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args_and_kwargs Separate dots into Python-esque *args and **kwargs

Description

This function will return a named list with two sublists, ’args’ and ’kwargs’, which contain the
unnamed and named arguments as quosures, respectively.

This is useful for when you want these two types of arguments to behave differently, e.g., as they do
in make_plans(). The quosures will also have the attribute 'arg_pos', which will indicate their
position in the original order in which they were supplied.

Usage

args_and_kwargs(..., .already_quosure = FALSE)

Arguments

... Any mix of named and unnamed arguments

.already_quosure

if the arguments are already all quosures (in which case it will just sort them by
named vs. unnamed arguments)
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Value

A named list of lists, with $args being a list of quosures of the unnamed arguments and $kwargs
being a list of quosures of the named arguments.

Note

This function started out in the zplyr package.

Examples

x <- args_and_kwargs(unnamed_1, named_1="ba", "unnamed_2", named_2 = letters)
print(x$args)
print(x$kwargs)

## Not run:
# Or see the `share_scales` from the `zplyr` package
share_scales <- function(...) {

akw <- args_and_kwargs(...)
# Unnamed arguments are ggplot scales
geom_func_list <- purrr::map(akw$args, rlang::eval_tidy)
# Named arguments are to be passed into those scales
geoms <- purrr::map(geom_func_list, ~.(!!!akw$kwargs))
return(geoms)

}

## End(Not run)

beep_with Play short sounds

Description

If you have the beepr package installed, catchr can use it to play sounds when certain conditions
are being handled with beep_with(), similar to how beep works. But unlike beep and most catchr
functions or special reserved terms, beep_with() is meant to be used as a user-defined function in
a plan. It is particularly useful for when you’re working with futures and busy doing something
else while code is running in the background, or when you’re working in a different window and
want something to grab your attention.

beep_with can be used at the "top" level of a plan, since it returns a function (which is required
custom input for a catchr plan) that will play the beeping sound you’ve specified.

Usage

beep_with(beepr_sound)
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Arguments

beepr_sound A character string or number specifying the sound to be played. See the sound
argument in beepr::beep() documentation.

See Also

the beep special term, which will play the default beep; user_exit() and exit_with() for parallel
functions for the exit special term, and user_display() and display_with() for parallel functions
for the display special term.

Examples

warning_in_middle <- function() {
Sys.sleep(2)
message("It's time!")
Sys.sleep(2)
invisible("done")

}

if (requireNamespace("beepr", quietly = TRUE) == TRUE) {
catch_expr(warning_in_middle(),

message = c(beep_with(2), display, muffle))
# Or you can just use the default sound with "beep":
catch_expr(warning_in_middle(), message = c(beep, display, muffle))

}

catchr-DSL The language of catchr

Description

catchr implements a small but helpful "domain-specific language" (DSL) to make building condition-
handling functions simpler to read and type. Essentially, catchr reserves special ’terms’ that mean
something different than they do in the rest of R. When given as part of the input for a catchr plan,
these terms will be substituted for special catchr functions used to handle conditions.

These special terms can be inputted as strings (e.g., warning = list('collect','muffle')) or
as unquoted terms (e.g., warning = c(collect,muffle)); catchr internally converts the unquoted
terms to strings regardless, but being able to input them unquoted saves keystrokes and can highlight
their special meanings for code readability.

Special reserved terms

The following are the special terms and what they do. Note that there are also some special condition
names, but those are different from the following.

• tomessage, towarning, toerror: these terms will become functions that will convert cap-
tured conditions into a message, warning, or error, respectively, and raise them. The original
classes of the condition will be lost.
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• beep: if the beepr package is installed, this will play a sound via beepr::beep.
• display: the purpose of this term is to immediately display information about the captured

condition on the output terminal without raising additional conditions (as would be done with
tomessage). Currently, it attempts to display this information with bold, turquoise-blue text
if the crayon package is installed. In future versions of catchr, this default styling (and other
display options) may be able to be changed by the user.

