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Introduction

The paper gives the background of the R package cbsem. It descibes the computation of co-
variance matrices of the indicators, the simulation, estimation and segmentation of compo-
site-based structural equation models and gives examples for all methods described.

Two complementary schools have come to the fore in the field of Structural Equation
Modelling (SEM): factor-based SEM and composite-based SEM. The first approach has been
developed around Karl JÃűreskog and the second one around Herman Wold (Wold 1983,
Lohmöller 1989) under the name "PLS" (Partial Least Squares). Hwang and Takane have pro-
posed an other composite-based SEM method named Generalized Structured Component
Analysis (Hwang and Takane 2004). Factor-based SEM is usually used with an objective of
model validation and needs a large sample. Composite-based SEM is mainly used for score
computation and can be carried out on very small samples. Composite-based structural
equation models consider linear combinations of the observables or indicators as compos-
ites. Through them the relations between blocks of indicators are modeled.

SEMs are visualized with the help of path diagrams. The relations between the vari-
ables are shown by arrows pointing to the dependent variables. Composite-based SEMs deal
mainly with arrows pointing from the indicators to the composites. These are the weights.
The relations are called formative. Sometimes a factor analysis point of view is incorporated,
too. Then arrows pointing in the other direction are also present. They are called lodings ac-
cording to the factor analysis convenience. The corresponding relations are called reflective.

The setting is always given by two blocks of indicators. The correletion structure between
this two blocks is modeled by the composites built from the indicators. Three scenarios
are dealt with. One has only arrows pointing from the indicators to the composites, in the
second all arrows pointing into the other direction are also present and in the third such
arrows are present only for one part of indicators.

This paper brings together what I did in the field of composite-based SEMs. I was in-
troduced to this field by a colleague, Prof. Dr. Christian Ringle, who became a good friend.
After the first project he fed me with new problems. At the end I was involved in this area
over fifteen years. Through the time my point of view evolved to the present one. This is
presented here. The most challenging problem was to develop a suitabe method to simu-
late composite-based SEMs with loadings. Weights and loadings show some interplay which
is mostly neglegted.
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1 The GSC model

1.1 The composite-based model

Let two sets of variables be given, x = (X1, . . . , Xp1
) and y = (Y1, . . . , Yp2

). All the variables
should be standardised, E(X i ) = 0 and Var(X i ) = 1, with the same applying to Yi . The rela-
tionships between these two sets of variables are modelled via composites, the linear com-
binations of the x and y indicator variables. The composites of the x variables are denoted
by ξ. These are the exogenous variables that do not depend on any other composite. Each
of the composites η, which result from the y indicator variables, is endogenous, depending
on at least one other composite, regardless of whether it is a ξ or another η. The number of
exogenous composites is q1, while the number of endogenous composites is q2.

The observed variables are indicators of their composites. Each composite should have
its own set of indicators. The indicators of ξg build a subvector x g of x , g = 1, . . . , q1. The

corresponding weights vectors are denoted by w(1)g . ηh has indicators y h with wights w(2)h ,
h = 1, . . . , q2. The parameter vectors are column vectors. The random vectors however are,
however, row vectors. The weights relations are:

ξ= x W1 , (1a)

η= y W2 , (1b)

with

W1 =











w(1)1 0 . . . 0
0 w(1)2 0
...

...
0 0 . . . w(1)q1











, W2 =











w(2)1 0 . . . 0
0 w(2)2 0
...

...
0 0 . . . w(2)q2











. (1c)

Equation (1) formalises the formative part of the model in the structural equation mod-
elling’s standard terminology.

The composites should have unit variances, Var(ξg ) = 1 and Var(ηh ) = 1. Therefore the
weights need to be standardised. They must fulfill w(1)

′

g Σx g x g
w(1)g = 1. The same applies to

w(2)h .
The structural model provides the relationships between the two sets of indicators by

means of the resulting two sets of composites:

η= ξΓ′+ηB′+ζ , (2)

The matrix B can be arranged as a lower triangular with zeros on the diagonal for recursive
models. This should be the case here. ζ is a vector of errors. The errors are presumed to
be uncorrelated and also uncorrelated in respect of the other random vectors present. The
formulation with row vectors implies that the transposes of Γ and B appear in equation (2).

The path coefficients in Γ and B are the parameters of primary interest. They describe
the composites’ interrelations.The weights are only necessary for model estimation. At most
they give some information about the indicators’ relative relevance in terms of building the
composites.
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From the structural model’ recursiveness, it follows that (I−B′) is regular and a reduced
form of the equation (2) exists:

η= ξΓ′(I−B′)−1+ζ(I−B′)−1 . (3)

A factor analysis point of view is often included in a composite-based structural model.
In this case, the model comprising equations (5) and (2) is supplemented with a reflective
part:

x = ξΛ′x +δ , (4a)

y =ηΛ′y + ε . (4b)

The matrices of the loadings Λx and Λy have the same structure as W1 and W2. Henseler et
al. (2014) state, that in composite-based factor models the covariance matrices of the errors
are block diagonal. This makes the difference between factor based SEM’s and composite-
based factor models, see figure 1. This assumption is necessary to allow the loadings to be
estimated by means of multivariate regression. Multivariate regression errors are correlated
by the pure method. This is done especially in the PLS context. In mode A, PLS estimates
the loadings by means of multivariate regression. Therefore, the errors δ and ε are allowed
to be blockwise correlated.

Figure 1: Contrasting common factor with composite-based factor model (Henseler et al.
2014)

A combination of a formative and a reflective model is also considered. These models
are called MIMIC models in structural equation modelling’s standard terminology. Only the
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indicators of endogenous composites have a reflective relation. That means only equation
(4b) is present but not (4a).

Models belonging to one of these three scenarios are considered only in this text. They
are referenced to as standard scenarios in the following:
• Scenario ff is the formative-formative scenario. Here, no loading is included in the model.
• Scenario rr is the reflective-reflective scenario. It includes all loadings, namely the ones for
the indicators of the exogenous and for the endogenous composites.
• Scenario fr is the formative-reflective scenario. Here, loadings are included only for the
indicators of the endogenous composites.

The reflective-reflective scenario is given formally by the following set of equations:

ξ= x W1 (5a)

η= y W2 (5b)

η= ξΓ′+ηB′+ζ (5c)

x = ξΛ′x +δ (5d)

y =ηΛ′y + ε , (5e)

In the formative-reflective scenario subequation (5d) is not present and in the formative-
formative both subequations (5d) and (5e) are omitted.

1.2 The covariance matrices of GSC models

We take a constructive point of view when deriving the covariance matrices of the models.
We presume that the main parameters to be controlled are 1) the path coefficients; 2) the
exogenous composites’ correlations; 3) the coefficients of determination for the structural
regression relations; and 4) the loadings, if present.

1.2.1 The covariance matrix of the composites

The path coefficients and the coefficients of determination are related. When path coeffi-
cients are of primary concern, the coefficients of determination result from the structural
model requiring uncorrelated errors. The covariance matrix of the endogenous composites,
Σηη, can be determined directly:

Σηη = (I−B)−1ΓΣξξΓ
′(I−B′)−1+ (I−B)−1Σζζ(I−B′)−1 (6)

Here, Σζζ must be computed via nonlinear optimisation.
However, when specifying the coefficients of determination a priori, the path coefficients

need to be determined accordingly. The computations required to determine the path co-
efficients only depend on the composites.

