
Package ‘carat’
May 17, 2020

Type Package

Title Covariate-Adaptive Randomization for Clinical Trials

Version 1.1

Date 2020-05-15

Maintainer Xiaoqing Ye <ye_xiaoq@163.com>

Description
Provides functions and command-line user interface to generate allocation sequence by covari-
ate-adaptive randomization for clinical trials. The package currently supports six covariate-
adaptive randomization procedures. Three hypothesis testing methods that are valid and ro-
bust under covariate-adaptive randomization are also available in the package to facilitate the in-
ference for treatment effect under the included randomization procedures. Addition-
ally, the package provides comprehensive and efficient tools to allow one to evaluate and com-
pare the performance of randomization procedures and tests based on various criteria.

License GPL (>= 2)

Imports Rcpp (>= 1.0.4), ggplot2 (>= 3.3.0), gridExtra (>= 2.3),
stringr (>= 1.4.0)

Suggests dplyr (>= 0.8.5)

Encoding UTF-8

LazyData yes

Depends R (>= 3.6.0)

LinkingTo Rcpp, RcppArmadillo

NeedsCompilation yes

Author Fuyi Tu [aut],
Xiaoqing Ye [aut, cre],
Wei Ma [aut, ths],
Feifang Hu [aut, ths]

Repository CRAN

Date/Publication 2020-05-17 00:30:05 UTC

1

2 carat-package

R topics documented:
carat-package . 2
AdjBCD . 3
AdjBCD.sim . 5
AdjBCD.ui . 7
boot.test . 8
compPower . 10
compRand . 11
corr.test . 13
DoptBCD . 15
DoptBCD.sim . 18
DoptBCD.ui . 19
evalPower . 20
evalRand . 22
evalRand.sim . 25
getData . 27
HuHuCAR . 29
HuHuCAR.sim . 32
HuHuCAR.ui . 33
pats . 34
PocSimMIN . 35
PocSimMIN.sim . 38
PocSimMIN.ui . 40
print.carandom . 41
rand.test . 42
StrBCD . 44
StrBCD.sim . 47
StrBCD.ui . 48
StrPBR . 49
StrPBR.sim . 52
StrPBR.ui . 53

Index 55

carat-package carat-package: Covariate-Adaptive Randomization for Clinical Trials

Description

Provides functions and a command-line user interface to generate allocation sequences for clinical
trials with covariate-adaptive randomization methods. It currently supports six different covariate-
adaptive randomization procedures, including stratified randomization, minimization, and a general
family of designs proposed by Hu and Hu (2012) <doi:10.1214/12-AOS983>. Three hypothesis
testing methods, all valid and robust under covariate-adaptive randomization are also included in
the package to facilitate the inference for treatment effects under the included randomization pro-
cedures. Additionally, the package provides comprehensive and efficient tools for the performance
evaluation and comparison of randomization procedures and tests based on various criteria.

AdjBCD 3

Acknowledgement

This work was supported by the Fundamental Research Funds for the Central Universities, and the
Research Funds of Renmin University of China (Grant No. 2020030092).

Author(s)

Fuyi Tu <fuyi.tu@ruc.edu.cn>;Xiaoqing Ye <ye_xiaoq@163.com>; Wei Ma <mawei@ruc.edu.cn>;
Feifang Hu <feifang@gwu.edu>.

References

Atkinson A C. Optimum biased coin designs for sequential clinical trials with prognostic factors[J].
Biometrika, 1982, 69(1): 61-67. <doi:10.2307/2335853>

Baldi Antognini A, Zagoraiou M. The covariate-adaptive biased coin design for balancing clinical
trials in the presence of prognostic factors[J]. Biometrika, 2011, 98(3): 519-535. <doi:10.1093/biomet/asr021>

Hu Y, Hu F. Asymptotic properties of covariate-adaptive randomization[J]. The Annals of Statistics,
2012, 40(3): 1794-1815. <doi:10.1214/12-AOS983>

Ma W, Hu F, Zhang L. Testing hypotheses of covariate-adaptive randomized clinical trials[J]. Jour-
nal of the American Statistical Association, 2015, 110(510): 669-680. <doi:10.1080/01621459.2014.922469>

Ma W, Qin Y, Li Y, et al. Statistical Inference for Covariate-Adaptive Randomization Procedures[J].
Journal of the American Statistical Association, 2019 (in press): 1-21. <doi:10.1080/01621459.2019.1635483>

Pocock S J, Simon R. Sequential treatment assignment with balancing for prognostic factors in the
controlled clinical trial[J]. Biometrics, 1975: 103-115. <doi:10.2307/2529712>

Rosenberger W F, Lachin J M. Randomization in clinical trials: theory and practice[M]. John Wiley
& Sons, 2015. <doi:10.1002/9781118742112>

Shao J., Yu, X. Validity of tests under covariate-adaptive biased coin randomization and generalized
linear models[J]. Biometrics, 2013, 69(4), 960-969. <doi:10.1111/biom.12062>

Shao J, Yu X, Zhong B. A theory for testing hypotheses under covariate-adaptive randomization[J].
Biometrika, 2010, 97(2): 347-360. <doi:10.1093/biomet/asq014>

Zelen M. The randomization and stratification of patients to clinical trials[J]. Journal of chronic
diseases, 1974, 27(7): 365-375. <doi:10.1016/0021-9681(74)90015-0>

AdjBCD Covariate-adjusted Biased Coin Design

Description

Allocates patients to one of two treatments based on covariate-adjusted biased coin design as pro-
posed by Baldi Antognini A, Zagoraiou M (2011) <Doi:10.1093/biomet/asr021>.

Usage

S3 method for class 'carandom'
AdjBCD(data, a = 2)

4 AdjBCD

Arguments

data a dataframe. A row of the dataframe contains the covariate profile of a certain
patient.

a a design parameter. The default is 2. As a goes to∞, the design becomes more
deterministic.

Details

Consider I covaraites and mi levels for the ith covariate. Tj is the assignment of the jth pa-
tient and Zj = (k1, . . . , kI) indicates the covariate profile of the jth patient. For convenience,
(k1, . . . , kI)and(i; ki) denote stratum and margin respectively. Dn(.) is the difference between
numbers of assigned patients in treatment 1 and treatment 2 at the corresponding level after n pa-
tients have been assigned.

Let F a be a decreasing and symmetric function of Dn(.), which depends on a design parameter
a ≥ 0. Then the probability of allocating the (n+ 1)th patient to treatment 1 is F a(Dn(.)), where

F a(x) =
|x|a

|a|a + 1
,

for x ≤ −1,
F a(x) = 1/2,

for x = 0, and

F a(x) =
1

|x|a + 1
,

for x ≥ 1. As a goes to∞, the design becomes more deteministic.

Details of the procedure can be found in Baldi Antognini and M. Zagoraiou (2011).

Value

It returns an object of class "carandom".

The function print is used to obtain results. The generic accessor functions Cov_Assig, Diff,
data, All strata and others extract various useful features of the value returned by AdjBCD.

An object of class "carandom" is a list containing at least the following components:

cov_num number of covariates.

n number of patients.

Cov_Assign a (cov_num + 1) * n matrix containing covariate profiles for all patients and the
corresponding assignments. The ith column represents the ith patient. The first
cov_num rows include patients’ covariate profiles, and the last row contains the
assignment.

All strata a matrix containing all strata involved.

Diff a matrix with only one column. There are final differences at the overall, within-
stratum, and marginal levels.

Data Type data type. Real or Simulated.

AdjBCD.sim 5

References

Baldi Antognini A, Zagoraiou M. The covariate-adaptive biased coin design for balancing clinical
trials in the presence of prognostic factors[J]. Biometrika, 2011, 98(3): 519-535.

See Also

See AdjBCD.sim for allocating patients with covariate data generating mechanism; See AdjBCD.ui
for the command-line user interface.

Examples

a simple use
Real Data
create a dataframe
df <- data.frame("gender" = sample(c("female", "male"), 1000, TRUE, c(1 / 3, 2 / 3)),

"age" = sample(c("0-30", "30-50", ">50"), 1000, TRUE),
"jobs" = sample(c("stu.", "teac.", "others"), 1000, TRUE),
stringsAsFactors = TRUE)

Res <- AdjBCD(df, a = 2)
view the output
Res

view all patients' profile and assignments
Res$Cov_Assig

Simulated Data
n <- 1000
cov_num <- 3
level_num <- c(2, 3, 5)
Set pr to follow two tips:
#(1) length of pr should be sum(level_num);
#(2) sum of probabilities for each margin should be 1.
pr <- c(0.4, 0.6, 0.3, 0.4, 0.3, rep(0.2, times = 5))
set the design parameter
a <- 1.8
obtain result
Res.sim <- AdjBCD.sim(n, cov_num, level_num, pr, a)

view the assignments of patients
Res.sim$Cov_Assig[cov_num + 1,]
view the differences between treatment 1 and treatment 2 at all levels
Res.sim$Diff

AdjBCD.sim Covariate-adjusted Biased Coin Design with Covariate Data Gener-
ating Mechanism

6 AdjBCD.sim

Description

Allocates patients to one of two treatments based on the covariate-adjusted biased coin design as
proposed by Baldi Antognini A, Zagoraiou M (2011) <Doi:10.1093/biomet/asr021>, by simulating
the covariates-profile under the assumption of independence between covariates and levels within
each covariate.

Usage

S3 method for class 'carandom'
AdjBCD.sim(n = 1000, cov_num = 2, level_num = c(2, 2),

pr = rep(0.5, 4), a = 2)

Arguments

n the number of patients. The default is 1000.

cov_num the number of covariates. The default if 2.

level_num a vector of level numbers for each covariate. Hence the length of level_num
should be equal to the number of covariates. The default is c(2,2).

pr a vector of probabilities. Under the assumption of independence between co-
variates, pr is a vector containing probabilities for each levels of each covari-
ates. The length of pr should correspond to the number of all levels, and the
vector sum of pr should be equal to cov_num. The default is pr = rep(0.5,4),
which implies that cov_num = 2, and level_num = c(2,2).

a a design parameter. The default is 2. As a goes to∞, the design becomes more
deterministic.

Details

See AdjBCD.

Value

See AdjBCD.

See Also

See AdjBCD for allocating patients with complete covariate data; See AdjBCD.ui for the command-
line user interface.

AdjBCD.ui 7

AdjBCD.ui Command-line User Interface Using Covariate-adjusted Biased Coin
Design

Description

A call to the user-interface function for allocation of patients to one of two treatments, using
covariate-adjusted biased coin design, as proposed by Baldi Antognini A, Zagoraiou M (2011)
<Doi:10.1093/biomet/asr021>.

Usage

S3 method for class 'carseq'
AdjBCD.ui(path, folder = "AdjBCD")

Arguments

path the path in which a folder used to store variables will be created.

folder name of the folder. If it is the default, a folder named "AdjBCD" will be created.

Details

See AdjBCD.

Value

It returns an object of class "carseq".

The function print is used to obtain results. The generic accessor functions assignment, covariate,
cov_num, cov_profile and others extract various useful features of the value returned by AdjBCD.ui.

Note

This function provides a command-line user interface, and users should follow the prompts to enter
data including covariates as well as levels for each covariate, design parameter a and the covariate
profile of the new patient.

See Also

See AdjBCD for allocating patients with complete covariate data; See AdjBCD.sim for allocating
patients with covariate data generating mechanism.

8 boot.test

boot.test Bootstrap t-test

Description

Performs bootstrap t-test on treatment effects. This test is proposed by Shao et al. (2010) <doi:10.1093/biomet/asq014>.

Usage

boot.test(data, B = 200, method = HuHuCAR, conf = 0.95, ...)

Arguments

data a dataframe. It consists of patients’ profiles, treatment assignments and outputs.
See getData.

B an integer. It indicates the number of bootstrap samples. The default is 200.

method the method of randomization to be used in allocating patients. The default
randomization method HuHuCAR uses Hu and Hu’s general covariate-adaptive
randomization; the alternatives are PocSimMIN, StrBCD, StrPBR, DoptBCD, and
AdjBCD.

conf confidence level of the interval. The default is 0.95.

