Package 'cbsem'

February 3, 2019
Type Package
Title Simulation, Estimation and Segmentation of Composite BasedStructural Equation Models
Version 1.0.0
Author Rainer Schlittgen
Maintainer Rainer Schlittgen R.Schlittgen@t-online.de
Description The composites are linear combinations of their indicators in composite based struc-tural equation models. Structural models are considered consisting of two blocks. The indica-tors of the exogenous composites are named by X, the indicators of the endogenous by Y. Reflec-tive relations are given by arrows pointing from the composite to their indicators. Their val-ues are called loadings. In a reflective-reflective scenario all indicators have loadings. Ar-rows are pointing to their indicators only from the endogenous composites in the formative-reflective scenario. There are no loadings at all in the formative-formative scenario. The covari-ance matrices are computed for these three scenarios. They can be used to simulate these mod-els. These models can also be estimated and a segmentation procedure is included as well.
Depends R (>=2.10)
License GPL
Encoding UTF-8
LazyData true
Suggests R.rsp
VignetteBuilder R.rsp
RoxygenNote 6.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2019-02-03 17:05:33 UTC
R topics documented:
averageR2w 2
boottestgscm 3
checkw 4
clustergscairls 5
FlDeriv 6
Fleishman 7
FleishmanIC 7
gscals 8
gscalsout 9
gscalsresid 10
gscmcov 11
gscmcovff 13
gscmcovfr 14
gsemcovout 15
gscmcovrr 16
mobi250 17
NewtonFl 18
plspath 18
poloecfree 20
rValeMaurelli 21
simplemodel 21
SolveCorr 22
subcheckw 23
twoclm 23
VMTargetCorr 24
Index 25
averageR2w For use in boottestgscm.

Description

averageR2w computes the weighted average of average of coefficients of determination for the structural parts of a segmented GSC model

Usage

averageR2w(dat, B, indicatorx, indicatory, loadingx = FALSE, loadingy = FALSE, member)

Arguments

dat (n,p)-matrix, the values of the manifest variables. The columns must be arranged in that way that the components of refl are (absolutely) increasing.

B
(q, q) lower triangular matrix describing the interrelations of the latent variables: $b_{i} i j=1$ regression coefficient of eta_j in the regression relation in which eta_i is the depend variable $b_{-} \mathrm{ij}=0$ if eta_i does not depend on eta_j in a direct way (b_ii = 0 !)
indicatorx vector describing with which exogenous composite the X -variables are connected

indicatory	vector describing with which endogenous composite the Y-variables are con- nected
loadingx	logical TRUE when there are loadings for the X -variables in the model
loadingy	logical TRUE when there are loadings for the Y-variables in the model
member	vector of length n, indicating the cluster the observation belongs to

Value

r scalar, 'global' r2 coefficiet of determination

```
boottestgscm Testing two segmentations of a GSC model
```


Description

boottestgscm computes a confidence interval for the difference of weighted average of averages of coefficients of determination for two segmentations of a GSC model For a one sided alternative hypothesis the error alpha has to be duplicated

Usage

boottestgscm(dat, B, indicatorx, indicatory, loadingx = FALSE, loadingy $=$ FALSE, member1, member2, alpha, inner = FALSE)

Arguments

dat (n,p)-matrix, the values of the manifest variables. The columns must be arranged in that way that the components of refl are (absolutely) increasing.

B
(q, q) lower triangular matrix describing the interrelations of the latent variables: b_ij = 1 regression coefficient of eta_j in the regression relation in which eta_i is the depend variable $\mathrm{b}_{-} \mathrm{ij}=0$ if eta_i does not depend on eta_j in a direct way (b_ii = 0 !)
indicatorx vector describing with which exogenous composite the X -variables are connected
indicatory vector describing with which endogenous composite the Y-variables are connected
loadingx logical FALSE when there are no loadings for the X-variables in the model
loadingy logical FALSE when there are no loadings for the Y-variables in the model
member1 vector of length n, indicating the cluster the observation belongs to for the first clustering
member2 vector of length n , indicating the cluster the observation belongs to for the second clustering
alpha scalar, significance level (= 1-confidence level)
inner Boolean, should a inner bootstrap loop be computed?

Value

KI vector with the confidence bounds; positive lower limit indicates significant superiority of first clustering, negative upper limit of second clustering.