Consider the structural regression equation for the endogenous composite ηc given in
(2):

ηc = ξγc +η1:c−1β
′
c ,1:c−1+ζc , 1≤ c ≤ q2,

Here, β c ,1:c−1 is the row vector consisting of the first c − 1 elements of row c of B. η1:c−1 is
the vector of the endogenous latent variables related to rows 1 to c −1 of B. The coefficients
of the composites that do not appear in the regression equation of ηc are zero.
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Step 1: Let B,Σξξ, q1, q2 be given.
Set a start vector of length q2 for Σζζ.
Define a function to compute

1. the right hand side of equation (6),
2. the sum of the squared differences of its diagonal elements

and 1.
Step 2: Deliver the function and the start values to a nonlinear optimization

routine.

Figure 2: Nonlinear determination of the matrix Σζζ.

This, together with the covariance matrix Σ(q1+c−1),(q1+d−1) of (ξ,η1:c−1) and (ξ,η1:d−1), re-
sults in:

Var(ηc ) = (γc ,β c ,1:c−1)Σ(q1+c−1),(q1+c−1)(γc ,β c ,1:c−1)
′+σ2

ζc
, (7a)

Cov(ηc ,ξ) = (γc ,β c ,1:q1+c−1)Σ(q1+c−1),q 1, (7b)

Cov(ηc ,ηd ) = (γc ,β c ,1:c−1)Σ(q1+c−1),(q1+d−1), 1≤ d ≤ c . (7c)

These equations provide the relations required to compute the composites’ covariance ma-
trix. This is all one needs when the simulation is focussed on the the path coefficients.

One would usually choose B if one wants a specific vector r 2 = (R 2
1 , . . . , R 2

q2
) of the co-

efficients of determination for the structural regressions. Thereafter, the coefficient of de-
termination for the regression of ηc on (ξ,η1:c−1), which is based on (7c), follows with the
assumption Var(ηc ) = 1:

R 2
c = 1−σ2

ζc
= (γc ,β c ,1:c−1)Σ(q1+c−1),(q1+c−1)(γc ,β c ,1:c−1)

′ . (8)

One has to work through matrix B from row q1 + 1 to the last one to modify the path coef-
ficient to reach the desired coefficients of determination. The first part of the covariance
matrix is given by Σξξ. After the modification of the path coefficients in row q1+ c of B, the
covariance matrix of the composites must be augmented by row and column c before the
coefficients of row c +1 can be modified.

Initially, choose the row vector βq1+c as preferred. Subsequently, this preliminary value
is multiplied by a factor τwhich makes (8) hold true:

τ=

√

√

√
R 2

c

((γc ,β c ,1:c−1)Σ(q1+c−1),(q1+c−1)(γc ,β c ,1:c−1)′
. (9)

Example 1.1
We illustrate the determination of the covariance matrix and the path coefficients in the case
of a given vector r 2. For this purpose we consider the structural model

(η1,η2,η3) = (ξ1,ξ2,ξ3)





γ11 0 0
γ12 γ22 0
0 γ23 0



+ (η1,η2,η3)





0 0 β31

0 0 β32

0 0 0



+ (ζ1,ζ2,ζ3).
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The covariance matrix of the exogenous composites and the coefficients of determination
of the regressions for the endogenous composites are set to:

Σξξ =





1 0.4 0.1
0.4 1 0.3
0.1 0.3 1



 , r 2 =
�

0.8 0.7 0.6
�

.

The preliminary choice of the path coefficients is γ11 = γ22 = 0.6, γ12 = γ23 = 0.5, β31 = β32 =
0.4.

First, the regression model η1 = γ11ξ1 + γ12ξ2 + ζ1 is considered. Using Var(η1) = γ2
11 +

γ2
12+2γ11γ12Cov(ξ1,ξ2) +Var(ζ1) = 1 one obtains Var(ζ1) = 0.15. In order to achieve R 2

1 = 1−
Var(ζ1) = 0.8 the coefficients γ11,γ12 are multiplied by τ=

p

0.8/0.85. The second regression
model η2 = γ22ξ2+γ23ξ3+ζ2 results in Var(ζ2) = 0.21. The resulting factor is τ=

p

0.7/0.79.
Up to this point the modified path coefficients are: γ11 = 0.582, γ12 = 0.485, γ22 = 0.565,
γ23 = 0.471.

The covariance matrix of (ξ,η1,η2) must be determined to compute the factor for the
third regression. Formulas (7) result in:

Cov(η1,ξ) =
�

0.776 0.718 0.204
�

Cov(η2,ξ) =
�

0.273 0.706 0.640
�

Cov(η1,η2) =
�

0.565 0.471 0
�





1 0.4 0.1 0.776
0.4 1 0.3 0.718
0.1 0.3 1 0.204











0
0.565
0.471

0






= 0.501 .

With this given covariance, one should proceed as with the first two regressions. This gives
the factor τ=

p

0.6/0.346. Subsequently the matrices Γ and B are:

Γ=





0.582 0.485 0
0 0.565 0.471
0 0 0



 , B=





0 0 0
0 0 0

0.447 0.447 0



 .

Finally, the complete covariance matrix of the composites is computed, again using formu-
las (7):















1.000 0.4 0.1 0.776 0.273 0.469
0.4 1.000 0.3 0.718 0.706 0.637
0.1 0.3 1.000 0.204 0.640 0.377

0.776 0.718 0.204 1.000 0.501 0.671
0.273 0.706 0.640 0.501 1.000 0.671
0.469 0.637 0.377 0.671 0.671 1.000















1.2.2 The covariance matrix of the indicators in scenario ff

Scenario ff is the formative model. From the model equations we derive

Σξξ =W′
1Σx x W1 (10a)

Σηη =W′
2Σy y W2 (10b)

Σηη = (I−B)−1ΓΣξξΓ
′(I−B′)−1+ (I−B)−1Σζζ(I−B′)−1 (10c)
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With a choice of Σξξ, the covariance matrix of the x -indicators and the weights W1 must
be determined so that (10a) is fulfilled.

One has a great degree of freedom to choose Σx x and the standardised weights, result-
ing in a given Σξξ. First, each block of indicators of the different exogenous composites can
be dealt with separately, with only the standardisation of the composites needing to be en-
sured. This means that ξg = x g wg , w′gΣx g x g

wg = 1 must be fulfilled. This can, for example,
be achieved by setting Σx g x g

as the identity matrix and choosing the weights vectors such
that w′g wg = 1. However, this covariance matrix can be chosen arbitrarily and subsequently
scaled to fulfil equation (15a). If the exogenous composites are assumed to be uncorrelated,
one uses Σx g x h

= 0 for g 6= h . If two composites are correlated, the correlations between the
different blocks’ indicators must be set appropriately. An easy way of doing this is to preset
Σx g x h

and to scale it such that w′gΣx g x h
wh =σξg ξh

. Becker, Rai, and Rigdon (2013) first used
this approach in a specific situation.

In the next step, B is given, or must be determined according to the given vector r 2 of
the coefficients of determination (see section 1.2.1). Thereafter it is possible to obtain Σηη
as described in section 1.2.1. Σy y and the weights W2 are determined in the same way as the
covariance matrix of the X -indicators, using (10b).