... arguments to be passed to methods. These depend on the method used and the
following arguments are accepted:

omega a vector of weights at the overall, within-stratum, and maginal levels. It
is required that at least one element is larger than 0. Note that omega is only
needed when HuHuCAR is to be used.

weight a vector of weights for marginal imbalances. It is required that at least
one element is larger than 0. Note that weight is only needed when PocSimMIN
is to be used.

p the probabillty of assigning one patient to treatment 1. p should be larger than
1/2 to obtain balance. Note that p is only needed when "HuHuCAR","PocSimMIN"
and "StrBCD" are to be used.

a a design parameter. As a goes to∞, the design becomes more deterministic.
bsize the block size for stratified randomization. It is required to be a multiple

of 2. Note that bsize is only needed when "StrPBR" is to be used.

Details

The bootstrap t-test is described as follows:

1) Generate bootstrap data (Y ∗1 , Z
∗
1), . . . , (Y ∗n , Z

∗
n) as a simple random sample with replacement

from the original data (Y1, Z1), . . . , (Yn, Zn), where Yi denotes the outcome and Zi denotes the
profile of the ith patient.

boot.test 9

2) Perform covariate-adaptive procedures on the patients’ profiles to obtain new treatment assign-
ments T ∗1 , . . . , T

∗
n , and define

θ̂∗ = − 1

n∗1

n∑
i=1

(T ∗i − 2)× Y ∗i −
1

n∗0

n∑
i=1

(T ∗i − 1)× Yi

where n∗1 is the number of patients assigned to treatment 1 and n∗0 is the number of patients assigned
to treatment 2.

3) Repeat step 2 B times to generate B independent boostrap samples to obtain θ̂∗b , b = 1, . . . , B.
The variance of Ȳ1 − Ȳ0 can then be approximated by the sample variance of θ̂∗b .

Value

It returns an object of class "htest".

The function print is used to obtain results. The generic accessor functions statistic, p.value,
conf.int and others extract various useful features of the value returned by boot.test.

An object of class "htest" is a list containing at least the following components:

data.name a character string giving the name(s) of the data.

statistic the value of the t-statistic.

pval the p-value of the test,the null hypothesis is rejected if p-value is less than the
pre-determined significance level.

conf.int a confidence interval under the chosen level conf for the difference in treatment
effect between treatment 1 and treatment 2.

estimate the estimated treatment effect difference between treatment 1 and treatment 2.

method a character string indicating what type of test was performed.

References

Shao J, Yu X, Zhong B. A theory for testing hypotheses under covariate-adaptive randomization[J].
Biometrika, 2010, 97(2): 347-360.

Examples

#Suppose the data used is patients' profile from real world,
while it is generated here. Data needs to be preprocessed
and then get assignments following certain randomization.
set.seed(100)
df<- data.frame("gender" = sample(c("female", "male"), 100, TRUE, c(1 / 3, 2 / 3)),

"age" = sample(c("0-30", "30-50", ">50"), 100, TRUE),
"jobs" = sample(c("stu.", "teac.", "other"), 100, TRUE, c(0.4, 0.2, 0.4)),
stringsAsFactors = TRUE)

##data preprocessing
data.pd <- StrPBR(data = df, bsize = 4)$Cov_Assig

#Then we need to combine patients' profiles and outcomes after randomization and treatments.
outcome = runif(100)
data.combined = data.frame(rbind(data.pd,outcome), stringsAsFactors = TRUE)

10 compPower

#run the bootstrap t-test
B = 200
Strbt = boot.test(data.combined, B, StrPBR, bsize = 4)
Strbt

compPower Comparison of Powers for Different Tests under Different Randomiza-
tion methods

Description

Compares the power of tests under different randomization methods and treatment effects through
matrices and plots.

Usage

compPower(powers, diffs, testname)

Arguments

powers a list. Each argument consists the power generated by evalPower in this pack-
age or by other sources. The length of each argument must match.

diffs a vector. It contains values of differences in treatment effects. The length of this
argument and the length of each argument of powers must match.

testname a vector. Each element is the name of test and randomization method used.
For example, when applying rand.test under HuHuCAR and corr.test under
HuHuCAR, it can be c('HH.rand','HH.corr'). The length of this argument
must match the length of diffs.

Value

This function returns a list. The first element is a matrix consisting of powers of chosen tests under
different values of treatment effects. The second element of the list is a plot of powers. diffs forms
the vertical axis of the plot.

Examples

##settings
set.seed(100)
n = 1000
cov_num = 5
level_num = c(2,2,2,2,2)
pr = rep(0.5,10)
beta = c(1,4,3,2,5)
di = seq(0,0.5,0.1)
sigma = 1
type = "linear"

compRand 11

p=0.85
Iternum = 10 #<<for demonstration,it is suggested to be around 1000
sl = 0.05
weight = rep(0.1,5)

#comparison of corrected t-test under StrBCD and PocSim
##data generation
library("ggplot2")
Strctp=evalPower(n,cov_num,level_num,pr,type,beta,di,

sigma,Iternum,sl,StrBCD,corr.test,FALSE,p)
PSctp=evalPower(n,cov_num,level_num,pr,type,beta,di,sigma,

Iternum,sl,PocSimMIN,corr.test,FALSE,weight,p)
powers = list(Strctp,PSctp)
testname = c("StrBCD.corr","PocSimMIN.corr")

#get plot and matrix for comparison
cp = compPower(powers,di,testname)
cp

compRand Compare Different Randomization Procedures via Tables and Plots

Description

Compares randomization procedures based on several different quantities of imbalances. Among all
included randomization procedures of class "careval", two or more procedures can be compared
in this function.

Usage

S3 method for class 'carcomp'
compRand(...)

Arguments

... objects of class "careval".

Details

The primary goal of using covariate-adaptive randomization in practice is to achieve balance with
respect to the key covariates and to the overall treatment assignments. We choose four rules to mea-
sure the absolute imbalances at overall, marginal and withinn-stratum levels, which are maximal,
95%quantile, median and mean of the absolute imbalances at different aspects.

(1) Maximal
max

i=1,...,n
|Dn(·)|.

(2) 95% quantile
|Dd0.95ne(·)|.

12 compRand

(3) Median

(|Dn(·)|) = |D(n+1)/2(·)|

for n is odd;

(|Dn(·)|) =
1

2
(|D(n/2)(·)|+ |D(n/2+1)(·)|)

for n is even.

(4) Mean
1

n

n∑
j=1

|Dj(·)|.

The Monte Carlo method is used to calculate the four types of imbalances.

Value

It returns an object of class "carcomp".

The function print is used to obtain results. The generic accessor functions Assig, Diff, data,
All strata and others extract various useful features of the value returned by compRand.

An object of class "carcomp" is a list containing at least the following components:

Overall Imbalances

a matrix containing maximum, 95%-quantile, median, mean, and loss of abso-
lute overall imbalances for all the input methods.

Marginal Imbalances

a matrix containing maximum, 95%-quantile, median, mean, and loss of abso-
lute marginal imbalances for all the input methods.

Within-stratum Imbalances

a matrix containing maximum, 95%-quantile, median, mean, loss of absolute
imbalances, and also containing mean absolute imbalances of the strata with i
patients falling in, where i = 1, . . . , bsize for all the input methods.

References

Atkinson A C. Optimum biased coin designs for sequential clinical trials with prognostic factors[J].
Biometrika, 1982, 69(1): 61-67.

Baldi Antognini A, Zagoraiou M. The covariate-adaptive biased coin design for balancing clinical
trials in the presence of prognostic factors[J]. Biometrika, 2011, 98(3): 519-535.

Hu Y, Hu F. Asymptotic properties of covariate-adaptive randomization[J]. The Annals of Statistics,
2012, 40(3): 1794-1815.

Pocock S J, Simon R. Sequential treatment assignment with balancing for prognostic factors in the
controlled clinical trial[J]. Biometrics, 1975: 103-115.

Shao J, Yu X, Zhong B. A theory for testing hypotheses under covariate-adaptive randomization[J].
Biometrika, 2010, 97(2): 347-360.

Zelen M. The randomization and stratification of patients to clinical trials[J]. Journal of chronic
diseases, 1974, 27(7): 365-375.

corr.test 13

See Also

See evalRand or evalRand.sim to evaluate a specific randomization procedure.

Examples

Compare stratified permuted block randomization and Hu and Hu's general CAR
cov_num <- 2
level_num <- c(2, 2)
pr <- rep(0.5, 4)
n <- 500
N <- 20 # <<adjust according to CPU
bsize <- 4
set weight for Hu and Hu's method, it satisfies
(1)Length should equal to cov_num
omega <- c(1, 2, 1, 1)
Assess Hu and Hu's general CAR
Obj1 <- evalRand.sim(n = n, N = N, Replace = FALSE, cov_num = cov_num,

level_num = level_num, pr = pr, method = "HuHuCAR",
omega, p = 0.85)

Assess stratified permuted block randomization
Obj2 <- evalRand.sim(n = n, N = N, Replace = FALSE, cov_num = cov_num,

level_num = level_num, pr = pr, method = "StrPBR",
bsize)

RES <- compRand(Obj1, Obj2)

corr.test Corrected t-test

Description

Performs corrected t-test on treatment effects. This test follows the idea of Ma et al. (2015)
<doi:10.1080/01621459.2014.922469>.

Usage

corr.test(data, conf = 0.95)

Arguments

data a dataframe. It consists of patients’ profiles, treatment assignments and outputs.
See getData.

conf confidence level of the interval. The default is 0.95.

14 corr.test

Details

When the working model is the true underlying linear model, and the chosen covariate-adaptive
design achieves that the overall imbalance and marginal imbalances for all covariates are bounded
in probability, we can derive the asymptotic distribution under the null distribution, where the treat-
ment effect of each group is the same. Subsequently, we can replace the variance estimator in
a simple two sample t-test with an adjusted variance estimator. Details can be found in Ma et
al.(2015).

Value

It returns an object of class "htest".

The function print is used to obtain results. The generic accessor functions statistic, p.value,
conf.int and others extract various useful features of the value returned by corr.test.

An object of class "htest" is a list containing at least the following components:

data.name a character string giving the name(s) of the data.

statistic the value of the t-statistic.

p.value the p-value of the test,the null hypothesis is rejected if p-value is less than sl.

conf.int a confidence interval under chosen level conf for the difference in treatment
effect between treatment 1 and treatment 2.

estimate estimated treatment effect difference between treatment 1 and treatment 2.

method a character string indicating what type of test was performed.

References

Ma W, Hu F, Zhang L. Testing hypotheses of covariate-adaptive randomized clinical trials[J]. Jour-
nal of the American Statistical Association, 2015, 110(510): 669-680.

Examples

##generate data
set.seed(100)
n = 1000
cov_num = 5
level_num = c(2,2,2,2,2)
pr = rep(0.5,10)
beta = c(0.1,0.4,0.3,0.2,0.5)
omega = c(0.1, 0.1, rep(0.8 / 5, times = 5))
mu1 = 0
mu2 = 0.7
sigma = 1
type = "linear"
p = 0.85

dataH = getData(n,cov_num,level_num,pr,type,beta,
mu1,mu2,sigma,HuHuCAR,omega,p)

#run the corrected t-test

DoptBCD 15

HHct=corr.test(dataH)
HHct

DoptBCD Atkinson’s D_A-optimal Biased Coin Design

Description

Allocates patients to one of two treatments based on the DA-optimal biased coin design with in the
presence of the prognostic factors proposed by Atkinson A C (1982) <Doi:10.2307/2335853>.

Usage

S3 method for class 'carandom'
DoptBCD(data)

Arguments

data a dataframe. A row of the dataframe contains the covariate profile of a patient.

Details

To minimize the loss associated with an experiment involving n patients, Atkinson’s optimal applied
DA-optimality to the method, in which the probability of assigning the (n+1)th patient to treatment
1 in the presence of prognostic factors is

[1− (1;xt
n+1)(F t

nFn)−1bn]2

[1− (1;xt
n+1)(F t

nFn)−1bn]2 + [1 + (1;xt
n+1)(F t

nFn)−1bn]2
,

where X = (xi, i = 1, . . . , n) and xi = (xi1, . . . , xin) denote the covariate profile of the ith
patient; and Fn = [1n;X] is the information matrix; and bTn = (2Tn−1n)TFn, Tn = (T1, . . . , Tn)
is a sequence containing the first n patients’ allocations.