Examples

```
data(twoclm)
member1 <- c(rep (1,50),rep (2,50))
member2 <- twoclm[,10]
dat <- twoclm[,-10]
B <- matrix(c( 0,0,0, 0,0,0, 1,1,0),3,3,byrow=TRUE)
indicatorx <- c(1,1,1,2,2,2)
indicatory <- c(1,1,1)
boottestgscm(dat,B,indicatorx,indicatory,loadingx=FALSE,loadingy=FALSE,
member2,member1,0.1,inner=FALSE)
```

checkw

Checking composite based SE models if there are weights in accordance with the loadings and the covariance matrix of the composites

Description

checkw determines if there are sets of weights fulfilling the critical relation for the covariance matricies of the composites.

Usage

checkw(B, indicatorx, indicatory, lambdax = FALSE, lambday = FALSE, $w x=F A L S E, w y=F A L S E, S x i x i, R 2=N U L L)$

Arguments

B
indicatory vector describing with which endogenous composite the Y-variables are connected
lambdax vector of loadings for the X-variables in the model or FALSE
lambday vector of loadings for the Y-variables in the model or FALSE
wx vector of weights for the X-variables in the model or FALSE
wy
Sxixi
R2
(q, q) lower triangular matrix describing the interrelations of the latent variables: $b_{-} i j=1$ regression coefficient of eta_j in the regression relation in which eta_i is the depend variable $\mathrm{b}_{-} \mathrm{ij}=0$ if eta_i does not depend on eta_j in a direct way (b_ii = 0 !)
indicatorx vector describing with which exogenous composite the X -variables are connected vector of weights for the Y-variables in the model or FALSE covariance matrix of exogenous composites

Value

out list with components
crit.value vector of length 2 with the values of the optimisation criterion
wx vector of length p 1 of weights for constructing the exogenous composites
wy vector of length p 2 of weights for constructing the endogenous composites

Examples

```
B <- matrix(c(0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,
                            0,1,1,0,0,0,0,1,1,1,0,0,1,0,0,0,1,0),6,6,byrow=TRUE)
    indicatorx <- c(1,1,1,1,1)
    indicatory <- c(1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5)
    lambdax <- c(0.73, 0.60, 0.60, 0.77, 0.74)
    lambday <- c(0.79, 0.68, 0.60, 0.90, 0.94, 0.80, 0.65, 0.78, 0.78, 0.74,
                            0.77, 0.78, 0.80, 0.84, 0.85, 0.86,0.23, 0.87)
    Sxixi <- matrix(1,1,1)
    out <- checkw(B,indicatorx,indicatory,lambdax=TRUE,lambday=TRUE,wx=FALSE,wy=FALSE, Sxixi,R2=NULL)
```

 clustergscairls Clustering gsc-models

Description

clustergscairls clusters data sets in that way that each cluster has a its own set of coefficients in the gsc-model.

Usage

```
clustergscairls(dat, B, indicatorx, indicatory, loadingx = FALSE,
    loadingy = FALSE, k, minmem = FALSE, wieder)
```


Arguments

\(\left.\begin{array}{ll}dat \& (\mathrm{n}, \mathrm{p}) -matrix, the values of the manifest variables

B \& (\mathrm{q}, \mathrm{q}) lower triangular matrix describing the interrelations of the latent variables:

\mathrm{b} _\mathrm{ij}=1 regression coefficient of eta_j in the regression relation in which eta_i is

\mathrm{b} _\mathrm{ij}=0 if eta_i does not depend on eta_j in a direct way\left(\mathrm{b} _\mathrm{ii}=0 !\right)\end{array}\right]\)| vector describing with which exogenous composite the X -variables are con- |
| :--- |
| nected |
| indicatorx |

loadingy	logical TRUE when there are loadings for the Y-variables in the model
k	scalar, the number of clusters to be found
minmem	number of the cluster's members or FALSE (then ist is set to $2 *$ number of indi- cators)
wieder	scalar, the number of random starts

Value

out list with components

member	$(\mathrm{n}, 1)$-vector, indicator of membership
Bhat	$(\mathrm{k}, \mathrm{q}, \mathrm{q})$-array, the path coefficients of the clusters
lambda	(p, k)-matrix, the loadings of the clusters
fitall	the total fit measure for the structural models only
fit	vector of length k, the fit values of the different models
R2	(k, q) matrix, the coefficients of determination for the structural regression equations

Examples

```
data(twoclm)
dat <- twoclm[,-10]
B <- matrix(c( 0,0,0, 0,0,0, 1,1,0),3,3,byrow=TRUE)
indicatorx <- c(1,1,1,2,2,2)
indicatory <- c(1,1,1)
out <- clustergscairls(dat,B,indicatorx,indicatory,loadingx=FALSE,loadingy=FALSE,2,minmem=6,1)
```

