
Package ‘camtrapR’
July 29, 2020

Type Package

Title Camera Trap Data Management and Preparation of Occupancy and
Spatial Capture-Recapture Analyses

Version 2.0.3

Date 2020-07-29

Depends R (>= 3.1.0)

Imports methods, sp, overlap, secr, data.table

Suggests knitr, lubridate, raster, rgdal, ritis, rmarkdown, taxize,
testthat, tibble, unmarked, zip, RSQLite

VignetteBuilder knitr

SystemRequirements ExifTool
(http://www.sno.phy.queensu.ca/~phil/exiftool/)

Description Management of and data extraction from camera trap data in wildlife studies. The pack-
age provides a workflow for storing and sorting camera trap photos (and videos), tabu-
lates records of species and individuals, and creates detection/non-detection matrices for occu-
pancy and spatial capture-recapture analyses with great flexibility. In addition, it can visu-
alise species activity data and provides simple mapping functions with GIS export.

URL https://github.com/jniedballa/camtrapR,

https://jniedballa.github.io/camtrapR,

https://groups.google.com/forum/#!forum/camtrapr

BugReports https://groups.google.com/forum/#!forum/camtrapr

Encoding UTF-8

License GPL (>= 2)

NeedsCompilation no

Author Juergen Niedballa [aut, cre] (<https://orcid.org/0000-0002-9187-2116>),
Alexandre Courtiol [aut] (<https://orcid.org/0000-0003-0637-2959>),
Rahel Sollmann [aut] (<https://orcid.org/0000-0002-1607-2039>),
John Mathai [ctb],
Seth Timothy Wong [ctb],
An The Truong Nguyen [ctb],

1

https://github.com/jniedballa/camtrapR
https://jniedballa.github.io/camtrapR
https://groups.google.com/forum/#!forum/camtrapr
https://groups.google.com/forum/#!forum/camtrapr

2 R topics documented:

Azlan bin Mohamed [ctb] (<https://orcid.org/0000-0003-3788-4383>),
Andrew Tilker [ctb] (<https://orcid.org/0000-0003-3630-8691>),
Andreas Wilting [ctb, ths] (<https://orcid.org/0000-0001-5073-9186>)

Maintainer Juergen Niedballa <camtrapr@gmail.com>

Repository CRAN

Date/Publication 2020-07-29 12:20:02 UTC

R topics documented:

camtrapR-package . 3
activityDensity . 6
activityHistogram . 8
activityOverlap . 10
activityRadial . 12
addCopyrightTag . 15
appendSpeciesNames . 16
cameraOperation . 18
camtraps . 21
camtrapsMultiSeason . 22
checkSpeciesIdentification . 24
checkSpeciesNames . 26
createSpeciesFolders . 28
createStationFolders . 30
detectionHistory . 31
detectionMaps . 36
exifTagNames . 39
exiftoolPath . 41
fixDateTimeOriginal . 42
getSpeciesImages . 43
imageRename . 46
recordTable . 48
recordTableIndividual . 54
recordTableIndividualSample . 59
recordTableIndividualSampleMultiSeason . 60
recordTableSample . 61
recordTableSampleMultiSeason . 62
spatialDetectionHistory . 63
surveyReport . 68
timeShiftImages . 71
timeShiftTable . 74

Index 75

camtrapR-package 3

camtrapR-package Overview of the functions in the camtrapR package

Description

This package provides a streamlined workflow for processing data generated in camera trap-based
wildlife studies and prepares input for further analyses, particularly in occupancy and spatial capture-
recapture frameworks. It suggests a simple data structure and provides functions for managing dig-
ital camera trap photographs (and videos), generating record tables, maps of species richness and
species detections and species activity diagrams. It further helps prepare subsequent analyses by
creating detection/non-detection matrices for occupancy analyses, e.g. in the unmarked package,
and capthist objects for spatial capture-recapture analyses in the secr package. In addition, basic
survey statistics are computed. The functions build on one another in a logical sequence. The only
manual input needed is species (and individual) identification, which is achieved by moving images
into species directories or by tagging images in image management software. Besides, a table hold-
ing basic information about camera trap station IDs, locations and trapping periods must be created
in spreadsheet software.

Details

Image metadata (such as date and time or user-assigned tags) are extracted from the images using
Phil Harvey’s ExifTool (available from https://exiftool.org/) and the information is stored in a
record table. An adjustable criterion for temporal independence of records can be applied. Maps of
species presence and species richness can be generated. Several functions are available for plotting
single- and two-species activity patterns. Information about the camera-specific trapping periods
(and periods of malfunction) are summarized into a matrix about camera trap operability. These,
together with the record table, are used to generate species detection histories for occupancy and
spatial capture-recapture analyses. The user has considerable freedom in generating the detection
histories; sampling occasion length, beginning date and and occasion start times are adjustable. In
addition, trapping effort (i.e. active trap nights per station and occasion) can be computed for use
as a covariate / offset on detection probability.

User support

The camtrapR Google group is an online support and help forum for camtrapR users. You can find
it here: https://groups.google.com/forum/#!forum/camtrapr.

Image organisation and management

The functions in this section set up a directory structure for storing camera trap images and identi-
fying species and individuals from images. They build on one another and can be run in sequential
order as needed.

createStationFolders Create camera trap station directories for raw images
fixDateTimeOriginal Fix DateTimeOriginal Exif metadata tag in Reconyx Hyperfire cameras
timeShiftImages Apply time shifts to JPEG images
imageRename Copy and rename images based on station ID and image creation date

https://exiftool.org/
https://groups.google.com/forum/#!forum/camtrapr

4 camtrapR-package

addCopyrightTag Write a copyright tag into JPEG image metadata
appendSpeciesNames Add or remove species names from image filenames
————————— ———————————————————————————————-

Species / individual identification

These functions assist in species identification and prepare individual identification of animals.

checkSpeciesNames Check species names against the ITIS taxonomic database
createSpeciesFolders Create directories for species identification
checkSpeciesIdentification Consistency check on species image identification
getSpeciesImages Gather all images of a species in a new directory
————————— ———————————————————————————————-

Image data extraction

These function use the directory structure built above (Section ’Image management workflow’) and
a table containing basic information about camera traps and/or stations (IDs, location, trapping
period).

recordTable Create a species record table from camera trap images and videos
recordTableIndividual Create a single-species record table from camera trap images and videos with individual IDs
exifTagNames Return Exif metadata tags and tag names from JPEG images
exiftoolPath Add the directory containing exiftool.exe to PATH temporarily (Windows only)
————————— ———————————————————————————————-

Data exploration and visualisation

These plots are generated from the record table and the camera trap table.

detectionMaps Generate maps of species richness and species presence by station, export shapefiles
activityHistogram Single-species diel activity histograms
activityDensity Single-species diel activity kernel density estimation plots
activityRadial Single-species diel activity radial plot
activityOverlap Two-species diel activity overlap plots and estimates
————————— ———————————————————————————————-

Data export

cameraOperation Create a camera operability matrix
detectionHistory Species detection histories for occupancy analyses (single and multi-season)
spatialDetectionHistory Detection histories of individuals for spatial capture-recapture analyses
surveyReport Create a report about camera trap surveys and species detections
————————— ———————————————————————————————-

camtrapR-package 5

Sample data

camtraps Sample camera trap station information table
recordTableSample Sample species record table
recordTableIndividualSample Single-species record table with individual IDs
camtrapsMultiSeason Sample multi season camera trap station information table
recordTableSampleMultiSeason Sample multi season species record table
recordTableIndividualSampleMultiSeason Single-species multi season record table with individual IDs
timeShiftTable Sample camera trap time shift information
————————— ———————————————————————————————-

Vignettes

1. Organising raw camera trap images
2. Identifying species and individuals
3. Extracting Data from Camera Trapping Images and Videos
4. Data exploration and visualisation

Author(s)

Juergen Niedballa
Maintainer:Juergen Niedballa <camtrapr@gmail.com>

References

Niedballa, J., Sollmann, R., Courtiol, A., Wilting, A. (2016): camtrapR: an R package for efficient
camera trap data management. Methods in Ecology and Evolution, 7(12). http://onlinelibrary.
wiley.com/doi/10.1111/2041-210X.12600/full

camtrapR Google Group https://groups.google.com/forum/#!forum/camtrapr

Lemon, J. (2006) Plotrix: a package in the red light district of R. R-News, 6(4): 8-12.

