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Abstract

Obtaining a non-parametric expression for an interventional distribution is one of the most
fundamental tasks in causal inference. Such an expression can be obtained for an identifiable
causal effect by an algorithm or by manual application of do-calculus. Often we are left
with a complicated expression which can lead to biased or inefficient estimates when missing
data or measurement errors are involved.

We present an automatic simplification algorithm that seeks to eliminate symbolically
unnecessary variables from these expressions by taking advantage of the structure of the
underlying graphical model. Our method is applicable to all causal effect formulas and is
readily available in the R package causaleffect.

Keywords: simplification, probabilistic expression, causal inference, graphical model,
graph theory

A modification of (Tikka and Karvanen, 2017b) published in the Journal of Machine Learning
Research.

1. Introduction

Symbolic derivations resulting in complicated expressions are often encountered in many
fields working with mathematical notation. These expressions can be derived manually or
they can be outputs from a computer algorithm. In both cases, the expressions may be
correct but unnecessarily complex in a sense that some unrecognized identities or properties
would lead to simpler expressions.

We will consider simplification in the context of causal inference in graphical models
(Pearl, 2009). Advances in causal inference have led to algorithmic solutions to problems such
as identifiability of causal effects and conditional causal effects (Huang and Valtorta, 2006;
Shpitser and Pearl, 2006a,b), z-identifiability (Bareinboim and Pearl, 2012), transportability
and meta-transportability (Bareinboim and Pearl, 2013b,a) among others. The aforemen-
tioned algorithmic solutions operate symbolically on the joint distribution of the variables of
interest and return expressions for the desired queries. These algorithms have been previously
implemented in the R package causaleffect (Tikka and Karvanen, 2017a). Another imple-
mentation of an identifiability algorithm can be found in the CIBN software by Jin Tian and
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Lexin Liu freely available from http://web.cs.iastate.edu/~jtian/Software/CIBN.htm.
However, the algorithms themselves are imperfect in a sense that they often output an
expression that is complicated and far from ideal. The question is whether there exists a
simpler expression that is still a solution to the original problem.

Simplification of expressions may provide significant benefits. First, a simpler expression
can be understood and reported more easily. Second, evaluating a simpler expression will
be less of a computational burden due to reduced dimensionality of the problem. Third, in
situations where estimation of causal effects is of interest and missing data is a concern,
eliminating variables with missing data from the expression has clear advantages. The same
applies to variables with measurement error.

We begin with presenting in Section 2 a general form of probabilistic expressions that are
often encountered in causal inference. In this paper probabilistic expressions are formed by
products of non-parametric conditional distributions of some variables and summations over
the possible values of these variables. Simplification in this case is the process of eliminating
terms from these expressions by carrying out summations. As our expressions correspond to
causal effects, the expressions themselves take a specific form.

Causal models are typically associated with a directed acyclic graph (DAG) which
represents the functional relationships between the variables of interest. In situations where
the joint distribution is faithful, meaning that no additional conditional independences
are generated by the joint distribution (Spirtes et al., 2000), the conditional independence
properties of the variables can be read from the graph itself through a concept known as
d-separation (Geiger et al., 1990). We will use d-separation as our primary tool for operating
on the probabilistic expressions. The reader is assumed to be familiar with a number of
graph theoretic concepts that are explained for example in (Koller and Friedman, 2009) and
used throughout the paper.

Our simplification procedure is built on the definition of simplification sets, which is
presented in Section 3. We continue by introducing a sound and complete simplification
algorithm for probabilistic expressions defined in Section 2 for which these simplification
sets exist. The algorithm takes as an input the expression to be simplified and the graph
induced by the underlying causal model, and proceeds to construct a joint distribution of
the variables contained in the expression by using the d-separation criteria. Higher level
algorithms that use this simplification procedure are presented in Section 4. These include an
algorithm for the simplification of a nested expression and an algorithm for the simplification
of a quotient of two expressions. Section 5 contains examples on the application of these
algorithms. We have also updated the causaleffect R-package to automatically apply these
simplification procedures to causal effect expressions.

As a motivating example we present an expression of a causal effect given by the ID
algorithm of Shpitser and Pearl (2006a) that can be simplified. The complete derivation
of this effect can be found in Appendix C. The causal effect of X on Z1, Z2, Z3 and Y is
identifiable in the graph of Figure 1 and application of the ID algorithm gives

P (Z1|Z2, X)P (Z3|Z2)

∑

X P (Y |Z2, X, Z3, Z1)P (Z3|Z2, X)P (X|Z2)P (Z2)
∑

X,Y P (Y |Z2, X, Z3, Z1)P (Z3|Z2, X)P (X|Z2)P (Z2)
×

∑

X,Z3,Y

P (Y |Z2, X, Z3, Z1)P (Z3|Z2, X)P (X|Z2)P (Z2).
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Figure 1: A graph for the introductory example on simplification.

It turns out that there exists a significantly simpler expression,

P (Z1|Z2, X)P (Z2)
∑

X

P (Y |Z2, X, Z3, Z1)P (Z3|Z2, X)P (X|Z2), (1)

for the same causal effect. This expression can be obtained without any knowledge of the
underlying model by using standard probability manipulations. However, this requires that
a favorable choice is made for the ordering of the nodes of the graph in the ID algorithm.
In the case that we had chosen an ordering where Z1 precedes Z3, the term for Z3 would
instead be P (Z3|Z2, Z1, X) and simplification would require knowledge about the underlying
graph. We will take another look at this example later in Section 5 where we describe in
detail how our procedure can be used to find expression (1).

Our simplification procedure is different from the well-known exact inference method of
minimizing the amount of numerical computations when evaluating expressions for condi-
tional and marginal distributions by changing the order of summations and multiplications
in the expression. Variants of this method are known by different names depending on
the context, such as Bayesian variable elimination (Koller and Friedman, 2009) and the
sum-product algorithm (Bishop, 2006) which is a generalization of belief propagation (Pearl,
1988; Lauritzen and Spiegelhalter, 1988). Efficient computational methods exist for causal
effects as well, such as (Shpitser et al., 2011). The general principle is the same in all of the
variants, and no symbolic simplification is performed.

In our setting simplification can be defined explicitly but in general it is difficult to
say what makes one expression simpler than another. Carette (2004) provides a formal
definition for simplification in the context of Computer Algebra Systems (CAS) that operate
on algebraic expressions. Modern CAS systems such as Mathematica (Wolfram Research
Inc., 2015) and Maxima (Maxima, 2014) implement techniques for symbolic simplification.
Bailey et al. (2014) and references therein discuss simplification techniques in CAS systems
further. However to the best of our knowledge, the symbolic simplification procedures for
probabilistic expressions described in this paper have neither been given previous attention
nor implemented in any existing system.
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2. Probabilistic Expressions

Every expression that we consider is defined in terms of a set of variables W. As we are
interested in probabilistic expressions, we also assume a joint probability distribution P for
the variables of W. The most basic of expressions are called atomic expressions which will
be the main focus of this paper.

Definition 1 (Atomic expression) Let W be a set of p discrete random variables and
let P be any joint distribution of W. An atomic expression is a pair

A = A[W] = 〈T, S〉,

where

1. T is a set of pairs {〈V1, C1〉, . . . , 〈Vn, Cn〉} such that for each Vi and Ci it holds that
Vi ∈W, Ci ⊆W, Vi 6∈ Ci and Vi 6= Vj for i 6= j.

2. S is a set {S1, . . . , Sm} ⊆W such that for each i = 1, . . . , m it holds that Si = Vj for
some j ∈ {1, . . . , n}.

The value of an atomic expression A is

PA =
∑

S

n
∏

i=1

P (Vi|Ci).

The probabilities P (Vi|Ci) are referred to as the terms of the atomic expression. A term
P (Vi|Ci) is said to contain a variable V if Vi = V or V ∈ Ci. A term for a variable V refers
to a term P (V |·). We also use the shorthand notation V [A] := {V1, . . . Vn}. As S is a set,
we will only sum over a certain variable once. All variables are assumed to be univariate
and discrete for clarity, but we may also consider multivariates and situations where some of
the variables are continuous and the respective sums are interpreted as integrals instead.