Details of the procedure can be found in A.C.Atkinson (1982).

Value

It returns an object of class "carandom".

The function print is used to obtain results. The generic accessor functions Cov_Assig, Diff,
data, All strata and others extract various useful features of the value returned by DoptBCD.

An object of class "carandom" is a list containing at least the following components:

cov_num the number of covariates.

n the number of patients.

Cov_Assign a (cov_num + 1) * n matrix containing covariate profiles for all patients and the
corresponding assignments. The ith column represents the ith patient. The first
cov_num rows include patients’ covariate profiles and the last row contains the
assignment.

16 DoptBCD

All strata a matrix containing all strata involved.

Diff a matrix with only one column. There are final differences at the overall, within-
stratum, and marginal levels.

Data Type the data type. Real or Simulated.

References

Atkinson A C. Optimum biased coin designs for sequential clinical trials with prognostic factors[J].
Biometrika, 1982, 69(1): 61-67.

See Also

See DoptBCD.sim for allocating patients with covariate data generating mechanism. See DoptBCD.ui
for the command-line user interface.

Examples

a simple use
Real Data
df <- data.frame("gender" = sample(c("female", "male"), 100, TRUE, c(1 / 3, 2 / 3)),

"age" = sample(c("0-30", "30-50", ">50"), 100, TRUE),
"jobs" = sample(c("stu.", "teac.", "others"), 100, TRUE),
stringsAsFactors = TRUE)

Res <- DoptBCD(df)
view the output
Res

view all patients' profile and assignments
Res$Cov_Assig

Simulated Data
n <- 1000
cov_num <- 2

level_num <- c(2, 5)
Set pr to follow two tips:
#(1) length of pr should be sum(level_num);
#(2)sum of probabilities for each margin should be 1.
pr <- c(0.4, 0.6, rep(0.2, times = 5))
Res.sim <- DoptBCD.sim(n, cov_num, level_num, pr)
view the output
Res.sim

view the difference between treatment 1 and treatment 2
at overall, within-strt. and overall levels
Res.sim$Diff

N <- 5
n <- 100
cov_num <- 2

DoptBCD 17

level_num <- c(3, 5) # << adjust to your CPU and the length should correspond to cov_num
Set pr to follow two tips:
(1) length of pr should be sum(level_num);
(2)sum of probabilities for each margin should be 1
pr <- c(0.3, 0.4, 0.3, rep(0.2, times = 5))
omega <- c(0.2, 0.2, rep(0.6 / cov_num, times = cov_num))

generate a container to contain Diff
DH <- matrix(NA, ncol = N, nrow = 1 + prod(level_num) + sum(level_num))
DA <- matrix(NA, ncol = N, nrow = 1 + prod(level_num) + sum(level_num))
for(i in 1 : N){

result <- HuHuCAR.sim(n, cov_num, level_num, pr, omega)
resultA <- StrBCD.sim(n, cov_num, level_num, pr)
DH[, i] <- result$Diff; DA[, i] <- resultA$Diff

}
do some analysis
require(dplyr)

analyze the overall imbalance
Ana_O <- matrix(NA, nrow = 2, ncol = 3)
rownames(Ana_O) <- c("HuHuCAR", "DoptBCD")
colnames(Ana_O) <- c("mean", "median", "95%quantile")
temp <- DH[1,] %>% abs
tempA <- DA[1,] %>% abs
Ana_O[1,] <- c((temp %>% mean), (temp %>% median),

(temp %>% quantile(0.95)))
Ana_O[2,] <- c((tempA %>% mean), (tempA %>% median),

(tempA %>% quantile(0.95)))

analyze the within-stratum imbalances
tempW <- DH[2 : (1 + prod(level_num)),] %>% abs
tempWA <- DA[2 : 1 + prod(level_num),] %>% abs
Ana_W <- matrix(NA, nrow = 2, ncol = 3)
rownames(Ana_W) <- c("HuHuCAR", "DoptBCD")
colnames(Ana_W) <- c("mean", "median", "95%quantile")
Ana_W[1,] = c((tempW %>% apply(1, mean) %>% mean),

(tempW %>% apply(1, median) %>% mean),
(tempW %>% apply(1, mean) %>% quantile(0.95)))

Ana_W[2,] = c((tempWA %>% apply(1, mean) %>% mean),
(tempWA %>% apply(1, median) %>% mean),
(tempWA %>% apply(1, mean) %>% quantile(0.95)))

analyze the marginal imbalance
tempM <- DH[(1 + prod(level_num) + 1) :

(1 + prod(level_num) + sum(level_num)),] %>% abs
tempMA <- DA[(1 + prod(level_num) + 1) :

(1 + prod(level_num) + sum(level_num)),] %>% abs
Ana_M <- matrix(NA, nrow = 2, ncol = 3)
rownames(Ana_M) <- c("HuHuCAR", "DoptBCD")
colnames(Ana_M) <- c("mean", "median", "95%quantile")
Ana_M[1,] = c((tempM %>% apply(1, mean) %>% mean),

(tempM %>% apply(1, median) %>% mean),
(tempM %>% apply(1, mean) %>% quantile(0.95)))

18 DoptBCD.sim

Ana_M[2,] = c((tempMA %>% apply(1, mean) %>% mean),
(tempMA %>% apply(1, median) %>% mean),
(tempMA %>% apply(1, mean) %>% quantile(0.95)))

AnaHP <- list(Ana_O, Ana_M, Ana_W)
names(AnaHP) <- c("Overall", "Marginal", "Within-stratum")

AnaHP

DoptBCD.sim Atkinson’s D_A-optimal Biased Coin Design with Covariate Data
Generating Mechanism

Description

Allocates patients generated by simulating covariates-profile under the assumption of independence
between covariates and levels within each covariate, to one of two treatments based on the DA-
optimal biased coin design in the presence of prognostic factors, as proposed by Atkinson A C
(1982) <Doi:10.2307/2335853>.

Usage

S3 method for class 'carandom'
DoptBCD.sim(n = 1000, cov_num = 2, level_num = c(2, 2),

pr = rep(0.5, 4))

Arguments

n the number of patients. Default is 1000.

cov_num the number of covariates. Default is 2.

level_num the vector of level numbers for each covariate. Hence the length of level_num
should be equal to the number of covariates. The default is c(2,2).

pr the vector of probabilities. Under the assumption of independence between co-
variates, pr is a vector containing probabilities for each level of each covariate.
The length of pr should correspond to number of all levels, and the vector sum of
pr should be equal to cov_num. The default is pr = rep(0.5,4), which implies
that cov_num = 2, and level_num = c(2,2).

Details

See DoptBCD.

Value

See DoptBCD.

DoptBCD.ui 19

See Also

See DoptBCD for allocating patients with complete covariate data; See DoptBCD.ui for the command-
line user interface.

DoptBCD.ui Command-line User Interface Using Atkinson’s D_A-optimal Biased
Coin Design

Description

A call to the user-interface function used to allocate patients to one of two treatments using Atkin-
son’s DA-optimal biased coin design proposed by Atkinson A C (1982) <Doi:10.2307/2335853>.

Usage

S3 method for class 'carseq'
DoptBCD.ui(path, folder = "DoptBCD")

Arguments

path the path in which a folder used to store variables will be created.

folder name of the folder. If it is the default, a folder named "DoptBCD" will be created.

Details

See DoptBCD.

Value

It returns an object of class "carseq".

The function print is used to obtain results. The generic accessor functions assignment, covariate,
cov_num, cov_profile and others extract various useful features of the value returned by that func-
tion.

Note

This function provides a command-line user interface and users should follow the prompts to enter
data including covariates, as well as levels for each covariate and the covariate profile of the new
patient.

See Also

See DoptBCD for allocating patients with complete covariate data; See DoptBCD.sim for allocating
patients with covariate data generating mechanism.

20 evalPower

evalPower Evaluation of Tests and Randomization Procedures through Power

Description

Returns powers and a plot of the chosen test and method under different treatment effects.

Usage

evalPower(n, cov_num, level_num, pr, type, beta, di = seq(0,0.5,0.1), sigma = 1,
Iternum, sl = 0.05, method = HuHuCAR, test, plot = "TRUE", ...)

Arguments

n number of patients.

cov_num number of covariates.

level_num the vector of level numbers for each covariate. Hence the length of level_num
should be equal to the number of covariates.

pr the vector of probabilities. Under the assumption of independence between co-
variates, pr is a vector containing probabilities for each level of each covariate.
The length of pr should correspond to the number of all levels, and the vector
sum of pr should be equal to cov_num.

type the type of models when generating data. Optional input: linear or logit.

beta the vector of coefficients of covariates. The length of beta must correspond to
cov_num.

di the vector of values of difference in treatment effects. The default value is a
sequence from 0 to 0.5 with increment being 0.1.

sigma the error variance for the linear model. The default value is 1. It is only used
when type is linear.

Iternum an integer. It is the number of iterations required for calculating the average
power.

sl the significance level. If the p-value returned by the test is less than sl, we will
reject the null hypothesis. The default value is 0.05.

method the randomization method to be used in allocating patients. The default random-
ization HuHuCAR uses Hu and Hu’s general covariate-adaptive randomization; the
alternatives are PocSimMIN, StrBCD, StrPBR, DoptBCD, and AdjBCD.

test the test used to verify hypothesis. Optional input: rand.test, boot.test or
corr.test, which are the randomization test, the bootstrap t-test and the cor-
rected t-test respectively.

plot bool. It shows whether to plot or not. Optional input: TRUE or FALSE.

... arguments to be passed to methods. These depend on the method and test used
and the following arguments are accepted:

evalPower 21

omega the vector of weights at the overall, within-stratum, and marginal levels.
It is required that at least one element is larger than 0. Note that omega is
only needed when HuHuCAR is to be used.

weight the vector of weights for marginal imbalances. It is required that at
least one element is larger than 0. Note that weight is only needed when
PocSimMIN is to be used.

p the probability of assigning one patient to treatment 1, where p should be
larger than 1/2 to obtain balance. Note that p is only needed when "HuHuCAR","PocSimMIN"
and "StrBCD" are to be used.

a a design parameter. As a goes to∞, the design becomes more deterministic.
bsize block size for the stratified randomization. It is required to be a multiple

of 2. Note that bsize is only needed when "StrPBR" is to be used.
B an integer. It is the number of bootstrap samplings. It is needed only when

test is boot.test.
Reps an integer. It represents the number of randomized replications. It is

needed only when test is rand.test.
nthreads the number of threads to be used in parallel computation. This is

needed only under rand.test and boot.test. The default is 1.

Value

This function returns a list. The first element is a dataframe representing the powers of the chosen
test under different values of treatment effects. The second element is the execution time. An
optional element is the plot of power in which di forms the vertical axis.

Examples

##settings
set.seed(2019)
n = 100#<<for demonstration,it is suggested to be larger than 1000
cov_num = 5
level_num = c(2,2,2,2,2)
pr = rep(0.5,10)
beta = c(0.1,0.4,0.3,0.2,0.5)
omega = c(0.1, 0.1, rep(0.8 / 5, times = 5))
di = seq(0,0.5,0.1)
sigma = 1
type = "linear"
p = 0.85
Iternum = 10#<<for demonstration,it is suggested to be around 1000
sl = 0.05
Reps = 10#<<for demonstration,it is suggested to be 200

#Evaluation of Power
library("ggplot2")
Strtp=evalPower(n,cov_num,level_num,pr,type,beta,di,sigma,

Iternum,sl,HuHuCAR,rand.test,TRUE,omega,p,Reps, nthreads = 1)
Strtp

22 evalRand

evalRand Evaluation of Randomization Procedures

Description

Evaluates a specific randomization procedure based on several different quantities of imbalances.

