the data that contains values being compared
compare_columns

The columns inside data being checked
interval The scientific notation interval

Value

a boolean vector containing true for rows where the comparison is true

food_insecurity_der Food insecurity

Description

NOTE: this is not a function.

This is a derived variable that uses the different food insecurity variables from all CCHS cycles to
generate food_insecurity_der that is harmonized across all cycles. food_insecurity_der is a categor-
ical variable with two categories:

1. no food insecurity in the last 12 months
2. food insecurity in the last 12 months

Usage

food_insecurity_der(FINF1, FSCDHFS, FSCDHFS2)

Arguments

FINF1 variable used in 2001 and 2003 survey cycles indicating food insecurity in the
past 12 months

FSCDHFS variable used in the 2005 survey cycle measuring food insecurity & hunger in
the last 12 months

FSCDHFS2 variable used in 2007-2014 survey cycles measuring household food insecurity
in the last 12 months

22 GEN_02A2

Details

Food insecurity is measured differently across CCHS cycles. In 2001 and 2003, FINF1 is used; in
2005, FSCDHFS is used; and in 2007 to 2014, FSCDHFS2 is used. Each variable examines food
insecurity in the household over the past 12 months, but use different base variables to derive food
insecurity.

If you are using cchsflow for CCHS survey years that use consistent food insecurity variables, it
is appropriate to use FINF1, FSCDHFS, or FSCDHFS2 that are available on cchsflow. If you are
using cchsflow for only the 2001 and 2003 cycles, it is appropriate to use FINF1. If you are using
cchsflow for only the 2005 cycle, FSCDHFS is appropriate. If you are using cchsflow for cycles
between 2007 and 2014, FSCDHFS2 is appropriate. For multiple CCHS survey years that do not use
the same food insecurity variables (i.e. using cchsflow for years 2001 to 2007), food_insecurity_der
is recommended.

Examples

library(cchsflow)
?food_insecurity_der

GEN_02A2 Satisfaction with life (GEN_02A/GEN_02A2)

Description

NOTE: this is not a function.

These are two variables asked in the CCHS that asks respondents to rate their satisfaction with their
lives. The variable GEN_02A is a categorical variable with 5 categories:

1. Very satisfied

2. Satisfied

3. Neither satisfied nor unsatisfied

4. Dissatisfied

5. Very dissatisfied

The GEN_02A2 is a continuous variable from 0 to 10, where 0 represents very dissatisfied and 10
represents very satisfied.

Usage

GEN_02A2(GEN_02A, GEN_02A2)

Arguments

GEN_02A - categorical life satisfaction variable asked from 2003-2007

GEN_02A2 - continuous life satisfaction variable asked from 2009-2014, and derived for
2003-2007

get_data_variable_name 23

Details

GEN_02A was asked to respondents in the 2003, 2005, and 2007-2008 CCHS survey cycles; while
GEN_02A2 was asked to respondents in CCHS survey cycles from 2009 to 2014. To harmonize
GEN_02A2 across more cycles, GEN_02A2 was derived for earlier cycles by converting GEN_02A
values to match the scale used in GEN_02A2. The very satisfied category was converted to a score
of 10; the satisfied category was converted to a score of 7; the neither satisfied nor unsatisfied
category was converted to a score of 5; the dissatisfied category was converted to a score of 2; and
the very dissatisfied category was converted to a score of 0.

When using earlier CCHS cycles (2003-2007), it is appropriate to use GEN_02A. When using
multiple CCHS cycles that include cycles from 2009-2014, GEN_02A2 is recommended.

Examples

library(cchsflow)
?GEN_02A2

get_data_variable_name

Get Data Variable Name

Description

Retrieves the name of the column inside data to use for calculations

Usage

get_data_variable_name(
data_name,
data,
row_being_checked,
variable_being_checked

)

Arguments

data_name name of the database being checked
data database being checked
row_being_checked

the row from variable details that contains information on this variables
variable_being_checked

the name of the recoded variable

Value

the data equivalent of variable_being_checked

24 if_else2

if_else2 if_else2

Description

Custom ifelse function that evaluates missing (NA) values. If the logical argument (x) compares to
a value that is ‘NA‘, it is set to ‘FALSE‘

Usage

if_else2(x, a, b)

Arguments

x A logical argument

a value if ‘x‘ is ‘TRUE‘

b value if ‘x‘ is ‘FALSE‘

Details

unlike the base ifelse() function, if_else2() is able to evaluate NA as either a or b. In base ifelse(),
anything compared to NA will produce NA, which can break a function. When dealing with large
datasets like the CCHS, there are many missing (NA) values. That means a special ifelse function
like if_else2() is needed in order for other functions to not break

Value

a or b based on the evaluation of x

Examples

age <- 12
status <- if_else2((age < 18), "child", "invalid age")
print(status)

age <- NA
status <- if_else2((age < 18), "child", "invalid age")
print(status)

is_equal 25

is_equal is equal

Description

Function to compare even with NA present This function returns TRUE wherever elements are the
same, including NA’s, and false everywhere else.