• muffle: this term will be substituted for a function that ’muffles’ (i.e., ’suppresses’, ’catches’,
’hides’—whatever you want to call it) the captured condition, preventing it from being raised
to higher levels or subsequent plans. Anything in a plan after muffle will be ignored, so put
it last.
The function muffle is built on, first_muffle_restart(), searches for the first available
restart with "muffle" in its name (the two typical ones are "muffleMessage" and "muffleWarning")
and calls invokeRestart with it. If the captured condition is an error, which can’t be muffled,
it will exit the evaluation and give NULL for the returned value of the evaluated expression.

• exit: when encountered, this will exit the evaluation of the expression immediately and by
default muffle the captured condition (use raise in the plan if to ensure this doesn’t happen).
Any instructions after exit in the input will be ignored, so put it last.

• collect: this term will store the captured conditions and append them to the output of the
evaluated expression. See the collecting conditions help topic for a full explanation.

• raise: this term will raise the captured condition "as is". The only real use for this term is
when you want to use exit to stop the evaluation, but to still raise the condition past that as
well (in which case, put raise in the plan before exit). The behavior of this raising might be
slightly unpredictable for very odd edge-cases (e.g., if a condition were both a warning and
an error).

Masking

catchr will turn unquoted special terms into functions, but what happens if these unquoted terms are
identical to variables previously declared?
If muffle is the name of a user-defined function, e.g., muffle <-function(x) print("Wooo!"), in
normal R we would expect warning = muffle to make function(x) print("Wooo!") the warning
handler.
However, catchr’s DSL "masks" any symbol that matches one of its reserved terms, and when it
evaluates these symbols, they are converted into strings. For the most part, catchr will warn you
when this happens.
Importantly, catchr does not mask reserved terms when:

• the reserved names are being used as calls, e.g., warning = collect(foo). In these cases,
it will attempt to use a previously defined function collect on foo, and will attempt to use
whatever that evaluates to. The reserved terms are all strings/unquoted bare symbols, so it is
never a problem anyway.

• the input specifically references a namespace/package, such as warning = dplyr::collect.
When the symbol of a special terms is preceded by :: or :::, it will be seen as the function
of that package, and not as the special term collect.

• the reserved terms are used inside a previously defined function. For example, if the user had
defined muffle <-function(x) print("not special"), and fn <-function(x) muffle, us-
ing the argument warning = fn() would not use the special term of muffle.
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catchr_opts Pass in catchr-specific options

Description

catchr offers a number of options for planning condition handling, and the catchr_opts function
provides a way of passing those options to whatever function is handling the planning. If any argu-
ment is left unspecified it defaults to the global defaults (accessible via catchr_default_opts(),
base::options(), or base::getOption()).

Usage

catchr_opts(default_plan = NULL, warn_about_terms = NULL,
bare_if_possible = NULL, drop_empty_conds = NULL)

Arguments

default_plan The default plan for unnamed input arguments. See get_default_plan() for
more details.

warn_about_terms

A logical; if FALSE, will not warn about masking special terms
bare_if_possible

A logical; if TRUE, and no conditions are collected, will return the result of the
evaluated expression as-is, without encompassing named list.

drop_empty_conds

A logical; if TRUE, the sublists for conditions that used collect but didn’t collect
anything will be dropped from the list. Otherwise, they will appear as empty
sublists.

Catchr options

catchr’s options are specified below. The names of the global default option are preceded by
"catchr." so they don’t collide with other packages’ options (i.e., drop_empty_conds can be
accessed via getOption("catchr.drop_empty_conds"):

• default_plan: The default plan that will be used for unnamed arguments (i.e., conditions
specified without plans) to make_plans() or the like. See get_default_plan() for more
details. The original package default is c("collect","muffle").

• warn_about_terms: If one of its reserved terms would mask a previously defined variable
name when catchr is compiling plans, you can specify whether or not a warning will be gen-
erated. The original package default is TRUE, which will warn the user of these occurrences.