Mike Meredith and Martin Ridout (2018). overlap: Estimates of coefficient of overlapping for
animal activity patterns. R package version 0.3.2. https://CRAN.R-project.org/package=
overlap

Phil Harvey’s ExifTool https://exiftool.org/

https://CRAN.R-project.org/package=camtrapR/vignettes/camtrapr1.html
https://CRAN.R-project.org/package=camtrapR/vignettes/camtrapr2.html
https://CRAN.R-project.org/package=camtrapR/vignettes/camtrapr3.html
https://CRAN.R-project.org/package=camtrapR/vignettes/camtrapr4.html
http://onlinelibrary.wiley.com/doi/10.1111/2041-210X.12600/full
http://onlinelibrary.wiley.com/doi/10.1111/2041-210X.12600/full
https://groups.google.com/forum/#!forum/camtrapr
https://CRAN.R-project.org/package=overlap
https://CRAN.R-project.org/package=overlap
https://exiftool.org/

6 activityDensity

See Also

overlap unmarked secr plotrix taxize ritis wiqid

activityDensity Plot kernel density estimation of single-species activity

Description

The function plots a kernel density estimation of species diel activity using function densityPlot
from package overlap.

Usage

activityDensity(recordTable,
species,
allSpecies = FALSE,
speciesCol = "Species",
recordDateTimeCol = "DateTimeOriginal",
recordDateTimeFormat = "%Y-%m-%d %H:%M:%S",
plotR = TRUE,
writePNG = FALSE,
plotDirectory,
createDir = FALSE,
pngMaxPix = 1000,
add.rug = TRUE,
...

)

Arguments

recordTable data.frame. the record table created by recordTable

species Name of the species for which to create an kernel density plot of activity
allSpecies logical. Create plots for all species in speciesCol of recordTable? Overrides

argument species
speciesCol character. name of the column specifying species names in recordTable
recordDateTimeCol

character. name of the column specifying date and time in recordTable
recordDateTimeFormat

character. format of column recordDateTimeCol in recordTable

plotR logical. Show plots in R graphics device?
writePNG logical. Create pngs of the plots?
plotDirectory character. Directory in which to create png plots if writePNG = TRUE

createDir logical. Create plotDirectory if writePNG = TRUE?
pngMaxPix integer. image size of png (pixels along x-axis)
add.rug logical. add a rug to the plot?
... additional arguments to be passed to function densityPlot

activityDensity 7

Details

species must be in the speciesCol of recordTable.
recordDateTimeFormat defaults to the "YYYY-MM-DD HH:MM:SS" convention, e.g. "2014-
09-30 22:59:59". recordDateTimeFormat can be interpreted either by base-R via strptime or in
lubridate via parse_date_time (argument "orders"). lubridate will be used if there are no "%"
characters in recordDateTimeFormat.
For "YYYY-MM-DD HH:MM:SS", recordDateTimeFormat would be either "%Y-%m-%d %H:%M:%S"
or "ymd HMS". For details on how to specify date and time formats in R see strptime or
parse_date_time.

Value

Returns invisibly a vector of species record observation times in radians, i.e. scaled to [0, 2π]. If
allSpecies == TRUE, all species’ vectors are returned in an invisible named list.

Author(s)

Juergen Niedballa

References

Martin Ridout and Matthew Linkie (2009). Estimating overlap of daily activity patterns from cam-
era trap data. Journal of Agricultural, Biological and Environmental Statistics, 14(3), 322-337
Mike Meredith and Martin Ridout (2018). overlap: Estimates of coefficient of overlapping for
animal activity patterns. R package version 0.3.2. https://CRAN.R-project.org/package=
overlap

See Also

activityHistogram, activityRadial, activityOverlap http://www.kent.ac.uk/smsas/personal/
msr/overlap.html

Examples

load record table
data(recordTableSample)

species4activity <- "VTA" # = Viverra tangalunga, Malay Civet

activityDensity(recordTable = recordTableSample,
species = species4activity)

all species at once

activityDensity(recordTable = recordTableSample,
allSpecies = TRUE,
writePNG = FALSE,
plotR = TRUE,
add.rug = TRUE)

https://CRAN.R-project.org/package=overlap
https://CRAN.R-project.org/package=overlap
http://www.kent.ac.uk/smsas/personal/msr/overlap.html
http://www.kent.ac.uk/smsas/personal/msr/overlap.html

8 activityHistogram

activityHistogram Plot histogram of single-species activity

Description

The function generates a histogram of species diel activity in 1-hour intervals.

Usage

activityHistogram(recordTable,
species,
allSpecies = FALSE,
speciesCol = "Species",
recordDateTimeCol = "DateTimeOriginal",
recordDateTimeFormat = "%Y-%m-%d %H:%M:%S",
plotR = TRUE,
writePNG = FALSE,
plotDirectory,
createDir = FALSE,
pngMaxPix = 1000,
...)

Arguments

recordTable data.frame. the record table created by recordTable

species Name of the single species for which to create a histogram of activity

allSpecies logical. Create plots for all species in speciesCol of recordTable? Overrides
argument species

speciesCol character. name of the column specifying species names in recordTable

recordDateTimeCol

character. name of the column specifying date and time in recordTable

recordDateTimeFormat

character. format of column recordDateTimeCol in recordTable

plotR logical. Show plots in R graphics device?

writePNG logical. Create pngs of the plots?

plotDirectory character. Directory in which to create png plots if writePNG = TRUE

createDir logical. Create plotDirectory?

pngMaxPix integer. image size of png (pixels along x-axis)

... additional arguments to be passed to function hist

activityHistogram 9

Details

Activity is calculated from the time of day of records. The date is ignored.

recordDateTimeFormat defaults to the "YYYY-MM-DD HH:MM:SS" convention, e.g. "2014-
09-30 22:59:59". recordDateTimeFormat can be interpreted either by base-R via strptime or in
lubridate via parse_date_time (argument "orders"). lubridate will be used if there are no "%"
characters in recordDateTimeFormat.

For "YYYY-MM-DD HH:MM:SS", recordDateTimeFormat would be either "%Y-%m-%d %H:%M:%S"
or "ymd HMS". For details on how to specify date and time formats in R see strptime or
parse_date_time.

Value

It returns invisibly a vector of species record date and time in POSIXlt format. If allSpecies ==
TRUE, all species’ vectors are returned in an invisible named list.

Note

If you have a sufficiently large number of records you may wish to consider using activityDensity
instead. Please be aware that this function (like the other activity... function of this package) use
clock time. If your survey was long enough to see changes in sunrise and sunset times, this may
result in biased representations of species activity.