Usage

S3 method for class 'careval'
evalRand(data, method = "HuHuCAR", N = 500, ...)

Arguments

data a dataframe. A row of the dataframe contains the covariate profile of a patient.

N the iteration number.

method the randomization method to be used in allocating patients. The default ran-
domization “HuHuCAR” uses Hu and Hu’s general covariate-adaptive randomiza-
tion; the alternatives are “PocSimMIN”, “StrBCD”, “StrPBR”, “DoptBCD”, and
“AdjBCD”.

... arguments to be passed to methods. These depend on the method and the fol-
lowing arguments are accepted:

omega the vector of weights at the overall, within-stratum, and marginal levels.
It is required that at least one element is larger than 0. Note that omega is
only needed when HuHuCAR is to be assessed.

weight the vector of weights for all involved margins. It is required that at least
one element is NOT 0 and length(weight) = cov_num. Note that weight
is only needed when PocSimMIN is to be assessed.

p the probability of assigning one patinet to treatment 1. p should be larger
than 1/2 to obtain balance. Note that p is only needed when "HuHuCAR",
"PocSimMIN" and "StrBCD" are to be assessed.

a a design parameter. As a goes to∞, the design becomes more deteministic.
Note that a is only needed when "AdjBCD" is to be assessed.

bsize the block size for stratified permuted block randomization. It is required
to be a multiple of 2. Note that bsize is only needed when "StrPBR" is to
be assessed.

Details

The data is designed for N times using method.

evalRand 23

Value

It returns an object of class "careval".

The function print is used to obtain results. The generic accessor functions Assig, Diff, data,
All strata and others extract various useful features of the value returned by evalRand.

An object of class "careval" is a list containing at least the following components:

N the number of patients.

Assig a n*N matrix containing assignments for each patient for N iterations.

Imb a matrix containing maximum, 95%-quantile, median, and mean of absolute
imbalances at overall, each within-stratum and each marginal levels.

SNUM a matrix with N colunms containing number of patients at overall, each marginal
and each within-stratum levels for each iteration.

Data Type the data type. Real or Simulated.

References

Atkinson A C. Optimum biased coin designs for sequential clinical trials with prognostic factors[J].
Biometrika, 1982, 69(1): 61-67.

Baldi Antognini A, Zagoraiou M. The covariate-adaptive biased coin design for balancing clinical
trials in the presence of prognostic factors[J]. Biometrika, 2011, 98(3): 519-535.

Hu Y, Hu F. Asymptotic properties of covariate-adaptive randomization[J]. The Annals of Statistics,
2012, 40(3): 1794-1815.

Pocock S J, Simon R. Sequential treatment assignment with balancing for prognostic factors in the
controlled clinical trial[J]. Biometrics, 1975: 103-115.

Shao J, Yu X, Zhong B. A theory for testing hypotheses under covariate-adaptive randomization[J].
Biometrika, 2010, 97(2): 347-360.

Zelen M. The randomization and stratification of patients to clinical trials[J]. Journal of chronic
diseases, 1974, 27(7): 365-375.

See Also

See evalRand.sim to evaluate a randomization procedure with covariate data generating mecha-
nism.

Examples

a simple use
Access by real data
create a dataframe
df <- data.frame("gender" = sample(c("female", "male"), 1000, TRUE, c(1 / 3, 2 / 3)),

"age" = sample(c("0-30", "30-50", ">50"), 1000, TRUE),
"jobs" = sample(c("stu.", "teac.", "others"), 1000, TRUE),
stringsAsFactors = TRUE)

Res <- evalRand(data = df, method = "HuHuCAR", N = 500,
omega = c(1, 2, rep(1, ncol(df))), p = 0.85)

view the output

24 evalRand

Res

view all patients' assignments
Res$Assig

Assess by simulated data
cov_num <- 3
level_num <- c(2, 3, 5)
pr <- c(0.35, 0.65, 0.25, 0.35, 0.4, 0.25, 0.15, 0.2, 0.15, 0.25)
n <- 1000
N <- 50
omega = c(1, 2, 1, 1, 2)
assess Hu and Hu's procedure with the same group of patients
Res.sim <- evalRand.sim(n = n, N = N, Replace = FALSE, cov_num = cov_num,

level_num = level_num, pr = pr, method = "HuHuCAR",
omega, p = 0.85)

Compare four procedures
cov_num <- 3
level_num <- c(2, 10, 2)
pr <- c(rep(0.5, times = 2), rep(0.1, times = 10), rep(0.5, times = 2))
n <- 100
N <- 200 # <<adjust according to CPU
bsize <- 4
set weights for HuHuCAR
omega <- c(1, 2, rep(1, cov_num));
set weights for PocSimMIN
weight = rep(1, cov_num);
set biased probability
p = 0.80
assess Hu and Hu's procedure
RH <- evalRand.sim(n = n, N = N, Replace = FALSE, cov_num = cov_num,

level_num = level_num, pr = pr, method = "HuHuCAR",
omega = omega, p = p)

assess Pocock and Simon's method
RPS <- evalRand.sim(n = n, N = N, Replace = FALSE, cov_num = cov_num,

level_num = level_num, pr = pr, method = "PocSimMIN",
weight, p = p)

assess Shao's procedure
RS <- evalRand.sim(n = n, N = N, Replace = FALSE, cov_num = cov_num,

level_num = level_num, pr = pr, method = "StrBCD",
p = p)

assess stratified randomization
RSR <- evalRand.sim(n = n, N = N, Replace = FALSE, cov_num = cov_num,

level_num = level_num, pr = pr, method = "StrPBR",
bsize)

create containers
C_M = C_O = C_WS = matrix(NA, nrow = 4, ncol = 4)
colnames(C_M) = colnames(C_O) = colnames(C_WS) =

c("max", "95%quan", "med", "mean")
rownames(C_M) = rownames(C_O) = rownames(C_WS) =

c("HH", "PocSim", "Shao", "StraRand")

evalRand.sim 25

assess the overall imbalance
C_O[1,] = RH$Imb[1,]
C_O[2,] = RPS$Imb[1,]
C_O[3,] = RS$Imb[1,]
C_O[4,] = RSR$Imb[1,]
view the result
C_O

assess the marginal imbalances
C_M[1,] = apply(RH$Imb[(1 + RH$strt_num) : (1 + RH$strt_num + sum(level_num)),], 2, mean)
C_M[2,] = apply(RPS$Imb[(1 + RPS$strt_num) : (1 + RPS$strt_num + sum(level_num)),], 2, mean)
C_M[3,] = apply(RS$Imb[(1 + RS$strt_num) : (1 + RS$strt_num + sum(level_num)),], 2, mean)
C_M[4,] = apply(RSR$Imb[(1 + RSR$strt_num) : (1 + RSR$strt_num + sum(level_num)),], 2, mean)
view the result
C_M

assess the within-stratum imbalances
C_WS[1,] = apply(RH$Imb[2 : (1 + RH$strt_num),], 2, mean)
C_WS[2,] = apply(RPS$Imb[2 : (1 + RPS$strt_num),], 2, mean)
C_WS[3,] = apply(RS$Imb[2 : (1 + RS$strt_num),], 2, mean)
C_WS[4,] = apply(RSR$Imb[2 : (1 + RSR$strt_num),], 2, mean)
view the result
C_WS

Compare the four procedures through plots
meth = rep(c("Hu", "PS", "Shao", "STR"), times = 3)
shape <- rep(1 : 4, times = 3)
crt <- rep(1 : 3, each = 4)
crt_c <- rep(c("O", "M", "WS"), each = 4)
mean <- c(C_O[, 4], C_M[, 4], C_WS[, 4])
df_1 <- data.frame(meth, shape, crt, crt_c, mean,

stringsAsFactors = TRUE)

require(ggplot2)
p1 <- ggplot(df_1, aes(x = meth, y = mean, color = crt_c, group = crt,

linetype = crt_c, shape = crt_c)) +
geom_line(size = 1) +
geom_point(size = 2) +
xlab("method") +
ylab("absolute mean") +
theme(plot.title = element_text(hjust = 0.5))

p1

evalRand.sim Evaluation Randomization Procedures with Covariate Data Generat-
ing Mechanism

26 evalRand.sim

Description

Evaluates randomization procedure based on several different quantities of imbalances by simulat-
ing patients’ covariate profiles under the assumption of independence between covariates and levels
within each covariate.

Usage

S3 method for class 'careval'
evalRand.sim(n = 1000, N = 500, Replace = FALSE, cov_num = 2,

level_num = c(2, 2), pr = rep(0.5, 4), method = "HuHuCAR", ...)

Arguments

N the iteration number.

n the number of patients. The default is 1000.

Replace bool. If Replace = FALSE, the function does clinical trial design for N iterations
for one group of patients. If Replace = TRUE, the function dose clinical trial
design for N iterations for N different groups of patients.

cov_num the number of covariates. The default is 2.

level_num the vector of level numbers for each covariate. Hence the length of level_num
should be equal to the number of covariates. The default is c(2,2).

pr the vector of probabilities. Under the assumption of independence between co-
variates, pr is a vector containing probabilities for each level of each covariate.
The length of pr should correspond to the number of all levels, and the vector
sum of pr should be equal to cov_num. The default is pr = (0.5,0.5,0.5,0.5),
which implies that cov_num = 2, and level_num = c(2,2).

method the randomization method to be used in allocating patients. The default ran-
domization “HuHuCAR” uses Hu and Hu’s general covariate-adaptive random-
ization; the alternatives are “PocSimMIN”, “StrBCD”, “StrPBR”, “DoptBCD” and
“AdjBCD”.

... arguments to be passed to methods. These depends on method, and the following
arguments are accepted:

omega the vector of weights at the overall, within-stratum, and marginal levels.
It is required that at least one element is larger than 0. Note that omega is
only needed when HuHuCAR are to be assessed.

weight the vector of weights for marginal imbalances. It is required that at least
one element is NOT 0 and length(weight) = cov_num. Note that weight
is only needed when PocSimMIN is to be assessed.

p the probability of assigning one patinet to treatment 1. p should be larger
than 1/2 to obtain balance. Note that p is only needed when "HuHuCAR",
"PocSimMIN" and "StrBCD" is to be assessed.

a a design parameter. As a goes to∞, the design becomes more deteministic.
Note that a is only needed when "AdjBCD" is to be assessed.

bsize the block size for stratified permuted block randomization. It is required
to be a multiple of 2. Note that bsize is only needed when "StrPBR" is to
be assessed.

getData 27

Details

See evalRand.

Value

See evalRand.

See Also

See evalRand to evaluate a randomization procedure with complete covariate data.

getData Data Generation

Description

Generates continuous or binary outcomes given patients’ covariates, the underlying model and the
randomization procedure.

Usage

getData(n, cov_num, level_num, pr, type, beta,
mu1, mu2, sigma = 1, method = HuHuCAR, ...)

Arguments

n the number of patients.

cov_num the number of covariates.

level_num the vector of level numbers for each covariate. Hence the length of level_num
should be equal to the number of covariates.

pr the vector of probabilities. Under the assumption of independence between co-
variates, pr is a vector containing probabilities for each level of each covariate.
The length of pr should correspond to number of all levels, and the vector sum
of pr should be equal to cov_num.

type the type of models when generating data. Optional input: linear or logit.

beta the vector of coefficients of covariates. The length of beta must correspond to
cov_num.

mu1,mu2 main effects of treatment 1 and treatment 2.

sigma the error variance for linear model. The default is 1. It is only used when type
is linear.

method the randomization method to be used in allocating patients. The default random-
ization method HuHuCAR uses Hu and Hu’s general covariate-adaptive random-
ization; the alternatives are PocSimMIN, StrBCD, StrPBR, DoptBCD, and AdjBCD.

... arguments to be passed to methods. These depends on the method used and the
following arguments are accepted:

28 getData

omega the vector of weights at the overall, within-stratum, and marginal levels.
It is required that at least one element is larger than 0. Note that omega is
only needed when HuHuCAR is to be used.

weight the vector of weights for maginal imbalances. It is required that at
least one element is larger than 0. Note that weight is only needed when
PocSimMIN is to be used.

p the probability of assigning one patient to treatment 1. p is required to be
larger than 1/2 to obtain balance. Note that p is only needed when "HuHuCAR","PocSimMIN"
and "StrBCD" are to be used.

a a design parameter. As a goes to∞, the design becomes more deterministic.
bsize the block size for stratified randomization. It is required to be a multiple

of 2. Notice that bsize is only needed when "StrPBR" is to be used.