Usage

is_equal(v1, v2)

Arguments

v1 variable 1

v2 variable 2

Value

boolean value of whether or not v1 and v2 are equal

Examples

library(cchsflow)
is_equal(1,2)
FALSE

is_equal(1,1)
TRUE

1==NA
NA

is_equal(1,NA)
FALSE

NA==NA
NA

is_equal(NA,NA)
TRUE

26 multiple_conditions_fun1

label_data label_data

Description

Attaches labels to the DataToLabel to preserve metadata

Usage

label_data(label_list, data_to_label)

Arguments

label_list the label list object that contains extracted labels from variable details

data_to_label The data that is to be labeled

Value

Returns labeled data

multiple_conditions_fun1

Multiple chronic conditions (5 chronic conditions)

Description

This function generates a derived variable (multiple_conditions) that counts the number of chronic
conditions a respondent has. This function takes 5 CCHS-defined conditions (heart disease, cancer,
stroke, bowel disorder, and arthritis), and well one derived variable (respiratory condition) to count
the number of conditions a respondent has.

Usage

multiple_conditions_fun1(
CCC_121,
CCC_131,
CCC_151,
CCC_171,
resp_condition_der,
CCC_051

)

multiple_conditions_fun1 27

Arguments

CCC_121 variable indicating if respondent has heart disease (1 = respondent has heart
disease, 2 = respondent does not have heart disease)

CCC_131 variable indicating if respondent has active cancer (1 = respondent has active
cancer, 2 = respondent does not have active cancer)

CCC_151 variable indicating if respondent suffers from the effects of a stroke (1 = re-
spondent suffers from stroke effects, 2 = respondent does not suffer from stroke
effects)

CCC_171 variable indicating if respondent has a bowel disorder (1 = respondent has bowel
disorder, 2 = respondent does not have a bowel disorder)

resp_condition_der

derived variable indicating if respondent has a respiratory condition (1 = respon-
dent is over the age of 35 and has a respiratory condition, 2 = respondent is under
the age of 35 and has a respiratory conditions, 3 = respondent does not have a
respiratory condition). See resp_condition_fun1 for documentation on how
variable was derived.

CCC_051 variable indicating if respondent has arthritis or rheumatism (1 = respondent has
arthritis or rheumatism, 2 = respondent does not have arthritis or rheumatism)

Details

mood disorder (CCC_280) was not asked to respondents in the 2001 CCHS survey cycle. This mean
respondents in this cycle will only be able to have a maximum of 6 chronic conditions as opposed
to 7 for respondents in other cycles. multiple_conditions_fun2 is used for CCHS cycles from
2003 to 2014.

Value

A categorical variable indicating the number of chronic conditions a respondent has. Respondents
with 5 or more conditions are grouped in the "5+" category.

See Also

multiple_conditions_fun2

Examples

Using rec_with_table() to generate multiple_conditions in a CCHS
cycle.

multiple_conditions_fun1() is specified in variable_details.csv along with
the CCHS variables and cycles included.

To generate multiple_conditions, use rec_with_table() and specify the
multiple_conditions, along with the variables that are derived from it.
Since resp_condition_der is also a derived variable, you will have to
specify the variables that are derived from it. In this example, data
from the 2001 CCHS will be used, so DHHGAGE_cont, CCC_091, and CCC_91A,

28 multiple_conditions_fun2

and CCC_031 will be specified along with resp_condition_der.

library(cchsflow)
conditions_2001 <- suppressWarnings(rec_with_table(cchs2001_p,
c("DHHGAGE_cont", "CCC_091",
"CCC_91A", "CCC_031", "CCC_121","CCC_131","CCC_151", "CCC_171","CCC_280",
"resp_condition_der","CCC_051", "multiple_conditions")))

head(conditions_2001)

Generating multiple_conditions with user inputted values
Let's say you are an individual that has heart disease, bowel disorder,
and arthritis. multiple_conditions_fun1() can be used to count the number
of chronic conditions you have

library(cchsflow)
num_conditions <- multiple_conditions_fun1(CCC_121 = 1, CCC_131 = 2,
CCC_151 = 2, CCC_171 = 1, resp_condition_der = 3, CCC_051 = 1)

print(num_conditions)

multiple_conditions_fun2

Multiple chronic conditions (6 chronic conditions)

Description

This function generates a derived variable (multiple_conditions) that counts the number of chronic
conditions a respondent has. This function takes 6 CCHS-defined conditions (heart disease, cancer,
stroke, bowel disorder, mood disorder and arthritis), and well one derived variable (respiratory
condition) to count the number of conditions a respondent has.

