Package ‘ccafs’

February 24, 2017
Type Package
Title Client for 'CCAFS' 'GCM' Data

Description Client for Climate Change, Agriculture, and Food Security ('CCAFS")
General Circulation Models ('GCM') data. Data is stored in Amazon 'S3', from
which we provide functions to fetch data.

Version 0.1.0
License MIT + file LICENSE

URL https://github.com/ropensci/ccafs

BugReports https://github.com/ropensci/ccafs/issues

Imports rappdirs (>=0.3.1), crul (>= 0.2.0), httr, raster (>= 2.5-8),
tibble (>= 1.2), xml2 (>= 1.0.0), jsonlite (>= 1.2), data.table
(>=1.9.6)

Suggests roxygen2 (>=5.0.1), testthat, covr, knitr
VignetteBuilder knitr

RoxygenNote 6.0.1

NeedsCompilation no

Author Scott Chamberlain [aut, cre]

Maintainer Scott Chamberlain <myrmecocystus@gmail.com>
Repository CRAN

Date/Publication 2017-02-24 17:31:14

R topics documented:

ccafs-package
ccafs-search e e
cc_cache e e e e
cc data_fetch L e
cc data_read
ce_list_keys
CC_SEArCh e

Index

https://github.com/ropensci/ccafs
https://github.com/ropensci/ccafs/issues

2 ccafs-package

ccafs-package Client for CCAFS GCM Data

Description

Client for Climate Change, Agriculture, and Food Security (CCAFS) General Circulation Models
(GCM) data. Data is stored in Amazon S3, from which we provide functions to fetch data.

About CCAFS

Client for Climate Change, Agriculture, and Food Security (CCAFS) General Circulation Models
(GCM) data. Data is stored in Amazon S3, from which we provide functions to fetch data.

R client for Climate Change, Agriculture, and Food Security (CCAFS) General Circulation Models
(GCM) data.

CCAFS website: <http://ccafs-climate.org/>

CCAFS GCM data for this package comes from Amazon S3 http://cgiardata.s3.amazonaws.
com. More about Amazon S3 below.

CCAFS data can be used for studying climate change, and how climate impacts various aspects of
the earth. Search google scholar with ‘"CCAFS" "GCM"‘ to see example uses.

As far as I can tell, CCAFS GCM data comes from IPCC data.

About Amazon S3
Amazon S3 stands for "Simple Storage Service" - it’s like a file system, and they give you links to

the files and metadata around those links.

S3 is split up into buckets, essentially folder. All CCAFS data is in one bucket. Within the CCAFS
bucket on S3 are a series of nested folders. To get to various files we need to navigate down the tree
of folders. Keys are file paths with all their parent folders, e.g., "/foo/bar/1/2". Unfortunately, there’s
no meaningful search of the CCCAFS data as they have on their website http://ccafs-climate.
org/. However, you can set a prefix for a search of these keys, e.g., "/foo/bar" for the key above.

Check out https://aws.amazon.com/s3/ for more info.

About the package

ccafs is a client to work with the data CCAFS provides via Amazon Web Services S3 data.

The ccafs data has access to is the "Spatial Downscaling" data that you see onthe http://ccafs-climate.
org/data/ page. The other data sets are not open.

Currently, we don’t provide a way to search for what data is available. You have to know what you
want, or you can list what is available, and then pick files from the list. Though there’s not a lot of
information in the metadata returned from S3.

We’ll work on incorporating a way to search - currently there is no solution.

http://cgiardata.s3.amazonaws.com
http://cgiardata.s3.amazonaws.com
http://ccafs-climate.org/
http://ccafs-climate.org/
https://aws.amazon.com/s3/
http://ccafs-climate.org/data/
http://ccafs-climate.org/data/

ccafs-search 3

raster

The main useful output are ‘raster® package objects of class RasterLayer or RasterBrick - so in
general have raster loaded in your session to maximize happiness.

Citations

Cite CCAFS data following their guidelines at http://ccafs-climate.org/about/

Get a citation for this package like citation(package = 'ccafs')

Vignette

ccafs has the following vignettes:

e vignette("ccafs_vignette”, package = "ccafs")
e vignette("amazon_s3_keys"”, package = "ccafs")
Author(s)

Scott Chamberlain <myrmecocystus@gmail . com>

ccafs-search cc_search options

Description

cc_search options

Usage

CC_params

Format

An object of class 1ist of length 9.

Details

cc_params is a list with slots matching the parameters in cc_search - so you can more easily get
to the options you want to pass in to that function.