Details

To generate continuous outcomes, we use the linear model:

yi = µj + xTi β + εi,

to generate binary outcomes, we use the logit link function:

P (yi = 1) =
exp{µj + xTi β}

1 + exp{µj + xTi β

,

where j indicates patient i belongs to treatment j.

Value

getData returns a size covnum + 2 × n dataframe. The first cov_num rows represent patients’
profile. The next row consists of patients’ assignments and the final row consists of generated
outcomes.

Examples

#Parameters' Setting
set.seed(100)
n = 1000
cov_num = 5
level_num = c(2,2,2,2,2)
beta = c(1,4,3,2,5)
mu1 = 0
mu2 = 0
sigma = 1
type = "linear"
method = HuHuCAR
p = 0.85
omega = c(0.1, 0.1, rep(0.8 / 5, times = 5))
pr = rep(0.5,10)

#Data Generation

HuHuCAR 29

dataH = getData(n, cov_num,level_num, pr, type, beta,
mu1, mu2, sigma, HuHuCAR, omega, p)

dataH[1:(cov_num+2),1:5]

HuHuCAR Hu and Hu’s General Covariate-Adaptive Randomization

Description

Allocates patients to one of two treatments using Hu and Hu’s general covariate-adaptive random-
ization proposed by Hu Y, Hu F (2012) <Doi:10.1214/12-AOS983>.

Usage

S3 method for class 'carandom'
HuHuCAR(data, omega = NULL, p = 0.85)

Arguments

data a dataframe or matrix. A row of the dataframe contains the covariate profile of
some patient.

omega the vector of weights at the overall, within-stratum, and maginal levels. It is
required that at least one element is larger than 0. If omega = NULL (default), it
weights the overall, within-stratum as well as marginal levels with porportion
1/cov_num.

p the probability of assigning one patient to treatment 1. p should be larger than
1/2 to obtain balance. The default is 0.85.

Details

Consider I covariates and mi levels for the ith covariate. Tj is the assignment of the jth ptient and
Zj = (k1, . . . , kI) indicates the covariate profile of this patient. For convenience, (k1, . . . , kI) and
(i; ki) denote the stratum and margin respectively. Dn(.) is the difference between the numbers
of assigned patients in treatment 1 and treatment 2 at the corresponding level after n patinets have
been assigned.The general CAR procedure is as follows:

(1) The first patient is assigned to treatment 1 with probability 1/2;

(2) Suppose that n− 1 patients have been assigned to a treatment (n > 1), and the nth patient falls
within (k∗1 , . . . , k

∗
I);

(3)If the nth patient was assigned to treatment 1, then the potential overall, marginal, and within-
stratum differences in the two groups are

D(1)
n = Dn−1 + 1

D(1)
n (i; k∗i) = Dn−1(i, k∗i) + 1

D(1)
n (k∗1 , . . . , k

∗
I) = Dn(k∗1 , . . . , k

∗
I) + 1.

30 HuHuCAR

Similarly, the potential differences if the nth patinent was assigned to treatment 1 would be obtained
in the same way.

(4) An imbalance measure is defined by

Imb(l)n = ω0[D(1)
n]2 +

I∑
i=1

ωm,i[D
(1)
n (i; k∗i)]2 + ωs[D

(1)
n (k∗1 , . . . , k

∗
I)]2, l = 1, 2;

(5)Conditional on the assignments of the first (n−1) patients as well as the covariate profiles of the
first n patients, assign the nth patient to treatment 1 with probability

P (Tn = 1|Zn, T1, . . . , Tn−1) = q

for Imb(1)n > Imb
(2)
n ,

P (Tn = 1|Zn, T1, . . . , Tn−1) = p

for Imb(1)n < Imb
(2)
n , and

P (Tn = 1|Zn, T1, . . . , Tn−1) = 0.5,

for Imb(1)n = Imb
(2)
n .

Value

It returns an object of class "carandom".

The function print is used to obtain results. The generic accessor functions Cov_Assig, Diff,
data, All strata and others extract various useful features of the value returned by HuHuCAR.

An object of class "carandom" is a list containing at least the following components:

cov_num the number of covariates.

n the number of patients.

Cov_Assign a (cov_num + 1) * n matrix containing covariate profiles for all patients and cor-
responding assignments. The ith column represents the ith patient. The first
cov_num rows include a patient’s covariate profile and the last row contains the
assignment.

All strata a matrix containing all strata involved.

Diff a matrix with only one column. There are final differences at the overall, within-
stratum, and marginal levels.

Data Type the data type. Real or Simulated.

References

Hu Y, Hu F. Asymptotic properties of covariate-adaptive randomization[J]. The Annals of Statistics,
2012, 40(3): 1794-1815.

See Also

See HuHuCAR.sim for allocating patients with covariate data generating mechanism. See HuHuCAR.ui
for the command-line user interface.

HuHuCAR 31

Examples

a simple use
Real Data
create a dataframe
df <- data.frame("gender" = sample(c("female", "male"), 1000, TRUE, c(1 / 3, 2 / 3)),

"age" = sample(c("0-30", "30-50", ">50"), 1000, TRUE),
"jobs" = sample(c("stu.", "teac.", "others"), 1000, TRUE),
stringsAsFactors = TRUE)

omega <- c(1, 2, rep(1, 3))
Res <- HuHuCAR(data = df, omega)
view the output
Res

view all patients' profile and assignments
Res$Cov_Assig

Simulated data
cov_num <- 3
level_num <- c(2, 3, 3)
pr <- c(0.4, 0.6, 0.3, 0.4, 0.3, 0.4, 0.3, 0.3)
omega <- rep(0.2, times = 5)
Res.sim <- HuHuCAR.sim(n = 100, cov_num, level_num, pr, omega)
view the output
Res.sim

view the detials of difference
Res.sim$Diff

N <- 100 # << adjust according to your CPU
n <- 1000
cov_num <- 3
level_num <- c(2, 3, 5) # << adjust to your CPU and the length should correspond to cov_num
Set pr to follow two tips:
#(1) length of pr should be sum(level_num);
#(2)sum of probabilities for each margin should be 1.
pr <- c(0.4, 0.6, 0.3, 0.4, 0.3, rep(0.2, times = 5))
omega <- c(0.2, 0.2, rep(0.6 / cov_num, times = cov_num))
Set omega0 = omegaS = 0
omegaP <- c(0, 0, rep(1 / cov_num, times = cov_num))

generate a container to contain Diff
DH <- matrix(NA, ncol = N, nrow = 1 + prod(level_num) + sum(level_num))
DP <- matrix(NA, ncol = N, nrow = 1 + prod(level_num) + sum(level_num))
for(i in 1 : N){

result <- HuHuCAR.sim(n, cov_num, level_num, pr, omega)
resultP <- HuHuCAR.sim(n, cov_num, level_num, pr, omegaP)
DH[, i] <- result$Diff; DP[, i] <- resultP$Diff

}

do some analysis
require(dplyr)

32 HuHuCAR.sim

analyze the overall imbalance
Ana_O <- matrix(NA, nrow = 2, ncol = 3)
rownames(Ana_O) <- c("NEW", "PS")
colnames(Ana_O) <- c("mean", "median", "95%quantile")
temp <- DH[1,] %>% abs
tempP <- DP[1,] %>% abs
Ana_O[1,] <- c((temp %>% mean), (temp %>% median),

(temp %>% quantile(0.95)))
Ana_O[2,] <- c((tempP %>% mean), (tempP %>% median),

(tempP %>% quantile(0.95)))
analyze the within-stratum imbalances
tempW <- DH[2 : (1 + prod(level_num)),] %>% abs
tempWP <- DP[2 : 1 + prod(level_num),] %>% abs
Ana_W <- matrix(NA, nrow = 2, ncol = 3)
rownames(Ana_W) <- c("NEW", "PS")
colnames(Ana_W) <- c("mean", "median", "95%quantile")
Ana_W[1,] = c((tempW %>% apply(1, mean) %>% mean),

(tempW %>% apply(1, median) %>% mean),
(tempW %>% apply(1, mean) %>% quantile(0.95)))

Ana_W[2,] = c((tempWP %>% apply(1, mean) %>% mean),
(tempWP %>% apply(1, median) %>% mean),
(tempWP %>% apply(1, mean) %>% quantile(0.95)))

analyze the marginal imbalance
tempM <- DH[(1 + prod(level_num) + 1) : (1 + prod(level_num) + sum(level_num)),] %>% abs
tempMP <- DP[(1 + prod(level_num) + 1) : (1 + prod(level_num) + sum(level_num)),] %>% abs
Ana_M <- matrix(NA, nrow = 2, ncol = 3)
rownames(Ana_M) <- c("NEW", "PS"); colnames(Ana_M) <- c("mean", "median", "95%quantile")
Ana_M[1,] = c((tempM %>% apply(1, mean) %>% mean),

(tempM %>% apply(1, median) %>% mean),
(tempM %>% apply(1, mean) %>% quantile(0.95)))

Ana_M[2,] = c((tempMP %>% apply(1, mean) %>% mean),
(tempMP %>% apply(1, median) %>% mean),
(tempMP %>% apply(1, mean) %>% quantile(0.95)))

AnaHP <- list(Ana_O, Ana_M, Ana_W)
names(AnaHP) <- c("Overall", "Marginal", "Within-stratum")

AnaHP

HuHuCAR.sim Hu and Hu’s General Covariate-Adaptive Randomization with Co-
variate Data Generating Mechanism

Description

Allocates patients to one of two treatments using general covariate-adaptive randomization pro-
posed by Hu Y, Hu F (2012) <Doi:10.1214/12-AOS983>, by simulating covariate profiles based on
the assumption of independence between covariates and levels within each covariate.

HuHuCAR.ui 33

Usage

S3 method for class 'carandom'
HuHuCAR.sim(n = 1000, cov_num = 2, level_num = c(2, 2),

pr = rep(0.5, 4), omega = NULL, p = 0.85)

Arguments

n the number of patients. The default is 1000.

cov_num the number of covariates. The default is 2.

level_num the vector of level numbers for each covariate. Hence the length of level_num
should be equal to the number of covariates. The default is c(2,2).

pr the vector of probabilities. Under the assumption of independence between co-
variates, pr is a vector containing probabilities for each level of each covariate.
The length of pr should correspond to the number of all levels, and the vector
sum of pr should be equal to cov_num. The default is pr = rep(0.5,4), which
implies that cov_num = 2, and level_num = c(2,2).

omega the vector of weights at the overall, within-stratum, and maginal levels. It is
required that at least one element is larger than 0. If omega = NULL (default), it
weights the overall, within-stratum as well as marginal levels with porportion
1/cov_num.

p the probability of assigning one patient to treatment 1. p should be larger than
1/2 to obtain balance. The default is 0.85.

Details

See HuHuCAR.

Value

See HuHuCAR.

See Also

See HuHuCAR for allocating patients with complete covariate data; See HuHuCAR.ui for the command-
line user interface.

HuHuCAR.ui Command-line User Interface Using Hu and Hu’s General Covariate-
adaptive Randomization

Description

A call to the user-iterface function used to allocate patients to one of two treatments using Hu
and Hu’s general covariate-adaptive randomization method as proposed by Hu Y, Hu F (2012)
<Doi:10.1214/12-AOS983>.

34 pats

Usage

S3 method for class 'carseq'
HuHuCAR.ui(path, folder = "HuHuCAR")

Arguments

path the path in which a folder used to store variables will be created.

folder name of the folder. If default, a folder named "HuHuCAR" will be created.

Details

See HuHuCAR

Value

It returns an object of class "carseq".

The function print is used to obtain results. The generic accessor functions assignment, covariate,
cov_num, cov_profile and others extract various useful features of the value returned by HuHuCAR.ui.

