Consider this model: \[ x_i = a x_0 + e_i, \quad i=1, \dots, 4 \] and \(x_0=e_0\). All terms \(e_0, \dots, e_3\) are independent and \(N(0,1)\) distributed. Let \(e=(e_0, \dots, e_3)\) and \(x=(x_0, \dots x_3)\). Isolating error terms gives that \[ e = L_1 x \] where \(L_1\) has the form
L1chr <- diag(4)
L1chr[2:4, 1] <- "-a"
L1 <- as_symbol(L1chr)
L1
#> [caracas]: ⎡1 0 0 0⎤
#> ⎢ ⎥
#> ⎢-a 1 0 0⎥
#> ⎢ ⎥
#> ⎢-a 0 1 0⎥
#> ⎢ ⎥
#> ⎣-a 0 0 1⎦
If error terms have variance \(1\) then \(\mathbf{Var}(e)=L \mathbf{Var}(x) L'\) so the covariance matrix is \(V1=\mathbf{Var}(x) = L^- (L^-)'\) while the concentration matrix (the inverse covariances matrix) is \(K=L' L\).
\[\begin{align} K_1 &= \left[\begin{matrix}3 a^{2} + 1 & - a & - a & - a\\- a & 1 & 0 & 0\\- a & 0 & 1 & 0\\- a & 0 & 0 & 1\end{matrix}\right] \\ V_1 &= \left[\begin{matrix}1 & a & a & a\\a & a^{2} + 1 & a^{2} & a^{2}\\a & a^{2} & a^{2} + 1 & a^{2}\\a & a^{2} & a^{2} & a^{2} + 1\end{matrix}\right] \end{align}\]
Slightly more elaborate:
L2chr <- diag(4)
L2chr[2:4, 1] <- c("-a1", "-a2", "-a3")
L2 <- as_symbol(L2chr)
L2
#> [caracas]: ⎡ 1 0 0 0⎤
#> ⎢ ⎥
#> ⎢-a₁ 1 0 0⎥
#> ⎢ ⎥
#> ⎢-a₂ 0 1 0⎥
#> ⎢ ⎥
#> ⎣-a₃ 0 0 1⎦
Vechr <- diag(4)
Vechr[cbind(1:4, 1:4)] <- c("w1", "w2", "w2", "w2")
Ve <- as_symbol(Vechr)
Ve
#> [caracas]: ⎡w₁ 0 0 0 ⎤
#> ⎢ ⎥
#> ⎢0 w₂ 0 0 ⎥
#> ⎢ ⎥
#> ⎢0 0 w₂ 0 ⎥
#> ⎢ ⎥
#> ⎣0 0 0 w₂⎦
\[\begin{align} K_2 &= \left[\begin{matrix}\frac{a_{1}^{2}}{w_{2}} + \frac{a_{2}^{2}}{w_{2}} + \frac{a_{3}^{2}}{w_{2}} + \frac{1}{w_{1}} & - \frac{a_{1}}{w_{2}} & - \frac{a_{2}}{w_{2}} & - \frac{a_{3}}{w_{2}}\\- \frac{a_{1}}{w_{2}} & \frac{1}{w_{2}} & 0 & 0\\- \frac{a_{2}}{w_{2}} & 0 & \frac{1}{w_{2}} & 0\\- \frac{a_{3}}{w_{2}} & 0 & 0 & \frac{1}{w_{2}}\end{matrix}\right] \\ V_2 &= \left[\begin{matrix}w_{1} & a_{1} w_{1} & a_{2} w_{1} & a_{3} w_{1}\\a_{1} w_{1} & a_{1}^{2} w_{1} + w_{2} & a_{1} a_{2} w_{1} & a_{1} a_{3} w_{1}\\a_{2} w_{1} & a_{1} a_{2} w_{1} & a_{2}^{2} w_{1} + w_{2} & a_{2} a_{3} w_{1}\\a_{3} w_{1} & a_{1} a_{3} w_{1} & a_{2} a_{3} w_{1} & a_{3}^{2} w_{1} + w_{2}\end{matrix}\right] \end{align}\]