As an example we will construct an atomic expression describing the following formula

∑

X

P (Y |Z2, X, Z3, Z1)P (Z3|Z2, X)P (X|Z2)P (Z2),

which is a part of the motivating example in the introduction. We let W = {X, Y, Z1, Z2, Z3},
which is the set of nodes of the graph of Figure 1. The sets T and S can now be defined as

{〈Y, {Z2, X, Z3, Z1}〉, 〈Z3, {Z2, X}〉, 〈X, {Z2}〉, 〈Z2, ∅〉} and {X},

respectively. Next we define a more general probabilistic expression.

Definition 2 (Expression) Let W be a set of p variables and let P be the joint distribution
of W. An expression is a triple

B = B[W, n, m] = 〈B, A, S〉,

where
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1. S is a subset of W.

2. For m > 0, A is a set of atomic expressions

{〈T1, S1〉, . . . , 〈Tm, Sm〉}.

If m = 0 then A = ∅.

3. For n > 0, B is a set of expressions

{B1[W1, n1, m1], . . . , Bn[Wn, nn, mn]}

such that Wi ⊆W, ni < n, mi < m for all i = 1, . . . , n. If n = 0 then B = ∅.

The value of an expression B is

PB =
∑

S

n
∏

i=1

PBi

m
∏

j=1

PAj
,

where an empty product should be understood as being equal to 1.

The recursive definition ensures the finiteness of the resulting expression by requiring
that each sub-expression has fewer sub-expressions of their own than the expression above it.
A single value might be shared by multiple expressions, as the terms of the product in the
value of the expression are exchangeable. Expressions B1[W, n1, m1] and B2[W, n2, m2] are
equivalent if their values PB1

and PB2
are equal for all P . Equivalence is defined similarly for

atomic expressions. Every expression is formed by nested atomic expressions by definition.
Because of this, we focus on the simplification of atomic expressions.

As an example we construct an expression for the causal effect formula (1). We define
W := {X, Y, Z1, Z2, Z3} and let the sets B and S be empty. We define the set A to consist
of three atomic expressions A1, A2 and A3 defined as follows

A1 = 〈{〈Z1, {Z2, X}〉}, ∅〉,

A2 = 〈{〈Z2, ∅}〉}, ∅〉,

A2 = 〈{〈Y, {Z2, X, Z3, Z1}〉, 〈Z3, {Z2, X}〉, 〈X, {Z2}〉, 〈Z2, ∅〉}, {X}〉.

In the context of probabilistic graphical models, we are provided additional information
about the joint distribution of the variables of interest in the form of a DAG. As we are
concerned on the simplification of the results of causal effect derivations in such models, the
general form of the atomic expressions can be further narrowed down by using the structure
of the graph and the ordering of vertices called a topological ordering.

Definition 3 (Topological ordering) Topological ordering π of a DAG G = 〈W, E〉 is
an ordering of its vertices, such that if X is an ancestor of Y in G then X < Y in π.

The symbol V π
j is used to denote the subset of vertices of G that are less than Vj in π.

For sets we may define Vπ to contain those vertices of G that are less than every vertex of V
in π. Consider a DAG G = 〈W, E〉 and a topological ordering π of its vertices. We use the
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notation π(·) to denote indexing over the vertex set W of G in the ordering given by π, that
is Vπ(1) > Vπ(2) > · · · > Vπ(m) where m = |W|. For any atomic expression A[V] = 〈T, S〉
such that V ⊆W we also define the induced ordering ω. This ordering is an ordering of the
variables in V such that if X > Y in ω then X > Y also in π. From now on in this paper,
any indexing over the variables of an atomic expression will refer to the induced ordering of
the set V when π is given, i.e V1 > V2 > · · · > Vn in ω. In other words, ω is obtained from
π by leaving out variables that are not contained in A.

The ID algorithm performs the so-called C-component factorization. These components
are subgraphs of the original graph where every node is connected by a path consisting
entirely of bidirected edges. The resulting expressions of these factors serve as the basis for
our simplification procedure.

Definition 4 (Topological consistency) Let G′ be a DAG with a subgraph G = 〈W, E〉
and let π be a topological ordering of the vertices of G. An atomic expression A[W] = 〈T, S〉
is topologically consistent (or π-consistent for short) if

An(Vi)G ⊆ Ci ⊆ V π
i for all i = 1, . . . , n.

Here An(Vi)G denotes the ancestors of Vi in G. To motivate this definition we note that
the outputs of the algorithms of Shpitser and Pearl (2006a,b) can always be represented by
using products and quotients of topologically consistent atomic expressions. An expression
is topologically consistent when every atomic expression contained by it is topologically
consistent with respect to a topological ordering of a subgraph. We provide a proof for this
statement in Appendix A. This also shows that any manual derivation of a causal effect
can always be represented by a topologically consistent expression. The assumption that
An(Vi)G ⊆ Ci is not necessary for the simplification to be successful. This assumption is
used to speed up the performance of our procedure in Section 3.

3. Simplification

Simplification in our context is the procedure of eliminating variables from the set of variables
that are to be summed over in expressions. In atomic expressions, a successful simplification
in terms of a single variable should result in another expression that holds the same value,
but with the respective term eliminated and the variable removed from the summation. As
we are interested in causal effects, we consider only simplification of topologically consistent
atomic expressions.

Our approach to simplification is that the atomic expression has to represent a joint
distribution of the variables present in the expression to make the procedure feasible. The
question is whether the expression can be modified to represent a joint distribution. Before
we can consider simplification, we have to define this property explicitly.

Definition 5 (Simplification sets) Let G′ be a DAG and let G be a subgraph of G′

over a vertex set W with a topological ordering π. Let A[W] = 〈T, S〉, where T =
{〈V1, C1, 〉, . . . , 〈Vn, Cn〉}, be a π-consistent atomic expression and let Vj ∈ S. Suppose
that Vπ(p) = Vj and that Vπ(q) = V1 and let M be the set

{U ∈W | U 6∈ V [A], Vπ(q) > U > Vπ(p)}.
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If there exists a set D ⊂ V π
j and the sets EU ⊆W for all U ∈M such that the conditional

distribution of the variables Vπ(p), . . . , Vπ(q) can be factorized as

P (Vπ(p), . . . , Vπ(q)|D) =
∏

U∈M

P (U |EU )
∏

Vi≥Vj

P (Vi|Ci), (2)

and

(U ⊥⊥ Vj |EU \ {Vj})G
′ for all U ∈M. (3)

then the sets D and EU , U ∈M are the simplification sets of A with respect to Vj.

This definition is tailored for the next result that can be used to determine the existence
of a simpler expression when simplification sets exist. Afterwards we will show how this
result can be applied in practice via an example. The definition characterizes π-consistent
atomic expressions that represent joint distributions. It is apparent that simplifications sets
are not always unique, which can lead to different but still simpler expressions. Henceforth
the next result considers simplification in terms of a single variable. The proof is available
in Appendix B.

Theorem 6 (Simplification) Let G′ be a DAG and let G be a subgraph of G′ over a vertex
set W with a topological ordering π. Let A[W] = 〈T, S〉 be a π-consistent atomic expression
and let D and EU , U ∈M be its simplification sets with respect to a variable Vj ∈ S. Then
there exist an expression A′[W \ {Vj}] = 〈T′, S′〉 such that Vj 6∈ S′, PA = P

A
′ and no term

in A′ contains Vj.

Note that even if M = ∅ in Definition 5, the existence of simplification sets still requires
that

∏

Vi≥Vj
P (Vi|Ci) = P (Vj , . . . , V1|D). In many cases there exists variables U ∈M such

that the expression does not contain a term for U . Condition (2) of Definition 5 guarantees
that if these terms were contained in the expression it would represent a joint distribution.
Our goal is thus to introduce these terms into the original expression temporarily, carry
out the desired summation, and finally remove the added terms. This can only be achieved
if the variables in the set M are conditionally independent of the variable currently being
summed over, hence the assumption (U ⊥⊥ Vj |EU \ {Vj})G

′ of condition (3) of Definition 5.

We show how simplification sets can be used in practice to derive a simpler expression
via an example. We consider the causal effect of {X, Z, W} on Y in the graph G of Figure 2.

The effect in question is identifiable and the ID algorithm readily gives atomic expression

∑

X,W

P (Y |X, W, Z)P (X|W )P (W ).