The covariances of the exogenous and the endogenous composites can be used to de-
termine Σx y . First, from (5) it follows:

Σξη =W′
1Σx y W2 (11)

whereas (3) leads to:
Σξη =ΣξξΓ

′(I−B′)−1 . (12)

The combination of these two equations provides a necessary condition that must be ful-
filled:

W′
1Σx y W2 =ΣξξΓ

′(I−B′)−1 . (13)

Choosing the covariance matrix Σx y as

Σx y =Σx x W1Γ
′(I−B′)−1Σ−1

ηηW′
2Σy y (14)

makes (13) hold true. To reach this result, one has to insert this expression into the left-hand
side of (13) and to consider the relations for the covariance matrices of the composites.

A quasi-code for the computation of the covariance matrices of the indicators is given in
figure 3.

Step 1: Choose Σξξ, B, r 2 = (R 2
1 , . . . , R 2

q2
) such that for row j of B

R 2
j = b j Var((ξ,η))b′j

Step 2: Choose W1 and Σx x such that Σξξ =W′
1Σx x W1

Step 3: Use the method of section 1.2.1 or (6) to determine Σηη
Step 4: Choose Σy y and W2 such that Σηη =W′

2Σy y W2

Step 5: Σx y =Σx x W1Γ′(I−B′)−1Σ−1
ηηW′

2Σy y

Figure 3: Determination of the covariance matrices of the indicators for formative models

9



Example 1.2
Continuing the example 1.1 shows how to determine the covariance matrix of the indicators.
With the results already obtained, step 2 of figure 3 should be taken next. Let

K=





1 0.3 0.2
0.3 1 0.2
0.2 0.2 1



 Σx x =





K 1 1
1 K 1
1 1 K



 and W1 =





w1 0 0
0 w2 0
0 0 w3





where 1 is a 3×3 matrix of ones, w1 = (0.4, 0.5, 0.6)′ and 0 a vector of zeros. w2 and w3 are
chosen suitably.

First, W1 has to be standardised. This is done by computing w1/
p

f with f = w′1Kw1 =
1.106, and by substituting the new vector for the old w1. w 2 and w3 are standardised anal-
ogously. Subsequently, blocks of ones in Σx x have to be changed such that the covariances
in Σξξ are recovered. For example, to obtainσ13 = 0.469, the ones in the first three rows and
the last three columns are modified to 0.469/(w′11w3).

The matrix W2 is dealt with analogously by using Σηη. Finally, Σx y is computed using
equation (13) and the complete covariance matrix is built.

1.2.3 The covariance matrix of the indicators in scenario rr

Scenario rr is the one with composite-based factor models. The equations (5) and (3) lead
to:

Σξξ =W′
1Σx x W1 (15a)

Σηη =W′
2Σy y W2 (15b)

Σx x =ΛxΣξξΛ
′
x +Σδδ (15c)

Σηη = (I−B)−1ΓΣξξΓ
′(I−B′)−1+ (I−B)−1Σζζ(I−B′)−1 (15d)

Σy y =ΛyΣηηΛ
′
y +Σεε (15e)

Σx y =ΛxΣξξΓ
′(I−B′)−1Λ′y . (15f)

The following additional equations can be deduced from (15):

Σξξ =W′
1

�

ΛxΣξξΛ
′
x +Σδδ

�

W1 , (16a)

Σηη =W′
2

�

ΛyΣηηΛ
′
y +Σεε

�

W2 . (16b)

The conditions (16) can not be satisfied in many cases when the errors δ and ε are sup-
posed to be uncorrelated. Then the model has intrinsic inconsistencies and can not be used
as a model for a real application.

We allow blockwise correlated error vectors δ and ε as was stated above. This may be
seen as avoiding inconsistency of the models by introducing additional parameters. It would
follow the spirit of John von Neumann’s statement: ’With four parameters I can fit an ele-
phant, and with five I can make him wiggle his trunk.’ (Dyson 2004).

The following highlights the problem’s relevance: In seven of the 15 examples taken from
literature, the uncorrelated error vectors δ and ε did not allow for determing weights satis-
fying (16). Columns three and four of Table 1 give the values of the nonlinear optimisation
criterion used to determine weights such that (16a) and (16a) were satisfied. It is concluded
that no weights exist if the optimisation resulted in a value not small enough, greater than
0.01, say.

10



Table 1: Model check for examples from literature
number values of optimisation

No. of β ’s criterion
and λ’s uncor. error cor. error Source

1 2/9 0 0.0399 0 2e-12 Hwang et al. (2010)
2 2/12 0.0241 5e-32 2e-11 1e-12 Aguirre-Urreta et al. (2013)
3 2/12 0.0026 5e-32 1e-12 1e-12 Sanchez (2013)
4 2/12 0.0026 5e-32 2e-12 2e-13 Chin & Newsted (1999)
5 3/21 5e-32 0.0164 1e-12 6e-06 Bergami & Bagozzi (2000)
6 3/18 0 0.0036 2e-12 4e-11 Eberl & v. Mitschke (2006)
7 4/12 0.0045 0.010 2e-12 7e-12 Qureshi & Compeau (2009)
8 4/30 5e-32 0.0017 1e-12 1e-05 Lu et al. (2011)
9 4/20 0.0256 0.0078 4e-11 6e-12 Dijkstra & Henseler (2015)

10 4/21 0.0008 0.0006 0.0002 7e-12 Albers & Hildebrandt (2006)
11 6/28 0 0.0224 2e-09 1e-10 Chin & Newsted (1999)
12 7/42 1e-31 0.0184 3e-13 4e-06 Aguirre-U. & Rönkkö (2017)
13 9/24 0 0.7031 5e-13 2e-09 Reinartz et al. (2009)l
14 9/23 5e-32 0.0568 3e-15 9e-09 Tenenhaus (2008)
15 10/28 0.0040 0.0515 1e-11 5e-09 Hair et al. (2017)

1.2.4 The covariance matrix of the indicators in scenario fr

This scenario is a mixture of the two scenarion already investigated. The covariance matrix
of the indicators is determined therefore by following first the description of scenario ff and
then that of scenario rr. This gives

Σx x with Σξξ =W′
1Σx x W1

and
Σy y =ΛyΣηηΛ

′
y +Σεε .

As in scenario rr, the errors ε are supposed to be blockwise correlated.
The crosscovariance matrix of x and y can be derived from the set of equations describ-

ing this scenario:
Σx y =Σx x W1Γ

′(I−B′)−1Λ′y .

2 Simulation of GSC models

The covariance matrix can be used to simulate a data set. To do so, principal-components
factorisation (or any factorisation, for that matter) is performed on the population correla-
tion matrix that is to underlie the random numbers. One random number is generated for
each component to generate a multivariate random vector; each random variable is defined
as the sum of the products of the variable’s component loadings and the random number
corresponding to each of the components. The data are normally distributed if the inde-
pendent random numbers originate from a normal distribution.
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It is descibed in section 2.3 how to determine the correlation matrix of the indicators in
scenario ff. One has to ensure that the correlation matrix is positive definite to be used for
simulation.

The weights are not required in scenario rr. But the parameters used to simulate a model
must obviously be chosen such that both relations (16a) and (16b) hold true. In other words,
the chosen parameters can only be used, if sets of standardised weights can be found that
fulfill these relations . But the determination of the correlated errors turned out to result
often in non positve definite covariance matrices which can not be factorized.

The following alternative is possible due to the blockwise nature of correlation matrices.
The model is simulated with diagonal covariance matrices Σδδ and Σεε . This will affect the
weights but should not affect the loadings and the path coefficient of simulated model.

A quasicode for performing simulations of a composite-based factor model is given in
figure 4.