Author(s)

Juergen Niedballa

See Also

activityDensity, activityRadial, activityOverlap

Examples

load record table
data(recordTableSample)

generate activity histogram
species4activity <- "VTA" # = Viverra tangalunga, Malay Civet

activityHistogram (recordTable = recordTableSample,
species = species4activity,
allSpecies = FALSE)

10 activityOverlap

activityOverlap Plot overlapping kernel densities of two-species activities

Description

This function plots kernel density estimates of two species’ diel activity data by calling the function
overlapPlot from package overlap. It further computes the overlap coefficient Dhat1 by calling
overlapEst.

Usage

activityOverlap(recordTable,
speciesA,
speciesB,
speciesCol = "Species",
recordDateTimeCol = "DateTimeOriginal",
recordDateTimeFormat = "%Y-%m-%d %H:%M:%S",
plotR = TRUE,
writePNG = FALSE,
addLegend = TRUE,
legendPosition = "topleft",
plotDirectory,
createDir = FALSE,
pngMaxPix = 1000,
add.rug = TRUE,
overlapEstimator = c("Dhat1", "Dhat4", "Dhat5"),
...

)

Arguments

recordTable data.frame. the record table created by recordTable

speciesA Name of species 1 (as found in speciesCol of recordTable)

speciesB Name of species 2 (as found in speciesCol of recordTable)

speciesCol character. name of the column specifying species names in recordTable

recordDateTimeCol

character. name of the column specifying date and time in recordTable

recordDateTimeFormat

character. format of column recordDateTimeCol in recordTable

plotR logical. Show plots in R graphics device?

writePNG logical. Create pngs of the plots?

addLegend logical. Add a legend to the plots?

legendPosition character. Position of the legend (keyword)

plotDirectory character. Directory in which to create png plots if writePNG = TRUE

activityOverlap 11

createDir logical. Create plotDirectory?

pngMaxPix integer. image size of png (pixels along x-axis)

add.rug logical. add a rug to the plot?
overlapEstimator

character. Which overlap estimator to return (passed on to argument type in
overlapEst)

... additional arguments to be passed to function overlapPlot

Details

... can be graphical parameters passed on to function overlapPlot, e.g. linetype, linewidth,
linecol (see example below).

recordDateTimeFormat defaults to the "YYYY-MM-DD HH:MM:SS" convention, e.g. "2014-
09-30 22:59:59". recordDateTimeFormat can be interpreted either by base-R via strptime or in
lubridate via parse_date_time (argument "orders"). lubridate will be used if there are no "%"
characters in recordDateTimeFormat.

For "YYYY-MM-DD HH:MM:SS", recordDateTimeFormat would be either "%Y-%m-%d %H:%M:%S"
or "ymd HMS". For details on how to specify date and time formats in R see strptime or
parse_date_time.

Value

Returns invisibly the data.frame with plot coordinates returned by overlapPlot.

Note

Please be aware that the function (like the other activity... function of this package) use clock time,
not solar time. If your survey was long enough to see changes in sunrise and sunset times, this may
result in biased representations of species activity.

Author(s)

Juergen Niedballa

References

Mike Meredith and Martin Ridout (2018). overlap: Estimates of coefficient of overlapping for
animal activity patterns. R package version 0.3.2. https://CRAN.R-project.org/package=
overlap
Ridout, M.S. and Linkie, M. (2009) Estimating overlap of daily activity patterns from camera trap
data. Journal of Agricultural, Biological and Environmental Statistics, 14, 322-337.

See Also

activityDensity
http://www.kent.ac.uk/smsas/personal/msr/overlap.html

https://CRAN.R-project.org/package=overlap
https://CRAN.R-project.org/package=overlap
http://www.kent.ac.uk/smsas/personal/msr/overlap.html

12 activityRadial

Examples

load record table
data(recordTableSample)

define species of interest
speciesA_for_activity <- "VTA" # = Viverra tangalunga, Malay Civet
speciesB_for_activity <- "PBE" # = Prionailurus bengalensis, Leopard Cat

create activity overlap plot (basic)
activityOverlap (recordTable = recordTableSample,

speciesA = "VTA", # = Viverra tangalunga, Malay Civet
speciesB = "PBE", # = Prionailurus bengalensis, Leopard Cat
writePNG = FALSE,
plotR = TRUE

)

create activity overlap plot (prettier and with some overlapPlot arguments set)

activityOverlap (recordTable = recordTableSample,
speciesA = speciesA_for_activity,
speciesB = speciesB_for_activity,
writePNG = FALSE,
plotR = TRUE,
createDir = FALSE,
pngMaxPix = 1000,
linecol = c("black", "blue"),
linewidth = c(5,3),
linetype = c(1, 2),
olapcol = "darkgrey",
add.rug = TRUE,
extend = "lightgrey",
ylim = c(0, 0.25),
main = paste("Activity overlap between ",

speciesA_for_activity, "and",
speciesB_for_activity)

)

activityRadial Radial plots of single-species activity

Description

The function generates a radial plot of species diel activity using an adapted version of function
radial.plot from package plotrix (without the need to install the package). Records are aggre-
gated by hour. The number of independent events is used as input, which in turn is based on the
argument minDeltaTime in recordTable.

activityRadial 13

Usage

activityRadial(recordTable,
species,
allSpecies = FALSE,
speciesCol = "Species",
recordDateTimeCol = "DateTimeOriginal",
recordDateTimeFormat = "%Y-%m-%d %H:%M:%S",
byNumber = FALSE,
plotR = TRUE,
writePNG = FALSE,
plotDirectory,
createDir = FALSE,
pngMaxPix = 1000,
...

)

Arguments

recordTable data.frame. the record table created by recordTable

species Name of the species for which to create an kernel density plot of activity

allSpecies logical. Create plots for all species in speciesCol of recordTable? Overrides
argument species

speciesCol character. name of the column specifying species names in recordTable

recordDateTimeCol

character. name of the column specifying date and time in recordTable

recordDateTimeFormat

character. format of column recordDateTimeCol in recordTable

byNumber logical. If FALSE, plot proportion of records. If TRUE, plot number of records

plotR logical. Show plots in R graphics device?

writePNG logical. Create pngs of the plots?

plotDirectory character. Directory in which to create png plots if writePNG = TRUE

createDir logical. Create plotDirectory?

pngMaxPix integer. image size of png (pixels along x-axis)

... additional arguments to be passed to function radial.plot

Details

radial.plot was adjusted to show a clockwise 24-hour clock face. It is recommended to set
argument lwd to a value >= 2. You may also wish to add argument rp.type="p" to show a polygon
instead of bars.

recordDateTimeFormat defaults to the "YYYY-MM-DD HH:MM:SS" convention, e.g. "2014-
09-30 22:59:59". recordDateTimeFormat can be interpreted either by base-R via strptime or in
lubridate via parse_date_time (argument "orders"). lubridate will be used if there are no "%"
characters in recordDateTimeFormat.

14 activityRadial

For "YYYY-MM-DD HH:MM:SS", recordDateTimeFormat would be either "%Y-%m-%d %H:%M:%S"
or "ymd HMS". For details on how to specify date and time formats in R see strptime or
parse_date_time.

Value

Returns invisibly a data.frame containing all information needed to create the plot: radial posi-
tion, lengths, hour (for labels). If allSpecies == TRUE, all species’ data frames are returned in an
invisible named list.