We consider simplification sets with respect to Vj = W . The topological order is W < X <
Z < Y . The atomic expression does not contain a term for Z so we have M = {Z}. By
noting that (Z ⊥⊥W |X)G we are able to satisfy condition (3) of Definition 5. We can write

P (Y, Z, X, W ) = P (Z|X, W )P (Y |X, W, Z)P (X|W )P (W ),
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Figure 2: A graph G for the example on the use of simplification sets.

as required by condition (2) of Definition 5 by setting EZ = {X, W}. Thus, the simplification
sets D and EZ for the atomic expression with respect to W are ∅ and {X, W}, respectively.
Finally, we obtain the simpler atomic expression by carrying out the summation over W :

∑

X

P (Y |X, Z)P (X).

Neither Definition 5 nor Theorem 6 provide a method to obtain simplification sets or to
determine whether they exist in general. To solve this problem we present a simplification
algorithm for π-consistent atomic expressions that operates by constructing simplification
sets iteratively for each variable in the summation set.

Algorithm 1 always attempts to perform maximal simplification, meaning that as many
variables of the set S are removed as possible. If the simplification in terms of the entire
set S can not be completed, the intermediate result with as many variables simplified as
possible is returned. If simplification in terms of specific variables or a subset is preferred,
the set S should be defined accordingly.

The function simplify takes three arguments: an atomic expression A[W] that is to
be simplified, a graph G and a topological ordering π of its vertices. A is assumed to be
π-consistent.

On line 10 the function index.of returns the corresponding index i of the term containing
Sj . Since A is π-consistent, we only have to iterate through the variables V1, . . . , Vj as the
terms outside this range contain no relevant information about the simplification of Vj . The
variables without a corresponding term in the atomic expression A are retrieved on line 11
by the function get.missing. This function returns the set M of Definition 5 with respect
to the current variable to be summed over.

In order to show that the term of A represent some joint distribution, we proceed in
the order dictated by the topological ordering of the vertices. The sets J and D keep track
of the variables that have been successfully processed and of the conditioning set of the
joint term that was constructed on the previous iteration. Similarly, the sets R and I keep
track of the variables and conditioning sets of the corresponding variables that the atomic
expression does not originally contain a term for. Iteration through relevant terms begins
on line 13. Next, we take a closer look at the function join which is called next on line 14.

Here P(·) denotes the power set, △ denotes the symmetric difference and An∗(·)G denotes
the ancestors with the argument included. The function join attempts to combine the joint
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Algorithm 1 Simplification of an atomic expression A = 〈T, S〉 given graph G and topo-
logical ordering π.

1: function simplify(A, G, π)
2: j ← 0
3: while j < |S| do
4: B ← A
5: J← ∅
6: D← ∅
7: R ← ∅
8: I← ∅
9: j ← j + 1

10: i← index.of(A, j)
11: M← get.missing(A, G, j)
12: k ← 1
13: while k ≤ i do
14: 〈Jnew, Dnew, Rnew〉 ← join(J, D, Vk, Ck, Sj , M, G, π)
15: if Jnew ⊆ J then
16: break
17: else
18: J← Jnew

19: D← Dnew

20: if Rnew 6= ∅ then
21: R ← R ∪Rnew

22: I← I ∪ {D}
23: M←M \Rnew

24: else
25: k ← k + 1

26: if k = i + 1 then
27: Anew ← factorize(J, D, R, I, A)
28: if Anew = A then
29: A← B
30: else
31: A← Anew

32: S← S \ {Sj}
33: j ← 0

34: return A

term P (J|D), obtained from the previous iteration steps, with the term P (V |C) := P (Vk|Ck)
of the current iteration step. d-separation statements of G are evaluated to determine whether
this can be done. In practice this means finding a suitable subset Pi of G, where G∪An(V )G

is the largest possible conditioning set of the new combined term. The set G is computed
on line on line 4 of Algorithm 2. A valid subset Pi satisfies P (J|D) = P (J|An∗(V )G, Pi)
and P (V |C) = P (V |An(V )G, Pi) which allow us to write the product P (J|D)P (V |C) as
P (J, V |An(V )G, Pi).
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Algorithm 2 Construction of the joint distribution of the set J and a variable V given
their conditional sets D and C using d-separation criteria in G. S is the current summation
variable, M is the set of variables not contained in the expression and π is a topological
ordering.

1: function join(J, D, V, C, S, M, G, π)
2: if J = ∅ then
3: return 〈{V }, C, ∅〉

4: G← Jπ \An∗(V )G

5: P← P(G)
6: n← |P|
7: for i = 1 : n do
8: A← (An∗(V )G ∪Pi)△D
9: B← (An(V )G ∪Pi)△C

10: if (J ⊥⊥ A|D \A)G and (V ⊥⊥ B|C \B)G then
11: return 〈J ∪ {V }, (An(V )G ∪Pi), ∅〉

12: if M 6= ∅ then
13: for M ′ ∈M do
14: if M ′ ∈ D, M ′ 6∈ C then
15: 〈Jnew, Dnew, R〉 ← insert(J, D, M ′, S, G, π)
16: if J ⊂ Jnew then
17: return 〈Jnew, Dnew, R〉

18: return 〈J, D, ∅〉

In order to find this valid subset, we compute the sets A and B for each candidate
on lines 8 and 9. These sets characterize the necessary change in the conditioning sets of
the terms P (J|D) and P (V |C) that would enable a joint term to be formed by these two
terms. The validity of the candidate set is finally checked on line 10 which determines if the
necessary change is allowed by d-separation criteria in the graph G. If no valid subset Pi can
be found, we can still attempt to insert a missing variable of M by calling insert. If this
does not succeed either, the original sets J and D are returned, which instructs simplify to
terminate simplification in terms of Vj and attempt simplification in the next variable.

A special case where the first variable of the joint distribution forms P (J, D) alone is
processed on line 2 of Algorithm 2. In this case, we have an immediate result without having
to iterate through the subsets of G. The formulation of the set G ensures that the resulting
factorization is π-consistent if it exists. Knowing that the ancestral set An(V )G has to be a
subset of the new conditioning set also greatly reduces the amount of subsets we have to
iterate through. In a typical situation, the size of P is not very large. Let us now inspect
the insertion procedure in greater detail.

In essence, the function insert is a simpler version of join, because the only restriction
on the conditioning set of M ′ is imposed by the conditioning set of J and the fact that M ′

has to be conditionally independent of the current variable S to be summed over. If join or
insert was unsuccessful in forming a new joint distribution, we have that Jnew ⊂ J. In this
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Algorithm 3 Insertion of variable M ′ into the joint term P (J|D) using d-separation criteria
in G. S is the current summation variable and π is a topological ordering.

1: function insert(J, D, M ′, S, G, π)
2: G← Jπ \An∗(M ′)G

3: n← |G|
4: for i = 1 : n do
5: A← (An∗(M ′)G ∪Pi)△D
6: B← (An(M ′)G ∪Pi)
7: if (J ⊥⊥ A|D \A)G and (M ′ ⊥⊥ S|B \ S)G then
8: return 〈J ∪ {M ′}, (An∗(M ′)G ∪Pi), {M

′}〉

9: return 〈J, D, ∅〉

case simplification in terms of the current variable cannot be completed. If we have that
Jnew 6⊂ J the iteration continues.

Together the functions join and insert capture the two conditions of Definition 5. They
are essentially two variations of the underlying procedure of determining whether the terms
of the atomic expression actually represent a joint distribution. The only difference is that
join is called when we are processing terms that already exist in the expression, and insert

is called when there are variables without corresponding terms in the expression, that is the
set M of Definition 5 is not empty.

If the innermost while-loop of Algorithm 1 succeeded in iterating through the relevant
variables, we are ready to complete the simplification process in terms of Sj . We carry
out the summation over Sj which results in P (J \ {Vi}|D). This is done on line 27 by
calling factorize(J, D, R, I, A) which checks whether the joint term P (J \ {Vi}|D) can be
factorized back into a product of terms. In practice this means that if the function succeeds,
it will return an atomic expression obtained by removing each inserted term P (R|IR) such
that R ∈ R and IR ∈ I from atomic expression A. The status of the atomic expression is
updated on lines 31 and 32 to reflect this. If the function fails, it will return A unchanged.

If the innermost while-loop did not iterate completely through the relevant variables,
the simplification was not successful in terms of Sj at this point. In this case we reset A
to its original state on line 29 and attempt simplification in terms of the next variable. If
there are no further variables to be eliminated, the outermost while-loop will also terminate.
In the next theorem, we show that Algorithm 1 is both sound and complete in terms of
simplification sets. The proof for the theorem can be found in Appendix D.