FlDeriv
FlDerivcompute the Jacobian of the Fleishman transform for a given set of coefficients b, c, d

Description

FlDerivcompute the Jacobian of the Fleishman transform for a given set of coefficients b,c,d

Usage

FlDeriv(coef)

Arguments

coef vector with the coefficents for the Fleishman transform

Value

J $(3,3)$ Jacobian matrix of partial derivatives

Examples

```
coef <- c( 0.90475830, 0.14721082, 0.02386092)
```

J <- FlDeriv (coef)

Fleishman computes the variance, skewness and kurtosis for a given set of of coefficients b,c,d for the Fleishman transform

Description

Fleishman computes the variance, skewness and kurtosis for a given set of of coefficients b,c,d for the Fleishman transform

Usage

Fleishman(coef)

Arguments

coef vector with the coefficents

Value

out vector with coefficients Var,Skew,Kurt

Examples

```
coef <- c( 0.90475830, 0.14721082, 0.02386092)
out <- Fleishman( coef )
```

FleishmanIC Functions to generate nonnormal distributed multivariate random vectors with mean=0, var=1 and given correlations and coefficients of skewness and excess kurtosis. This is done with the method of Vale \& Morelli: The coefficients of the Fleishman transform $Y=-c$ $+b X+c X^{\wedge} 2+d X^{\wedge} 3$ are computed. from given skewness gamma[1] = $E\left(Y^{\wedge} 3\right)$ and kurtosis gamma[2] $=E\left(Y^{\wedge} 4\right)$ - 3. A indermediate correlation matrix is computed from the desired correlation matrix and the Fleishman coefficients. A singular value decomposition of the indermediate correlation matrix is performed and a matrix of independend normal random numbers is generated and transformed into correlated ones. Finally the Fleishman transform is applied to the columns of this data matrix.

Description

The function are adapted from online support of the SAS system, URL: support.sas.com/publishing/authors/extras/65378_Ap FleishmanIC produce an initial guess of the Fleishman coefficients from given skewness and kurtosis. It is to use for Newton's algorithm. This guess is produced by a polynomial regression.

Usage

FleishmanIC(skew, kurt)

Arguments

skew	desired skewness
kurt	desired kurtosis

Value
par vector with coefficients b, c, d

Examples

```
    out <- FleishmanIC(1,2)
```

 gscals
 Estimating GSC models belonging to scenarios reflective-reflective, formative-reflective and formative-formative

Description

gscals estimates GSC models alternating least squares. This leads to estimations of weights for the composites and an overall fit measure.

Usage

gscals(dat, B, indicatorx, indicatory, loadingx = FALSE, loadingy = FALSE, maxiter $=200$, biascor $=$ FALSE)

Arguments

dat

B
(n, p)-matrix, the values of the manifest variables. The columns must be arranged in that way that the components of refl are (absolutely) increasing.
(q, q) lower triangular matrix describing the interrelations of the latent variables: $b_{-} i j=1$ regression coefficient of eta_j in the regression relation in which eta_i is the depend variable $b _i j=0$ if eta_i does not depend on eta_j in a direct way (b_ii = 0 !)
indicatorx vector describing with which exogenous composite the X -variables are connected

indicatory	vector describing with which endogenous composite the Y-variables are con- nected
loadingx	logical TRUE when there are loadings for the X-variables in the model
loadingy	logical TRUE when there are loadings for the Y-variables in the model
maxiter	Scalar, maximal number of iterations
biascor	Boolean, FALSE if no bias correction is done, TRUE if parametric bootstrap bias correction is done.

Value

out list with components

Bhat	(q, q) lower triangular matrix with the estimated coefficients of the structural model
What	(n, q) matrix of weights for constructing the composites
lambdahat	vector of length p with the loadings or 0
iter	number of iterations used
fehl	maximal difference of parameter estimates for the last and second last iteration
composit	the data matrix of the composites
resid	the data matrix of the residuals of the structural model
S	the covariance matrix of the manifest variables
ziel	sum of squared residuals for the final sum
fit	The value of the fit criterion
R2	vector with the coefficients of determination for all regression equations of the structural model

Examples

```
data(mobi250)
ind <- c(1, 1, 1, 4, 4, 4, 2, 2, 2, 3, 3, 5, 5, 5, 6, 6, 6, 7, 1, 1, 4, 4, 4, 4)
o <- order(ind)
indicatorx <- c(1,1,1,1,1)
indicatory <- c(1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5)
dat <- mobi250[,o]
dat <- dat[,-ncol(dat)]
B <- matrix(c(0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,
    0,1,1,0,0,0,0,1,1,1,0,0,1,0,0,0,1,0),6,6,byrow=TRUE)
out <- gscals(dat,B,indicatorx,indicatory,loadingx=TRUE,loadingy=TRUE,maxiter=200,biascor=FALSE)
```

gscalsout Output of gscals for the simplemodel data.