Author(s)

Juergen Niedballa

References

Lemon, J. (2006) Plotrix: a package in the red light district of R. R-News, 6(4): 8-12.
https://CRAN.R-project.org/package=plotrix

See Also

activityDensity, activityHistogram, activityOverlap

Examples

load record table
data(recordTableSample)

species4activity <- "PBE" # = Prionailurus bengalensis, Leopard Cat

activityRadial(recordTable = recordTableSample,
species = species4activity,
allSpecies = FALSE,
speciesCol = "Species",
recordDateTimeCol = "DateTimeOriginal",
plotR = TRUE,
writePNG = FALSE,
lwd = 5

)

plot type = polygon

activityRadial(recordTable = recordTableSample,
species = species4activity,
allSpecies = FALSE,
speciesCol = "Species",
recordDateTimeCol = "DateTimeOriginal",
plotR = TRUE,
writePNG = FALSE,
lwd = 5,
rp.type = "p"

https://CRAN.R-project.org/package=plotrix

addCopyrightTag 15

)

addCopyrightTag Write a copyright tag into JPEG image metadata

Description

This function writes a copyright tag into the copyright field of JPEG image Exif metadata. It does
so recursively, so it works both for images that are sorted into subdirectories and unsorted images.
Note that all images in subdirectories of inDir will be tagged. It is not required to run this function
in the camtrapR workflow, but may be desired for data sharing or publishing.

Usage

addCopyrightTag(inDir,
copyrightTag,
askFirst = TRUE,
keepJPG_original = TRUE

)

Arguments

inDir character. Name of the directory containing camera trap images.

copyrightTag character. The tag to be written into the Exif Copyright field

askFirst logical. Ask user to confirm before execution?
keepJPG_original

logical. Keep original JPG files as .JPG_original files (TRUE) or overwrite JPGs
(FALSE)?

Details

If askFirst = TRUE, the function will show a menu and asks the user to confirm the action before
execution. Type "1" to write copyright tags and "2" to abort.

By default Exiftool creates a copy of each JPG image and preserves the original images (without the
copyright tag) as .JPG_original files. Note that this behaviour will instantly double the number of
images in inDir and the disk space required. If this is not desired, set keepJPG_original = FALSE.

Value

An invisible list of Exiftool output.

More importantly, the specified copyright tag is written into the Copyright field of the Exif metadata
of all images in inDir.

Author(s)

Juergen Niedballa

16 appendSpeciesNames

Examples

Not run:

if (Sys.which("exiftool") != ""){ # only run this example if ExifTool is available

copy sample images to temporary directory (so we don't mess around in the package directory)
wd_images_ID <- system.file(file.path("pictures", "sample_images_species_dir"),

package = "camtrapR")
file.copy(from = wd_images_ID, to = tempdir(), recursive = TRUE)
wd_images_ID_copy <- file.path(tempdir(), "sample_images_species_dir")

define a sample tag
copyrightTagToAdd <- "Your Name (Your Organisation)"

add the tag to the images
addCopyrightTag(inDir = wd_images_ID_copy,

copyrightTag = copyrightTagToAdd)
1 # we choose "YES", i.e., we want to add a copyright tag

you can check the outcome with function exifTagNames

metadat <- exifTagNames(wd_images_ID_copy)
metadat [metadat$tag_name == "Copyright",]
}

End(Not run)

appendSpeciesNames Add or remove species names from JPEG image filenames

Description

Add or remove species names from JPEG image filenames. It makes it easier to find images of a
species.

Usage

appendSpeciesNames(inDir,
IDfrom,
hasCameraFolders,
metadataSpeciesTag,
metadataHierarchyDelimitor = "|",
removeNames = FALSE,
writecsv = FALSE

)

appendSpeciesNames 17

Arguments

inDir character. Directory containing camera trap images sorted into station subdirec-
tories (e.g. inDir/StationA/)

IDfrom character. Read species ID from image metadata ("metadata") of from species
directory names ("directory")?

hasCameraFolders

logical. Do the station subdirectories of inDir have camera-subdirectories (e.g.
inDir/StationA/CameraA1; inDir/StationA/CameraA2)?

metadataSpeciesTag

character. The species ID tag name in image metadata (if IDfrom = "metadata").
metadataHierarchyDelimitor

character. The character delimiting hierarchy levels in image metadata tags in
field "HierarchicalSubject". Either "|" or ":".

removeNames logical. remove appended species names?

writecsv logical. write csv table containing old and new file names into inDir?

Details

Species names can be appended or removed from image filenames. Before running the function,
you may want to run checkSpeciesIdentification to detect possible misidentifications. As
an example, the function would change an image file name from "StationA__2015-05-41__20-
59-59(1).JPG" to "StationA__2015-05-41__20-59-59(1)__Species Name.JPG". If species names
were appended several times by accident, they can all be removed by running the function with
removeNames = TRUE

Value

A data.frame containing the old and new file names and directories.

Author(s)

Juergen Niedballa

Examples

Not run:

copy sample images to another location (so we don't mess around in the package directory)
wd_images_ID <- system.file("pictures/sample_images_species_dir", package = "camtrapR")
file.copy(from = wd_images_ID, to = getwd(), recursive = TRUE)
wd_images_ID_copy <- file.path(getwd(), "sample_images_species_dir")

append species names
SpecNameAppend1 <- appendSpeciesNames(inDir = wd_images_ID_copy,

IDfrom = "directory",
hasCameraFolders = FALSE,
removeNames = FALSE,
writecsv = FALSE)

18 cameraOperation

SpecNameAppend1

remove species names
SpecNameRemove1 <- appendSpeciesNames(inDir = wd_images_ID_copy,

IDfrom = "directory",
hasCameraFolders = FALSE,
removeNames = TRUE,
writecsv = FALSE)

SpecNameRemove1

End(Not run)

cameraOperation Create a camera trap station operability matrix

Description

Construct a matrix of daily camera trap station operability for use in detectionHistory and
spatialDetectionHistory, where it is needed for calculating trapping effort per occasion. If
several cameras were deployed per station, the matrix can contain camera- or station-specific trap
operation information.

Usage

cameraOperation(CTtable,
stationCol = "Station",
cameraCol,
sessionCol,
setupCol,
retrievalCol,
hasProblems = FALSE,
byCamera,
allCamsOn,
camerasIndependent,
dateFormat = "%Y-%m-%d",
writecsv = FALSE,
outDir

)

Arguments

CTtable data.frame containing information about location and trapping period of camera
trap stations

stationCol character. name of the column specifying Station ID in CTtable

cameraCol character. name of the column specifying Camera ID in CTtable (optional). If
empty, 1 camera per station is assumed.

cameraOperation 19

sessionCol character. name of the column specifying session ID in CTtable (optional).
Use it for creating multi-session / multi-season detection histories (unmarked:
unmarkedMultFrame; secr: capthist)

setupCol character. name of the column containing camera setup dates in CTtable

retrievalCol character. name of the column containing camera retrieval dates in CTtable

hasProblems logical. If TRUE, function will look for columns specifying malfunction periods
in CTtable (naming convention: ProblemX_from and ProblemX_to, where X
is a number)

byCamera logical. If TRUE, camera operability matrix is computed by camera, not by
station (requires cameraCol)

allCamsOn logical. Takes effect only if cameraCol is defined and if byCamera is FALSE.
If allCamsOn = TRUE, all cameras at a station need to be operational for the
station to be operational (e.g. 1 camera out of 2 malfunctioning renders the
station inoperational). Output values can be 1/0/NA only (all cameras at a station
operational/ at least 1 camera not operational/ no camera set up). If allCamsOn
= FALSE, at least 1 active camera makes a station operational.

camerasIndependent

logical. Return number of active camera traps by station? Only if byCamera
is FALSE and allCamsOn is FALSE. If camerasIndependent is TRUE, output
values will be the number of operational cameras at a station. If camerasIndependent
is FALSE, the value is 1 if at least 1 camera was operational, otherwise 0. In
both cases, values are NA if no camera was set up.

dateFormat character. The format of columns setupCol and retrievalCol (and potential
problem columns) in CTtable. Must be interpretable by either as.Date or the
"orders" argument parse_date_time in lubridate.

writecsv logical. Should the camera operability matrix be saved as a .csv?

outDir character. Directory into which csv is saved

Details

cameraCol is NULL by default. The function then assumes there was 1 camera per station CTtable.
In more than 1 camera was deployed per station, cameraCol needs to be specified to identify
individual cameras within a station. dateFormat defaults to "YYYY-MM-DD", e.g. "2014-10-
31". It can be specified either in the format required by strptime or the ’orders’ argument in
parse_date_time in lubridate. In the example above, "YYYY-MM-DD" would be specified as
"%Y-%m-%d" or "ymd".