Step 1: Choose Σξξ, B, r 2 = (R 2
1 , . . . , R 2

q2
) such that for row j of B

R 2
j = b j Var((ξ,η))b′j

Choose loading matrices Λx , Λy .

Step 2: Determine Σx x and Σδδ according (15c) such that the first one has
unit diagonal.

Step 3: Use the method of section 1.2.1 or equation (6) to determine Σηη

Step 4: Determine Σy y and Σεε according (15e) such that the first one has
unit diagonal.

Step 5: Compute the crosscovariance matrix Σx y by using (15f).

Step 6: Built the covariance matrix of the indicators from its parts.

Step 7: Compute a factorisation of the covariance matrix and multiply it
from the left with a suitably sized matrix of independent random
numbers.

Figure 4: Determination of the covariance matrices of the indicators for composite-based
factor models

Example 2.1
An simple example given in Sanchez (2013) is considered. It has two exogenous compos-
ites, Attac and Defense and one endogenous, Success. Each has four idicators. The paper
states also the values of the path coefficients and the loadings. They are used to compute
the covariance matrices. The resulting covariance matrix of the indicators does not allow
a solution of the critical equations. Nevertheless (15c) (15e) and (15f) are used to built the
covariance matrix to be used for simulation. The resulting covariance matrix is positve def-
inite. Random samples can be generated with it.

library(cbsem)1

B <- matrix(c(0,0,0,0,0,0,0.76, -0.28,0),3,3,byrow=T)2

Sxixi <- matrix(c( 1, -0.47, -0.47, 1),2,2)3

indicatorx <- c(1,1,1,1,2,2,2,2)4
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indicatory <- c(1,1,1,1)5

lambdax <- c(0.83,0.84,0.86,0.94,-0.89,-0.75,0.88,0.48)6

lambday <- c(0.94,0.97,0.89,0.78)7

out <- gscmcov(B,indicatorx,indicatory,lambdax,lambday,wx=NULL,8

wy=NULL,Sxixi,R2=NULL)9

eigen(out$S,only.values=T)10

C <- chol(out$S)11

data <- matrix(rnorm(50*12),50,12)%*%C12

There are several suggestions for generating data from nonnormal distributions with
preset properties. Vale and Maurelli (1983) extended the Fleishman (1978) method to gen-
erate multivariate random numbers with specified intercorrelations and univariate means,
variances, skewness values, and kurtoses. First, they produce a suitably sized matrix of in-
dependent, normally distributed random numbers. They subsequently compute the Fleish-
man’s transformation coefficients and by using them an intermediate correlation matrix
from the desired indicators’ correlation matrix. A principal-components factorisation is per-
formed of this intermediate correlation matrix and the resulting factor is multiplied with the
matrix of independent normally distributed random numbers. Finally, the Fleishman trans-
formation is applied componentwise.

Example 2.2
This method was used for a small simulation experiment to compare the estimation via the

GSCA approach with PLS for formative models. Different levels of skewness
p

β1 and ex-
cess kurtosis β2 were chosen. The levels correspond to normal, Laplace, exponential and
t5-distributions (although the empirical values of the kurtosis are smaller than those of the
target ones). Fifty samples of size n = 100 were generated for each distribution from the
model used as the example above while the function gscals, see Schlittgen (2018), and the
implementation plspath of the PLS procedure were used to estimate the model. Figure 5
shows the differences between the estimates and the path coefficients used for simulation.
The estimatess are not better than in the normalsimulation methods, probably due to the
multiplicative manner in which the model parameters appear in the estimation equations.
Overall, the differences between the two estimation methods’s results are small. However,
the results by gscals are a bit closer to by the level even though the PLS estimates are rather
more closely grouped around the true values. The shape of the distribution seems to be of
no importance.

The covariance matrix S was determined in the two examples 1.1 and 1.2. Then the code
for generating a sample of size n = 100 is as follows.

S <- rbind(cbind(Sxx,Sxy), cbind(t(Sxy),Syy ))1

skew <- 02

kurt <- 63

startv <- FleishmanIC(skew, kurt)4

out <- NewtonFl(c(skew,kurt),startv)5

Fcoef <- out$coefficients6

dat <- rValeMaurelli(100, S, Fcoef)7
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Figure 5: Deviation of estimated coefficients from model coefficients for different distribu-
tions (left: gscals, right: pls)

3 Estimation of GSC models

3.1 Reformulation of the models

The models are cast into the form introduced by Hwang and Takane (2004) to derive a method
for estimation. For this, the point of view is changed to the the observations. Let X and Y
be the data matrices. Z,∆, E are the matrices of scores of the error vectors ζ, δ and ε. Then
structural and measurement parts of the model are combined into one equation.

The structural model can be written as:

[X|Y]
�

0
W2

�

= [X|Y]
�

W1

0

�

�

�

�

0
W2

��

Γ′

B′

�

+Z . (17)

The measurement model of the reflective-reflective scenario is:

[X|Y] = [X|Y]
�

W1

0

�

�

�

�

0
W2

��

Λ′x 0
0 Λ′y

�

+ [∆|E] . (18)

Combining these two equations lead to:

[X |Y ]
�

0
W2

|I
�

= [X |Y ]
�

W1

0

�

�

�

�

0
W2

��

Γ′

B′

�

�

�

�

Λ′x 0
0 Λ′y

�

+ [Z|∆|E] . (19)

Given the weighting matrices W1 and W2, (19) states a multivariate regression relation-
ship with the parameter matrix A,

A=

�

Γ′

B′

�

�

�

�

Λ′x 0
0 Λ′y

�

.

Second, the formative-reflective scenario follows, for which the measurement equation
becomes:

[X|Y]
�

0
I

�

= [X|Y]
�

0
W2

�

Λ′y +E . (20)

A combination of the structural equation (17) with this measurement equation, leads to:

[X|Y]
�

0
W2

�

�

�

�

0
I

�

= [X|Y]
�

W1

0

�

�

�

�

0
W2

��

Γ′

B′

�

�

�

�

0
Λ′y

�

+ [Z|E] . (21)
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The parameter matrix A reduces compared to that of the reflective-reflective model scenario.
PLS knows additionaly loadings for the formative relations. In the case of formative-

reflective models the equation ξ = xΛx has to be added. Then the measurement equation
becomes

[X|Y]
�

W1

0

�

�

�

�

0
I

�

= [X|Y]
�

I
0

�

�

�

�

0
W2

��

Λx 0
0 Λ′y

�

+ [∆|E].

This gives together with the structural equation:
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0
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�
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�

0
0
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

+ [Z|∆|E]

A closer inspection of this equation shows that the middle part is fulfilled without error when
the weighting matrix W1 equals the matrixΛx of loadings. Therefore it is not necessary to de-
termine it and the model can be reduced at the outset. This serves as additional justification
for the approach pesented here.

Third, the formative-formative scenario does not state a separate measurement equa-
tion. Therefore, the model is simply given by (17). Here, A= [Γ|B]′.

3.2 The estimation algorithm

The least squares methods are used to estimate the parameters in the central relationships
(19), (21) and (17). Using multivariate regression means that the sum of squared residuals’
target criterion should be minimized. Let the matrix on the left be V with which the data
matrix is multiplied, and let U be the corresponding matrix on the right. Then, the target
criterion is:

trace((V−UA)′[X|Y]′[X|Y](V−UA)) !=min . (22)

The following modification, instead of (22), measures the fit:

Fit = 1−
trace((V−UA)′[X|Y]′[X|Y](V−UA))

trace(V′[X|Y]′[X|Y]V)
. (23)

This Fit was proposed by Hwang and Takane (2004) and its value will be used as criterion to
compare the results of the algorithms.