Description

A list containing the result of gscals for the simplemodel data.

Usage

gscalsout

Format

A list with entries:
\$Bhat estimated esign matrix of the simple model
\$What matrix of weights
\$lambdahat mvector of estimated loadings
\$iter number of iterations
\$fehl maximal difference of parameter estimates for the last and second last iteration
\$composit data matrix of composites
\$resid data matrix of residuals of the structural model
\$S Covariance matrix of manifest variables
\$ziel sum of squared residuals for the final sum
\$fi The value of the fit criterion
\$R2 vector with the coefficients of determination for structural regressions

```
gscalsresid For use in clustergscairls, residuals of a gsc-model
```


Description

gscalsresid computes the residuals of a gsc-model when the parameters and weights are given

Usage

gscalsresid(dat, out, indicatorx, indicatory, loadingx, loadingy)

Arguments

dat (n, p) data matrix
out list, output from gscals
indicatorx vector describing with which exogenous composite the X -variables are connected
indicatory vector describing with which endogenous composite the Y-variables are connected
loadingx logical TRUE when there are loadings for the X -variables in the model
loadingy logical TRUE when there are loadings for the y-variables in the model

Value

resid (n,q2) matrix of residuals from structural model, the q2 is the number of endogenous composites .

Examples

```
    data(simplemodel)
    data(gscalsout)
    B <- matrix(c( 0,0,0, 0,0,0, 0.7,0.4,0),3,3,byrow=TRUE)
    indicatorx <- c(1,1,1,2,2,2)
    indicatory <- c(1,1,1)
    out <- gscalsresid(simplemodel,gscalsout,indicatorx,indicatory,TRUE,TRUE)
```

gscmcov Determination of the covariance matrix of a GSC model belonging to scenario 1, scenario 2, scenario 3

Description

gscmcov determines the covariance matrix of a GSC model. This is a wrapper for the functions gscmcovrr, gscmcovfr and gscmcovff

Usage

gscmcov(B, indicatorx, indicatory, lambdax $=$ NULL, lambday $=$ NULL, $w x=$ NULL, $w y=$ NULL, Sxixi, R2 = NULL)

Arguments

B
indicatorx
(q, q) lower triangular matrix describing the interrelations of the latent variables: $b_{_} i j=1$ regression coefficient of eta_j in the regression relation in which eta_i is the depend variable $\mathrm{b} _\mathrm{ij}=0$ if eta_i does not depend on eta_j in a direct way (b_ii = 0 !)
indicatorx vector describing with which exogenous composite the X -variables are connected
indicatory vector describing with which endogenous composite the Y-variables are connected
lambdax vector of loadings of indicators for exogenous composites or NULL when there are no loadings for the X -variables in the model
lambday vector of loadings of indicators for endogenous composites or NULL when there are no loadings for the Y-variables in the model
wx vector of weights for building exogenous composites or NULL when loadings are present
wy vector of weights for building endogenous composites or NULL when loadings are present

Sxixi
R2
covariance matrix of exogenous composites vector of coefficients of determination for regressions belonging to the structural model

Value

out list with components

S covariance matrix of manifest variables
B $\quad(\mathrm{q}, \mathrm{q})$ lower triangular matrix with possibly modified coefficients of the structural model
Scomp covariance matrix of composites
wx vector of weights for building exogenous composites
wy vector of weights for building endoogenous composites
Sdd diagonal matrix of variances of errors of X variable loadings or NA
See diagonal matrix of variances of errors of Y variable loadings or NA

Examples

```
Sxixi <- matrix(c(1.0, 0.01, 0.01, 1),2,2)
B <- matrix(c( 0,0,0, 0,0,0, 0.7,0.4,0),3,3,byrow=TRUE)
indicatorx <- c(1,1,1,2,2,2)
indicatory <- c(1,1,1)
lambdax <- c(0.83,0.87,0.87,0.91,0.88,0.82)
lambday <- c(0.89,0.90,0.80)
wx <- c(0.46, 0.31, 0.32, 0.34, 0.40, 0.37)
wy <- c(0.41, 0.39, 0.37)
out <- gscmcov(B,indicatorx,indicatory,lambdax,lambday,wx=NULL,wy=NULL,Sxixi,R2=NULL)
```

gscmcovff
gscmcovff determines the covariance matrix of a GSC model belonging to scenario ff.