The options are also listed below.

http://ccafs-climate.org/about/

4 ccafs-search

file set options

* 12: Delta Method IPCC ARS

* 4: Delta Method IPCC AR4

* 9: MarkSim Pattern Scaling

* 10: Eta South America

» 7: PRECIS Andes

8: CORDEX

* 11: Disaggregation IPCC AR4

3: Delta Climgen

2: Delta Method IPCC AR4 (Climgen Data)
¢ 5: Delta Method IPCC AR4 (Stanford Data)
* 6: Delta Method IPCC AR3

scenario options

1: Baseline
2: SRES AIB
3: SRES A2A
4: SRES B2A
* 5: SRES A2
6:
7:
8:
9:

SRES Bl
RCP 2.6
RCP 4.5
RCP 6.0
10: RCP 8.5

model options

* 1: baseline

e 42: bee_csml_1

e 43: bcc_csml_1 m

e 2: beer_bem2_0

e 44: bnu_esm

* 45: cccma_cancm4

* 46: cccma_canesm?2

* 3: cccma_cgem?2_0

e 4: cccma_cgem3_1_t47
* 5: cccma_cgem3_1_t63

e 47: cesml_bgc

ccafs-search

e 48: cesml_cam5

e 49: cesml_cam5_1_fv2
¢ 50: cesm1_fastchem
e 51: cesml_waccm
* 52: cmcc_cesm

¢ 53: cmcc_cm

* 54: cmcc_cms

e 6: cnrm_cm3

* 55: cnrm_cm5

* 56: csiro_access1_0
e 57: csiro_access1_3
e 7: csiro_mk?2

e 8: csiro_mk3 0

e 25: csiro_mk3_5

* 58: csiro_mk3_6_0
¢ 59: ec_earth

¢ 60: fio_esm

* 9: gfdl_cm2_0

e 61: gfdl_cm2_1

* 10: gfdl_cm2_1

* 62: gfdl_cm3

* 63: gfdl_esm2g

e 64: gfdl_esm2m

e 11: giss_aom

* 65: giss_e2_h

* 66: giss_e2_h_cc

* 67: giss_e2_r

* 68: giss_e2_r_cc

* 26: giss_model_eh
e 27: giss_model_er
¢ 38: hadem_cntrl

* 39: hadcm_high

¢ 40: hadcm_low

e 41: hadem_midi

* 12: heepr_hadem3
* 13: iap_fgoalsl_0_g

* 28: ingv_echam4

37:
69:
14:
70:
71:
72:
73:
74:
15:
16:
75:
76:
77:
78:
17:
34:
35:
79:
31:
33:
32:
80:
81:
29:
18:
30:
82:
83:
84:
19:
85:
20:
86:
21:
87:
88:
36:
22:
89:
23:
24:

inm_cm3_0
inm_cm4
ipsl_cm4
ipsl_cmSa_lr
ipsl_cm5a_mr
ipsl_cmS5b_lIr
lasg_fgoals_g2
lasg_fgoals_s2
miroc3_2_hires
miroc3_2_medres
miroc_esm
miroc_esm_chem
miroc_miroc4h
miroc_miroc5
miub_echo_g
mohc_hadam3p_2
mohc_hadam3p_3
mohc_hadcm3
mohc_hadem3q0
mohc_hadem3ql6
mohc_hadem3q3
mohc_hadgem?2_cc
mohc_hadgem?2_es
mpi_echam4
mpi_echam$
mpi_echam5
mpi_esm_Ir
mpi_esm_mr
mpi_esm_p
mri_cgcm2_3_2a
mri_cgcm3
ncar_ccsm3_0
ncar_ccsm4
ncar_pcml
ncc_noresml_m
ncc_noresml_me
ncep_r2

nies99
nimr_hadgem2_ao
ukmo_hadcm3
ukmo_hadgem1

ccafs-search

ccafs-search

period options

1: 1970s
10: 1990s
2: 2000s
3: 2020s
4: 2030s
5: 2040s
6: 2050s
7: 2060s
8: 2070s
9: 2080s

variable options

1: Bioclimatics

6: Diurnal Temperature Range
3: Maximum Temperature
4: Mean Temperature
5: Minimum Temperature
2: Precipitation

7: Solar Radiation

9999: Other

resolution options

1: 30 seconds
1 2.5

: 5 minutes

: 30 minutes

2
3
4: 10 minutes
5
6: 25 minutes
7

: 20 minutes

8 cc_cache

cc_cache Manage cached CCAFS files

Description

Manage cached CCAFS files

Usage

cc_cache_list()
cc_cache_delete(files, force = TRUE)
cc_cache_delete_all(force = TRUE)

cc_cache_details(files = NULL)