The proposed algorithm uses an idea taken from iteratively reweighted least squares
to solve the optimization problem. It is known as W estimators for regression (Hoaglin,
Mosteller and Tukey 1983). There, the unknown parameters appear also on both sides of an
equation. Then the parameter values on one side are held fixed and the ones on the other
side are updated. This is done here analogously. The resulting algorithm is an alternating
least squares (ALS) algorithm.

Let some starting values be given. Then an update of the parameters collected in the ma-
trix A is performed. The weights are fixed for that purpose. Therefore it is possible to use the
relationships (19), (21) and (17) directly. It is a well-known fact that the separate estimation
of every column in the parameter matrix A by linear regression leads to multivariate regres-
sion. It is important to be aware of the structural zeros contained in the columns. Upon
selection of such a column for the estimation of its parameters, these structural zeros must
be eliminated together with the corresponding columns of the regressor matrix. Eventually,
the resulting estimates will lead to an updated parameter matrix A.
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Each one of the three measurement model scenarios requires a different process to up-
date the weights. For the reflective-reflective scenario equation (19) is reformulated. With
Br 1 and Br 2 being the submatrices of Br containing the first q1 and last q2 columns, the new
equation is:

[X |Y ]
�

0
W2

�

�

�

�

I

�

= [X |Y ]
�

W1Γ′

W2B′

�

�

�

�

W1Λ′x 0
0 W2Λ′y

�

+ [Z|∆|E] . (24)

The estimation of the second composited matrix to the right of equation (24) is done on the
basis of that equation in the same way as A, by using multivariate linear regressions. The
estimated matrix is denoted by A∗.

(19) and (24) result in:

A∗ ≈
�

W1

0

�

�

�

�

0
W2

�

A .

Here, A is the already updated matrix of parameter estimates. This leads to the following
equation, allowing for new W1 and W2 estimates by multivariate regression:

(A∗)′ =A′
�

W′
1

0

�

�

�

�

0
W′

2

�

+F . (25)

A column-wise standardization of the weights determines the updating of the parame-
ters and weights to ensure that the latent variables have unit variance.

The updating of A, W1 and W2 stops when the changes in their values are small enough.

Example 3.1
The reflective ECSI model is considered., cf. Schlittgen (2018). The data are Tenenhaus’
mobile telefon data.

library(cbsem)1

data(mobi250)2

ind <- c(1,1,1,4,4,4,2,2,2,3,3,5,5,5,6,6,6,7,1,1,4,4,4,4)3

o <- order(ind)4

indicatorx <- c(1,1,1,1,1)5

indicatory <- c(1,1,1,2,2,3,3,3,3,3,3,3,4,4,4,5,5,5)6

dat <- mobi250[,o]7

dat <- dat[,-ncol(dat)]8

B <- matrix(c(0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,9

0,1,1,0,0,0,0,1,1,1,0,0,1,0,0,0,1,0),6,6,byrow=TRUE)10

out <- gscals(dat,B,indicatorx,indicatory,loadingx=TRUE,loadingy=11

TRUE,maxiter=200,biascor=FALSE)12

The same applies to the formative-reflective scenario. First, A is updated by using equa-
tion (21). Subsequently, the actualization of the weights requires a reformulation of equation
(21):

[X|Y]
�

0
W2

�

�

�

�

0
I

�

= [X|Y]
�

W1Γ′

W2B′

�

�

�

�

0
W2Λ′y

�

+ [Z|E] . (26)

To improve the weights, the matrix
�

W1Γ′

W2B′

�

�

�

�

0
W2Λ′y

�
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is estimated by using (26) just like in the reflective-reflective scenario. A∗ again denotes the
estimated matrix. The regression equation for estimating the weights then equals (25).

As in the reflective-reflective scenario, every W1 and W2 update leads to a standardization
of the weights.

Example 3.2
An example from Ringle is taken to illustrate the formative-reflective scenario fr.

library(cbsem)1

dat <- read.table("RingleFormReflDat.txt",header=T)2

B0 <-matrix(c(0,0,0,0,0,0,0,0,0,0,3

0,0,0,0,0,1,1,1,0,0,4

0,0,0,1,0),5,5,byrow=T)5

indicatorx <- c(1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3)6

indicatory <- c(1,1,1,2,2,2)7

out <- gscals(dat,B0,indicatorx,indicatory,loadingx=FALSE,loadingy8

=TRUE,maxiter=200,biascor=FALSE)9

In the formative-formative scenario, only the structural equation (17) is available for im-
proving the starting values. To update the weights, first the matrix A∗ is estimated from the
reformulated equation (17):

[X|Y]
�

0
W2

�

= [X|Y]
�

W1Γ′

W2B′

�

+Z . (27)

Then, the W1 matrix of weights is updated with the help of equation (25) in the man-
ner described above. This is not possible for W2, because the last rows of A = B′r contain
zeros only. The number of these rows equals the number of η’s having no latent variables
depending on them in the structural equation. This results in a block of zeros in the last
rows of W2B′r 2 and the weights for the corresponding endogenous latent variables can not
be determined with the type of regression used above.

The matrix W2 of weights is therefore updated differently. Reformulating equation (17)
again, we have:

[X|Y]
�

W1

0

�

�

�

�

0
W2

��

Γ′

B′

�

= YW2−Z . (28)

The matrix on the left hand side is the n × q2 score matrix of the endogenous composites.
By regarding it as data matrix of dependent variables and Y as one of explanatory ones, we
obtain new values for the entries of W2 by performing this multivariate regression.

Example 3.3
Albers model is consider in the case of scenario ff.

B0 <- matrix(1

c(0,0,0,0,0,0,0,0,0,0,0,0,2

0,0,0,0,0,0,1,1,0,0,0,0,3

0,1,1,0,0,0,0,0,0,1,1,0),6,6,byrow=T)4

indicatorx <- c(1,1,1,2,2,2,3,3,3)5

indicatory <- c(1,1,1,2,2,2,3,3,3)6

out1 <- gscals(dat,B0,indicatorx,indicatory,loadingx=FALSE,loadingy=7

FALSE,maxiter=200,biascor=FALSE)8
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Step 0: Set the model with 0-1 matrices W1, W2,Γ, B, Λx , Λy .
Substitute the ones with uniform random numbers.
Choose the scenario: rr, rf, or ff.
Set ∆ for convergence criterion (i.e the maximal allowed absolute difference
of estimated parameters between two iterations).

Do loop:
Step 1: Update the parameters in matrix A by least squares using one of the equations

(19), (21) or (17) according to the scenarios ff, fr, rf.
Step 2: Estimate the matrix A∗ by least squares using one of the equations (24), (26) or

(27) according to the scenarios ff, fr, rf.
Step 3: Update the weights W1 using the regression equation (25).

Standardize the weights in matrix W1

Step 4: If scenario = rr or = fr: Update the weights W2 using the regression equation
(25).
If scenario = ff: Update the weights W2 using the regression equation (28).
Standardize the weights in matrix W2

Step 5: Compute the differences of the updated parameters and their values of the last
round.
If The maximum of absolute differences is greater than∆.

Go to Step 1.
Else Output of the estimated parameters.

Stop.