Description

gscmcovff determines the covariance matrix of a GSC model belonging to scenario ff.

Usage

gscmcovff(B, indicatorx, indicatory, wx, wy, Sxixi, R2 = NULL)

Arguments

indicatorx vector describing with which exogenous composite the X -variables are con-

B
indicatory
wX
wy
(q, q) lower triangular matrix describing the interrelations of the latent variables: b_ij = 1 regression coefficient of eta_j in the regression relation in which eta_i is the depend variable $\mathrm{b}_{-} \mathrm{ij}=0$ if eta_i does not depend on eta_j in a direct way (b_ii = 0 !) nected
vector describing with which endogenous composite the Y -variables are connected
vector of weights for building exogenous composites or NULL when loadings are present vector of weights for building endogenous composites or NULL when loadings are present

```
Sxixi covariance matrix of exogenous composites
R2 vector of coefficients of determination for regressions belonging to the structural
    model
```


Value

out list with components
S covariance matrix of manifest variables
B (q, q) lower triangular matrix with possibly modified coefficients of the structural model
Scomp covariance matrix of composites
wx vector of weights for building exogenous composites
wy vector of weights for building endoogenous composites

Examples

```
    B <- matrix(c(0,0,0, 0,0,0, 0.7,0.4,0),3,3,byrow=TRUE)
    indicatorx <- c(1,1,1,2,2,2)
    indicatory <- c(1,1,1)
    Sxixi <- matrix(c(1.0, 0.01, 0.01, 1),2,2)
    wx <- c(0.46, 0.31, 0.32, 0.34, 0.40, 0.37)
    wy <- c(0.41, 0.39, 0.37)
    out <- gscmcovff(B,indicatorx,indicatory,wx,wy,Sxixi,R2=NULL)
```

```
gscmcovfr
```

gscmcovfr determines the covariance matrix of a GSC model belonging to scenario fr. The covariance matrices of the errors are supposed to be diagonal.

Description

gscmcovfr determines the covariance matrix of a GSC model belonging to scenario fr. The covariance matrices of the errors are supposed to be diagonal.

Usage

gscmcovfr(B, indicatorx, indicatory, lambday, wx, Sxixi, R2 = NULL)

Arguments

B
(q, q) lower triangular matrix describing the interrelations of the latent variables: $b_{_} \mathrm{ij}=1$ regression coefficient of eta_j in the regression relation in which eta_i is the depend variable $b_{-} \mathrm{ij}=0$ if eta_i does not depend on eta_j in a direct way (b_ii = 0 !)
indicatorx vector describing with which exogenous composite the X -variables are connected

indicatory	vector describing with which endogenous composite the Y-variables are con- nected
lambday	vector of loadings of indicators for endogenous composites wx
Sxixi	vector of weights for building exogenous composites covariance matrix of exogenous composites
R2	vector of coefficients of determination for regressions belonging to the structural model

Value

out list with components
S covariance matrix of manifest variables
B $\quad(\mathrm{q}, \mathrm{q})$ lower triangular matrix with possibly modified coefficients of the structural model
Scomp covariance matrix of composites
wx vector of weights for building exogenous composites
See diagonal matrix of variances of errors of Y variable loadings or NA

Examples

```
Sxixi <- matrix(c(1.0, 0.01, 0.01, 1),2,2)
B <- matrix(c( 0,0,0, 0,0,0, 0.7,0.4,0),3,3,byrow=TRUE)
indicatorx <- c(1,1,1,2,2,2)
indicatory <- c(1,1,1)
lambday <- c(0.89,0.90,0.80)
wx <- c(0.46, 0.31, 0.32, 0.34, 0.40, 0.37)
out <- gscmcovfr(B,indicatorx,indicatory,lambday,wx,Sxixi,R2=NULL)
```

```
gscmcovout Output of covgscmodel for the simplemodel data.
```


Description

A list containing the result of gscmcov for the simplemodel data.