If hasProblems is TRUE, the function tries to find columns ProblemX_from and ProblemX_to in
CTtable. X is a consecutive number from 1 to n, specifying periods in which a camera or station
was not operational. If hasProblems is FALSE, cameras are assumed to have been operational
uninterruptedly from setup to retrieval (see camtraps for details). allCamsOn only has an effect if
there was more than 1 camera at a station. If TRUE, for the station to be considered operational, all
cameras at a station need to be operational. If FALSE, at least 1 active camera renders the station
operational. Argument camerasIndependent defines if cameras record animals independently (it
thus only has an effect if there was more than 1 camera at a station). This is the case if an observa-
tion at one camera does not increase the probability for detection at another camera (cameras face

20 cameraOperation

different trails at a distance of one another). Non-independence occurs if an animal is likely to trig-
ger both camers (as would be the case with 2 cameras facing each other). If camerasIndependent
is TRUE, 2 active cameras at a station will result in a station operation value of 2 in the resulting
matrix, i.e., 2 independent trap days at 1 station and day. If camerasIndependent is FALSE, 2
active cameras will return value 1, i.e., 1 trap night at 1 station per day.

Row names depend on the input arguments and contain the station name and potentially session and
camera names (if sessionCol and/or cameraCol are defined).

Naming convention is (since version 1.2) Bold information are from the columns stationCol,
sessionCol and cameraCol in CTtable:

Station
Station__SESS_SessionID
Station__CAM_CameraID
Station__SESS_SessionID__CAM_CameraID
Session are designated with prefix "__SESS_", cameras with prefix "__CAM_". Therefore, these
are reserved words and may not be part of station, session or camera names. Here’s what it may
look like in real life:

Station1
Station1__SESS_2019
Station1__CAM_1024152
Station1__SESS_2019__CAM_1024152
Functions detectionHistory and spatialDetectionHistory recognize these and use the information
accordingly.

Value

A matrix. Row names always indicate Station IDs. If sessionCol and/or cameraCol are defined,
they are contained in the row names also (camera ID only if byCamera = TRUE). Column names are
dates.
Legend: NA: camera(s) not set up, 0: camera(s) not operational, 1 (or higher): number of opera-
tional camera(s) or an indicator for whether the station was operational (depending on camerasIndependent
and allCamsOn)

Note

Setting camerasIndependent according to the sampling situation is important for the functions
detectionHistory and spatialDetectionHistory, if sampling effort (the number of active trap
nights in a occasion) is to be computed and returned.

Author(s)

Juergen Niedballa

Examples

data(camtraps)

no problems/malfunction

camtraps 21

camop_no_problem <- cameraOperation(CTtable = camtraps,
stationCol = "Station",
setupCol = "Setup_date",
retrievalCol = "Retrieval_date",
writecsv = FALSE,
hasProblems = FALSE,
dateFormat = "%d/%m/%Y"

)

with problems/malfunction
camop_problem <- cameraOperation(CTtable = camtraps,

stationCol = "Station",
setupCol = "Setup_date",
retrievalCol = "Retrieval_date",
writecsv = FALSE,
hasProblems = TRUE,
dateFormat = "%d/%m/%Y"

)

with problems/malfunction / dateFormat in lubridate format
camop_problem_lubridate <- cameraOperation(CTtable = camtraps,

stationCol = "Station",
setupCol = "Setup_date",
retrievalCol = "Retrieval_date",
writecsv = FALSE,
hasProblems = TRUE,
dateFormat = "dmy"

)

camop_no_problem
camop_problem
camop_problem_lubridate

camtraps Sample camera trap station information

Description

Example camera trap station information table

Usage

data(camtraps)

Format

A data frame with 3 rows and 7 variables

22 camtrapsMultiSeason

Details

This is a general example of how information about camera trap stations are arranged in camtrapR. It
contains setup and retrieval dates and coordinates. If more than 1 camera was set up at a station (e.g.
2 cameras facing each other), a camera ID column must be added, with camera-specific information
instead of station-specific information. If cameras malfunctioned repeatedly, additional pairs of
problem columns can be added, e.g. "Problem2_from" and "Problem2_to" etc..

The variables are as follows:

• Station. Camera trap station ID

• utm_y. y coordinate of station (northing)

• utm_x. x coordinate of station (easting)

• Setup_date. camera trap setup date

• Retrieval_date. camera trap retrieval date

• Problem1_from. first day of camera malfunction

• Problem1_to. last day of camera malfunction

Note

The coordinates can be in the units of any coordinate system. UTM was chosen as an example, but it
could be latlong or anything else, too. capthist objects (as created by spatialDetectionHistory
for spatial capture-recapture analyses) expect the unit to be meters.

camtrapsMultiSeason Sample multi-season camera trap station information

Description

Example multi-season camera trap station information table

Usage

data(camtrapsMultiSeason)

Format

A data frame with 7 rows and 8 variables

Details

This is a general example of how information about camera trap stations from multiple seasons are
arranged in camtrapR. It contains setup and retrieval dates, coordinates and a season identifier. If
more than 1 camera was set up at a station (e.g. 2 cameras facing each other), a camera ID column
must be added, with camera-specific information instead of station-specific information. If cameras
malfunctioned repeatedly, additional pairs of problem columns can be added, e.g. "Problem2_from"
and "Problem2_to" etc..

camtrapsMultiSeason 23

Note that season 2010 has an additional station (StationD). This is to simulate a situation where a
station was not set up during an entire season.

The variables are as follows:

• Station. Camera trap station ID

• utm_y. y coordinate of station (northing)

• utm_x. x coordinate of station (easting)

• Setup_date. camera trap setup date

• Retrieval_date. camera trap retrieval date

• Problem1_from. first day of camera malfunction

• Problem1_to. last day of camera malfunction

• session. Identified for trapping session / season

Note

The coordinates can be in the units of any coordinate system. UTM was chosen as an example, but it
could be latlong or anything else, too. capthist objects (as created by spatialDetectionHistory
for spatial capture-recapture analyses) expect the unit to be meters. capthist alse require session
information as integer numbers starting with 1.

"Season" and "session" are used synonymously here. secr nomenclature is "session", in unmarked
it is "season".