Usage

multiple_conditions_fun2(
CCC_121,
CCC_131,
CCC_151,
CCC_171,
CCC_280,
resp_condition_der,
CCC_051

)

Arguments

CCC_121 variable indicating if respondent has heart disease (1 = respondent has heart
disease, 2 = respondent does not have heart disease)

multiple_conditions_fun2 29

CCC_131 variable indicating if respondent has active cancer (1 = respondent has active
cancer, 2 = respondent does not have active cancer)

CCC_151 variable indicating if respondent suffers from the effects of a stroke (1 = re-
spondent suffers from stroke effects, 2 = respondent does not suffer from stroke
effects)

CCC_171 variable indicating if respondent has a bowel disorder (1 = respondent has bowel
disorder, 2 = respondent does not have a bowel disorder)

CCC_280 variable indicating if respondent has a mood disorder (1 = respondent has a
mood disorder, 2 = respondent does not have a mood disorder. Note, variable
was not asked to respondents in the 2001 CCHS survey cycle.

resp_condition_der

derived variable indicating if respondent has a respiratory condition. (1 = re-
spondent is over the age of 35 and has a respiratory condition, 2 = respondent
is under the age of 35 and has a respiratory conditions, 3 = respondent does not
have a respiratory condition). See resp_condition_fun1 for documentation on
how variable was derived.

CCC_051 variable indicating if respondent has arthritis or rheumatism (1 = respondent has
arthritis or rheumatism, 2 = respondent does not have arthritis or rheumatism)

Details

mood disorder (CCC_280) was not asked to respondents in the 2001 CCHS survey cycle. This mean
respondents in this cycle will only be able to have a maximum of 6 chronic conditions as opposed
to 7 for respondents in other cycles. multiple_conditions_fun1 is used for CCHS cycles from
2003 to 2014.

Value

A categorical variable indicating the number of chronic conditions a respondent has. Respondents
with 5 or more conditions are grouped in the "5+" category.

See Also

multiple_conditions_fun1

Examples

Using rec_with_table() to generate multiple_conditions in a CCHS
cycle.

multiple_conditions_fun2() is specified in variable_details.csv along with
the CCHS variables and cycles included.

To generate multiple_conditions, use rec_with_table() and specify the
multiple_conditions, along with the variables that are derived from it.
Since resp_condition_der is also a derived variable, you will have to
specify the variables that are derived from it. In this example, data
from the 2010 CCHS will be used, so DHHGAGE_cont, CCC_091, and CCC_031
will be specified along with resp_condition_der.

30 pack_years_fun

library(cchsflow)
conditions_2009_2010 <- suppressWarnings(rec_with_table(cchs2009_2010_p,
c("DHHGAGE_cont", "CCC_091",
"CCC_031", "CCC_121","CCC_131","CCC_151", "CCC_171","CCC_280",
"resp_condition_der","CCC_051", "multiple_conditions")))

head(conditions_2009_2010)

Generating multiple_conditions with user inputted values
Let's say you are an individual that has heart disease, bowel disorder,
and arthritis. multiple_conditions_fun2() can be used to count the number
of chronic conditions you have

library(cchsflow)
num_conditions <- multiple_conditions_fun2(CCC_121 = 1, CCC_131 = 2,
CCC_151 = 2, CCC_171 = 1, CCC_280 = 2, resp_condition_der = 3, CCC_051 = 1)

print(num_conditions)

pack_years_fun Smoking pack-years

Description

This function creates a derived variable (pack_years_der) that measures an individual’s smoking
pack-years based on various CCHS smoking variables. This is a popular variable used by re-
searchers to quantify lifetime exposure to cigarette use.

Usage

pack_years_fun(
SMKDSTY,
DHHGAGE_cont,
SMK_09A_B,
SMKG09C,
SMKG203_cont,
SMKG207_cont,
SMK_204,
SMK_05B,
SMK_208,
SMK_05C,
SMKG01C_cont,
SMK_01A

)

pack_years_fun 31

Arguments

SMKDSTY derived variable that classifies an individual’s smoking status.