Usage

gscmcovout

Format

A list with entries:
\$S Covariance matrix of manifest variables
\$B Design matrix of the simple model
\$Scomp Covariance matrix of composites
\$wx weighting vector for exogenous composites
\$wy weighting vector for endogenous composites
\$Sdd diagonal covariance matrix of errors for loadings of X-variables
\$See diagonal covariance matrix of errors for loadings of Y-variables

gscmcovrr	gscmcovrr determines the covariance matrix of a GSC model belong- ing to scenario rr.

Description

gscmcovrr determines the covariance matrix of a GSC model belonging to scenario rr.

Usage

gscmcovrr(B, indicatorx, indicatory, lambdax, lambday, Sxixi, R2 = NULL)

Arguments

B
(q, q) lower triangular matrix describing the interrelations of the latent variables: $b_{_} i j=1$ regression coefficient of eta_j in the regression relation in which eta_i is the depend variable $\mathrm{b} _\mathrm{ij}=0$ if eta_i does not depend on eta_j in a direct way (b_ii = 0 !)
indicatorx vector describing with which exogenous composite the X -variables are connected
indicatory vector describing with which endogenous composite the Y-variables are connected
lambdax vector of loadings of indicators for exogenous composites
lambday vector of loadings of indicators for endogenous composites
Sxixi covariance matrix of exogenous composites
R2 vector of coefficients of determination for regressions belonging to the structural model

Value

out list with components
S covariance matrix of manifest variables
B $\quad(\mathrm{q}, \mathrm{q})$ lower triangular matrix with possibly modified coefficients of the structural model
Scomp covariance matrix of composites
Sdd diagonal matrix of variances of errors of X variable loadings
See diagonal matrix of variances of errors of Y variable loadings

Examples

```
Sxixi <- matrix(c(1.0, 0.01, 0.01, 1),2,2)
B <- matrix(c( 0,0,0, 0,0,0, 0.7,0.4,0),3,3,byrow=TRUE)
indicatorx <- c(1,1,1,2,2,2)
indicatory <- c(1, 1, 1)
lambdax <- c(0.83,0.87,0.87,0.91,0.88,0.82)
lambday <- c(0.89,0.90,0.80)
out <- gscmcovrr(B,indicatorx,indicatory,lambdax,lambday,Sxixi,R2=NULL)
```

mobi250 Mobile phone data for the ECSI model.

Description

A dataset containing 250 values of indicators of an investigation for the ECSI in the mobile phone industry.

Usage

mobi250

Format

A data frame with 250 rows and 24 variables:
IMAG1, IMAG2, IMAG3, IMAG4, IMAG5 Indicators of IMAGE
PERQ1,PERQ2,PERQ3,PERQ4,PERQ5,PERQ6,PERQ7 Indicators of Perceived Quality
CUEX1, CUEX2, CUEX3 Indicators of Customer Expectation
PERV1,PERV2 Indicators of Perceived Value
CUSA1, CUSA2, CUSA3 Indicators of Customer Satisfaction
CUSL1, CUSL2, CUSL3 Indicators of Customer Loyality
CUSCO Indicator of Customer Complaints

Source

https://www.smartpls.com

Description

NewtonFl Newton's method to find roots of the function FlFunc.

Usage

NewtonFl(target, startv, maxIter = 100, converge $=1 \mathrm{e}-12$)

Arguments

target vector with the desired skewness and kurtosis
startv vector with initial guess of the coefficents for the Fleishman transform
maxIter maximum of iterations
converge limit of allowed absolute error

Value

out list with components

$$
\begin{array}{ll}
\text { coefficients } & \text { vector with the approximation to the root } \\
\text { value } & \text { vector with differences of root and target } \\
\text { iter } & \text { number of iterations used }
\end{array}
$$

Examples

```
skew <- 1; kurt <- 2
startv <- c( 0.90475830, 0.14721082, 0.02386092)
out <- NewtonFl(c(skew,kurt),startv)
```

plspath Estimation of pls-path models

Description

plspath estimates pls path models using the classical approach formulated in Lohmueller.