Theorem 7 Let G′ be a DAG and let G be a subgraph of G′ over a vertex set W with a
topological ordering π. Let A[W] = 〈T, {Vj}〉 be a π-consistent atomic expression. Then if
simplify(A, G, π) succeeds, it has constructed a collection of simplification sets of A with
respect to Vj. Conversely, if there exists a collection of simplifications sets of A with respect
to Vj, then simplify(A, G, π) will succeed.
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4. High Level Algorithms

In this section, we present an algorithm to simplify all atomic expressions in the recursive
stack of an expression. We will also provide a simple procedure to simplify quotients
defined by two expressions: one representing the numerator and another representing the
denominator. In some cases it is also possible to eliminate the denominator by subtracting
common terms. First, we present a general algorithm to simplify topologically consistent
expressions.

Algorithm 4 Recursive wrapper for the simplification of an expression B = 〈B, A, S〉 given
graph G and topological ordering π.

1: function deconstruct(B, G, π)
2: R ← ∅
3: for Y ∈ A do
4: 〈{〈V1, C1〉, . . . , 〈Vn, Cn〉}, SY 〉 ← simplify(Y, G, π)
5: if SY = ∅ then
6: A← A ∪ (

⋃n
i=1{〈{〈Vi, Ci〉}, ∅〉})

7: for 〈BX , AX , SX〉 ∈ B do
8: 〈BX , AX , SX〉 ← deconstruct(〈BX , AX , SX〉, G)
9: if BX = ∅ and SX = ∅ then

10: R ← R ∪ {〈BX , AX , SX〉}
11: A← A ∪AX

12: B← B \R
13: return 〈B, A, S〉

Algorithm 4 begins by simplifying all atomic expressions contained in the expressions.
If an atomic expression contains no summations after the simplification but does contain
multiple terms, each individual term is converted into an atomic expression of their own.
After this, we iterate through all sub-expressions contained in the expression. The purpose
of this is to carry out the simplification of every atomic expression in the stack and collect
the results into as few atomic expressions as possible. First, we traverse to the bottom of the
stack on line 8 by deconstructing sub-expressions until they have no sub-expressions of their
own. Afterwards, it must be the case that 〈BX , AX , SX〉 consists of atomic sub-expressions
only.

If 〈BX , AX , SX〉 contains no summations on line 9 then the atomic expressions contained
in this expression do not require an additional expression to contain them, but can instead
be transferred to be a part of the expression above the current one in the recursive stack.
On line 6 we lift the atomic expressions contained in the atomic sub-expressions up to the
current recursion stage.

There is no guarantee, that the resulting atomic expression is still π-consistent after
this procedure. The function deconstruct operates on the principle of simplifying as
many atomic expressions as possible, combining the results into new atomic expressions
and simplifying them once more. We do not claim that this procedure is complete in a
sense that Algorithm 4 would always find the simplest representation for a given expression.

12
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This method in nonetheless sound and finds drastically simpler expressions in almost every
situation where such an expression exists.

We may also consider quotients often formed by deriving conditional distributions. For
this purpose we need a subroutine to extract terms from atomic sub-expression that are
independent of the summation index, that is Vi 6∈ S and Ci ∩ S = ∅.

Algorithm 5 Extraction of terms independent of the summation indices from a expression
B = 〈B, A, S〉 given graph G and topological ordering π.

1: function extract(B, G, π)
2: B ← deconstruct(B, G, π)
3: if S = ∅ then
4: for X ∈ B do
5: X ← extract(X, G, π)

6: for 〈TA, SA〉 ∈ A do
7: if SA 6= ∅ then
8: AE ← ∅
9: R ← ∅

10: for 〈V, C〉 ∈ TA do
11: if V 6∈ SA and C ∩ SA = ∅ then
12: AE ← AE ∪ {〈{〈V, C〉}, ∅〉}
13: R ← R ∪ {〈V, C〉}

14: A← A ∪AE

15: TA ← TA \R

16: else
17: AE ← ∅
18: R ← ∅
19: for 〈TA, SA〉 ∈ A do
20: if SA = ∅ then

21: T
(1)
A ← ∅

22: T
(2)
A ← ∅

23: for 〈V, C〉 ∈ TA do

24: T
(1)
A ← T

(1)
A ∪ {V }

25: T
(2)
A ← T

(2)
A ∪C

26: if T
(1)
A ∩ S = ∅ and T

(2)
A ∩ S = ∅ then

27: AE ← AE ∪ {〈TA, SA〉}
28: R ← R ∪ {〈TA, SA〉}

29: A← A \R
30: BE ← {B}
31: return 〈BE , AE , ∅〉

The procedure of Algorithm 5 is rather straightforward. First, we attempt to simplify
B by using deconstruct on line 2. Next, we simply recurse as deep as possible without
encountering a sum in an expression. If a sum is encountered, extraction is attempted.

13
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On any stage where a sum was not encountered, we may still have atomic sub-expression
that contain sums. Because the recursion had reached this far, we know that there are no
summations above them in the stack, so we can attempt extraction on them as well.

Algorithm 6 Simplification of a quotient PB1
/PB2

given by the values of two expressions
B1 = 〈B1, A1, S1〉 and B2 = 〈B2, A2, S2〉 given graph G and topological ordering π.

1: function q-simplify(B1, B2, G, π)
2: B1 ← extract(B1, G, π)
3: B2 ← extract(B2, G, π)
4: if S1 6= ∅ or S2 6= ∅ then
5: return 〈B1, B2〉

6: i← 1
7: while i ≤ |B1| and |B1| > 0 and |B2| > 0 do
8: for j = 1 : |B2| do
9: if B1i = B2j then

10: B1 ← B1 \ {B1i}
11: B2 ← B2 \ {B2j}
12: i← 0
13: break
14: i← i + 1

15: i← 1
16: while i ≤ |A1| and |A1| > 0 and |A2| > 0 do
17: for j = 1 : |A2| do
18: if A1i = A2j then
19: A1 ← A1 \ {A1i}
20: A2 ← A2 \ {A2j}
21: i← 0
22: break
23: i← i + 1

24: return 〈B1, B2〉

Algorithm 6 takes two expressions, B1 and B2, and removes any sub-expressions and
atomic sub-expressions that are shared by B1 and B2. This is of course only feasible when
the summation sets are empty for both B1 and B2. This condition is checked on line 4.

5. Examples

In this section we present examples of applying the algorithms of the previous sections. We
denote line number y of algorithm x with Ax:y. We begin with a simple example on the
necessity of the insert procedure in graph G of Figure 3.

The causal effect of W on X is identifiable in this graph, and expression

∑

Z,Y

P (Y )P (Z|Y )P (X|W, Z, Y )

14
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Figure 3: A graph G for the example on the necessity of the insertion procedure.

is obtained by direct application of the ID algorithm or by the truncated factorization
formula for causal effects in Markovian models (Pearl, 2009). We let A be this atomic
expression. The topological ordering π is X > W > Z > Y and M = {W}. The call to
simplify(A, G, π) will first attempt simplification in terms of Z, by calling

join(∅, ∅, X, {W, Z, Y }, Z, {W}, G, π),

which results in 〈X, {W, Z, Y }, ∅〉. At the second call

join({X}, {W, Z, Y }, Z, Y, Z, {W}, G, π)

we already run into trouble since we cannot find a conditioning set that would allow Z to be
joined with {X}. However, since M is non-empty and W ∈ {W, Z, Y } and W 6∈ {Z} this
means that the next call is

insert({X}, {W, Z, Y }, W, Z, G, π).

Insertion fails in this case, as one can see from the fact that no conditioning set exists that
would make W conditionally independent of Z. Thus we recurse back to join and back to
simplify and end up on line A1:15 which breaks out of the while-loop. Thus A cannot be
simplified in terms of Z. Simplification is attempted next in terms of Y . The first two calls
are in this case

join(∅, ∅, X, {W, Z, Y }, Y, {W}, G, π),

join({X}, {W, Z, Y }, Z, {Y }, Y, {W}, G, π),

and in the second call we run into trouble again and have to attempt insertion

insert({X}, {W, Z, Y }, W, Y, G, π).