Examples

data were created with the following code:
data(camtraps)

camtraps_season2 <- camtraps

change 2009 to 2010
camtraps_season2[, "Setup_date"] <- gsub("2009", "2010", camtraps_season2[, "Setup_date"])
camtraps_season2[, "Retrieval_date"] <- gsub("2009", "2010", camtraps_season2[, "Retrieval_date"])
camtraps_season2[, "Problem1_from"] <- gsub("2009", "2010", camtraps_season2[, "Problem1_from"])
camtraps_season2[, "Problem1_to"] <- gsub("2009", "2010", camtraps_season2[, "Problem1_to"])

add an extra station with different dates in session 2010
camtraps_season2 <- rbind(camtraps_season2, NA)
camtraps_season2$Station[4] <- "StationD"
camtraps_season2$utm_y[4] <- 607050
camtraps_season2$utm_x[4] <- 525000
camtraps_season2$Setup_date[4] <- "04/04/2010"
camtraps_season2$Retrieval_date[4] <- "17/06/2010"
camtraps_season2$Problem1_from[4] <- "20/05/2010"
camtraps_season2$Problem1_to[4] <- "30/05/2010"

add season column
camtraps$session <- 2009
camtraps_season2$session <- 2010

24 checkSpeciesIdentification

combine the tables for 2 seasons
camtrapsMultiSeason <- rbind(camtraps, camtraps_season2)

checkSpeciesIdentification

Consistency check on species image identification

Description

This function serves 2 purposes: 1) it assesses possible misidentification of species and 2) compares
double observer species identification (only if metadata tagging was used for species identification).

Within each station, it assesses whether there are images of a species taken within a given time
interval of another species. Often, it is unlikely that different species are encountered within a
very short time intervals at the same location. This type of misidentification can arise easily if some
images belonging to a sequence of images were accidentally moved into different species directories
or tagged incorrectly.

Double observer identification may be desirable to increase reliability of species identification. The
function returns conflicts in species identification between 2 observers. These conflicts can then be
corrected.

Usage

checkSpeciesIdentification(inDir,
IDfrom,
hasCameraFolders,
metadataSpeciesTag,
metadataSpeciesTagToCompare,
metadataHierarchyDelimitor = "|",
maxDeltaTime,
excludeSpecies,
stationsToCheck,
writecsv = FALSE

)

Arguments

inDir character. Directory containing identified camera trap images sorted into station
subdirectories (e.g. inDir/StationA/)

IDfrom character. Read species ID from image metadata ("metadata") of from species
directory names ("directory")?

hasCameraFolders

logical. Do the station directories in inDir have camera subdirectories (e.g.
"inDir/StationA/Camera1" or "inDir/StationA/Camera1/Species1")?

checkSpeciesIdentification 25

metadataSpeciesTag

character. The species ID tag name in image metadata (if IDfrom = "metadata").

metadataSpeciesTagToCompare

character. A second species ID tag name in image metadata (if IDfrom = "meta-
data"). For comparing double observer species identification.

metadataHierarchyDelimitor

character. The character delimiting hierarchy levels in image metadata tags in
field "HierarchicalSubject". Either "|" or ":"

maxDeltaTime numeric. Maximum time interval between images to be returned (in seconds)

excludeSpecies character. vector of species to exclude from checks

stationsToCheck

character. vector of stations to be checked (optionally)

writecsv logical. Should the resulting data.frame be saved as a .csv?

Details

Images may accidentally be misidentified by assigning wrong species tags or by moving them into
wrong species directories. Imagine your cameras take sequences of images each time they are
triggered and one image of the sequence is misidentified. The time difference between these images
(that have different species assigned to them) will be very small, usually a few seconds. This
function will return all these images for you to check if they were identified correctly.

If multiple observers identify images independently using metadata tagging, their identifications can
be compared by setting metadataSpeciesTagToCompare. Conflicting or missing identifications
will be reported. This feature is only available if images were identified by metadata tagging.

Species like "blank" or "team" can be ignored using excludeSpecies. If only specific stations are
to be checked, stationsToCheck can be set.

Value

A list containing 2 data frames. The first contains a data frame with images file names, directories,
time stamp and species ID that were taken within maxDeltaTime seconds of another species image
at a particular station. The second data frame contains images with conflicting species IDs (if
IDfrom = "metadata" and metadataSpeciesTagToCompare is defined)

Note

The function will not be able to find "isolated" images, i.e. images that were misidentified, but
were not part of a sequence of images. Likewise, if all images of a sequence were misidentified,
they cannot be found either. From version 0.99.0, the function can also handle images identied with
metadata tags.

Author(s)

Juergen Niedballa

26 checkSpeciesNames

Examples

wd_images_ID <- system.file("pictures/sample_images_species_dir", package = "camtrapR")

if (Sys.which("exiftool") != ""){ # only run this example if ExifTool is available
check.folders <- checkSpeciesIdentification(inDir = wd_images_ID,

IDfrom = "directory",
hasCameraFolders = FALSE,
maxDeltaTime = 120,
writecsv = FALSE)

check.folders # In the example, 2 different species were photographed within 2 minutes.
}

Not run:
now exclude one of these 2 species
check.folders2 <- checkSpeciesIdentification(inDir = wd_images_ID,

IDfrom = "directory",
hasCameraFolders = FALSE,
maxDeltaTime = 120,
excludeSpecies = "EGY",
writecsv = FALSE)

check.folders2 # the data frame is empty

now we check only one station
check.folders3 <- checkSpeciesIdentification(inDir = wd_images_ID,

IDfrom = "directory",
hasCameraFolders = FALSE,
maxDeltaTime = 120,
stationsToCheck = "StationB",
writecsv = FALSE)

check.folders3 # the data frame is empty

End(Not run)

checkSpeciesNames Check species names against the ITIS taxonomic database

Description

The function checks species names (common or scientific names) provided by the user with the
ITIS taxonomic database (http://www.itis.gov/) via functions from the package taxize. It re-
turns both common and scientific names, the taxon authors, taxon rank name and status, the TSN
(taxonomic serial numbers) and ITIS urls.

http://www.itis.gov/

checkSpeciesNames 27

Usage

checkSpeciesNames(speciesNames,
searchtype,
accepted = TRUE,
ask = TRUE

)

Arguments

speciesNames character. Vector of species names to check. Either common names or scientific
names.

searchtype character. Type of names specified in speciesNames. One of ’scientific’ or
’common’.

accepted logical. Return only accepted valid names? If TRUE, invalid names are returned
as NA. Set to FALSE to return both accepted and unaccepted names.

ask logical. Should the function be run in interactive mode? If TRUE and more than
one TSN is found for a species, the user is asked to choose one. If FALSE, NA
is returned for multiple matches.

Details

Arguments searchtype, accepted and ask are passed on to get_tsn.

Value

A data.frame with the names supplied by the user, matching common and scientific names, taxon
author and year, taxonomic rank, status, TSNs (taxonomic serial numbers) and ITIS urls.

Author(s)

Juergen Niedballa

References

http://www.itis.gov/

Examples

Not run:

species_common <- c("Leopard Cat", "moonrat")

ask = TRUE. Multiple matches for leopard cat will cause menu to pop up asking user input.

species.names.check1 <- checkSpeciesNames(speciesNames = species_common,
searchtype = "common",
accepted = TRUE,

http://www.itis.gov/

28 createSpeciesFolders

ask = TRUE)
2 # we choose entry 2
species.names.check1

ask = FALSE. Multiple matches for leopard cat will cause NA.

species.names.check2 <- checkSpeciesNames(speciesNames = species_common,
searchtype = "common",
accepted = TRUE,
ask = FALSE)

species.names.check2

search for scientific names

species_scientific <- c("Tragulus", "Prionailurus bengalensis")

species.names.check3 <- checkSpeciesNames(speciesNames = species_scientific,
searchtype = "scientific",
accepted = TRUE,
ask = TRUE)

species.names.check3

End(Not run)

createSpeciesFolders Create species directories for species identification

Description

This function creates species subdirectories within station directories. They can be used for species
identification by manually moving images into the respective species directories. The function can
also delete empty species directories (if species were not detected at sites). It is not necessary to run
this function if animals will be identified by metadata tagging.