DHHGAGE_cont continuous age variable.

SMK_09A_B number of years since quitting smoking. Variable asked to former daily smokers
who quit <3 years ago.

SMKG09C number of years since quitting smoking. Variable asked to former daily smokers
who quit >=3 years ago.

SMKG203_cont age started smoking daily. Variable asked to daily smokers.

SMKG207_cont age started smoking daily. Variable asked to former daily smokers.

SMK_204 number of cigarettes smoked per day. Variable asked to daily smokers.

SMK_05B number of cigarettes smoked per day. Variable asked to occasional smokers

SMK_208 number of cigarettes smoked per day. Variable asked to former daily smokers

SMK_05C number of days smoked at least one cigarette

SMKG01C_cont age smoked first cigarette

SMK_01A smoked 100 cigarettes in lifetime (y/n)

Details

pack-years is calculated by multiplying the number of cigarette packs per day (20 cigarettes per
pack) by the number of years. Example 1: a respondent who is a current smoker who smokes 1
package of cigarettes for the last 10 years has smoked 10 pack-years. Pack-years is also calculated
for former smokers. Example 2: a respondent who started smoking at age 20 years and smoked half
a pack of cigarettes until age 40 years smoked for 10 pack-years.

Value

value for smoking pack-years in the Pack_years_der variable

Examples

Using pack_years_fun() to create pack-years values across CCHS cycles
pack_years_fun() is specified in variable_details.csv along with the CCHS
variables and cycles included.

To transform pack_years_der across cycles, use rec_with_table() for each
CCHS cycle and specify pack_years_der, along with each smoking variable.
Then by using bind_rows(), you can combine pack_years_der across cycles

library(cchsflow)

pack_years2009_2010 <- rec_with_table(
cchs2009_2010_p, c(

"SMKDSTY", "DHHGAGE_cont", "SMK_09A_B", "SMKG09C",
"SMKG203_cont", "SMKG207_cont", "SMK_204", "SMK_05B", "SMK_208",
"SMK_05C", "SMK_01A", "SMKG01C_cont", "pack_years_der"

)
)

32 pct_time_fun

head(pack_years2009_2010)

pack_years2011_2012 <- rec_with_table(
cchs2011_2012_p,c(
"SMKDSTY", "DHHGAGE_cont", "SMK_09A_B", "SMKG09C",
"SMKG203_cont", "SMKG207_cont", "SMK_204", "SMK_05B", "SMK_208",
"SMK_05C", "SMK_01A", "SMKG01C_cont", "pack_years_der"

)
)

tail(pack_years2011_2012)

combined_pack_years <- suppressWarnings(bind_rows(pack_years2009_2010,
pack_years2011_2012))

head(combined_pack_years)
tail(combined_pack_years)

pct_time_fun Percent time in Canada

Description

This function creates a derived variable (pct_time_der) that provides an estimated percentage of the
time a person’s life was spent in Canada.

Usage

pct_time_fun(DHHGAGE_cont, SDCGCBG, SDCGRES)

Arguments

DHHGAGE_cont continuous age variable.

SDCGCBG whether or not someone was born in Canada (1 - born in Canada, 2 - born outside
Canada)

SDCGRES how long someone has lived in Canada. Note: in the PUMF CCHS datasets, this
is a categorical variable with two categories (1 - 0-9 years; 2 - 10+ years).

Value

Numeric value that is a fraction between 0 and 1 that represents percentage of a respondent’s time
in Canada

Note

Since SDCGRES is a categorical variable measuring length of time, we’ve set midpoints in the
function. A respondent identified as being in Canada for 0-9 years is assigned a value of 4.5 years,
and someone who has been in Canada for over 10 years is assigned a value of 15 years.

RACDPAL_fun 33

Examples

Using pct_time_fun() to create percent time values between CCHS cycles
pct_time_fun() is specified in variable_details.csv along with the CCHS
variables and cycles included.

