
Package ‘carrier’
October 16, 2018

Title Isolate Functions for Remote Execution

Version 0.1.0

Description Sending functions to remote processes can be wasteful of
resources because they carry their environments with them. With
the carrier package, it is easy to create functions that are
isolated from their environment. These isolated functions, also
called crates, print at the console with their total size and can
be easily tested locally before being sent to a remote.

Depends R (>= 3.1.0)

Imports pryr, rlang (>= 0.2.2)

Suggests testthat, covr

License GPL-3

Encoding UTF-8

LazyData true

ByteCompile true

URL https://github.com/r-lib/carrier

BugReports https://github.com/r-lib/carrier/issues

RoxygenNote 6.1.0

NeedsCompilation no

Author Lionel Henry [aut, cre],
RStudio [cph]

Maintainer Lionel Henry <lionel@rstudio.com>

Repository CRAN

Date/Publication 2018-10-16 19:10:20 UTC

R topics documented:
crate . 2
is_crate . 3

Index 4

1

https://github.com/r-lib/carrier
https://github.com/r-lib/carrier/issues

2 crate

crate Crate a function to share with another process

Description

crate() creates functions in a self-contained environment (technically, a child of the base environ-
ment). This has two advantages:

• They can easily be executed in another process.

• Their effects are reproducible. You can run them locally with the same results as on a different
process.

Creating self-contained functions requires some care, see section below.

Usage

crate(.fn, ...)

Arguments

.fn A fresh formula or function. "Fresh" here means that they should be declared
in the call to crate(). See examples if you need to crate a function that is
already defined. Formulas are converted to purrr-like lambda functions using
rlang::as_function().

... Arguments to declare in the environment of .fn. If a name is supplied, the
object is assigned to that name. Otherwise the argument is automatically named
after itself.

Creating self-contained functions

• They should call package functions with an explicit :: namespace. This includes packages in
the default search path with the exception of the base package. For instance var() from the
stats package must be called with its namespace prefix: stats::var(x).

• They should declare any data they depend on. You can declare data by supplying additional
arguments or by unquoting objects with !!.

Examples

You can create functions using the ordinary notation:
crate(function(x) stats::var(x))

Or the formula notation:
crate(~stats::var(.x))

Declare data by supplying named arguments. You can test you have
declared all necessary data by calling your crated function:
na_rm <- TRUE
fn <- crate(~stats::var(.x, na.rm = na_rm))

is_crate 3

try(fn(1:10))

For small data it is handy to unquote instead. Unquoting inlines
objects inside the function. This is less verbose if your
function depends on many small objects:
fn <- crate(~stats::var(.x, na.rm = !!na_rm))
fn(1:10)

One downside is that the individual sizes of unquoted objects
won't be shown in the crate printout:
fn

The function or formula you pass to crate() should defined inside
the crate() call, i.e. you can't pass an already defined
function:
fn <- function(x) toupper(x)
try(crate(fn))

If you really need to crate an existing function, you can
explicitly set its environment to the crate environment with the
set_env() function from rlang:
crate(rlang::set_env(fn))

is_crate Is an object a crate?

Description

Is an object a crate?

Usage

is_crate(x)

Arguments

x An object to test.

Index

crate, 2

is_crate, 3

rlang::as_function(), 2

4

	crate
	is_crate
	Index