• bare_if_possible: When no plans are set to collect conditions, you have the option of
returning the value of the evaluated expression by itself, without being the $value element of
a list. If bare_if_possible is TRUE and no plans collect conditions, it will return the value
without the wrapping list. If one is using catchr extensively, it might be wise to set this option
to FALSE so catchr’s returned values are always consistent. The original package default is
TRUE.
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• drop_empty_conds: If conditions have plans that would collect them but none are raised in
the evaluation of an expression, you have the option of dropping their sublists. For example,
conditions that aren’t warnings, messages, or errors are very rare. If you wanted to return the
"misc" condition sublist only when such conditions were raised, you could do this by setting
the value to TRUE. The original package default is FALSE.

See Also

The default catchr options, set_default_plan(), get_default_plan()

catch_expr Catch conditions

Description

These are function that actually evaluate expression and "catch" the conditions. catch_expr()
evaluates an expression, catching and handling the conditions it raises according to whatever catchr
plans are specified. make_catch_fn() is a function factory that returns a function that behaves like
catch_expr() with the plans already specified.

Plans can be passed in as output from make_plans() or as input that follows the same format as
the input to make_plans().

Usage

catch_expr(expr, ..., .opts = NULL)

make_catch_fn(..., .opts = NULL)

Arguments

expr the expression to be evaluated

... a catchr plan as made by make_plans() or input for plans that follows the same
format as input to make_plans()

.opts The options to be used for the plans (generally passed in using catchr_opts()).
If the input plans were already made by make_plans(), setting this will override
whatever options were specified earlier.

Value

For catch_expr(): The value of the evaluated expression if there isn’t an error and if the plans
don’t force an exit. If getOption("catchr.bare_if_possible") is FALSE (or if any conditions
have been collect), it will return a named list, with the "value" element containing the value of the
evaluated expression and sublists containing any collected conditions.

For make_catch_fn() A function that catches conditions for expressions the same way catch_expr()
would, but with the plans already specified.
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Examples

warner <- function() {
warning("Suppress this!")
"done!"

}

compiled_warning_plans <- make_plans(warning = muffle)
warning_catcher <- make_catch_fn(warning = muffle)
warning_catcher2 <- make_catch_fn(compiled_warning_plans)

# `results` 1-4 are equivalent
results1 <- catch_expr(warner(), warning = muffle)
results2 <- warning_catcher(warner())
results3 <- catch_expr(warner(), compiled_warning_plans)
results4 <- warning_catcher2(warner())

collecting-conditions Collect conditions, without halting processes

Description

One of the most useful aspects of catchr is its ability to catch and ’collect’ the conditions (e.g.,
warnings, errors, messages, etc.) raised by an expression without halting/redoing the evaluation of
that expression. This can be particularly useful in a number of scenarios:

• If you are trying to catch the warning messages from code that takes a long time to run, where
having to restart the whole process from square one would be too costly.

• If you want to collect warnings, messages, and errors from code that is running remotely,
where these conditions would not be returned with the rest of the results, such as with the
future package.

• If you are running lots of code in parallel and want to log all of the conditions within R, such
as in a large-scale power simulation, or with packages such purrr.

Using the collect term lets you do this. When the plan for a condition uses collect, the captured
condition will be added to a list of other conditions of that same type. When the expression is done
being evaluated, catchr will return a named list, where $value is the output of the expression, and
the other named elements are sublists with all their collected conditions. The exact behavior of this
process is determined by options in catchr_opts().