Usage

plspath(dat, B , indicatorx, indicatory, modex = " A ", modey = " A ", maxiter $=100$, stdev $=$ FALSE)

Arguments

$$
\begin{array}{ll}
\text { dat } & \begin{array}{l}
\text { (n,p)-matrix, the values of the manifest variables. The columns must be arranged } \\
\text { in that way that the components of refl are (absolutely) increasing } \\
(\mathrm{q}, \mathrm{q}) \text { lower triangular matrix describing the interrelations of the latent variables: } \\
\text { b_ij=1 regression coefficient of eta_j in the regression relation in which eta_i is } \\
\text { b_ij=0 if eta_i does not depend on eta_j in a direct way (b_ii = } 0 \text { !) } \\
\text { (p1,1) vector indicating with which exogenous composite the x-indicators are } \\
\text { related. } \\
\text { (p2,1) vector indicating with which endogenous composite the y-indicators are } \\
\text { related. The components of the indicators must be increasing. }
\end{array} \\
\text { indicatorx } & \begin{array}{l}
\text { equals "A" or "B" , the mode for this block of indicators }
\end{array} \\
\text { modex } & \begin{array}{l}
\text { equals "A" or "B" , the mode for this block of indicators }
\end{array} \\
\text { modey } & \begin{array}{l}
\text { Scalar, maximal number of iterations }
\end{array} \\
\text { maxiter } & \begin{array}{l}
\text { Boolean Should the standard deviations of the estimates be computed by boot- } \\
\text { strap? }
\end{array}
\end{array}
$$

Value

out list wih components

Bhat eta	(q, q) lower triangular matrix with the estimated coefficients of the structural model (n, q)-matrix, the scores of the latent variables
W	vector of length p of weights for constructing the latent variables
lambdahat	vector of length p with the loadings
resa	(n, ?) matrix of residuals from outer model
resi	$(\mathrm{n}$, ?) matrix of residuals from inner model
R2	vector with the coefficients of determination for all regression equations of the structural model
iter	number of iterations used
ret	scalar, return code:
	0 normal convergence
	1 limit of iterations attained, probably without convergence
sdev.beta	(q, q) matrix, the standard deviations of path coefficients (when stdev = TRUE)
sdev.lambda	vector, the standard deviations of loadings (when stdev = TRUE)

Examples

```
data(mobi250)
refl <- c(1, 1, 1, 4, 4, 4, 2, 2, 2, 3, 3, 5, 5, 5, 6, 6, 6, 7, 1, 1, 4, 4, 4, 4)
o <- order(refl)
dat <- mobi250[,o]
dat <- dat[,-ncol(dat)]
refl <- refl[o][-length(refl)]
indicatorx <- refl[1:5]
indicatory <- refl[-c(1:5)] - 1
B <- matrix(c(0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,
    0,1,1,0,0,0,0,1,1,1,0,0,1,0,0,0,1,0),6,6,byrow=TRUE)
out <- plspath(dat,B,indicatorx,indicatory,modex="A",modey="A")
```

```
    poloecfree Political and economical freedom.
```


Description

A dataset containing the values of political an economical situation for 91 countries in 1975 an 1995.

Usage

poloecfree

Format

A data frame with 14 variables and 91 cases:
no number
country country
CP75 Competition of Parties 1975
PR75 Politial Rights 1975
CL75 Civil Liberties 1975
AoP75 Amount of Privatisation 1975
FFE75 Freedom of Foreign Exchange 1975
FCM75 Freedom of Capital Movements 1975
CP95 Competition of Parties 1995
PR95 Politial Rights 1995
CL95 Civil Liberties 1995
AoP95 Amount of Privatisation 1995
FFE95 Freedom of Foreign Exchange 1995
FCM95 Freedom of Capital Movements 1995

Source
Scholing, E. und Timmermann, V. (2000): Political and Economic Freedom

```
rValeMaurelli
rValeMaurelli Simulate data from a multivariate nonnormal distribution such that 1) Each marginal distribution has a specified skewness and kurtosis 2) The marginal variables have the correlation matrix \(R\)
```


Description

rValeMaurelli Simulate data from a multivariate nonnormal distribution such that 1) Each marginal distribution has a specified skewness and kurtosis 2) The marginal variables have the correlation matrix R

Usage

rValeMaurelli(n, R, Fcoef)

Arguments

n	number of random vectors to be generated
R	desired correlation matrix of transformed variables
Fcoef	either vector with coefficents for the Fleishman transform to be applied to all variables or $(\operatorname{nrow}(\mathrm{R}), 3)$ matrix with different coefficients

Value

$\mathrm{X}(\mathrm{n}, \operatorname{nrow}(\mathrm{R}))$ data matrix

Examples

```
R <- matrix(c(1, 0.5, 0.3, 0.5 ,1, 0.2, 0.3, 0.2 , 1),3,3)
coef <- matrix(c( 0.90475830, 0.14721082, 0.02386092,0.78999781,0.57487681,
                            -0.05473674,0.79338100, 0.05859729, 0.06363759 ),3,3,byrow=TRUE)
V <- rValeMaurelli(50, R, coef)
```

simplemodel Simulated data.