Figure 6: The gscals algorithm.

Figure 6 gives a quasi-code of our ALS-algorithm. The algorithm by Hwang and Takane
(2004) is an ALS too. As they state, in general ALS can be viewed as a special type of the
FP algorithm where the fixed point is a stationary point of a function to be optimized. But
no investigation of theoretical aspects of our algorithm has be done yet. Nevertheless, the
stationary point is characterized by the following fact: The solutions of (24) ( (26) / (17) )
with inserted solutions of (25) ((25)/(27) and (28)) do not change anymore and the same
holds when the two equations are exchanged.

Experiments showed that the results do not depend on the choice of starting values.
Therefore, uniformly distributed random variates are chosen for them. When PLS-estimates
were used as starting values for the four empirical examples, the number of iterations were
21, 37, 15, 14 for the PLS-starting values and 21, 44, 16, 15 for the random starts. But the
PLS-iterations must be taken into account additionally.

Empirical evidence of monotonic decrease of the maximum of absolute differences of
parameters during the iterations can be given only. It was violated only two times in the first
step from the initial parameter settings to the first improved estimates. This was caused
perhaps by a special constellation of the random start values.

Schlittgen (2018) shows that the proposed algorithm works well compared tomatrixpls
and GeSCA.
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3.3 Bootstrap bias correction

GSCA and PLS estimates are known to give biased results. This also holds true for the recent
modification of the PLS algorithm, making its estimation consistent for reflective models
(model A) (Dijkstra & Henseler 2015). The modification estimates the loadings much better,
but improves the estimates of the path coefficients only a little bit in smaller samples. There-
foreit is worthwhile to investigate bootstrap bias correction. The idea behind this correction
can be described concisely as follows.

Let θ be the parameter to be estimated and let θ̂ be an estimator of it. It may be neces-
sary to adjust it in an additive way. Then θ̂ + t is the bias corrected estimator. Ideally, one
would like to choose t to reduce the bias to zero, i.e. to solve E(θ̂ −θ + t ) = 0. With the boot-
strap, an empirical version is produced that mimics this theoretical relation. The estimate
θ̂ computed from the sample takes the role of the theoretical parameter and the average of

the bootstrap estimates θ̂ ∗ takes the role of the mean value of the estimator. Then the bias
correction fulfills

θ̂ ∗ − θ̂ + t = 0, or t = θ̂ − θ̂ ∗ .

Therefore, the (additively) bias corrected estimator is given by

θ̂ + t = 2 · θ̂ − θ̂ ∗ . (29)

Two variants of this approach have been implemented. First, the multivariate obser-
vations were resampled and the parameters are estimated with the resampled data set. The
second variant is a parametric bootstrap. With the estimated parameters, the indicators’ co-
variance matrix is determined. Normally distributed samples were simulated with it of the
same size as the original sample. These samples were used again to get botstap estimates.

A simulation study was performed to investigate the benefit of it. First, the reflective-
reflective Bergami-Bagozzi model (Bergami & Bagozzi 2000), see figure 7 was considered.
We considered three levels of sample size (n = 25, 100, 400), and generated 500 samples for
each. Three distributions were taken into account: the normal distribution, a leptocitic and
a skewed distribution.
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Figure 7: The specified structural equation model for Bergami and Bagozzi’s organizational
identification data
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With the parameters estimated by the gscals algorithm the model was simulated 500
times and estimated. Estimation was done without and with bootstrap-bias correction. To
give an overall impressoÃ­on of the relative benefit of bootstrap bias correction, the means
of the absolute errors over all path coefficients and over all loadings are presented in table
2.

Table 2: Mean values of bias and mean squared error for the estimates for the Bergami-
Bagozzi model

mean values of
distribution n bias cor. bias(β ) bias(λ) MSE(β ) MSE(λ)
normal 25 no 0.0334 0.0346 0.0327 0.0081
skew = 0, resamp. 0.0346 0.0416 0.0333 0.0084
kurt = 0 param. 0.0062 0.0099 0.0366 0.0099

100 no 0.0376 0.0382 0.0082 0.0033
resamp. 0.0448 0.0399 0.0092 0.0034
param. 0.0067 0.0105 0.0077 0.0024

400 resamp. 0.0401 0.0391 0.0035 0.0023
param. 0.0443 0.0386 0.0038 0.0023

yes 0.0035 0.0101 0.0020 0.0007
skew = 0, 25 no 0.0320 0.0347 0.0315 0.0086
kurt = 3 param. 0.0025 0.0102 0.0357 0.0105

100 no 0.0384 0.0387 0.0090 0.0035
param. 0.0033 0.0100 0.0087 0.0027

400 no 0.0444 0.0389 0.0038 0.0024
param. 0.0048 0.0101 0.0020 0.0008

skew = 2, 25 no 0.0184 0.0332 0.0322 0.0119
kurt = 6 param. 0.0132 0.0087 0.0367 0.0153

100 no 0.0394 0.0376 0.0098 0.0043
param. 0.0020 0.0117 0.0094 0.0041

400 no 0.0413 0.0384 0.0039 0.0026
param. 0.0032 0.0102 0.0024 0.0012

The figures of the table show that the resampling variant of bootstrap bias correction
does not work. But the parametric variant has a remarkable effect. Because of that only this
is considered in the following.

The distribution does not affect neither the level of the bias nor the amount of the cor-
rection. The same holds for the sample size. But the mean squared errors indicate that the
gain by reducing the bias is greater for larger n . This also holds true for normally and non-
normally distributed data, despite the bootstrap also having been performed with normally
distributed bootstrap samples in the latter situations. Altogether bootstrap bias correction
works well for all distributions.

Now, a formative-formative model will be investigated. We use the ECSI-model with
Tenenhaus’ mobile phone data. A discussion in Gudergan, Ringle, Wende & Will (2008) in-
spired this. These authors draw attention to the possibility that the usual reflective-reflective
measurement relationships are misspecifications.

First, the model is estimated. The resulting parameters Σ̂ξξ, B̂ , ŵx , and ŵy are used to
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simulate the model.

Table 3: Mean values of bias and mean squared error for the estimates for the formative ECSI
model

n bias cor. bias(β ) MSE(β )
25 no 0.1379 0.1415

yes 0.1224 0.2051
100 no 0.0404 0.0044

yes 0.0340 0.0050
400 no 0.0386 0.0047

yes 0.0390 0.0043

The 500 replications for n = 25 produced only 34 where the covariance matrix derived
from the estimate could be used to generate bootsrap samples. With n = 400 this number
increased to 491.

Additionally, the formative Albers-model was investigated.

Table 4: Mean values of bias and mean squared error for the estimates for the formative
Albers model

n bias cor. bias(β ) MSE(β )
25 no 0.0595 0.0635

yes 0.0612 0.0860
100 no 0.0150 0.0056

yes 0.0086 0.0055
400 no 0.0115 0.0014

yes 0.0097 0.0015

Again, a certain sample size is necessary until bootstrap bias correction has a positive
effect. It does not work well for samples too small. Altogether, the bias correction works
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well but not in that amount as in the reflective-reflective situation.
We use simulated data to explore the usefulness of bootstap bias correction when the

model is formative-reflective. Figure 9 shows the model taken from the literature (Ringle &
al. 2009). The parameter values are given in Figure 9.
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= 0.6β54
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Figure 9: Ringle’s model for investigating a formative-reflective scenario

The results for normally distributed data is presented in Table 5. With regard to the path
coefficients the bias correction does not show a clear improvement, but ambiguous results.
But there is a tendency that it pays for larger sample sizes. The bias correction has contra
positive effect for small samples (n = 25) but positive one for larger samples.