See Also

dispense_collected() to raise the collected conditions and return the bare result
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Examples

one_of_each <- function(with_error) {
rlang::inform("This is a message")
rlang::warn("This is a warning")
if (with_error)
stop("This is an error", call.=FALSE)

"return value!"
}

collecting_plans <- make_plans(message, warning, error,
.opts = catchr_opts(default_plan = c(collect, muffle),

drop_empty_conds = FALSE))

# When the evaluation completes, the "value" element is the value the expression returns
no_error <- catch_expr(one_of_each(FALSE), collecting_plans)
no_error$value

# If it doesn't return, the value is generally NULL
with_error <- catch_expr(one_of_each(TRUE), collecting_plans)
with_error$value

# If the option `drop_empty_conds` == TRUE, then
# sublists without collected condition will be dropped
catch_expr(one_of_each(FALSE), collecting_plans,

.opts = catchr_opts(drop_empty_conds=TRUE))

# If the option `bare_if_possible` == TRUE, then even
# functions that don't use `collect` will return the value
# of the expression as a "value" sublist
catch_expr("DONE", fake_cond = muffle, .opts = catchr_opts(bare_if_possible=FALSE))

default-catchr-options

Default catchr-specific options

Description

catchr’s options for planning condition handling are passed into catchr functions with catchr_opts(),
but when an option isn’t specified in the call, catchr_opts() uses whatever the default for that op-
tion is. You can get and set these global defaults with catchr_default_opts() and do a "factory
reset" on them to restore the original package values with restore_catchr_defaults().

Usage

catchr_default_opts(...)

restore_catchr_defaults(...)
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Arguments

... Default options to get or set. See the Arguments section for details.

Arguments

For catchr_default_opts(), unnamed arguments (unquoted terms / strings of the option names)
will have their current default values returned, similar to getOption(). Named arguments (whose
names are option names) will have their default values set to whatever their value is. If no arguments
are specified, it will return all the current default values.

restore_catchr_defaults() only accepts unnamed arguments (unquoted terms / strings of the
option names). The options specified will have their default values set to the original default pack-
age values. Leaving the arguments empty will result in all the option defaults being reset to their
original values.

See Also

catchr_opts() for what the options mean; get_default_plan() and set_default_plan(),
which are equivalent to catchr_default_opts(default_plan) and catchr_default_opts(default_plan
= ...), respectively.

dispense_collected Return the value after raising all collected conditions

Description

This function takes in the collected conditions list that is the output of catch_expr() or a function
from make_catch_fn(), raises all the conditions that were collected, and then returns the value
the original evaluated expression had returned. This might be useful in situations in which one had
collected conditions from a remote evaluation of an expression, and wishes to raise the conditions
locally.

The way the errors are treated can be changed as well: they can either be raised as-is, displayed on
screen, or raised as warnings.

Usage

dispense_collected(l, treat_errs = c("raise", "display", "warn"))

Arguments

l The results of catch_expr() or a function from make_catch_fn()

treat_errs One of three strings governing how errors are treated: "raise" which will sim-
ply raise errors as they are, "display" which will just print the error messages
on-screen, and "warn" which will raise the errors as warnings.
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extract_display_string

Make a string to display from a condition

Description

Turn a condition into a string comprised of its message, name, and call, in a variety of configura-
tions.

Usage

extract_display_string(cond, cond_name = NA, include_call = T)

Arguments

cond A condition to display or turn into a string
cond_name Either the name of the condition you want to display, NA if you want the condi-

tion name to be assigned by default (the first class of the condition), or NULL if
you don’t want the condition type displayed at all.

include_call A logical; if FALSE the call won’t be included in the string even if present in the
condition.

Value

A string

first_muffle_restart Find the first ’mufflable’ restart

Description

This function attempts to return the first available restart with the string "muffle" in its name. If the
condition is an error, it will attempt to find the first restart named "return_error" (used internally in
catchr to return a NULL value). If the condition is an "interrupt", it will attempt to find the first restart
named "resume". If no such restarts can be found, it returns NULL.

Usage

first_muffle_restart(cond)

Arguments

cond A condition

Value

A restart or NULL if none can be found.
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give_newline Make a string end with a newline character

Description

give_newline will append a line return (’\n’) to the end of a string if it doesn’t already end with
one. There is also the option to remove any trailing whitespace before doing so.

Usage

give_newline(s, trim = FALSE)

Arguments

s A string.

trim Indicates whether to remove trailing whitespace before adding newline.

has_handler_args Make sure a function can be a handler

Description

This makes sure that a given function doesn’t require more than one argument to be passed into it,
and takes in at least one argument (which is what a handler needs).