This time we find that we can add a term for W which is P (W |Z, Y ) because (W ⊥⊥ Y |Z)G.
The other calls to join also succeed and we can write the value of A as

∑

Z,Y P (Y )P (Z|Y )P (W |Y, Z)P (X|W, Z, Y )

P (W |Z)
.

and complete the summation in terms of Y . After the call to factorize we are left with
the final expression

∑

Z

P (X|W, Z)P (Z).
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We continue by considering again graph G depicted in Figure 1. The topological ordering
π is Y > Z1 > Z3 > X > Z2. Atomic expression A1 given by

∑

X,Y

P (Y |Z2, X, Z3, Z1)P (Z3|Z2, X)P (X|Z2)P (Z2),

is a part of the expression to be simplified.
We will first simplify A1 and take a closer look at how the function join operates. The

call to simplify(A1, G, π) will attempt simplification in terms of the set {X, Y } in the
ordering that agrees with the topological ordering π, which is (Y, X). After initializing the
required sets, we find the index of the term with Y as a variable on line 10. There is one
missing variable, Z1, so M = {Z1} as returned by get.missing on line A1:11. The first
call to join results in 〈Y, {Z2, X, Z3, Z1}, ∅〉, because line A2:3 is triggered. Condition on
line A1:15 is not satisfied since Jnew = {Y } 6⊆ ∅ = J. Thus we update the status of J and D
on lines A1:18 and A1:19. Since Rnew = ∅ on line A1:20 we do not have to update the status
of R, I and M on lines A1:21, A1:22 and A1:23. The innermost while-loop is now complete
and we call factorize on line A1:27 which succeeds in removing the term P (Y |Z2, X, Z3, Z1)
by completing the sum. Now we update the status of the atomic expression on line A1:31
and remove Y from the set of variables to be summed over on line A1:32. The resulting
value of the expression at this point is

∑

X

P (Z3|Z2, X)P (X|Z2)P (Z2).

Next, the summation in terms of X is attempted. join is once again successful, because
Z3 is the first variable to be joined and line A2:3 is triggered. Next we attempt to join the
terms P (Z3|Z2, X) and P (X|Z2). Computation of the set G on line A2:4 results in

{Z3}
π \An∗(X)G = {X, Z2} \ {X, Z2} = ∅.

The power set computed on line A2:5 contains only the empty set. For P1 = ∅ we have

A = (An(X)∗
G ∪P1)△D = ({X, Z2} ∪ ∅)△{X, Z2} = ∅

on line 8, and
B = (An(X)G ∪P1)△C = ({Z2} ∪ ∅)△{Z2} = ∅

on line 9. The condition on line A2:10 evaluates to true and we return with 〈{Z3, X}, {Z2}, ∅〉.
The innermost while-loop terminates allowing the summation over X to be performed. The
function factorize provides us with the final expression

P (Z3|Z2)P (Z2). (4)

Next, we will consider the full example and see how q-simplify is applied. Using the ID
algorithm we obtain the causal effect of X on Z1, Z2, Z3 and Y in graph G of Figure 1 and
it is

P (Z1|Z2, X)P (Z3|Z2)

∑

X P (Y |Z2, X, Z3, Z1)P (Z3|Z2, X)P (X|Z2)P (Z2)
∑

X,Y P (Y |Z2, X, Z3, Z1)P (Z3|Z2, X)P (X|Z2)P (Z2)
×

∑

X,Z3,Y

P (Y |Z2, X, Z3, Z1)P (Z3|Z2, X)P (X|Z2)P (Z2).
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We will represent this as a quotient of expression using Definition 2. Let A1 be the atomic
expression of the previous example and let A2 also be an atomic expression given by

∑

X

P (Y |Z2, X, Z3, Z1)P (Z3|Z2, X)P (X|Z2)P (Z2),

which is essentially the same as A1, but with the variable Y removed from the summation
set S. Similarly, we let A3 be an atomic expression given by

∑

X,Z3,Y

P (Y |Z2, X, Z3, Z1)P (Z3|Z2, X)P (X|Z2)P (Z2).

We also define the atomic expressions A4 with the value P (Z3|Z2) and A5 with the value
P (Z1|Z2, X). Now, we define two expressions B1 and B2 for the quotient PB1

/PB2
as follows:

B1 = 〈∅, {A2, A3, A4, A5}, ∅〉, B2 = 〈∅, {A1}, ∅〉.

We now call q-simplify(B1, B2, G, π). First, we must trace the calls to extract for both
expressions on lines A6:2 and A6:3. For B1 and B2 this immediately results in a call to
deconstruct on line A5:2. First, the function applies simplify to each atomic expression
contained in the expressions on line A4:4.

Let us first consider the simplification of A2. As before with A1, we have that join first
succeeds in forming 〈Y, {Z2, X, Z3, Z1}, ∅〉, but this time Y is not in the summation set, so
we continue. Next, the algorithm attempts to join P (Y |Z2, X, Z3, Z1) with P (Z3|Z2, X).
The set G is defined as

{Y }π \An∗(Z3)G = {Z3, Z1, X, Z2} \ {Z3, Z2} = {Z1, X}

and its subsets are {Z1, X}, {Z1}, {X} and ∅. For the first subset P1 = ∅ we have that

A = (An∗(Z3) ∪P1)△D = {Z2, Z3}△{Z2, X, Z3, Z1} = {X, Z1}

and since (Y 6⊥⊥ X, Z1|Z3, Z2)G the condition on line A2:10 is not satisfied. We continue
with P2 = {X} and obtain

A = (An∗(Z3) ∪P2)△D = {X, Z2, Z3}△{Z2, X, Z3, Z1} = {Z1}

and since (Y 6⊥⊥ Z1|X, Z3, Z2)G the condition on line A2:10 is still not satisfied. Next, for
P3 = {Z1} we have

A = (An∗(Z3) ∪P3)△D = {Z2, Z3, Z1}△{Z2, X, Z3, Z1} = {X}

and since (Y 6⊥⊥ X|Z1, Z3, Z2)G the condition on line A2:10 is again, not satisfied. Finally,
for P4 = {Z1, X} we have

A = (An∗(Z3) ∪P4)△D = {Z2, X, Z3, Z1}△{Z2, X, Z3, Z1} = {X}

and

B = (An(Z3) ∪P4)△C = {Z2, X, Z1}△{Z2, X} = {Z1}.
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Both conditions on line A2:10 are now satisfied ny noting that (Z3 ⊥⊥ Z1|X, Z2)G. Afterwards
we obtain

P (Y |Z2, X, Z3, Z1)P (Z3|Z2, X) = P (Y, Z3|Z1, Z2, X)

and continue in an attempt to join the term P (X|Z2) with this result. The set G is now
defined as

{Y, Z3}
π \An∗(X)G = {Z1, X, Z2} \ {X, Z2} = {Z1}

and its subsets are {Z1} and ∅. Starting with P1 = ∅ we have that

A = (An∗(X) ∪P1)△D = {X, Z2}△{Z1, Z2, X} = {Z1}

and since (Y, Z3 6⊥⊥ Z1|X, Z2)G the condition on line A2:10 is not satisfied. Continuing with
P2 = {Z1} we have

B = (An(X) ∪P2)△C = {Z2, Z1}△{Z2} = {Z1}.

Again, the condition on line A2:10 is not satisfied by noting that (X 6⊥⊥ Z1|Z2)G. We have
exhausted the possible subsets, which means that we enter the loop on line A2:13 since the
set M = {Z1} is not empty of line A2:12.

In this case insert is called to bring Z1 into the expression because Z1 ∈ D = {Z1, Z2, X}
and Z1 6∈ C = {Z2}. The set G is constructed on line A3:2 and it is

Jπ \An∗(Z1)G = {Y, Z3}
π \ {X, Z1, Z2} = ∅.

For the only subset P1 = ∅ we have

B = (An(Z1)G ∪P1) = {X, Z2}

on line A3:6, and since (Z1 6⊥⊥ X|Z2)G the condition on line A3:7 is not satisfied and we
return with 〈J, D, ∅〉 unchanged on line 9 of Algorithm 3, which causes join to also return
with the same output on line A3:18. The condition on line A1:15 is now satisfied and we
cannot simplify A2.