To transform pct_time_der across cycles, use rec_with_table() for each CCHS
cycle and specify pct_time_der, along with age (DHHGAGE_cont), whether or
not someone was born in Canada (SDCGCBG), how long someone has lived in
Canada (SDCGRES). Then by using bind_rows(), you can combine Pct_time_der
across cycles

library(cchsflow)
pct_time2009_2010 <- rec_with_table(

cchs2009_2010_p, c(
"DHHGAGE_cont", "SDCGCBG",
"SDCGRES", "pct_time_der"

)
)
head(pct_time2009_2010)

pct_time2011_2012 <- rec_with_table(
cchs2011_2012_p, c(

"DHHGAGE_cont", "SDCGCBG",
"SDCGRES", "pct_time_der"

)
)
tail(pct_time2011_2012)

combined_pct_time <- bind_rows(pct_time2009_2010, pct_time2011_2012)
head(combined_pct_time)
tail(combined_pct_time)

Using pct_time_fun() to generate a value for percent time spent in Canada
with user inputted values Let's say you are 27 years old who was born
outside of Canada and have been living in Canada for less than 10 years.
Your estimated percent time spent in Canada can be calculated as follows:

pct_time <- pct_time_fun(DHHGAGE_cont = 27, SDCGCBG = 2, SDCGRES = 1)

print(pct_time)

RACDPAL_fun Participation and Activity Limitation

Description

This is a derived variable used in the CCHS (RACDPAL) to classify respondents according to the
frequency with which they experience activity limitations due to disability.

34 RACDPAL_fun

Usage

RACDPAL_fun(RAC_1, RAC_2A, RAC_2B, RAC_2C)

Arguments

RAC_1 Has difficulty with activities due to disability

RAC_2A Reduction in activities at home due to disability

RAC_2B Reduction in activities at school or work due to disability

RAC_2C Reduction in other activities

Details

This derived variable is generated in CCHS cycles 2003-2014. The 2001 CCHS cycle, however,
contains the same base variables used to derive this variable. To include respondents in the 2001
CCHS cycle, this custom function was created using the same derivation conditions used in later
cycles.

Value

the CCHS derived variable RACDPAL with 3 categories:

1. Sometimes

2. Often

3. Never

Examples

Using RACDPAL_fun() to transform RACDPAL in 2001.
RACDPAL_fun() is specified in variable_details.csv along with the
CCHS variables and cycles included.

To transform RACDPAL, use rec_with_table() for each the 2001 cycle
and specify RACDPAL, along with the various ADL variables.

library(cchsflow)

RACDPAL_2001 <- rec_with_table(
cchs2001_p, c(
"RAC_1", "RAC_2A", "RAC_2B", "RAC_2C", "RACDPAL"

)
)

head(RACDPAL_2001)

Note: In other CCHS cycles you only need to specify RACDPAL as the variable
was included in those survey cycles.

Using RACDPAL_fun() with user inputted data.

Let's say you're an individual that sometimes has difficulties with

recode_columns 35

activities due to disability, sometimes has a reduction in activities at
home, often has a reduction at school or work, and never has a reduction
in other activities. Your participation and activity limitation can be
determined as follows:

library(cchsflow)
RACDPAL <- RACDPAL_fun(1, 1, 2, 3)
print(RACDPAL)

recode_columns recode_columns

Description

Recodes columns from passed row and returns just table with those columns and same rows as the
data

Usage

recode_columns(
data,
variables_to_process,
data_name,
log,
print_note,
else_default

)

Arguments

data The source database
variables_to_process

rows from variable details that are applicable to this DB

data_name Name of the database being passed

log The option of printing log

print_note the option of printing the note columns

else_default default else value to use if no else is present

Value

Returns recoded and labeled data

36 rec_with_table

rec_with_table Recode with Table

Description

Recode with Table is responsible for recoding values of a dataset based on the specifications in
variable_details.

Usage

rec_with_table(
data,
variables = NULL,
database_name = NULL,
variable_details = NULL,
else_value = NA,
append_to_data = FALSE,
log = FALSE,
notes = TRUE,
var_labels = NULL,
custom_function_path = NULL,
attach_data_name = FALSE

)

Arguments

data A dataframe containing the variables to be recoded.

variables character vector containing variable names to recode or a variables csv contain-
ing additional variable info

database_name String, the name of the dataset containing the to be recoded.
variable_details

A dataframe containing the specifications (rules) for recoding.

else_value Value (string, number, integer, logical or NA) that is used to replace any values
that are outside the specified ranges (no rules for recoding).

append_to_data Logical, if TRUE (default), recoded variables will be appended to the data.

log Logical, if FALSE (default), a log of recoding will not be printed.

notes Logical, if FALSE (default), will not print the content inside the ‘Note“ column
of the variable being recoded.