Usage

has_handler_args(fn)

Arguments

fn A function that is a candidate for being a handler
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is_catchr_plan Check if list is a catchr plan

Description

Currently, this function just checks whether a list was made via make_plans(). It does so simply
by looking at the class of the list.

In the future, catchr plans may become more complicated and this will become a more useful part
of the API.

Usage

is_catchr_plan(x)

Arguments

x An object to test

make_plans Making catchr plans

Description

Customizing how conditions are handled in catchr is done by giving catchr ’plans’ for when it
encounters particular conditions. These plans are essentially just lists of functions that are called in
order, and that take in the particular condition as an argument.

However, since catchr evaluates things slightly differently than base R, the user input to make these
plans has to first be passed into make_plans (or, for setting the default plan, set_default_plan()).
make_plans also lets users specify options for how they want these plans to be evaluated with the
.opts argument (see catchr_opts() for more details).

See the ’Input’ section below and the examples for how to use make_plans.

Usage

make_plans(..., .opts = catchr_opts())

Arguments

... Named and unnamed arguments for making plans. See ’Input’ for more detail.

.opts The options to be used for the plan. Generally passed in using catchr_opts().
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Input

User input to make_plans is very similar to how one makes handlers for base::withCallingHandlers(),
base::tryCatch() and rlang’s rlang::with_handlers(), albeit with some important differ-
ences.

Like the functions above, the name of each argument determines which type of condition it will be
the plan for. Hence, warnings = fn will apply the fn function to the warnings raised in evaluating
expr.

However, unnamed arguments are also accepted: the value of any unnamed arguments will be
treated as the type of a condition, which will then have the default plan assigned to it, as specified
either in .opts = catchr_opts(...) or via getOption("catchr.default_plan"). Unnamed ar-
guments must be either strings or unquoted expressions which will then be converted to strings.
Currently, unnamed arguments are never evaluated, so cannot be calls that evaluate to strings.

However, this may change in future versions of catchr.

Passing input in programmatically

make_plans supports quasiquotation, so if for some reason one wishes to pass input into make_plans
via a different function, programmatically, etc., one may do so by splicing in quosures. See below
for examples.

Examples

# ### INPUT EXAMPLES ###########################

# Named arguments --------------------------------------

# * single functions:
p <- make_plans(warning = str, message = function(x) print(x))

# * single unquoted expressions and strings
# (must match catchr's special reserved terms, e.g., 'muffle', 'exit', etc.):
p <- make_plans(message = muffle, condition = "collect")

# * lists or vectors of any combinatin of the above:
p <- make_plans(error = list(collect, "exit"),

message = c(cat, "muffle"))

# * anything that evaluates to the above:
fn <- function() { list(cat, "muffle") }
p <- make_plans(message = fn() )

# Unnamed arguments ----------------------

# * single strings:
p <- make_plans("warning","condition")

# * unquoted expressions:
p <- make_plans(warning,condition)

# * Currently, does NOT accept anything that evaluates to strings:
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# (However, this may change in the future)
## Not run:
string_fn <- function() { "condition" }
make_plans(string_fn()) # will currently raise error

## End(Not run)

# Mixes of both --------------------------
p <- make_plans("warning", message = c(towarning, muffle),

condition = print)

# ### Quasiquotation and splicing in the arguments ###############

q <- rlang::quo(function(cond) {print(cond)})
name <- "warning"

print_plan <- make_plans(!!name := !!q)

# 'message' will be assigned the default plan
qs <- rlang::quos(warning = muffle, error = exit, message)
random_plan <- make_plans(!!!qs)

print.catchr_compiled_plans

View and print ’compiled’ catchr plans

Description

’Compiled’ catchr plans returned by make_plans() look very ugly "naked". These functions make
plans understandable at a single glance.