Table 5: Mean values of bias and mean squared error for the estimates for the formative-
reflective Ringle model

n bias cor. bias(β ) bias(λ) MSE(β ) MSE(λ)
25 no 0.0234 0.0109 0.0903 0.0003

yes 0.0688 0.0078 0.2386 0.0004
100 no 0.0159 0.0128 0.0151 0.0002

yes 0.0127 0.0052 0.0607 0.0001
400 no 0.0109 0.0134 0.0023 0.0002

yes 0.0042 0.0046 0.0017 0.0000

4 Segmentation of GSC models

4.1 An algorithm for known number of segments

Uncovering unobserved heterogeneity is a requirement to obtain valid results when using
the structural equation modeling method with empirical data. Conventional segmentation
methods usually fail in SEM since they account for the observations but not the composites
and their relationships in the structural model.

Finding the best segmentation solution for a goal criterion is a combinatorial data as-
signment problem. The complexity of the problem increases exponentially with higher num-
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bers of observations and/or higher numbers of segments (Cowgill, Harvey, & Watson, 1999).
Conventional segmentation methods usually fail in SEM since they account for the observa-
tions but not the latent variables and their relationships in the structural model. The GSC-
IRRS approach builds on an idea introduced by Schlittgen (2011) for clusterwise robust re-
gression. In robust regression, M-estimators down-weight observations with extreme values
of the dependent variable. Thereby, they mitigate the influence of outliers in the data set.
One method to compute M-estimators is iteratively reweighted least squares. The weights
are determined by the residuals and the larger the residuals, the smaller the weights. Since
the parameters of GSC models are estimated basically by a system of least squares regres-
sions, it is possible to use the idea of robust regression for determining a group of data and
to address the segmentation problem. To adapt this idea for GSCA segmentation, outliers
are not treated as such but as their own segment. Hence, when robust regression identi-
fies a group of similar outliers, they may become a data group of their own and represent a
segment-specific GSCA solution. On the other hand, within a group of data, a M-estimator
down-weights inhomogeneous observations when returning the segment-specific GSCA so-
lution.

We start with a random choice of weights νi k , where i indicates an observation and
k = 1, , g the different segments (

∑g
k=1νi k = 1 for all i = 1, . . . , n . Next, the method deter-

mines the segment-specific GSC solutions accounting for the weights (ν1k , . . . ,νnk )′ of the
g segment vectors in the gscals algorithm, by multiplying the data matrix with the square
root of the weights.

Building on these results, in the next step, GSC-IRRS computes new weights. They are
based on the structural model residuals (i.e., ri k j ) which are obtained from the g models
when applied to the unweighted observations. j stands for the different regression equa-
tions in the structural model. More precisely, let r 2

i k =
∑

j r 2
i k j . Then the normed reciprocal

values 1/r 2
i k are used as new weights νi k . Therefore an observation i gets a higher (lower)

weight in segments where the sum of its squared residuals is small (large). Using these new
weights as input, GSC-IRRS updates the segment-specific solutions and, again, determines
new weights.

The algorithm terminates when the parameter estimates stabilize (i.e., difference of esti-
mated coefficients between two iterations reaches a value that is smaller than a pre-defined
level∆).

Example 4.1
Scholing & Timmermann (2000) studied the interdependence in the development of cer-
tain specific economic liberties on the one hand and political rights on the other. The ques-
tion was whether economic liberties can exist independently of political rights, i.e. whether
private property, freedom to run a business or to choose a job, contractual freedom and
freedom of pricing can be utilized merely as regulation and discovery mechanisms. In other
words: whether an authoritarian political system can continue to exist side by side with eco-
nomic liberties. They had data for 91 states in 1975 and 1995 on the following variables:

Competition of Parties X1 CP75 Y1 CP95
Politial Rights X2 PR75 Y2 PR95
Civil Liberties X3 CL75 Y3 CL95
Amount of Privatisation X4 AoP75 Y4 AoP95
Freedom of Foreign Exchange X5 FFE75 Y5 FFE95
Freedom of Capital Movements X6 FCM75 Y6 FCM95
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Step 0: Set n for the number of observations;
set g for the number of groups;
set ∆ for the convergence criterion, i. e. maximum difference of estimated pa-
rameters between two iterations;
set Stop (i.e., maximum number of generated GSC-IRRS solutions).
Randomly generate weights νi k ≥ 0 with

∑

k νi k = 1 for all i = 1, . . . , n whereby i
indicates an observation and k = 1, . . . , g the different segnments.

Do loop
Step 1: For k = 1, . . . , g : Estimate the GSC path model with the νi k weighted observa-

tions.
Step 2: Determine the residuals ri k j of the estimated structural regressions j using the

unweighted observations.
Step 3: For each i = 1, . . . , n , compute the sum of the squared values r 2

i k =
∑

j r 2
i k j .

Step 4: Let the normed reciprocal values 1/r 2
i k become the new weights.

Step 5: Compare the estimated coefficients with those of the previous iteration.
If the difference is larger than∆ and the number of iteration is less than Stop.

Go to Step 1
Else

Use the maximum weight νi k to assign each observation i to a segment k .
Step 6: Compute the average value of the weighted coefficients of determination to as-

sess and compare the quality of segmentation results.
Stop loop
Step 7: Select the final segmentation solution based on the maximum value.

Figure 10: The GSC-IRRS Algorithm

They were used as indicators in a structural model. The composite based factor model
has four composites. The exogenous ones are ξ1 Political Freedom and ξ2 Economical Free-
dom 1975, endogenous are the same but for 1995.

Scholing explained in a personal communication that he was not very satisfied with the
fit of the model to the data. In fact, a three cluster solution led to the following covariance
matrices of the manifest variables:

Cluster 1 (n1 = 45)

CP75 PR75 CL75 AoP75 FFE75 FCM75 CP95 PR95 CL95 AoP95 FFE95 FCM95

CP75 1.00 0.91 0.82 0.32 0.25 0.45 0.77 0.83 0.81 0.39 0.44 0.69

PR75 0.91 1.00 0.94 0.24 0.33 0.49 0.76 0.83 0.85 0.34 0.52 0.79

CL75 0.82 0.94 1.00 0.19 0.35 0.45 0.75 0.83 0.86 0.33 0.56 0.75

AoP75 0.32 0.24 0.19 1.00 0.40 0.49 0.09 0.18 0.14 0.79 0.02 0.36

FFE75 0.25 0.33 0.35 0.40 1.00 0.46 -0.05 0.12 0.23 0.50 0.41 0.43

FCM75 0.45 0.49 0.45 0.49 0.46 1.00 0.25 0.38 0.36 0.46 0.32 0.64

CP95 0.77 0.76 0.75 0.09 -0.05 0.25 1.00 0.81 0.76 0.22 0.23 0.53

PR95 0.83 0.83 0.83 0.18 0.12 0.38 0.81 1.00 0.91 0.33 0.40 0.59

CL95 0.81 0.85 0.86 0.14 0.23 0.36 0.76 0.91 1.00 0.33 0.54 0.64

AoP95 0.39 0.34 0.33 0.79 0.50 0.46 0.22 0.33 0.33 1.00 0.28 0.45

FFE95 0.44 0.52 0.56 0.02 0.41 0.32 0.23 0.40 0.54 0.28 1.00 0.55

FCM95 0.69 0.79 0.75 0.36 0.43 0.64 0.53 0.59 0.64 0.45 0.55 1.00

Cluster 2 (n2 = 30)
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Figure 11: SEM of political and economical freedom