var_labels labels vector to attach to variables in variables
custom_function_path

path to location of the function to load
attach_data_name

to attach name of database to end table

rec_with_table 37

Details

The variable_details dataframe needs the following variables to function:

variable name of new (mutated) variable that is recoded

toType type the variable is being recoded to cat = categorical, cont = continues

databaseStart name of dataframe with original variables to be recoded

variableStart name of variable to be recoded

fromType variable type of start variable. cat = categorical or factor variable cont = continuous
variable (real number or integer)

recTo Value to recode to

recFrom Value/range being recoded from

Each row in variable_details comprises one category in a newly transformed variable. The rules
for each category the new variable are a string in recFrom and value in recTo. These recode pairs
are the same syntax as sjmisc::rec(), except in sjmisc::rec() the pairs are a string for the function
attribute rec =, separated by ’=’. For example in rec_w_table variable_details$recFrom = 2; vari-
able_details$recTo = 4 is the same as sjmisc::rec(rec = "2=4"). the pairs are obtained from the
RecFrom and RecTo columns

recode pairs each recode pair is row. see above example or PBC-variableDetails.csv

multiple values multiple old values that should be recoded into a new single value may be sepa-
rated with comma, e.g. recFrom = "1,2"; recTo = 1

value range a value range is indicated by a colon, e.g. recFrom= "1:4"; recTo = 1 (recodes all
values from 1 to 4 into 1)

value range for doubles for double vectors (with fractional part), all values within the specified
range are recoded; e.g. recFrom = "1:2.5’; recTo = 1 recodes 1 to 2.5 into 1, but 2.55 would
not be recoded (since it’s not included in the specified range)

"min" and "max" minimum and maximum values are indicates by min (or lo) and max (or hi),
e.g. recFrom = "min:4"; recTo = 1 (recodes all values from minimum values of x to 4 into 1)

"else" all other values, which have not been specified yet, are indicated by else, e.g. recFrom =
"else"; recTo = NA (recode all other values (not specified in other rows) to "NA")

"copy" the "else"-token can be combined with copy, indicating that all remaining, not yet recoded
values should stay the same (are copied from the original value), e.g. recFrom = "else"; recTo
= "copy"

NA’s NA values are allowed both as old and new value, e.g. recFrom "NA"; recTo = 1. or "recFrom
= "3:5"; recTo = "NA" (recodes all NA into 1, and all values from 3 to 5 into NA in the new
variable)

Value

a dataframe that is recoded according to rules in variable_details.

https://github.com/Big-Life-Lab/bllflow/blob/master/inst/extdata/PBC-variableDetails.csv

38 resp_condition_fun1

Examples

library(cchsflow)
bmi2001 <- rec_with_table(

data = cchs2001_p, c(
"HWTGHTM",
"HWTGWTK", "HWTGBMI_der"

)
)

head(bmi2001)

bmi2011_2012 <- rec_with_table(
data = cchs2011_2012_p, c(

"HWTGHTM",
"HWTGWTK", "HWTGBMI_der"

)
)

tail(bmi2011_2012)

combined_bmi <- bind_rows(bmi2001, bmi2011_2012)
head(combined_bmi)
tail(combined_bmi)

resp_condition_fun1 resp_condition_fun1

Description

This is one of 3 functions used to create a derived variable (resp_condition_der) that determines if
a respondents has a respiratory condition. 3 different functions have been created to account for the
fact that different respiratory variables are used across CCHS cycles. This function is for CCHS
cycles (2009-2014) that only use COPD and Emphysema as a combined variable. Asthma is used
across CCHS cycles as a separate variable.

Usage

resp_condition_fun1(DHHGAGE_cont, CCC_091, CCC_031)

Arguments

DHHGAGE_cont continuous age variable.

CCC_091 variable indicating if respondent has either COPD or Emphysema

CCC_031 variable indicating if respondent has asthma

resp_condition_fun1 39

Value

a categorical variable (resp_condition_der) with 3 levels:

1. respondent is over the age of 35 and has a respiratory condition

2. respondent is under the age of 35 and has a respiratory condition

3. respondent does not have a respiratory condition

See Also

resp_condition_fun2, resp_condition_fun3

Examples

Using resp_condition_fun1() to create values across CCHS cycles
(2009-2014) resp_condition_fun1() is specified in
variable_details.csv along with the CCHS variables and cycles included.