Usage

## S3 method for class 'catchr_compiled_plans'
print(x, ..., show_opts = FALSE,
total_len = getOption("width"), show_full = FALSE)

## S3 method for class 'catchr_compiled_plans'
summary(object, ...)

Arguments

x The "compiled" plans, i.e., from make_plans()

... Currently unused.

show_opts A logical; if TRUE, prints the catchr options set for the plans.

total_len An integer; sets the total number of characters each line can span before being
cut off with "..."
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show_full A logical; if TRUE, will print out the full length of each line.

object The "compiled" plans, i.e., from make_plans()

reserved-conditions Special condition names

Description

In addition to having reserved terms for use in making condition-handling plans, catchr also places
special meaning on two types of conditions, misc and last_stop. The misc is very useful,
last_stop is something most users should probably avoid.

The misc condition

The names of the named arguments passed to make_plans correspond to the type of conditions
each plan is designed for—specifically, if any of a condition’s classes match a plan’s name, it will
be caught by that plan. By default, all conditions have a class of "condition".

There is nothing special about a condition with a class of "misc" in base R, although there are no
normal base R functions that would automatically raise such a condition. However, in catchr, using
the name misc for a plan means that this plan will be applied to any condition that does not already
have a plan specified for it. Consider the following example:

plans <-make_plans(warning = collect,message = collect,error = exit,misc = collect)

These plans will collect every non-error condition into three sublists, one for warnings, one for
messages, and one for everything else—"misc". If one used condition = collect instead of misc,
warnings and messages would be collected twice: once in each of their respective sublists, and
another time in "condition", since each type also has that class. misc will not catch warnings or
messages in the scenario above.

Since ~99% of all conditions encountered in the wild will be errors, warnings, and messages, misc
is just a short, handy way of making sure you catch anything more "exotic". If you’re dealing with
conditions that have "misc" as a class, you’re probably at an advanced enough stage where you
shouldn’t be using catchr. But if you are in this circumstance and feel strongly otherwise, feel free
to make a feature request on the GitHub repo.

The last_stop condition

This condition name is reserved for exit, user_exit() and exit_with(). There is basically zero
chance any code other than catchr will ever raise a condition of "last_stop", so this shouldn’t be
a problem, but until catchr becomes more mature, do not use this name for any condition or plan.

https://github.com/burchill/catchr
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set_default_plan Get/set the input for the default catchr plan

Description

These functions allow the user to set and retrieve the input that will be assigned to any conditions
passed to make_plans() without plans (i.e., as unnamed arguments). Using the same inputting
style as make_plans(), the argument new_plan will essentially be treated the same way a single
named argument would be in make_plans(), without actually having a name/specific condition.

Usage

set_default_plan(new_plan)

get_default_plan()

Arguments

new_plan The input (in the style of named arguments to make_plans()) that will become
the input of default plan.

Value

set_default_plan() will invisibly return a "cleaned up" version of the input (i.e., evaluated, and
with the unquoted terms replaced with strings), which is what will also be returned by get_default_plan()
until a new default is set.

See Also

default catchr options

user_display Display conditions in output terminal

Description

These functions make a catchr plan immediately print the condition to the output terminal, similar
to how display works. But unlike display and most catchr functions or special reserved terms,
these functions are meant to be used in user-defined functions of a plan.

user_display() immediately displays a condition n the output terminal, and if crayon is installed,
will style the text with whatever crayon styling is supplied (either as a crayon function or a char-
acter vector for crayon::combine_styles()). This function should be used within a custom func-
tion, i.e., function(x) {user_display(x,"pink")}, and not called by itself, since when it is
called, it doesn’t evaluate to a function, string or unquoted term, which are required input types to a
catchr plan.

display_with can be used at the "top" level of a plan, since it returns a function that calls user_display().
Thus user_display("pink") is equivalent to the example above.
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Usage

user_display(cond, crayon_style, ...)

display_with(crayon_style, ...)

Arguments

cond A condition one wishes to display

crayon_style If crayon is installed, this can be either a crayon style (e.g., crayon::green(),
blue$bold, etc.) or a character vector for crayon::combine_styles(). These
styles will be applied to the output.