Note

This function provides a command-line interface so that users should follow the prompts to enter
data, including covariates as well as levels for each covariate, weights omega, biased probability p
and the covariate profile of the new patient.

See Also

See HuHuCAR for allocating patients with complete covariate data; See HuHuCAR.sim for allocating
patients with covariate data generating mechanism.

pats Data of Covariate Profile of Patients

Description

gives the simulated covariate profile of patients for clincal trials.

Usage

data(pats)

PocSimMIN 35

Arguments

pats a dataframe. Each row contains an individual’s covariate profile and each col-
umn corresponds to a covariate. It contains the following columns

gender Options are male and female.
employment status Options are "unemployment" (unemp), "part time" (part.),

"full time" (full.).
income Options are >= 1w, <= 0.5w, 0.5~1w.
marriage status Options are unmarried, married, divorced

PocSimMIN Pocock and Simon’s Method in the Two-Arms Case

Description

Allocates patients to one of two treatments using Pocock and Simon’s method proposed by Pocock
S J, Simon R (1975) <Doi:10.2307/2529712>.

Usage

S3 method for class 'carandom'
PocSimMIN(data, weight = NULL, p = 0.85)

Arguments

data a dataframe or matrix. A row of the dataframe contains the covariate profile of
a patient.

weight the vector of weights for maginal imbalances. It is required that at least one
element is larger than 0. If weight = NULL (default), the marginal imbalances
are equally weighted as 1/cov_num for each margin.

p the probability of assigning one patient to treatment 1. p should be larger than
1/2 to obtain balance. The default is 0.85.

Details

Consider I covariates and mi levels for the ith covariate. Tj is the assignment of the jth patient and
Zj = (k1, . . . , kI) indicates the covariate profile of this patient. For convenience, (k1, . . . , kI) and
(i; ki) denote the stratum and margin respectively. Dn(.) is the difference between the numbers of
assigned patients in treatment 1 and treatment 2 at the corresponding level after n patinets being
assigned.The Pocock and Simon’s procedure in the two-arms case is then as follows:

(1) The first patient is assigned to treatment 1 with probability 1/2;

(2) Suppose that n− 1 patients have been assigned to a treatment (n > 1) and the nth patient falls
within (k∗1 , . . . , k

∗
I);

(3)If the nth patient was assigned to treatment 1, then the potential marginal differences between
the two groups are

D(1)
n (i; k∗i) = Dn−1(i, k∗i) + 1.

36 PocSimMIN

Similarly, the potential differences would be obtained in the same way if the nth patinent was
assigned to treatment 2.

(4) An imbalance measure is defined by

Imb(l)n =

I∑
i=1

ωm,i[D
(1)
n (i; k∗i)]2, l = 1, 2;

(5)Conditional on the assignments of the first (n−1) patients as well as the covariate profiles of the
first n patients, assign the nth patient to treatment 1 with the probability

P (Tn = 1|Zn, T1, . . . , Tn−1) = q,

for Imb(1)n > Imb
(2)
n ,

P (Tn = 1|Zn, T1, . . . , Tn−1) = p,

for Imb(1)n < Imb
(2)
n , and

P (Tn = 1|Zn, T1, . . . , Tn−1) = 0.5,

for Imb(1)n = Imb
(2)
n .

Value

It returns an object of class "carandom".

The functions print is used to obtain results. The generic accessor functions Cov_Assig, Diff,
data, All strata and othes extract various useful features of the value returned by PocSimMIN.

An object of class "carandom" is a list containing at least the following components:

cov_num the number of covariates.

n the number of patients.

Cov_Assign a (cov_num + 1) * n matrix containing covariate profiles for all patients and the
corresponding assignments. The ith column represents the ith patient. The first
cov_num rows include patients’ covariate profiles, and the last row contains the
assignments.

All strata a matrix containing all strata involved.

Diff a matrix with only one column. There are final differences at the overall, within-
stratum, and marginal levels.

Data Type the data type. Real or Simulated.

References

Pocock S J, Simon R. Sequential treatment assignment with balancing for prognostic factors in the
controlled clinical trial[J]. Biometrics, 1975: 103-115.

See Also

See PocSimMIN.sim for allocating patients with covariate data generating mechanism. See PocSimMIN.ui
for the command-line user interface.

PocSimMIN 37

Examples

a simple use
Real Data
creat a dataframe
df <- data.frame("gender" = sample(c("female", "male"), 1000, TRUE, c(1 / 3, 2 / 3)),

"age" = sample(c("0-30", "30-50", ">50"), 1000, TRUE),
"jobs" = sample(c("stu.", "teac.", "others"), 1000, TRUE),
stringsAsFactors = TRUE)

weight <- c(1, 2, 1)
Res <- PocSimMIN(data = df, weight)
view the output
Res

view all patients' profile and assignments
Res$Cov_Assig

Simulated Data
cov_num = 3
level_num = c(2, 3, 3)
pr = c(0.4, 0.6, 0.3, 0.3, 0.4, 0.4, 0.3, 0.3)
Res.sim <- PocSimMIN.sim(n = 1000, cov_num, level_num, pr)
view the output
Res.sim

view the detials of difference
Res.sim$Diff

N <- 5
n <- 1000
cov_num <- 3
level_num <- c(2, 3, 5)
Set pr to follow two tips:
(1) length of pr should be sum(level_num);
(2)sum of probabilities for each margin should be 1.
pr <- c(0.4, 0.6, 0.3, 0.4, 0.3, rep(0.2, times = 5))
omega <- c(0.2, 0.2, rep(0.6 / cov_num, times = cov_num))
weight <- c(2, rep(1, times = cov_num - 1))

generate a container to contain Diff
DH <- matrix(NA, ncol = N, nrow = 1 + prod(level_num) + sum(level_num))
DP <- matrix(NA, ncol = N, nrow = 1 + prod(level_num) + sum(level_num))
for(i in 1 : N){

result <- HuHuCAR.sim(n, cov_num, level_num, pr, omega)
resultP <- PocSimMIN.sim(n, cov_num, level_num, pr, weight)
DH[, i] <- result$Diff; DP[, i] <- resultP$Diff

}

do some analysis
require(dplyr)

analyze the overall imbalance

38 PocSimMIN.sim

Ana_O <- matrix(NA, nrow = 2, ncol = 3)
rownames(Ana_O) <- c("NEW", "PS")
colnames(Ana_O) <- c("mean", "median", "95%quantile")
temp <- DH[1,] %>% abs
tempP <- DP[1,] %>% abs
Ana_O[1,] <- c((temp %>% mean), (temp %>% median),

(temp %>% quantile(0.95)))
Ana_O[2,] <- c((tempP %>% mean), (tempP %>% median),

(tempP %>% quantile(0.95)))

analyze the within-stratum imbalances
tempW <- DH[2 : (1 + prod(level_num)),] %>% abs
tempWP <- DP[2 : 1 + prod(level_num),] %>% abs
Ana_W <- matrix(NA, nrow = 2, ncol = 3)
rownames(Ana_W) <- c("NEW", "PS")
colnames(Ana_W) <- c("mean", "median", "95%quantile")
Ana_W[1,] = c((tempW %>% apply(1, mean) %>% mean),

(tempW %>% apply(1, median) %>% mean),
(tempW %>% apply(1, mean) %>% quantile(0.95)))

Ana_W[2,] = c((tempWP %>% apply(1, mean) %>% mean),
(tempWP %>% apply(1, median) %>% mean),
(tempWP %>% apply(1, mean) %>% quantile(0.95)))

analyze the marginal imbalance
tempM <- DH[(1 + prod(level_num) + 1) :

(1 + prod(level_num) + sum(level_num)),] %>% abs
tempMP <- DP[(1 + prod(level_num) + 1) :

(1 + prod(level_num) + sum(level_num)),] %>% abs
Ana_M <- matrix(NA, nrow = 2, ncol = 3)
rownames(Ana_M) <- c("NEW", "PS")
colnames(Ana_M) <- c("mean", "median", "95%quantile")
Ana_M[1,] = c((tempM %>% apply(1, mean) %>% mean),

(tempM %>% apply(1, median) %>% mean),
(tempM %>% apply(1, mean) %>% quantile(0.95)))

Ana_M[2,] = c((tempMP %>% apply(1, mean) %>% mean),
(tempMP %>% apply(1, median) %>% mean),
(tempMP %>% apply(1, mean) %>% quantile(0.95)))

AnaHP <- list(Ana_O, Ana_M, Ana_W)
names(AnaHP) <- c("Overall", "Marginal", "Within-stratum")

AnaHP

PocSimMIN.sim Pocock and Simon’s Method in the Two-Arms Case with Covariate
Data Generating Mechanism

PocSimMIN.sim 39

Description

Allocates patients to one of two treatments using Pocock and Simon’s method proposed by Pocock S
J, Simon R (1975) <Doi:10.2307/2529712>, by simulating covariate profiles under the assumption
of independence between covariates and levels within each covariate.

Usage

S3 method for class 'carandom'
PocSimMIN.sim(n = 1000, cov_num = 2, level_num = c(2, 2),

pr = rep(0.5, 4), weight = NULL, p = 0.85)

Arguments

n the number of patients. The default is 1000.

cov_num the number of covariates. The default is 2.

level_num the vector of level numbers for each covariate. Hence the length of level_num
should be equal to the number of covariates. The default is c(2,2).

pr the vector of probabilities. Under the assumption of independence between co-
variates, pr is a vector containing probabilities for each level of each covariate.
The length of pr should correspond to the number of all levels, and the vector
sum of pr should be equal to cov_num. The default is pr = rep(0.5,4) (de-
fault), which implies that cov_num = 2 and level_num = c(2,2).

weight the vector of weights for maginal imbalances. It is required that at least one
element is larger than 0. If weight = NULL (default), the marginal imbalances
are equally weighted as 1/cov_num for each margin.

p the probability of assigning one patient to treatment 1. p should be larger than
1/2 to obtain balance. The default is 0.85.

Details

See PocSimMIN.

Value

See PocSimMIN.

See Also

See PocSimMIN for allocating patients with complete covariate data; See PocSimMIN.ui for the
command-line user interface.

40 PocSimMIN.ui

PocSimMIN.ui Command-line User Interface Using Pocock and Simon’s Procedure
with Two-Arms Case

Description

A call to the user-iterface function used to allocate patients to one of two treatments using Pocock
and Simon’s method proposed by Pocock S J, Simon R (1975) <Doi:10.2307/2529712>.

Usage

S3 method for class 'carseq'
PocSimMIN.ui(path, folder = "PocSimMIN")

Arguments

path the path in which a folder used to storage variables will be created.

folder name of the folder. If default, a folder named "PocSimMIN" will be created.

Details

See PocSimMIN.

Value

It returns an object of class "carseq".

The function print is used to obtain results. The generic accessor functions assignment, covariate,
cov_num, cov_profile and others extract various useful features of the value returned by PocSimMIN.ui.

Note

This function provides a command-line interface and users should follow the prompts to enter data
including covariates as well as levels for each covariate, weight, biased probability p and the co-
variate profile of the new patient.

See Also

See PocSimMIN for allocating a given completely collected data; See PocSimMIN.sim for allocating
patients with covariate data generating mechanism.

print.carandom 41

print.carandom Print Methods for Sequences, Evaluation and Compariason for
Covariate-Adaptive Randomization Procedures

Description

Printing objects of class "carandom", "careval", "carcomp" or carseq respectively for different
functions, by simple print method.

Usage

S3 method for class 'carandom'
print(x, digits = getOption("digits"), prefix = "\t", ...)

S3 method for class 'careval'
print(x, digits = getOption("digits"), prefix = "\t", ...)

S3 method for class 'carcomp'
print(x, digits = getOption("digits"), prefix = "\t", ...)

S3 method for class 'carseq'
print(x, digits = getOption("digits"), prefix = "\t", ...)

Arguments

x objects of class "carandom", "careval", "carcomp", or carseq.

digits the number of significant digits to be used.

prefix a string, passed to strwrap for displaying the method component of the carandom
object, careval object, carcomp object and carseq object.

... further arguments to be passed to or from methods.