Arguments

files (character) one or more complete file names

force (logical) Should files be force deleted? Default: TRUE
Details

cache_delete only accepts 1 file name, while cache_delete_all doesn’t accept any names, but
deletes all files. For deleting many specific files, use cache_delete in a lapply type call

We cache using user_cache_dir, find your cache folder by executing rappdirs: :user_cache_dir("ccafs")

Functions

* cc_cache_list() returns a character vector of full path file names
* cc_cache_delete() deletes one or more files, returns nothing
e cc_cache_delete_all() delete all files, returns nothing

* cc_cache_details() prints file name and file size for each file, supply with one or more
files, or no files (and get details for all available)

Examples

Not run:
list files in cache
cc_cache_list()

List info for single files
cc_cache_details(files = cc_cache_list()[11)

cc_cache_details(files = cc_cache_list()[2])

List info for all files

cc_data_fetch 9

cc_cache_details()

delete files by name in cache
cc_cache_delete(files = cc_cache_list()[1])

delete all files in cache
cc_cache_delete_all()

End(Not run)

cc_data_fetch Download CCAFS data

Description

Download CCAFS data

Usage
cc_data_fetch(key, overwrite = FALSE, progress = TRUE, ...)
Arguments
key (character) a character string specifying a S3 key or a URL (the output from a
call to cc_search. the key can have spaces and newlines, which are removed
internally - this allows keys to break across lines as keys can be very long
overwrite (logical) Whether to overwrite files if they already exist on your machine. De-
fault: FALSE
progress (logical) Whether to print download progress. Default: TRUE
Curl options passed on to HttpClient
Details

Note that data is not read into R as data can be very large. See cc_data_read.
Look in rappdirs: :user_cache_dir("ccafs") for what files are cached and to delete any.

Note that we’ve made it so that you can index into the return object, getting either one or many
results and the S3 class will be retained, so that you can pass the result down to cc_data_read.

Value

A character vector of full file paths. A print method makes a tidy return object in an S3 class.

10 cc_data_read

Examples

Not run:

key <- "ccafs/ccafs-climate/data/ipcc_5ar_ciat_downscaled/rcp2_6/
2030s/bcc_csm1_1_m/10min/
bcc_csml1_1_m_rcp2_6_2030s_prec_10min_r1ilpl1_no_tile_asc.zip”

(res <- cc_data_fetch(key = key))

indexing maintains class for easier subsetting
res[1]

res[[1]1]

res[1:2]

res <- cc_list_keys()

zips <- grep(”"\\.zip", res$Key, value = TRUE)
x <- cc_data_fetch(zips[1])

unclass(x)

cc_data_read(x[1])

cc_data_read(x[1:3]1)

cc_data_read(x)

library(raster)
plot(cc_data_read(x[11))
plot(cc_data_read(x[1:3]1))

show progress
cc_cache_delete_all()
cc_data_fetch(key = key, progress
cc_cache_delete_all()
cc_data_fetch(key = key, progress = FALSE)

TRUE)

End(Not run)

cc_data_read Read CCAFS data

Description

Read CCAFS data

Usage
cc_data_read(x, unreadable = "filter")
Arguments
X A ccafs_files object, the output from a call to cc_data_fetch
unreadable (character) what to do when unreadable files are passed in. default is to filter

them out and proceed ("filter") - alternatively, you can choose "stop”, in which
case we’ll stop with a message.

cc_list_keys 11

Details

Look in rappdirs: :user_cache_dir("ccafs") for what files are cached and to delete any.

cc_data_fetch downloads data to your machine, and this function reads the data into your R
session.

For more control over vizualizations of raster data, check out the rasterVis package (https://CRAN.R-
project.org/package=rasterVis)

Value

RasterLayer or RasterStack class object. See their help files in raster package documentation.