... Parameters to pass into extract_display_string(); namely cond_name (which
controls how the condition is introduced) and include_call, which determines
whether the call is included.

See Also

the display special term, which essentially uses a version of user_display; user_exit() and
exit_with() for parallel functions for the exit special term, and beep_with() for a parallel func-
tion for the beep special term.

Examples

make_warnings <- function() {
warning("This warning has a call")
warning("This warning does not", call. = FALSE)
invisible("done")

}

# The crayon stylings won't work if `crayon` isn't installed.
catch_expr(make_warnings(), warning = c(display_with("pink"), muffle))
catch_expr(make_warnings(),

warning = c(display_with(c("pink","bold"), include_call = FALSE), muffle))
catch_expr(make_warnings(), warning = c(display_with("inverse", cond_name=NULL), muffle))
# If you don't want to use crayon styles, just use `NULL`
catch_expr(make_warnings(), warning = c(display_with(NULL, cond_name="Warning"), muffle))

# You can get a lot of weird crayon styles
if (requireNamespace("crayon", quietly = TRUE) == TRUE) {

freaky_colors <- crayon::strikethrough$yellow$bgBlue$bold$blurred
catch_expr(make_warnings(),

warning = c(function(x) user_display(x, freaky_colors), muffle))
}
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user_exit Force an exit

Description

These functions force a catchr plan to immediately exit the evaluation of an expression (and the
rest of the plan), similar to how exit works. But unlike exit and most catchr functions or special
reserved terms, these functions are meant to be used in the user-defined functions of a plan.

user_exit() forces the code to exit, and after exiting, evaluate whatever expression was supplied.
This function should be used within a custom function, i.e., function(x) {user_exit(print("DONE!"))}.

exit_with() can be used at the "top" level of a plan, since it returns a function that calls user_exit().
Thus exit_with(print("DONE!")) is equivalent to the example above. Additionally, if as_fn is
set to TRUE, it will attempt to coerce expr into a function via rlang’s rlang::as_function().
If expr can be converted, exit_with() will return a function that takes in a condition, modifies
it via expr, and then supplies this to user_exit. E.g., exit_with(~.$message) is equivalent to
function(cond) {user_exit(cond$message)}

Usage

user_exit(expr = NULL)

exit_with(expr, as_fn = FALSE)

Arguments

expr An optional expression which if specified, will be evaluated after user_exit
exits the evaluation.

as_fn A logical; if TRUE, catchr will try to convert expr into a function via rlang::as_function()
which will be applied to the condition. It will fall back to normal behavior if this
coercion raises an error.

See Also

the exit special term, which essentially becomes exit_with(NULL); user_display() and display_with()
for parallel functions for the display special term, and beep_with() for a parallel function for the
beep special term..

Examples

yay <- catch_expr({warning("oops"); "done!"},
warning = exit_with("YAY"))

# This won't work, since `user_exit("YAY")` doesn't evaluate to a function/string
## Not run:
yay <- catch_expr({warning("oops"); "done!"},

warning = user_exit("YAY"))
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## End(Not run)

check <- function(cond) {
if (inherits(cond, "simpleWarning"))
user_exit(rlang::warn(paste0("Check it: ", cond$message)))

else
invokeRestart(first_muffle_restart(cond))

NULL
}

result <- catch_expr(
{ rlang::warn("This will be muffled")

warning("This won't be muffled") },
warning = check)

# Notice that `result` takes whatever the last (invisibly)
# returned value is. Here, that's the message from the warning
result

# If you don't want to accidentally assign what is returned by `user_exit`,
# either add `NULL` to the end of the expresion:
result2 <- catch_expr(

{ rlang::warn("This will be muffled")
warning("This won't be muffled")},

warning = function(x) { user_exit({ warning("This won't be assigned"); NULL})})
result2

# Or you can just do the assignment _within_ the expression being evaluated:
result3 <- NULL
catch_expr({result3 <- {

rlang::warn("This will be muffled")
warning("This won't be muffled")}},

warning = check)
result3
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