Usage

createSpeciesFolders(inDir,
hasCameraFolders,
species,
removeFolders = FALSE

)

Arguments

inDir character. Directory containing camera trap images sorted into station subdirec-
tories (e.g. inDir/StationA/)

createSpeciesFolders 29

hasCameraFolders

logical. Do the station directories in inDir have camera-subdirectories (e.g.
inDir/StationA/CameraA1; inDir/StationA/CameraA2)?

species character. names of species directories to be created in every station (or sta-
tion/camera) subdirectory of inDir

removeFolders logical. Indicating whether to create (TRUE) or remove (FALSE) species direc-
tories .

Details

This function should be run after imageRename. Empty directories can be created as containers for
species identification if images are identified with the drag & drop method. After species identi-
fication is complete, empty species directories can be deleted using removeFolders = TRUE. The
function will delete only directories which are specified in species. If hasCameraFolders was
set to TRUE in function imageRename, hasCameraFolders must be set to TRUE here too. Species
directories will then be created within each camera subdirectory of each station directory. if the
user wishes to identify species by metadata tagging, running this function is not needed.

Value

A data.frame with directory names and an indicator for whether directories were created or
deleted.

Author(s)

Juergen Niedballa

Examples

Not run:

create dummy directories for tests
(normally, you'd use directory containing renamed, unsorted images)

this will be used as inDir
wd_createDirTest <- file.path(getwd(), "createSpeciesFoldersTest")

now we create 2 station subdirectories
dirs_to_create <- file.path(wd_createDirTest, c("StationA", "StationB"))
sapply(dirs_to_create, FUN = dir.create, recursive = TRUE)

species names for which we want to create subdirectories
species <- c("Sambar Deer", "Bay Cat")

create species subdirectories
SpecFolderCreate1 <- createSpeciesFolders (inDir = wd_createDirTest,

species = species,
hasCameraFolders = FALSE,
removeFolders = FALSE)

SpecFolderCreate1

30 createStationFolders

check if directories were created
list.dirs(wd_createDirTest)

delete empty species directories
SpecFolderCreate2 <- createSpeciesFolders (inDir = wd_createDirTest,

species = species,
hasCameraFolders = FALSE,
removeFolders = TRUE)

SpecFolderCreate2

check if species directories were deleted
list.dirs(wd_createDirTest)

End(Not run)

createStationFolders Create camera trap station directories for raw camera trap images

Description

This function creates camera trap station directories, if needed with camera subdirectories. They
can be used as an initial directory structure for storing raw camera trap images.

Usage

createStationFolders(inDir,
stations,
cameras,
createinDir

)

Arguments

inDir character. Directory in which station directories are to be created
stations character. Station IDs to be used as directory names within inDir

cameras character. Camera trap IDs to be used as subdirectory names in each station
directory (optionally)

createinDir logical. If inDir does not exist, create it?

Details

The empty directories serve as containers for saving raw camera trap images. If more than 1 camera
was set up at a station, specifying cameras is required in order to keep images from different
cameras separate. Otherwise, generic filenames (e.g., IMG0001.JPG) from different cameras may
lead to accidental overwriting of images if images from these cameras are saved in one station
directory.

detectionHistory 31

Value

A data.frame with station (and possibly camera) directory names and an indicator for whether
they were created successfully.

Author(s)

Juergen Niedballa

Examples

Not run:

create dummy directory for tests (this will be used as inDir)
(normally, you'd set up an empty directory, e.g. .../myStudy/rawImages)
wd_createStationDir <- file.path(tempdir(), "createStationFoldersTest")

now we load the sample camera trap station data frame
data(camtraps)

create station directories in wd_createStationDir
StationFolderCreate1 <- createStationFolders (inDir = wd_createStationDir,

stations = as.character(camtraps$Station),
createinDir = TRUE)

StationFolderCreate1

check if directories were created
list.dirs(wd_createStationDir)

End(Not run)

detectionHistory Species detection histories for occupancy analyses

Description

This function generates species detection histories that can be used in occupancy analyses, e.g. with
package unmarked. It generates detection histories in different formats, with adjustable occasion
length and occasion start time.

Usage

detectionHistory(recordTable,
species,
camOp,
output = c("binary", "count"),
stationCol = "Station",
speciesCol = "Species",

32 detectionHistory

recordDateTimeCol = "DateTimeOriginal",
recordDateTimeFormat = "%Y-%m-%d %H:%M:%S",
occasionLength,
minActiveDaysPerOccasion,
maxNumberDays,
day1,
buffer,
includeEffort = TRUE,
scaleEffort = FALSE,
occasionStartTime = 0,
datesAsOccasionNames = FALSE,
timeZone,
writecsv = FALSE,
outDir,
unmarkedMultFrameInput

)

Arguments

recordTable data.frame. the record table created by recordTable

species character. the species for which to compute the detection history

camOp The camera operability matrix as created by cameraOperation

output character. Return binary detections ("binary") or counts of detections ("count")

stationCol character. name of the column specifying Station ID in recordTable

speciesCol character. name of the column specifying species in recordTable

recordDateTimeCol

character. name of the column specifying date and time in recordTable

recordDateTimeFormat

character. Format of column recordDateTimeCol in recordTable

occasionLength integer. occasion length in days
minActiveDaysPerOccasion

integer. minimum number of active trap days for occasions to be included (op-
tional)

maxNumberDays integer. maximum number of trap days per station (optional)

day1 character. When should occasions begin: station setup date ("station"), first day
of survey ("survey"), a specific date (e.g. "2015-12-31")?

buffer integer. Makes the first occasion begin a number of days after station setup.
(optional)

includeEffort logical. Compute trapping effort (number of active camera trap days per station
and occasion)?

scaleEffort logical. scale and center effort matrix to mean = 0 and sd = 1?
occasionStartTime

integer. time of day (the full hour) at which to begin occasions.

detectionHistory 33

datesAsOccasionNames

If day1 = "survey", occasion names in the detection history will be composed
of first and last day of that occasion.

timeZone character. Must be a value returned by OlsonNames

writecsv logical. Should the detection history be saved as a .csv?

outDir character. Directory into which detection history .csv file is saved

unmarkedMultFrameInput

logical. Return input for multi-season occupancy models in unmarked (argu-
ment "y" in unmarkedMultFrame?

Details

The function computes a species detection matrix, either as a detection-by-date or a detection-by-
occasion matrix. day1 defines if each stations detection history will begin on that station’s setup
day (day1 = "station") or if all station’s detection histories have a common origin (the day the
first station was set up if day1 = "survey" or a fixed date if, e.g. day1 = "2015-12-31"). If day1 is
a date, as.Date must be able to understand it. The most suitable format is "YYYY-MM-DD", e.g.
"2015-12-31".

output is analogous to spatialDetectionHistory. It makes the function return either counts of
detections during occasions, or a binary indicator for whether the species was detected.

includeEffort controls whether an additional effort matrix is computed or not. This also affects
the detection matrices. If includeEffort = FALSE, all occasions in which a station was not set up
or malfunctioning (NA or 0 in camOp) will result in NAs in the detection history. If includeEffort
= TRUE, the record history will only contain 0 and 1, and no NAs. The effort matrix can then
be included in occupancy models as a (continuous) observation covariate to estimate the effect of
effort on detection probability.

The number of days that are aggregated is controlled by occasionLength. occasionStartTime
can be used to make occasions begin another hour than midnight (the default). This may be rele-
vant for nocturnal animals, in which 1 whole night would be considered an occasion. The values
of stationCol in recordTable must be matched by the row names of camOp (case-insensitive),
otherwise an error is raised.

recordDateTimeFormat defaults to the "YYYY-MM-DD HH:MM:SS" convention, e.g. "2014-
09-30 22:59:59". recordDateTimeFormat can be interpreted either by base-R via strptime or in
lubridate via parse_date_time (argument "orders"). lubridate will be used if there are no "%"
characters in recordDateTimeFormat.