The atomic expression A3 can be simplified. First, Y is eliminated exactly as it was
removed from A1. Following the same principle we can see that whenever a variable in the
summation set is the largest one in the topological order of the variables contained in the
atomic expression, it will be removed successfully. From this we obtain that the value of
A3 is in fact simply P (Z2). Let us call the atomic expression with this value E, that is
PE = P (Z2). The atomic expression A1 can also be simplified, and its value is given by
(4). Furthermore, since this value is made of two product terms, it is split into two atomic
expressions respectively. Let these be called D1 and D2 such that PD1

= P (Z3|Z2) and
PD2

= P (Z2).
Applying simplify to A4 and A5 simply returns the original expressions, since they do

not contain any summations and the loop on line A1:3 is never entered. The set of atomic
expressions is afterwards updated on line A4:6. Neither B1 nor B2 contain any sub-expressions
or summations on line A4:9, so deconstruct(B1, G, π) returns 〈∅, {A2, E, A4, A5}, ∅〉 and
deconstruct(B2, G, π) returns 〈∅, {D1, D2}, ∅〉. The lack of summations on line A5:3 of
causes extract to iterate through the atomic expression contained in B1 and B2 directly
on line A5:6, since neither of them have any sub-expressions of their own.
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Only A2 contains a sum at this point. The iteration over the terms of A2 on line A5:10
finds that the only term that does not contain X is P (Z2) on line A5:11. Let us denote the
atomic expression with the value P (Z2) as C1 and the atomic expression resulting from the
extraction as C2 which now has the value

∑

X

P (Y |Z2, X, Z3, Z1)P (Z3|Z2, X)P (X|Z2).

This completes the extraction and results in an expression B′
1 such that

B′
1 = 〈∅, {C1, C2, E, A4, A5}, ∅〉.

The expression B2 remains unchanged.
q-simplify is now able to proceed. Neither B′

1 nor B2 contain sub-expression so the loop
on line A6:7 is not entered, and we are only subtracting their common atomic expressions in
the loop on line A6:16. It is easy to see that A4 = D1 and C1 = D2, so they are removed from
both B′

1 and B2. Finally, the expressions corresponding to the numerator and denominator
are returned.

To summarize, we began with the expression

P (Z1|Z2, X)P (Z3|Z2)

∑

X P (Y |Z2, X, Z3, Z1)P (Z3|Z2, X)P (X|Z2)P (Z2)
∑

X,Y P (Y |Z2, X, Z3, Z1)P (Z3|Z2, X)P (X|Z2)P (Z2)
×

∑

X,Z3,Y

P (Y |Z2, X, Z3, Z1)P (Z3|Z2, X)P (X|Z2)P (Z2).

and successfully simplified it into

P (Z1|Z2, X)P (Z2)
∑

X

P (Y |Z2, X, Z3, Z1)P (Z3|Z2, X)P (X|Z2).

6. Discussion

We have presented a formal definition of topologically consistent atomic expressions and
simplification sets and provided a sound and complete algorithm to find these sets for a
given expression. We also discussed some general techniques that apply to a more general
class of these expressions. Algorithm 7 and Algorithm 8, presented in Appendix A, have
been previously implemented in the R package causaleffect (Tikka and Karvanen, 2017a).
We have updated the package to include all of the simplification procedures presented in this
paper and they can be applied to all causal effect and conditional causal effect expressions
derived from identification procedures. Our definition of topologically consistent atomic
expressions is similar to g-functionals that can be used to characterize identifiability results
under special conditions (Shpitser and Tchetgen Tchetgen, 2016).

It is plausible that these procedures could also be extended into other causal inference
results, such as formulas for z-identifiability, transportability and meta-transportability
of causal effects. The extensions are non-trivial however, since transportability formulas
contain terms with distributions from multiple domains and z-identifiable causal effects
contain do-operators in the conditioning sets which would require the implementation of the
rules of do-calculus into Algorithm 1. Do-calculus consists of three inference rules that can
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Figure 4: A graph G for a situation where simplification fails

be used to manipulate probabilities involving the do-operator (Pearl, 2009). Currently, we
operate only on expressions that do not involve the do-operator. In fact, in our procedure it
is not required to know the original causal query that produced the result.

Simpler expressions have many useful properties. They can help in understanding and
communicating results and evaluating them saves computational resources. Estimation
accuracy can also be improved in some cases when variables that are present in the original
expression suffer from missing data or measurement error. One example where the benefits
of simplification are realized can be found in (Hyttinen et al., 2015), where expressions of
causal effects are derived and repeatedly evaluated for a large number of causal models.

Our approach to simplification stems from the nature of causal effect expressions. In
our setting, a question still remains whether simplification sets completely characterize all
situations where a variable can be eliminated from an atomic expression. One might also
consider simplification in a general setting, where we do not assume topological consistency
or any other constraints for the atomic expressions. In this case a ’black box’ definition
for simplification could be considered, where we simply require that when the sum over a
variable of interest is completed we are again left with another atomic expression without
this variable in the summation set. This framework is theoretically interesting but we are
not aware of any potential applications.

The worst case time complexity of Algorithm 1 is difficult to gauge and is a topic
for further research. One can observe that the performance of the algorithm is highly
dependent on the size of the differences of the conditioning sets between adjacent terms.
Both Algorithm 2 and Algorithm 3 iterate through the subsets of these differences and
check d-separation criteria for each subset. Thus dynamic programming solutions could
be implemented to further improve performance by collecting the results of these checks.
Previously determined conditional independences would not need to be checked again and
could be retrieved from memory instead.

In some cases, simplification has some apparent connections to identifiability. Consider
the graph G of Figure 4. In this graph the causal effect of X on Y is identifiable, and its
expression is

∑

Z

P (Y |Z, X)P (Z).

If we let Z be an unobserved variable instead, then G depicts the well-known bow-arc graph,
where the same causal effect is unidentifiable. This corresponds to an unsuccessful attempt
to remove Z from the expression of the causal effect. However, we cannot know beforehand
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whether an expression for a causal effect is going to be atomic or not, so we cannot use our
algorithm to derive identifiability in general.

A reviewer suggested a simplification algorithm where the ID algorithm would be applied
to latent projections (Pearl and Verma, 1991) onto the variables to be marginalized. This
algorithm would be able to solve many, but not all, simplification tasks. Importantly, in the
example presented in Figure 1, we cannot make any variables latent, as we are interested in
the causal effect of X on all of the other variables. A reviewer also suggested that simplified
expressions could be categorized into those that are obtained through latent projections and
those that are not. This categorization might give additional insight into the topic.
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Appendix A. Topological Consistency of Causal Effect Formulas

We prove the statement that every causal effect formula returned by the algorithms of Shpitser
and Pearl (2006a,b) can be represented by using products and quotients of π-consistent
atomic expressions such that π is a topological ordering of G.

We use the notation G[X] to denote an induced subgraph, which is obtained from G
by removing all vertices not in X and by keeping all edges between the vertices of X in G.
Here G

X,Z means the graph that is obtained from G by removing all incoming edges of X
and all outgoing edges of Z. We say that G is an I-map of P if P admits the causal Markov
factorization with respect to G = 〈V, E〉, which is

P =
n

∏

i=1

P (Vi|Pa∗(Vi)G)
k

∏

j=1

P (Uj),

where Pa∗(·) contains unobserved parents as well.

Consider first lines 2, 3, 4 and 7 of Algorithm 7 where recursive calls occur and let πr

be the topological ordering of the graph in the previous recursion step. Line 2 limits the
identification procedure to the ancestors of Y so we can still obtain an expression that
topologically consistent with respect to a topological ordering obtained from πr by removing
non-ancestors. Lines 3 and 4 make no changes to the distribution P and the graph G. On
line 7 the induced subgraph G[S′] in the next call is a C-component, but the joint distribution
in this case is a πr-consistent expression

P (S′) =
∏

Vi∈S
′

P (Vi|V
πr

i ∩ S′, v
πr

i \ s′),

since every conditioning set is of the form V
πr

i when we only consider variables instead of
their values, so we obtain

P (S′) =
∏

Vi∈S
′

P (Vi|V
πr

i ),
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Furthermore, any expression returned from line 7 will now be πr-consistent. Thus all
recursive calls retain topological consistency with respect to π.

Consider now the non-recursive terminating calls on lines 1 and 6. Consider line 1 first.
If line two was triggered previously, we can factorize P (V) in such a way that each variable is
conditioned by its ancestors, since the ancestors of ancestors of Y are by definition ancestors
of Y. If line 7 was triggered previously we already know that the joint distribution was
previously factorized in a πr-consistent fashion. If line 3 or 4 was triggered previously, we
know that they have not imposed any changes on P of G. Line 6 clearly produces a πr

consistent end result. Lines 4, 6 and 7 can only produce either products of quotients. By
noting that πr-consistency implies π-consistency, we have that the result of the algorithm can
always be represented by using products and quotients of π-consistent atomic expressions.

Algorithm 7 The causal effect of intervention do(X = x) on Y (Shpitser and Pearl, 2006a).