To transform resp_condition_der, use rec_with_table() for each CCHS cycle
and specify resp_condition_der, along with the various respiratory
variables. Then by using bind_rows() you can combine resp_condition_der
across cycles.

library(cchsflow)

resp2009_2010 <- suppressWarnings(rec_with_table(
cchs2009_2010_p, c(
"DHHGAGE_cont", "CCC_091", "CCC_031",
"resp_condition_der"

)
))

head(resp2009_2010)

resp2011_2012 <- suppressWarnings(rec_with_table(
cchs2011_2012_p, c(

"DHHGAGE_cont", "CCC_091", "CCC_031",
"resp_condition_der"

)
))

tail(resp2011_2012)

combined_resp <- suppressWarnings(bind_rows(resp2009_2010, resp2011_2012))

head(combined_resp)
tail(combined_resp)

40 resp_condition_fun2

resp_condition_fun2 resp_condition_fun2

Description

This is one of 3 functions used to create a derived variable (resp_condition_der) that determines if
a respondents has a respiratory condition. This function is for CCHS cycles (2005-2007) that use
COPD & Emphysema as separate variables, as well as Bronchitis. Asthma is used across CCHS
cycles as a separate variable.

Usage

resp_condition_fun2(DHHGAGE_cont, CCC_91E, CCC_91F, CCC_91A, CCC_031)

Arguments

DHHGAGE_cont continuous age variable.

CCC_91E variable indicating if respondent has emphysema

CCC_91F variable indicating if respondent has COPD

CCC_91A variable indicating if respondent has chronic bronchitis

CCC_031 variable indicating if respondent has asthma

Value

a categorical variable (resp_condition_der) with 3 levels:

1. respondent is over the age of 35 and has a respiratory condition

2. respondent is under the age of 35 and has a respiratory condition

3. respondent does not have a respiratory condition

See Also

resp_condition_fun1, resp_condition_fun3

Examples

Using resp_condition_fun2() to create values across CCHS cycles
(2005-2007) resp_condition_fun2() is specified in
variable_details.csv along with the CCHS variables and cycles included.

To transform resp_condition_der, use rec_with_table() for each CCHS cycle
and specify resp_condition_der, along with the various respiratory
variables. Then by using bind_rows() you can combine resp_condition_der
across cycles.

library(cchsflow)

resp_condition_fun3 41

resp2005 <- suppressWarnings(rec_with_table(
cchs2005_p, c(
"DHHGAGE_cont", "CCC_91E", "CCC_91F", "CCC_91A", "CCC_031",
"resp_condition_der"

)
))

head(resp2005)

resp2007_2008 <- suppressWarnings(rec_with_table(
cchs2007_2008_p, c(

"DHHGAGE_cont", "CCC_91E", "CCC_91F", "CCC_91A", "CCC_031",
"resp_condition_der"

)
))

tail(resp2007_2008)

combined_resp <- suppressWarnings(bind_rows(resp2005, resp2007_2008))

head(combined_resp)
tail(combined_resp)

resp_condition_fun3 resp_condition_fun3

Description

This is one of 3 functions used to create a derived variable (resp_condition_der) that determines
if a respondents has a respiratory condition. This function for CCHS cycles (2001-2003) that use
COPD and Emphysema as a combined variable, as well as Bronchitis. Asthma is used across CCHS
cycles as a separate variable.

Usage

resp_condition_fun3(DHHGAGE_cont, CCC_091, CCC_91A, CCC_031)

Arguments

DHHGAGE_cont continuous age variable.

CCC_091 variable indicating if respondent has either COPD or Emphysema

CCC_91A variable indicating if respondent has chronic bronchitis

CCC_031 variable indicating if respondent has asthma

42 resp_condition_fun3

Value

a categorical variable (resp_condition_der) with 3 levels:

1. respondent is over the age of 35 and has a respiratory condition

2. respondent is under the age of 35 and has a respiratory condition

3. respondent does not have a respiratory condition

See Also

resp_condition_fun1, resp_condition_fun2

Examples

Using resp_condition_fun3() to create values across CCHS cycles
(2001-2003) resp_condition_fun3() is specified in
variable_details.csv along with the CCHS variables and cycles included.