Value

the argument x, invisibly, as for all print methods.

See Also

HuHuCAR, evalRand, compRand, HuHuCAR.ui

42 rand.test

rand.test Randomization Test

Description

Performs randomization test on treatment effects.

Usage

rand.test(data, Reps = 200, method = HuHuCAR, conf = 0.95,
plot = TRUE, binwidth = 30, ...)

Arguments

data a dataframe. It consists of patients’ profiles, treatment assignments and outputs.
See getData.

Reps an integer. It represents the number of randomized replications. It is suggested
to be 200.

method the randomization to be used in allocating patients. The default randomization
HuHuCAR uses Hu and Hu’s general covariate-adaptive randomization; the alter-
natives are PocSimMIN, StrBCD, StrPBR, DoptBCD and AdjBCD.

conf confidence level of the interval. Default is 0.95.

plot bool. It shows whether plot or not. Optional input: TRUE or FALSE.

binwidth the number of bins for each bar in histogram. The default is 30.

... arguments to be passed to methods. These depends on the method used and the
following arguments are accepted:

omega the vector of weights at the overall, within-stratum, and marginal levels.
It is required that at least one element is larger than 0. Note that omega is
only needed when HuHuCAR is to be used.

weight the vector of weights for marginal imbalances. It is required that at
least one element is larger than 0. Note that weight is only needed when
PocSimMIN is to be used.

p the probability of assigning one patient to treatment 1. p should be larger than
1/2 to obtain balance. Note that p is only needed when "HuHuCAR","PocSimMIN"
and "StrBCD" are to be used.

a a design parameter. As a goes to∞, the design becomes more deterministic.
bsize the block size for stratified randomization. It is required to be a multiple

of 2. Note that bsize is only needed when "StrPBR" is to be used.

Details

The randomization test is described as follows: 1) For the observed responses Y1, . . . , Yn and the
treatment assignments T1, T2, . . . , Tn, compute the observed test statistic

Sobs =
−
∑n

i=1 Yi ∗ (Ti − 2)

n1
−

∑n
i=1 Yi ∗ (Ti − 1)

n0

rand.test 43

where n1 is the number of patients assigned to treatment 1 and n0 is the number of patients assigned
to treatment 2;

2) Perform the covariate-adaptive randomization procedure to obtain the new treatment assignments
and calculate the corresponding test statistic Si. And repeat this process L times;

3) Calculate the two-sided Monte Carlo p-value estimator

p =

∑L
l=1 I(|Sl| ≥ |Sobs|)

L

Value

It returns an object of class "htest".

The function print is used to obtain results.The generic accessor functions statistic, p.value
and others extract various useful features of the value returned by rand.test.

An object of class "htest" is a list containing at least the following components:

data.name a character string giving the name(s) of the data.

statistic the value of the t-statistic. As the randomization test is a nonparametric method,
we cannot calculate the t-statistic, so it is hidden in this result.

p.value p-value of the test, the null hypothesis is rejected if the p-value is less than sl.

conf.int a confidence interval under the chosen level conf for the difference in treatment
effect between treatment 1 and treatment 2. As the randomization test is a non-
parametric method, we cannot calculate the confidence interval, so it is hidden
in this result.

estimate the estimated difference in treatment effects between treatment 1 and treatment
2.

method a character string indicating what type of test was performed.

References

Rosenberger W F, Lachin J M. Randomization in clinical trials: theory and practice[M]. John Wiley
& Sons, 2015.

Examples

##generate data
set.seed(100)
n = 1000
cov_num = 5
level_num = c(2,2,2,2,2)
pr = rep(0.5,10)
beta = c(0.1,0.4,0.3,0.2,0.5)
mu1 = 0
mu2 = 0.01
sigma = 1
type = "linear"
p = 0.85

44 StrBCD

dataS = getData(n, cov_num, level_num, pr, type,
beta, mu1, mu2, sigma, StrBCD, p)

#run the randomization test
library("ggplot2")
Strt = rand.test(data = dataS, Reps = 200,method = StrBCD,

conf = 0.95, plot = TRUE, binwidth = 30,
p = 0.85)

Strt

StrBCD Shao’s Method in the Two-Arms Case

Description

Allocates patients to one of the two treatments using Shao’s method proposed by Shao J, Yu X,
Zhong B (2010) <Doi:10.1093/biomet/asq014>.

Usage

S3 method for class 'carandom'
StrBCD(data, p = 0.85)

Arguments

data a dataframe. A row of the dataframe contains the covariate profile of a patient.

p the probability of assigning one patient to treatment 1. p should be larger than
1/2 to obtain balance. The default is 0.85.

Details

Consider I covaraites and mi levels for the ith covariate. Tj is the assignment of the jth patient
and Zj = (k1, . . . , kI) indicates the covariate profile of this patient. For convenience, (k1, . . . , kI)
and (i; ki) denote the stratum and margin respectively. Dn(.) is the difference between the numbers
of assigned patients in treatment 1 and treatment 2 at the corresponding level after n patinets have
been assigned.Then Shao’s procedure is as follows:

(1) The first patient is assigned to treatment 1 with probability 1/2;

(2) Suppose n−1 patients have each been assigned to a treatment (n > 1) and the nth patinent falls
within (k∗1 , . . . , k

∗
I);

(3)If the nth patient was assigned to treatment 1, then the potential within-stratum difference be-
tween the two groups is

D(1)
n (k∗1 , . . . , k

∗
I) = Dn(k∗1 , . . . , k

∗
I) + 1.

Similarly, the potential differences would be obtained in the same way if the nth patinent was
assigned to treatment 2.

StrBCD 45

(4) An imbalance measure is defined by

Imb(l)n = [D(1)
n (k∗1 , . . . , k

∗
I)]2, l = 1, 2;

(5)Conditional on the assignments of the first (n − 1) patients as well as the covariates’profiles of
the first n patients, assign the nth patient to treatment 1 with probability

P (Tn = 1|Zn, T1, . . . , Tn−1) = q,

for Imb(1)n > Imb
(2)
n ,

P (Tn = 1|Zn, T1, . . . , Tn−1) = p,

for Imb(1)n < Imb
(2)
n , and

P (Tn = 1|Zn, T1, . . . , Tn−1) = 0.5,

for Imb(1)n = Imb
(2)
n .

Value

It returns an object of class "carandom".

The function print is used to obtain results. The generic accessor functions Cov_Assig, Diff,
data, All strata and others extract various useful features of the value returned by StrBCD.

An object of class "carandom" is a list containing at least the following components:

cov_num the number of covariates.

n the number of patients.

Cov_Assign a (cov_num + 1) * n matrix containing covariate profiles for all patients and cor-
responding assignments. The ith column represents the ith patient. The first
cov_num rows include patients’ covariate profiles, and the last row contains the
assignment.

All strata a matrix containing all the strata involved.

Diff a matrix with only one column. There are final differences at the overall, within-
stratum, and marginal levels.

Data Type the data type. Real or Simulated.

References

Shao J, Yu X, Zhong B. A theory for testing hypotheses under covariate-adaptive randomization[J].
Biometrika, 2010, 97(2): 347-360.

See Also

See StrBCD.sim for allocating patients with covariate data generating mechanism. See StrBCD.ui
for command-line user interface.

46 StrBCD

Examples

a simple use
Real Data
creat a dataframe
df <- data.frame("gender" = sample(c("female", "male"), 1000, TRUE, c(1 / 3, 2 / 3)),

"age" = sample(c("0-30", "30-50", ">50"), 1000, TRUE),
"jobs" = sample(c("stu.", "teac.", "others"), 1000, TRUE),
stringsAsFactors = TRUE)

Res <- StrBCD(data = df)
view the output
Res

view all patients' profile and assignments
Res$Cov_Assig

Simulated Data
cov_num = 3
level_num = c(2, 3, 3)
pr = c(0.4, 0.6, 0.3, 0.4, 0.3, 0.4, 0.3, 0.3)
Res.sim <- StrBCD.sim(n = 1000, cov_num, level_num, pr)
view the output
Res.sim

view the detials of difference
Res.sim$Diff

N <- 5
n <- 1000
cov_num <- 3
level_num <- c(2, 3, 5)
Set pr to follow two tips:
(1) length of pr should be sum(level_num);
(2)sum of probabilities for each margin should be 1
pr <- c(0.4, 0.6, 0.3, 0.4, 0.3, rep(0.2, times = 5))
omega <- c(0.2, 0.2, rep(0.6 / cov_num, times = cov_num))

generate a container to contain Diff
DH <- matrix(NA, ncol = N, nrow = 1 + prod(level_num) + sum(level_num))
DS <- matrix(NA, ncol = N, nrow = 1 + prod(level_num) + sum(level_num))
for(i in 1 : N){

result <- HuHuCAR.sim(n, cov_num, level_num, pr, omega)
resultS <- StrBCD.sim(n, cov_num, level_num, pr)
DH[, i] <- result$Diff; DS[, i] <- resultS$Diff

}

do some analysis
require(dplyr)

analyze the overall imbalance
Ana_O <- matrix(NA, nrow = 2, ncol = 3)
rownames(Ana_O) <- c("NEW", "Shao")

StrBCD.sim 47

colnames(Ana_O) <- c("mean", "median", "95%quantile")
temp <- DH[1,] %>% abs
tempS <- DS[1,] %>% abs
Ana_O[1,] <- c((temp %>% mean), (temp %>% median),

(temp %>% quantile(0.95)))
Ana_O[2,] <- c((tempS %>% mean), (tempS %>% median),

(tempS %>% quantile(0.95)))

analyze the within-stratum imbalances
tempW <- DH[2 : (1 + prod(level_num)),] %>% abs
tempWS <- DS[2 : 1 + prod(level_num),] %>% abs
Ana_W <- matrix(NA, nrow = 2, ncol = 3)
rownames(Ana_W) <- c("NEW", "Shao")
colnames(Ana_W) <- c("mean", "median", "95%quantile")
Ana_W[1,] = c((tempW %>% apply(1, mean) %>% mean),

(tempW %>% apply(1, median) %>% mean),
(tempW %>% apply(1, mean) %>% quantile(0.95)))

Ana_W[2,] = c((tempWS %>% apply(1, mean) %>% mean),
(tempWS %>% apply(1, median) %>% mean),
(tempWS %>% apply(1, mean) %>% quantile(0.95)))

analyze the marginal imbalance
tempM <- DH[(1 + prod(level_num) + 1) :

(1 + prod(level_num) + sum(level_num)),] %>% abs
tempMS <- DS[(1 + prod(level_num) + 1) :

(1 + prod(level_num) + sum(level_num)),] %>% abs
Ana_M <- matrix(NA, nrow = 2, ncol = 3)
rownames(Ana_M) <- c("NEW", "Shao")
colnames(Ana_M) <- c("mean", "median", "95%quantile")
Ana_M[1,] = c((tempM %>% apply(1, mean) %>% mean),

(tempM %>% apply(1, median) %>% mean),
(tempM %>% apply(1, mean) %>% quantile(0.95)))

Ana_M[2,] = c((tempMS %>% apply(1, mean) %>% mean),
(tempMS %>% apply(1, median) %>% mean),
(tempMS %>% apply(1, mean) %>% quantile(0.95)))

AnaHP <- list(Ana_O, Ana_M, Ana_W)
names(AnaHP) <- c("Overall", "Marginal", "Within-stratum")

AnaHP

StrBCD.sim Shao’s Method in the Two-Arms Case with Covariate Data Generating
Mechanism

Description

Allocates patients to one of two treatments using Shao’s method proposed by Shao J, Yu X, Zhong
B (2010) <Doi:10.1093/biomet/asq014>, by simulating covariate profiles under the assumption of
independence between covariates and levels within each covariate.