CP75 PR75 CL75 AoP75 FFE75 FCM75 CP95 PR95 CL95 AoP95 FFE95 FCM95

CP75 1.00 0.93 0.79 -0.05 -0.03 -0.09 0.49 0.40 0.32 0.23 0.29 0.38

PR75 0.93 1.00 0.91 -0.05 -0.03 0.04 0.45 0.39 0.32 0.23 0.21 0.51

CL75 0.79 0.91 1.00 -0.05 0.09 0.05 0.40 0.40 0.32 0.23 0.19 0.53

AoP75 -0.05 -0.05 -0.05 1.00 0.40 0.18 0.20 0.36 0.49 0.78 0.46 0.37

FFE75 -0.03 -0.03 0.09 0.40 1.00 0.39 0.42 0.45 0.56 0.36 0.61 0.48

FCM75 -0.09 0.04 0.05 0.18 0.39 1.00 0.32 0.49 0.45 0.16 0.41 0.69

CP95 0.49 0.45 0.40 0.20 0.42 0.32 1.00 0.63 0.66 0.31 0.52 0.54

PR95 0.40 0.39 0.40 0.36 0.45 0.49 0.63 1.00 0.86 0.45 0.66 0.70

CL95 0.32 0.32 0.32 0.49 0.56 0.45 0.66 0.86 1.00 0.60 0.74 0.73

AoP95 0.23 0.23 0.23 0.78 0.36 0.16 0.31 0.45 0.60 1.00 0.64 0.45

FFE95 0.29 0.21 0.19 0.46 0.61 0.41 0.52 0.66 0.74 0.64 1.00 0.54

FCM95 0.38 0.51 0.53 0.37 0.48 0.69 0.54 0.70 0.73 0.45 0.54 1.00

Cluster 3 (n2 = 16)

CP75 PR75 CL75 AoP75 FFE75 FCM75 CP95 PR95 CL95 AoP95 FFE95 FCM95

CP75 1.00 0.85 0.71 0.55 0.61 0.60 0.22 0.05 0.06 -0.07 -0.52 -0.74

PR75 0.85 1.00 0.86 0.54 0.52 0.65 0.21 0.04 0.06 -0.12 -0.67 -0.57

CL75 0.71 0.86 1.00 0.50 0.32 0.50 0.15 0.04 0.22 0.01 -0.71 -0.54

AoP75 0.55 0.54 0.50 1.00 0.60 0.68 -0.35 -0.62 -0.49 0.54 -0.38 -0.07

FFE75 0.61 0.52 0.32 0.60 1.00 0.82 -0.06 -0.13 -0.22 0.14 -0.48 -0.16

FCM75 0.60 0.65 0.50 0.68 0.82 1.00 -0.04 -0.34 -0.35 0.01 -0.64 -0.09

CP95 0.22 0.21 0.15 -0.35 -0.06 -0.04 1.00 0.63 0.48 -0.55 -0.35 -0.68

PR95 0.05 0.04 0.04 -0.62 -0.13 -0.34 0.63 1.00 0.88 -0.53 -0.15 -0.48

CL95 0.06 0.06 0.22 -0.49 -0.22 -0.35 0.48 0.88 1.00 -0.29 -0.19 -0.51

AoP95 -0.07 -0.12 0.01 0.54 0.14 0.01 -0.55 -0.53 -0.29 1.00 0.16 0.19

FFE95 -0.52 -0.67 -0.71 -0.38 -0.48 -0.64 -0.35 -0.15 -0.19 0.16 1.00 0.33

FCM95 -0.74 -0.57 -0.54 -0.07 -0.16 -0.09 -0.68 -0.48 -0.51 0.19 0.33 1.00

Those states belong to te first cluster, where high political freedom goes together with
high economical freedom and the development of both go parallel. In cluster two there is
some contradiction between the two kinds of freedom in 1975 but not more in 1995. Cluster
three gathers the states with contradictory development. Low political freedom in 1975 goes
together with high economical freedom in 1995 and economical freedom in 1975 is different
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from that in 1995. Altogether the development differs to much to built just one model for all
states.

library(cbsem)1

dat <- data(poloecfree)2

dat <- dat[,-(c(1,2)]3

indicatorx <-c(1,1,1,2,2,2)4

indicatory <-c(1,1,1,2,2,2)5

B = matrix(c(0, 0, 0, 0,6

0, 0, 0, 0,7

1, 1, 0, 0,8

1, 1, 0, 0),4,4,byrow=T)9

out <- clustergscairls(dat,B,indicatorx,indicatory,loadingx=TRUE,10

loadingy=TRUE,3,6,1)11

4.2 Selection of the number of segments

A method for choosing the number of segments uses Akaike’s information criterion AIC. The
AIC is an estimator of the relative quality of statistical models for a given set of data. Another
approach to determine a suitable number of segments uses a sequence of tests. For two
partitions with g and g + 1 segments one may consider the hypotheses that the data came
from model with g segments and that they came from the model with g +1 segments.

We do not test these two hypotheses. Instead we consider an one-dimensional parame-
ter θ and state as null hypothesis H ′

0 : θ = 0, such that θ =R 2
W ,g+1−R 2

W ,g . R 2
W ,g is the weighted

average of the g averages of the coefficients of determination for the regressions in the struc-
tural model. As alternative we choose H ′

1 : θ > 0. The reason to use one-sided hypotheses
comes from the fact that the adjusted determination coefficient decreases only slowly when
more regressors are included. Therefore we will use more clusters only if there is a signifi-
cant improvement in the fit. The test is performed with the help of a bootstrap-confidence
interval for θ . We use the basic bootstrap confidence limits with an adjustment based on
the double bootstrap, see Davison and Hinkley (1997, pp. 223-226). The null hypothesis
H0 : θ = 0 is rejected when the lower confidence limit is greater than zero.

The hypotheses are considered to be non-nested. Cox (1961, 1962) developed a variant of
likelihood ratio test for non-nested hypotheses. This has been the basis of the development
of various other tests, see Davidson and MacKinnon (2004). The problem is that the test
results may not be consistent. It is possible that the tests reject both, neither, or either one
of the hypotheses H1 and H2. This goes along with the possibility that the data generating
process is different from the two models under consideration. On the other hand, since the
bootstrap test employed here only evaluates if a model has a significantly higher explanatory
power than the other model, there is no possibility of inconsistent results.

Example 4.2
The last example will be continued. To decide about the number of clusters two tests were
performed. The index of θg gives the number of clusters.

θ1−θ2: [−0.2499,−0.0837]
θ2−θ3: [−0.8620,−0.3761]
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Therefore, a two cluster solution is superior to a single model but a three cluster solution
is even better. A clustering with four cluster was not considered because the clusters became
too small to perform the estimation.

The code of the last example is continued. Then the first comparison is performed as
follows.

member1 <-rep(1,91)12

out <- clustergscairls(dat,B,indicatorx,indicatory,loadingx=TRUE,13

loadingy=TRUE,2,6,1)14

member2 <- out$member15

boottestgscm(dat,B,indicatorx,indicatory,loadingx=TRUE,loadingy16

=TRUE,member1,member2,0.1,inner=FALSE)17
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