To transform resp_condition_der, use rec_with_table() for each CCHS cycle
and specify resp_condition_der, along with the various respiratory
variables. Then by using bind_rows() you can combine resp_condition_der
across cycles.

library(cchsflow)

resp2001 <- suppressWarnings(rec_with_table(
cchs2001_p, c(
"DHHGAGE_cont", "CCC_091", "CCC_91A", "CCC_031",
"resp_condition_der"

)
))

head(resp2001)

resp2003 <- suppressWarnings(rec_with_table(
cchs2003_p,c(

"DHHGAGE_cont", "CCC_091", "CCC_91A", "CCC_031",
"resp_condition_der"

)
))

tail(resp2003)

combined_resp <- suppressWarnings(bind_rows(resp2001, resp2003))

head(combined_resp)
tail(combined_resp)

set_data_labels 43

set_data_labels Set Data Labels

Description

sets labels for passed database, Uses the names of final variables in variable_details/variables_sheet
as well as the labels contained in the passed dataframes

Usage

set_data_labels(data_to_label, variable_details, variables_sheet = NULL)

Arguments

data_to_label newly transformed dataset
variable_details

variable_details.csv
variables_sheet

variables.csv

Value

labeled data_to_label

Examples

library(cchsflow)
library(sjlabelled)
bmi2001 <- rec_with_table(
cchs2001_p, c(

"HWTGHTM",
"HWTGWTK", "HWTGBMI_der"

)
)

bmi2003 <- rec_with_table(
cchs2003_p, c(

"HWTGHTM",
"HWTGWTK", "HWTGBMI_der"

)
)

combined_bmi <- bind_rows(bmi2001, bmi2003)

get_label(combined_bmi)

labeled_combined_data <- set_data_labels(combined_bmi,
variable_details,
variables)

44 variable_details

get_label(labeled_combined_data)

variables variables.csv

Description

This dataset lists all the variables that are present in cchsflow.

Details

See the below link for more details about how the worksheet is structured https://big-life-lab.
github.io/cchsflow/articles/variables_sheet.html

Value

variables a data frame

Examples

data(variables)
str(variables)

variable_details variable_details.csv

Description

This dataset provides details on how variables are recoded in cchsflow.

Details

See the below link for more details about how the worksheet is structured https://big-life-lab.
github.io/cchsflow/articles/variable_details.html

Value
variable_details

a data frame

Examples

data(variable_details)
str(variable_details)

https://big-life-lab.github.io/cchsflow/articles/variables_sheet.html
https://big-life-lab.github.io/cchsflow/articles/variables_sheet.html
https://big-life-lab.github.io/cchsflow/articles/variable_details.html
https://big-life-lab.github.io/cchsflow/articles/variable_details.html

Index

∗Topic datasets
cchs2001_p, 13
cchs2003_p, 14
cchs2005_p, 14
cchs2007_2008_p, 15
cchs2009_2010_p, 16
cchs2010_p, 17
cchs2011_2012_p, 17
cchs2012_p, 18
cchs2013_2014_p, 19
cchs2014_p, 20
variable_details, 44
variables, 44

adl_fun, 3
age_cat_fun, 5
ALCDTTM, 6
ALCDTYP, 7
ALWDDLY, 8
ALWDWKY, 8

binge_drinker_fun, 9
bmi_fun, 11

cchs2001_p, 13
cchs2003_p, 14
cchs2005_p, 14
cchs2007_2008_p, 15
cchs2009_2010_p, 16
cchs2010_p, 17
cchs2011_2012_p, 17
cchs2012_p, 18
cchs2013_2014_p, 19
cchs2014_p, 20
compare_value_based_on_interval, 20

food_insecurity_der, 21

GEN_02A2, 22
get_data_variable_name, 23

if_else2, 24
is_equal, 25

label_data, 26

multiple_conditions_fun1, 26, 29
multiple_conditions_fun2, 27, 28

pack_years_fun, 30
pct_time_fun, 32

RACDPAL_fun, 33
rec_with_table, 36
recode_columns, 35
resp_condition_fun1, 27, 29, 38, 40, 42
resp_condition_fun2, 39, 40, 42
resp_condition_fun3, 39, 40, 41

set_data_labels, 43

variable_details, 44
variables, 44

45

	adl_fun
	age_cat_fun
	ALCDTTM
	ALCDTYP
	ALWDDLY
	ALWDWKY
	binge_drinker_fun
	bmi_fun
	cchs2001_p
	cchs2003_p
	cchs2005_p
	cchs2007_2008_p
	cchs2009_2010_p
	cchs2010_p
	cchs2011_2012_p
	cchs2012_p
	cchs2013_2014_p
	cchs2014_p
	compare_value_based_on_interval
	food_insecurity_der
	GEN_02A2
	get_data_variable_name
	if_else2
	is_equal
	label_data
	multiple_conditions_fun1
	multiple_conditions_fun2
	pack_years_fun
	pct_time_fun
	RACDPAL_fun
	recode_columns
	rec_with_table
	resp_condition_fun1
	resp_condition_fun2
	resp_condition_fun3
	set_data_labels
	variables
	variable_details
	Index