INPUT: Value assignments x and y, joint distribution P (v) and a DAG G = 〈V, E〉. G is
an I-map of P .

OUTPUT: Expression for Px(y) in terms of P (v) or FAIL(F, F ′).

function ID(y, x, P, G)
1: if x = ∅, then

return
∑

v∈v\y P (v).

2: if V 6= An(Y)G, then
return ID(y, x ∩An(Y)G, P (An(Y)G), G[An(Y)G)].

3: Let W = (V \X) \An(Y)G
X

.

if W 6= ∅, then
return ID(y, x ∪w, P, G).

4: if C(G[V \X]) = {G[S1], . . . , G[Sk]}, then
return

∑

v∈v\(y∪x)

∏k
i=1 ID(si, v \ si, P, G).

if C(G[V \X]) = {G[S]}, then
5: if C(G) = {G}, then

throw FAIL(G, G[S]).
6: if G[S] ∈ C(G), then

return
∑

v∈s\y

∏

Vi∈S P (vi|v
π
i ).

7: if (∃S′)S ⊂ S′ such that G[S′] ∈ C(G), then
return ID(y, x ∩ s′,

∏

Vi∈S
′ P (Vi|V

π
i ∩ S′, vπ

i \ s′), G[S′]).

The claim is now apparent for Algorithm 8 since line 2 is eventually called for every
conditional causal effect.
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Algorithm 8 The causal effect of intervention do(X = x) on Y given Z (Shpitser and Pearl,
2006b).

INPUT: Value assignments x, y and z, joint distribution P (v) and a DAG G = 〈V, E〉.
G is an I-map of P .

OUTPUT: Expression for Px(y|z) in terms of P (v) or FAIL(F, F ′).

function IDC(y, x, z, P, G)
1: if ∃Z ∈ Z such that (Y ⊥⊥ Z|X, Z \ {Z})G

X,Z
then

return IDC(y, x ∪ {z}, z \ {z}, P, G).

2: else let P ′ = ID(y ∪ z, x, P, G).
return P ′/

∑

y∈y P ′

Appendix B. Proof of Theorem 6

Proof By direct calculation we obtain

PA =
∑

Vj

n
∏

i=1

P (Vi|Ci)

=
∏

Vi<Vj

P (Vi|Ci)
∑

Vj

∏

Vi≥Vj

P (Vi|Ci)

=
∏

Vi<Vj

P (Vi|Ci)
∑

Vj

P (Vπ(p), . . . , Vπ(q)|D)
∏

U∈M P (U |EU )

=
∏

Vi<Vj

P (Vi|Ci)
P (Vπ(p+1), . . . , Vπ(q)|D)

∏

U∈M P (U |EU )

=
∏

Vi<Vj

P (Vi|Ci)
∏

Vi>Vj

P (Vi|Di) := P
A

′ ,

where the sets Di are obtained from the factorization of the joint term such that A′ is a
π∗-consistent where π∗ is obtained from π by removing Vj from the ordering. To justify
the equalities, we first note that terms of variables Vi < Vj do not contain Vj and can be
brought outside the sum.

To obtain the third equality, we multiply by [
∏

U∈M P (U |EU )]/[
∏

U∈M P (U |EU )] and
apply condition (2) of Definition 5 on the right-hand side as licensed by condition (3) of the
definition. To obtain the fourth equality, we simply carry out the summation in terms of
Vj . Conditions (2) and (3) of Definition 5 make it possible to refactorize the joint term into
product terms so that the terms corresponding to variables U ∈M remain unchanged and
can be divided out once more. Thus we obtain the last equality, and an expression that no
longer contains Vj and has the same value as A.
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Appendix C. Derivation of the Causal Effect in the Introductory

Example

We present the derivation of the causal effect of X on Y, Z3, Z2, Z1 in the graph G of Figure 1
using Algorithm 7. We fix topological ordering of G as Z2 < X < Z1 < Z3 < Y . The
original call ID({Y, Z1, Z2, Z3}, {X}, P (V), G) fires line 4 and results in three new recursive
calls. We have

PX(Y, Z3, Z1, Z2) = PY,Z3,X,Z2
(Z1)PY,Z1,X,Z2

(Z3)PZ3,Z1,X(Y, Z2), (5)

as the graph G[V\{X}] has three C-components formed by the sets {Z1}, {Z3} and {Y, Z2},
respectively.

The first recursive call ID({Z1}, {Y, Z3, X, Z2}, P (V), G) fires line 2 because Z3 and Y
are not ancestors of Z1. The next call ID({Z1}, {X, Z2}, P (Z1, X, Z2), G[{Z1, X, Z2}]) fires
line 6 because C(G[{Z1}]) contains only one C-component and it is not part of a larger
C-component in the graph of the current recursion stage. We have

PY,Z3,X,Z2
(Z1) = PX,Z2

(Z1) = P (Z1|X, Z2). (6)

To obtain PY,Z1,X,Z2
(Z3) we call ID({Z3}, {Y, Z1, X, Z2}, P (V), G) which also fires line 2

because X, Z1 and Y and not ancestors of Z3. Calling ID({Z3}, {Z2}, P (Z3, Z2), G[{Z3, Z2}])
fires line 6 C(G[{Z3}]) contains only one C-component and it is not part of a larger C-
component in the graph of the current recursion stage. We have

PY,Z1,X,Z2
(Z3) = PZ2

(Z3) = P (Z3|Z2). (7)

To obtain the last term we call ID({Y, Z2}, {Z3, Z1, X}, P (V), G). The subgraph G[V \
{Z3, Z1, X}] = G[{Y, Z2}] has only one C-component, but it is part of a larger C-component
formed by the set S′ = {Y, Z3, X, Z2} in the current graph G. Line 7 is fired resulting in

ID({Y, Z2}, {Z3, X}, P (Y |Z3, Z1, X, Z2)P (Z3|Z2, X)P (X|Z2)P (Z2), G[S′]). (8)

This call fires line 2 since X is not an ancestor of Y in the graph G[S′]. Letting T =
S′ \ {X} = {Y, Z3, Z2} the next call is

ID({Y, Z2}, {Z3},
∑

X

P (Y |Z3, Z1, X, Z2)P (Z3|Z2, X)P (X|Z2)P (Z2), G[T]). (9)

This time we trigger line 6 because G[T \ {Z3}] has only one C-component and there is no
larger C-component of G[T] that would contain it. We obtain

PZ3,Z1,X(Y, Z2) = PZ3,Z1,X(Y, Z2)

= PZ3,X(Y, Z2)

= PZ3
(Y, Z2)

= P ∗(Y |Z3, Z2)P ∗(Z2),

(10)

where P ∗ is the distribution of the current recursion stage, that is

P ∗(Y, Z3, Z2) =
∑

X

P (Y |Z3, Z1, X, Z2)P (Z3|Z2, X)P (X|Z2)P (Z2).
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In order to represent the conditional probability on the last line of (10), we write

P ∗(Y |Z3, Z2)P ∗(Z2) =
P ∗(Y, Z3, Z2)

P ∗(Z3, Z2)
P ∗(Z2)

=
P ∗(Y, Z3, Z2)

∑

Y P ∗(Y, Z3, Z2)

∑

Y,Z3

P ∗(Y, Z3, Z2)

=

∑

X P (Y |Z2, X, Z3, Z1)P (Z3|Z2, X)P (X|Z2)P (Z2)
∑

X,Y P (Y |Z2, X, Z3, Z1)P (Z3|Z2, X)P (X|Z2)P (Z2)
×

∑

X,Z3,Y

P (Y |Z2, X, Z3, Z1)P (Z3|Z2, X)P (X|Z2)P (Z2).

(11)

Finally, we gather the results of our subproblems in (6), (7) and (11), and insert them back
into the equation in (5) which yields

PX(Y, Z3, Z1, Z2) = P (Z1|Z2, X)P (Z3|Z2)×
∑

X P (Y |Z2, X, Z3, Z1)P (Z3|Z2, X)P (X|Z2)P (Z2)
∑

X,Y P (Y |Z2, X, Z3, Z1)P (Z3|Z2, X)P (X|Z2)P (Z2)
×

∑

X,Z3,Y

P (Y |Z2, X, Z3, Z1)P (Z3|Z2, X)P (X|Z2)P (Z2)

as the formula for the causal effect.