48 StrBCD.ui

Usage

S3 method for class 'carandom'
StrBCD.sim(n = 1000, cov_num = 2, level_num = c(2, 2),

pr = rep(0.5, 4), p = 0.85)

Arguments

n the number of patients. The default is 1000.

cov_num the number of covariates. The default is 2.

level_num the vector of level numbers for each covariate. Hence the length of level_num
should be equal to the number of covariates. The default is c(2,2).

pr the vector of probabilities. Under the assumption of independence between co-
variates, pr is a vector containing probabilities for each level of each covariate.
The length of pr should correspond to the number of all levels, and the vector
sum of pr should be equal to cov_num. The default is pr = rep(0.5,4) (de-
fault), which implies that cov_num = 2 and level_num = c(2,2).

p the probability of assigning one patient to treatment 1. p should be larger than
1/2 to obtain balance. The default is 0.85.

Details

See StrBCD.

Value

See StrBCD.

See Also

See StrBCD for allocating patients with complete covariate data; See StrBCD.ui for the command-
line user interface.

StrBCD.ui Command-line User Interface Using Shao’s Method

Description

A call to the user-interface function used to allocate patients to one of two treatments using Shao’s
method proposed by Shao J, Yu X, Zhong B (2010) <Doi:10.1093/biomet/asq014>.

Usage

S3 method for class 'carseq'
StrBCD.ui(path, folder = "StrBCD")

StrPBR 49

Arguments

path the path in which a folder used to storage variables will be created.

folder name of the folder. If default, a folder named "StrBCD" will be created.

Details

See StrBCD.

Value

It returns an object of class "carseq".

The function print is used to obtain results. The generic accessor functions assignment, covariate,
cov_num, cov_profile and others extract various useful features of the value returned by StrBCD.ui.

Note

This function provides a command-line interface and users should follow the prompts to enter data
including covariates as well as levels for each covariate, biased probability p and the covariate
profile of the new patient.

See Also

See StrBCD for allocating patients with complete covariate data; See StrBCD.sim for allocating
patients with covariate data generating mechanism.

StrPBR Stratified Permuted Block Randomization

Description

Allocates patients to one of two treatments using stratified permuted block randomization proposed
by Zelen M (1974) <Doi: 10.1016/0021-9681(74)90015-0>.

Usage

S3 method for class 'carandom'
StrPBR(data, bsize = 4)

Arguments

data a dataframe. A row of the dataframe contains the covariate profile of a patient.

bsize the block size for stratified randomization. It is required to be a multiple of 2.
The default is 4.

50 StrPBR

Details

Different covariate profiles are defined to be strata, and then permuted block randomization is ap-
plied to each stratum. It works efficiently when the number of strata is small, but when the number
of strata increases, the stratified permuted block randomization fails to obtain balance between two
treatments.

Permuted-block randomization, or blocking, is used to balance treatment arms within a block
so that there are the same number of subjects in each treatment arm. A block contains the same
number of each treatment and blocks of different sizes are combined to make up the randomization
list.

Value

It returns an object of class "carandom".

The functions print is used to obtain results. The generic accessor functions Cov_Assig, Diff,
data, All strata and others extract various useful features of the value returned by StrPBR.

An object of class "carandom" is a list containing at least the following components:

cov_num the number of covariates.

n the number of patients.

Cov_Assign a (cov_num + 1) * n matrix containing covariate profiles for all patients and cor-
responding assignments. The ith column represents the ith patient. The first
cov_num rows include patients’ covariate profiles, and the last row contains the
assignments.

All strata a matrix containing all strata involved.

Diff a matrix with only one column. There are final differences at the overall, within-
stratum, and marginal levels.

Data Type the data type. Real or Simulated.

References

Zelen M. The randomization and stratification of patients to clinical trials[J]. Journal of chronic
diseases, 1974, 27(7): 365-375.

See Also

See StrPBR.sim for allocating patients with covariate data generating mechanism. See StrPBR.ui
for the command-line user interface.

Examples

a simple use
Real Data
creat a dataframe
df <- data.frame("gender" = sample(c("female", "male"), 100, TRUE, c(1 / 3, 2 / 3)),

"age" = sample(c("0-30", "30-50", ">50"), 100, TRUE),
"jobs" = sample(c("stu.", "teac.", "others"), 100, TRUE),
stringsAsFactors = TRUE)

StrPBR 51

Res <- StrPBR(data = df, bsize = 4)
view the output
Res

view all patients' profile and assignments
Res$Cov_Assig

Simulated data
cov_num <- 3
level_num <- c(2, 3, 3)
pr <- c(0.4, 0.6, 0.3, 0.4, 0.3, 0.4, 0.3, 0.3)
Res.sim <- StrPBR.sim(n = 100, cov_num, level_num, pr)
view the output
Res.sim

view the detials of difference
Res.sim$Diff

N <- 5
n <- 1000
cov_num <- 3
level_num <- c(2, 3, 5)
Set pr to follow two tips:
#(1) length of pr should be sum(level_num);
#(2)sum of probabilities for each margin should be 1.
pr <- c(0.4, 0.6, 0.3, 0.4, 0.3, rep(0.2, times = 5))
omega <- c(0.2, 0.2, rep(0.6 / cov_num, times = cov_num))
Set block size for stratified randomization
bsize <- 4

generate a container to contain Diff
DS <- matrix(NA, ncol = N, nrow = 1 + prod(level_num) + sum(level_num))
for(i in 1 : N){

rtS <- StrPBR.sim(n, cov_num, level_num, pr, bsize)
DS[, i] <- rtS$Diff

}

do some analysis
require(dplyr)

analyze the overall imbalance
Ana_O <- matrix(NA, nrow = 1, ncol = 3)
rownames(Ana_O) <- c("Str.R")
colnames(Ana_O) <- c("mean", "median", "95%quantile")
tempS <- DS[1,] %>% abs
Ana_O[1,] <- c((tempS %>% mean), (tempS %>% median),

(tempS %>% quantile(0.95)))
analyze the within-stratum imbalances
tempWS <- DS[2 : 1 + prod(level_num),] %>% abs
Ana_W <- matrix(NA, nrow = 1, ncol = 3)
rownames(Ana_W) <- c("Str.R")
colnames(Ana_W) <- c("mean", "median", "95%quantile")

52 StrPBR.sim

Ana_W[1,] = c((tempWS %>% apply(1, mean) %>% mean),
(tempWS %>% apply(1, median) %>% mean),
(tempWS %>% apply(1, mean) %>% quantile(0.95)))

analyze the marginal imbalance
tempMS <- DS[(1 + prod(level_num) + 1) : (1 + prod(level_num) + sum(level_num)),] %>% abs
Ana_M <- matrix(NA, nrow = 1, ncol = 3)
rownames(Ana_M) <- c("Str.R");
colnames(Ana_M) <- c("mean", "median", "95%quantile")
Ana_M[1,] = c((tempMS %>% apply(1, mean) %>% mean),

(tempMS %>% apply(1, median) %>% mean),
(tempMS %>% apply(1, mean) %>% quantile(0.95)))

AnaHP <- list(Ana_O, Ana_M, Ana_W)
names(AnaHP) <- c("Overall", "Marginal", "Within-stratum")

AnaHP

StrPBR.sim Stratified Permuted Block Randomization with Covariate Data Gener-
ating Mechanism

Description

Allocates patients to one of two treatments using stratified randomization proposed by Zelen M
(1974) <Doi: 10.1016/0021-9681(74)90015-0>, by simulating covariates-profile on assumption of
independence between covariates and levels within each covariate.

Usage

S3 method for class 'carandom'
StrPBR.sim(n = 1000, cov_num = 2, level_num = c(2, 2),

pr = rep(0.5, 4), bsize = 4)

Arguments

n the number of patients. The default is 1000.

cov_num the number of covariates. The default is 2.

level_num the vector of level numbers for each covariate. Hence the length of level_num
should be equal to the number of covariates. The default is c(2,2).

pr the vector of probabilities. Under the assumption of independence between co-
variates, pr is a vector containing probabilities for each level of each covariate.
The length of pr should correspond to the number of all levels, and the vector
sum of pr should be equal to cov_num. The default is pr = rep(0.5,4) (de-
fault), which implies that cov_num = 2 and level_num = c(2,2).

bsize the block size for the stratified randomization. It is required to be a multiple of
2. The default is 4.

StrPBR.ui 53

Details

See StrPBR.

Value

See StrPBR.

See Also

See StrPBR for allocating patients with complete covariate data; See StrPBR.ui for the command-
line user interface.

StrPBR.ui Command-line User Interface Using Stratified Permuted Block Ran-
domization with Two-Arms Case

Description

A call to the user-iterface function used to allocate patients to one of two treatments using stratified
permuted block randomization proposed by Zelen M (1974) <Doi: 10.1016/0021-9681(74)90015-
0>.

Usage

S3 method for class 'carseq'
StrPBR.ui(path, folder = "StrPBR")

Arguments

path the path in which a folder used to storage variables will be created.

folder name of the folder. If default, a folder named "StrPBR" will be created.

Details

See StrPBR.

Value

It returns an object of class "carseq".

The function print is used to obtain results. The generic accessor functions assignment, covariate,
cov_num, cov_profile and others extract various useful features of the value returned by StrPBR.ui.

Note

This function provides a command-line interface and users should follow the prompts to enter data
including covariates as well as levels for each covariate, block size bsize and the covariate profile
of the new patient.

54 StrPBR.ui

See Also

See StrPBR for allocating patients with complete covariate data; See StrPBR.sim for allocating
patients with covariate data generating mechanism.

Index

∗Topic CAR
AdjBCD.ui, 7
DoptBCD.ui, 19
HuHuCAR.ui, 33
PocSimMIN.ui, 40
StrBCD.ui, 48
StrPBR.ui, 53

∗Topic Covariate-ajusted biased coin
design

AdjBCD, 3
∗Topic carandom

AdjBCD, 3
print.carandom, 41

∗Topic carat-package
carat-package, 2

∗Topic carcomp
print.carandom, 41

∗Topic careval
print.carandom, 41

∗Topic carseq
print.carandom, 41

∗Topic datasets
pats, 34

∗Topic user-interface
AdjBCD.ui, 7
DoptBCD.ui, 19
HuHuCAR.ui, 33
PocSimMIN.ui, 40
StrBCD.ui, 48
StrPBR.ui, 53

AdjBCD, 3, 6, 7
AdjBCD.sim, 5, 5, 7
AdjBCD.ui, 5, 6, 7

boot.test, 8

carat (carat-package), 2
carat-package, 2

class, 4, 7, 12, 15, 19, 23, 30, 34, 36, 40, 45,
49, 50, 53

compPower, 10
compRand, 11, 41
corr.test, 13

DoptBCD, 15, 18, 19
DoptBCD.sim, 16, 18, 19
DoptBCD.ui, 16, 19, 19

evalPower, 20
evalRand, 13, 22, 27, 41
evalRand.sim, 13, 23, 25

getData, 8, 13, 27, 42

HuHuCAR, 29, 33, 34, 41
HuHuCAR.sim, 30, 32, 34
HuHuCAR.ui, 30, 33, 33, 41

pats, 34
PocSimMIN, 35, 39, 40
PocSimMIN.sim, 36, 38, 40
PocSimMIN.ui, 36, 39, 40
print, 4, 7, 12, 15, 19, 23, 30, 34, 36, 40, 41,

45, 49, 50, 53
print.carandom, 41
print.carcomp (print.carandom), 41
print.careval (print.carandom), 41
print.carseq (print.carandom), 41

rand.test, 42

StrBCD, 44, 48, 49
StrBCD.sim, 45, 47, 49
StrBCD.ui, 45, 48, 48
StrPBR, 49, 53, 54
StrPBR.sim, 50, 52, 54
StrPBR.ui, 50, 53, 53
strwrap, 41

55

	carat-package
	AdjBCD
	AdjBCD.sim
	AdjBCD.ui
	boot.test
	compPower
	compRand
	corr.test
	DoptBCD
	DoptBCD.sim
	DoptBCD.ui
	evalPower
	evalRand
	evalRand.sim
	getData
	HuHuCAR
	HuHuCAR.sim
	HuHuCAR.ui
	pats
	PocSimMIN
	PocSimMIN.sim
	PocSimMIN.ui
	print.carandom
	rand.test
	StrBCD
	StrBCD.sim
	StrBCD.ui
	StrPBR
	StrPBR.sim
	StrPBR.ui
	Index