Description

The data were simulated with a gsc model with two exogeneous and one endogeneous compostes. Each composite has three indicators. All have loadings. There are 50 observations.

Usage

simplemodel

Format

A data frame with 9 variables and 50 cases:
V1,V2,V3 Indicators of first exogeneous composite
V4,V5,V6 Indicators of second exogeneous composite
V7,V8,V9 Indicators of endogeneous composite

SolveCorr	SolveCorr Solve the Vale-Maurelli cubic equation to find the inter- mediate correlation between two normal variables that gives rise to a target correlation (rho) between the two transformed nonnormal vari- ables.

Description

SolveCorr Solve the Vale-Maurelli cubic equation to find the intermediate correlation between two normal variables that gives rise to a target correlation (rho) between the two transformed nonnormal variables.

Usage

SolveCorr (rho, coef1, coef2)

Arguments

rho	desired correlation of transformed variables
coef1	vector with coefficents for the Fleishman transform of the first variable
coef2	vector with coefficents for the Fleishman transform of the second variable

Value

root the intermediate correlation

Examples

```
rho <- 0.5
coef1<- c( 0.90475830, 0.14721082, 0.02386092)
coef2<- c( 0.90475830, 0.14721082, 0.02386092)
r <- SolveCorr(rho, coef1, coef2)
```

subcheckw Function for use in checkw

Description

subcheckw computes the sum of squared differences of two formulas for the covariancematrix of composites

Usage

subcheckw(w, indicator, S, L, Scomp)

Arguments

W	vector of weights
indicator	vector describing with which exogenous composite the indicators are connected
S	covariance matrix of errors resulling from regession for loadings
L	matrix of loadings
Scomp	covariance matrix of composites

Value

out scalar, sum of squared differences
twoclm Simulated data.

Description

The data were simulated with two gsc models, both with two exogeneous and one endogeneous composites. The exogeneous and endegeneous composites have three indicators. There are no loadings. The first 50 observations were simulated with one set of path coefficients, the second 50 observations with another set. the last column is the membership of a former clustering $(\mathrm{k}=2)$.

Usage

twoclm

Format

A data frame with 10 variables and 50 cases:
$\mathbf{X 1 , X 2 , X 3}$ Indicators of first exogeneous composite
X4,X5,X6 Indicators of second exogeneous composite
$\mathbf{Y 1 , Y 2 , Y 3}$ Indicators of endogeneous composite
member membership of a former clustering

VMTargetCorr Given a target correlation matrix, R, and target values of skewness and kurtosis for each marginal distribution, find the "intermediate" correlation matrix, V

Description

VMTargetCorr Given a target correlation matrix, R, and target values of skewness and kurtosis for each marginal distribution, find the "intermediate" correlation matrix, V

Usage

VMTargetCorr (R, Fcoef)

Arguments

$\begin{array}{ll}\mathrm{R} & \text { desired correlation matrix of transformed variables } \\ \text { Fcoef } & \begin{array}{l}\text { either vector with coefficents for the Fleishman transform to be applied to all } \\ \text { variables or }(\operatorname{nrow}(\mathrm{R}), 3) \text { matrix with different coefficients }\end{array}\end{array}$

Value

V the intermediate correlation matrix

Examples

```
R <- matrix(c(1, 0.5, 0.3, 0.5 ,1, 0.2 , 0.3, 0.2 , 1),3,3)
coef <- matrix(c( 0.90475830, 0.14721082, 0.02386092,0.78999781,0.57487681,
                                    -0.05473674,0.79338100, 0.05859729, 0.06363759 ), 3,3,byrow=TRUE)
V <- VMTargetCorr(R, coef)
```


Index

*Topic datasets
gscalsout, 9
gscmcovout, 15
mobi250, 17
poloecfree, 20
simplemodel, 21
twoclm, 23
averageR2w, 2
boottestgscm, 3
checkw, 4
clustergscairls, 5
FlDeriv, 6
Fleishman, 7
FleishmanIC, 7
gscals, 8
gscalsout, 9
gscalsresid, 10
gscmcov, 11
gscmcovff, 13
gscmcovfr, 14
gscmcovout, 15
gscmcovrr, 16
mobi250, 17
NewtonFl, 18
plspath, 18
poloecfree, 20
rValeMaurelli, 21
simplemodel, 21
SolveCorr, 22
subcheckw, 23
twoclm, 23
VMTargetCorr, 24