Appendix D. Proof of Theorem 7

Proof (i) Suppose that simplify(A, G, π) has returned an expression with variable Vj

eliminated. Because the computation completed successfully, we have that each application
of join and insert succeed. We can rewrite the value of A as

∏

Vi<Vj

P (Vi|Ci)
∑

Vj

∏

Vi≥Vj

P (Vi|Ci),

where the terms P (Vi|Ci) such that Vi < Vj can be brought outside the sum over Vj , because
they cannot contain Vj . The functions join and insert use only standard rules of probability
calculus, which can be seen on line 10 of Algorithm 2 and line 7 of Algorithm 3, and thus
every new formation of a joint distribution P (J|D) has been valid. Once again we rewrite
the value of A as

∏

Vi<Vj

P (Vi|Ci)
∑

Vj

P (J|D),

which means that condition (2) of Definition 5 is now satisfied, as we have obtained a joint
term from the original product terms.Because Vj ∈ J we can carry out the summation which
yields

∏

Vi<Vj

P (Vi|Ci) · P (J \ {Vj}|D),

Because Algorithm 1 succeeds, we know that every insertion is canceled out by factorize.
To complete the procedure we obtain a new factorization without Vj resulting in an atomic
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expression A′ that no longer contains Vj . Condition (3) of Definition 5 is satisfied by the
definition of insert, because the function always checks the conditional independence with
the current summation variable on line 7. Both conditions for simplification sets have been
satisfied by construction.

(ii) Suppose that there exists a collection of simplification sets of A with respect to Vj .
For the sake of clarity, assume further that Vn = Vj . This assumption lets us only consider
those terms that are relevant to the simplification of Vj , as we can always move conditionally
independent terms outside the summation and consider only the expression remaining inside
the sum. Let us first assume that M = ∅. In this case condition (2) simply reads

∏

Vi≥Vj

P (Vi|Ci) = P (Vj , . . . , V1|D),

and that the product terms are a factorization of the joint term. However, we want to show
that they also provide a factorization that agrees with the topological ordering. Because A
is π−consistent, for any two variables V > W we have that CW ⊆ V π which enables us to
consider the summations from Vk up to V1 for k = 1, . . . , j − 1, which results in

∑

Vk,...,V1

∏

Vi≥Vj

P (Vi|Ci) =
∑

Vk,...,V1

P (Vj , . . . , V1|D) = P (Vj , . . . , Vk+1|D).

We obtain for k = j − 1, . . . , 1

P (Vj |Cj) = P (Vj |D)

P (Vj |Cj)P (Vj−1|Cj−1) = P (Vj , Vj−1|D)

...

P (Vj |Cj) · · ·P (V2|C2) = P (Vj , . . . , V2|D)

P (Vj |Cj) · · ·P (V2|C2)P (V1|C1) = P (Vj , . . . , V1|D).

(12)

From the last and second to last equation we can obtain

P (Vj , . . . , V2|D)P (V1|C1) = P (Vj , . . . , V1|D),

and by dividing with the first term from the left hand side we obtain

P (V1|C1) = P (V1|Vj , . . . , V2, D).

In fact, we can do this for any two subsequent equations in (12) to obtain

P (Vi|Ci) = P (Vi|Vj , . . . , Vi+1, D), i = 1, . . . , j − 1

Algorithm 1 operates by starting from V1, so we still have to show it succeeds in
constructing the joint term. Using the previous results we can rewrite the original equation
as

∏

Vi≥Vj

P (Vi|Ci) =
∏

Vi≥Vj

P (Vi|C
∗
i ),
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where C∗
i = D ∪ {Vj , . . . , Vi+1} for i < j and C∗

j = D. From this we obtain

P (V1|C1) = P (V1|C
∗
1)

P (V1|C
∗
1)P (V2|C2) = P (V1, V2|C

∗
2)

...

P (V1, . . . , Vj−1|C
∗
j−1)P (Vj |Cj) = P (Vj , . . . , V1|C

∗
j ).

(13)

The function join will succeed every time since the for-loop starting on line 7 of Algorithm 2
will discover the conditional independence properties allowing the previous equalities in
(13) to take place. Thus Algorithm 1 will return an atomic expression with the variable Vj

eliminated from the summation set.

Assume now that M 6= ∅ and let V = V [A] and. In this case condition (2) allows us to
write

∏

U∈M

P (U |EU )
∏

Vi≥Vj

P (Vi|Ci) = P (V, M|D),

and furthermore, we have that these product terms are a factorization of the joint term.
First, we aim to reduce the number of variables in M to be considered. This is done because
Algorithm 1 always starts and finishes the construction of the joint term with a variable in
V. We categorize each U ∈M into three disjoint sets. We define

M− := {U ∈M | U 6∈
j

⋃

k=1

Ck} , M+ := {U ∈M | U ∈
j

⋂

k=1

Ck} and

M∗ := M \ (M− ∪M+).

First, we show that we can ignore variables in M− by obtaining a new factorization without
them. It follows from the definition of M− and (2) that we can compute the marginalization
as follows

P (V, M \M−|D) =
∑

U∈M
−

P (V, M|D)

=
∑

U∈M
−

∏

U∈M

P (U |EU )
∏

Vi≥Vj

P (Vi|Ci)

=
∏

Vi≥Vj

P (Vi|Ci)
∑

U∈M
−

∏

U∈M

P (U |EU )

=
∏

U∈M\M
−

P (U |EU )
∏

Vi≥Vj

P (Vi|Ci).

We have a new factorization without any variables in M−. Similarly, we can eliminate the
variables in M+ from our factorization. It follows from the definition of M+ that for all
U ∈M+ we have that EU ⊆ D. From this we obtain

∏

U∈M
+

P (U |EU ) = P (M+|D).
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We can now write

P (V, M∗|D, M+) =
P (V, M \M−)

P (M+|D)

=

∏

U∈M\M
− P (U |EU )

∏

Vi≥Vj
P (Vi|Ci)

∏

U∈M
+ P (U |EU )

=
∏

U∈M
∗

P (U |EU )
∏

Vi≥Vj

P (Vi|Ci).

Thus it suffices to consider the factorization given by

∏

U∈M
∗

P (U |EU )
∏

Vi≥Vj

P (Vi|Ci) = P (V, M∗|D∗), (14)

where D∗ = D ∪M+.
Next, we will order the variables in M∗. For each U ∈ M∗ we find the largest index

u ∈ {1, . . . , j − 1} such that U ∈ Cu. This choice is well defined, since by definition at least
one such index exists. Furthermore, as the product terms in (14) are a factorization of the
joint term, the conditioning sets are increasing and we have that U 6∈ Ci for all i ≥ u + 1.
In the case that multiple variables Ui ∈ M∗ for some set of indices i ∈ I share the same
index u, we may redefine M∗ such that Ui, i ∈ I are replaced by a single variable UI such
that

∏

i∈I P (Ui|EUi
) = P (UI |EUI

), where EUI
= ∩i∈IEUi

. Thus we can assume that for any
two variables U1, U2 ∈M∗ we have that u1 6= u2. We can now order the variables in M∗ by
their respective indices u such that U1 > U2 > . . . > Um and u1 < u2 < . . . < um.

Nest we will extend the ordering to include all of the variables in the set V. We let
Q := V ∪M∗ and find an ordering of this set such that it agrees with induced ordering ω
of the variables in V and with the ordering of the indices u1, . . . , um. A new factorization
given by this ordering can be defined as follows:

Qk =



























Vk−m k > um,

Vk−l ul < k < ul+1,

Vk k < u1,

Ul k = ul.

Dk =



























Ck−m k > um,

Ck−l ul < k < ul+1,

Ck k < u1,

EUl
k = ul.

We can now rewrite the factorization of (14) as

n+m
∏

k=1

P (Qk|Dk) = P (Q|D∗), (15)

We can now apply the same procedures as in the case of M = ∅ with the exception that
insert succeeds where join fails with terms containing Qk and Qk+1 when k = l− 1 for all
l = 1, . . . , m. The success of insert is guaranteed by condition (3), as the function will find
this conditional independence on line 10 of Algorithm 3. Also, factorize will remove all
additional terms that were introduced in the process, which is made possible by condition (3)
and the definition of the factorization of P (Q|D∗). After the summation over Vj is carried
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out, the conditional independence between Vj and the variables U ∈M∗ ensures that their
respective terms are equal to the original factorization before the summation was carried
out when the new factorization is constructed so that it agrees with the ordering of the set
Q. Thus an atomic expression is returned with the variable Vj eliminated with the same
value as the original atomic expression.
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