Examples

Not run:

key <- "ccafs/ccafs-climate/data/ipcc_5ar_ciat_downscaled/rcp2_6/
2030s/bcc_csm1_1_m/1@min/
bcc_csml1_1_m_rcp2_6_2030s_prec_10min_r1ilpl1_no_tile_asc.zip”

res <- cc_data_fetch(key = key)

a single file
cc_data_read(res[1]1)

select individual files
cc_data_read(res[1:2])

all files
cc_data_read(res)

character path input
you can also pass in a path to a file(s)
cc_data_read(unclass(res[1]))

plot data
library(raster)

plot(cc_data_read(res[1:31))

End(Not run)

cc_list_keys List CCAFS keys

Description

List CCAFS keys

Usage

cc_list_keys(prefix = NULL, delimiter = NULL, max = 1000, marker = NULL,
D)

12 cc_list_keys

Arguments
prefix (character) string that limits the response to keys that begin with the specified
prefix. the string can have spaces and newlines, which are removed internally -
this allows the prefix to break across lines as prefixes can be very long
delimiter (character) string used to group keys. Read the AWS doc for more detail.
max (integer) number indicating the maximum number of keys to return (max 1000).
marker (character) string that specifies the key to start with when listing objects in a
bucket. Amazon S3 returns object keys in alphabetical order, starting with key
after the marker in order.
Curl options passed on to HttpClient
Details

This function lists keys from the CCAFS Amazon S3 bucket. Keys are essentially file paths. You
can request data from any key that is a file (with a file extension, and has size > 0). Other keys are
directories.

Value

A tibble (a data.frame, basically), with the columms:

* Key - object key

LastModified - Object creation date or the last modified date, whichever is the latest.
» ETag - "entity tag", used for cache validation
* Size - Size of the object, in bytes, divide by 1076 to get mb (megabytes)

* StorageClass - ignore, just useful for CCAFS maintainers

Examples
cc_list_keys(max = 1)

Not run:

cc_list_keys()

cc_list_keys(max = 10)

cc_list_keys(prefix = "ccafs/ccafs-climate/data/ipcc_5ar_ciat_downscaled/")
cc_list_keys(prefix = "ccafs/ccafs-climate/data/ipcc_5ar_ciat_downscaled/
rcp2_6/2030s/bcc_csm1_1/10min/")

End(Not run)

cc_search

13

cc_search

Search CCAFS data

Description

Search CCAFS data

Usage

cc_search(file_set = NULL, scenario = NULL, model = NULL, extent = NULL,
format = NULL, period = NULL, variable = NULL, resolution = NULL,

tile = NULL)

Arguments

file_set
scenario
model
extent
format
period
variable
resolution

tile

Details

(integer) a file set, 2 through 12
(integer) a scenario, 1 through 10
(integer) a model, 1 through 89
(character) an extent, ’global’ or "region’
(character) a format, *ascii’ or ’esri’
(integer) a period, 1 through 10
(integer) a variable, 1 through 7, or 9999
(integer) a resolutions, 1 through 7

(character) a tile defining a spatial area on the globe. one of Al-6, B1-6, or
C1-6. See web interface for where those are located.

See ccafs-search for details on parameters.

note that some URLs will be for Amazon S3 and others will have different base URLS (e.g.,
http://gisweb.ciat.cgiar.org)

Output can be passed to cc_data_fetch, and subsequently to cc_data_read

Value

character strings, one or more urls

Examples

(res <- cc_search(file_set = 12, extent = "global”, format = "ascii”,
period = 4, variable = 1, resolution = 4))

Not run:

res <- cc_search(file_set = 7, extent = "region”, format = "ascii”,
period = 9, variable = 5, resolution = 6)

14

cc_data_fetch(res[3])

Alternatively, you can use the helper list
where you can reference options by name
the downside is that this is very verbose
(res <- cc_search(file_set = cc_params$file_set$'Delta method IPCC AR4‘,
scenario = cc_params$scenario$*SRES B1*Y,
model = cc_params$model$bccr_bcm2_0,
extent = cc_params$extent$global,
format = cc_params$format$ascii,
period = cc_params$period$*2040s*,
variable = cc_params$variable$Precipitation,
resolution = cc_params$resolution$*5 minutes*))

End(Not run)

cc_search

Index

+Topic datasets
ccafs-search, 3

xTopic package
ccafs-package, 2

cc_cache, 8

cc_cache_delete (cc_cache), 8
cc_cache_delete_all (cc_cache), 8
cc_cache_details (cc_cache), 8
cc_cache_list (cc_cache), 8
cc_data_fetch, 9, 10, 11, 13
cc_data_read, 9, 10, 13
cc_list_keys, 11

cc_params (ccafs-search), 3
cc_search, 3,9, 13

ccafs (ccafs-package), 2
ccafs-package, 2
ccafs-search, 3

HttpClient, 9, 12
lapply, 8

user_cache_dir, 8

15

	ccafs-package
	ccafs-search
	cc_cache
	cc_data_fetch
	cc_data_read
	cc_list_keys
	cc_search
	Index