For "YYYY-MM-DD HH:MM:SS", recordDateTimeFormat would be either "%Y-%m-%d %H:%M:%S"
or "ymd HMS". For details on how to specify date and time formats in R see strptime or
parse_date_time.

If the camera operation matrix (camOp) was created for a multi-season study (argument sesssionCol
in cameraOperation was set, it will be detected automatically. Output can be for unmarked-
MultFrame by setting unmarkedMultFrameInput = TRUE. Each row corresponds to a site, and the
columns are in season-major, occasion-minor order, e.g. season1-occasion1, season1-occasion2,
etc.).

34 detectionHistory

Value

Depending on the value of includeEffort and scaleEffort, a list with either 1, 2 or 3 elements.
The first element is the species detection history. The second is the optional effort matrix and the
third contains the effort scaling parameters.

detection_history

A species detection matrix

effort A matrix giving the number of active camera trap days per station and occasion
(= camera trapping effort). It is only returned if includeEffort = TRUE

effort_scaling_parameters

Scaling parameters of the effort matrix. It is only returned if includeEffort
and scaleEffort are TRUE

Warning

Setting output = "count" returns a count of detections, not individuals. We strongly advise against
using it as input for models of animal abundance (such as N-Mixture models) models which use
counts as input.

Please note the section about defining argument timeZone in the vignette on data extraction (acces-
sible via vignette("DataExtraction") or online (https://cran.r-project.org/package=
camtrapR/vignettes/camtrapr3.html)).

Author(s)

Juergen Niedballa

Examples

define image directory
wd_images_ID <- system.file("pictures/sample_images_species_dir", package = "camtrapR")

load station information
data(camtraps)

create camera operation matrix
camop_no_problem <- cameraOperation(CTtable = camtraps,

stationCol = "Station",
setupCol = "Setup_date",
retrievalCol = "Retrieval_date",
hasProblems = FALSE,
dateFormat = "%d/%m/%Y"

)

Not run:
if (Sys.which("exiftool") != ""){ # only run this function if ExifTool is available
recordTableSample <- recordTable(inDir = wd_images_ID,

IDfrom = "directory",
minDeltaTime = 60,
deltaTimeComparedTo = "lastRecord",

https://cran.r-project.org/package=camtrapR/vignettes/camtrapr3.html
https://cran.r-project.org/package=camtrapR/vignettes/camtrapr3.html

detectionHistory 35

exclude = "UNID",
timeZone = "Asia/Kuala_Lumpur"

)
}

End(Not run)
data(recordTableSample) # load the record history, as created above

compute detection history for a species

without trapping effort
DetHist1 <- detectionHistory(recordTable = recordTableSample,

camOp = camop_no_problem,
stationCol = "Station",
speciesCol = "Species",
recordDateTimeCol = "DateTimeOriginal",
species = "VTA",
occasionLength = 7,
day1 = "station",
datesAsOccasionNames = FALSE,
includeEffort = FALSE,
timeZone = "Asia/Kuala_Lumpur"

)

DetHist1 # this is a list with 1 element
DetHist1$detection_history # this is the contained detection/non-detection matrix

with effort / using base R to define recordDateTimeFormat
DetHist2 <- detectionHistory(recordTable = recordTableSample,

camOp = camop_no_problem,
stationCol = "Station",
speciesCol = "Species",
recordDateTimeCol = "DateTimeOriginal",
species = "VTA",
occasionLength = 7,
day1 = "station",
datesAsOccasionNames = FALSE,
includeEffort = TRUE,
scaleEffort = FALSE,
timeZone = "Asia/Kuala_Lumpur"

)

DetHist2$detection_history # detection history (alternatively, use: DetHist2[[1]])
DetHist2$effort # effort (alternatively, use: DetHist2[[2]])

with effort / using lubridate package to define recordDateTimeFormat
DetHist2_lub <- detectionHistory(recordTable = recordTableSample,

camOp = camop_no_problem,
stationCol = "Station",
speciesCol = "Species",
recordDateTimeCol = "DateTimeOriginal",

36 detectionMaps

recordDateTimeFormat = "ymd HMS",
species = "VTA",
occasionLength = 7,
day1 = "station",
datesAsOccasionNames = FALSE,
includeEffort = TRUE,
scaleEffort = FALSE,
timeZone = "Asia/Kuala_Lumpur"

)

DetHist2_lub$detection_history # detection history (alternatively, use: DetHist2_lub[[1]])
DetHist2_lub$effort # effort (alternatively, use: DetHist2_lub[[2]])

multi-season detection history

load multi-season data
data(camtrapsMultiSeason)
data(recordTableSampleMultiSeason)

multi-season camera operation matrix
camop_season <- cameraOperation(CTtable = camtrapsMultiSeason,

stationCol = "Station",
setupCol = "Setup_date",
sessionCol = "session",
retrievalCol = "Retrieval_date",
hasProblems = TRUE,
dateFormat = "%d/%m/%Y"

)

multi-season detection history
DetHist_multi <- detectionHistory(recordTable = recordTableSampleMultiSeason,

camOp = camop_season,
stationCol = "Station",
speciesCol = "Species",
species = "VTA",
occasionLength = 10,
day1 = "station",
recordDateTimeCol = "DateTimeOriginal",
includeEffort = TRUE,
scaleEffort = FALSE,
timeZone = "UTC",
unmarkedMultFrameInput = TRUE

)

DetHist_multi

detectionMaps Generate maps of observed species richness and species presences by
station

detectionMaps 37

Description

Generates maps of observed species richness and species presence by species and station. Output
can be R graphics, PNG graphics or a shapefile for use in GIS software.

Usage

detectionMaps(CTtable,
recordTable,
Xcol,
Ycol,
backgroundPolygon,
stationCol = "Station",
speciesCol = "Species",
speciesToShow,
richnessPlot = TRUE,
speciesPlots = TRUE,
addLegend = TRUE,
printLabels = FALSE,
smallPoints,
plotR = TRUE,
writePNG = FALSE,
plotDirectory,
createPlotDir = FALSE,
pngMaxPix = 1000,
writeShapefile = FALSE,
shapefileName,
shapefileDirectory,
shapefileProjection

)

Arguments

CTtable data.frame. contains station IDs and coordinates

Xcol character. name of the column specifying x coordinates in CTtable

Ycol character. name of the column specifying y coordinates in CTtable

backgroundPolygon

SpatialPolygons or SpatialPolygonsDataFrame. Polygon to be plotted in the
background of the map (e.g. project area boundary)

stationCol character. name of the column specifying station ID in CTtable and recordTable

recordTable data.frame. the record table created by recordTable

speciesCol character. name of the column specifying species in recordTable

speciesToShow character. Species to include in the maps. If missing, all species in recordTable
will be included.

writePNG logical. Create PNGs of the plots?

plotR logical. Create plots in R graphics device?

plotDirectory character. Directory in which to save the PNGs

38 detectionMaps

createPlotDir logical. Create plotDirectory?

richnessPlot logical. Generate a species richness plot?

speciesPlots logical. Generate plots of all species number of independent events?

printLabels logical. Add station labels to the plots?

smallPoints numeric. Number by which to decrease point sizes in plots (optional).

addLegend logical. Add legends to the plots?

pngMaxPix integer. number of pixels in pngs on the longer side

writeShapefile logical. Create a shapefile from the output?

shapefileName character. Name of the shapefile to be saved. If empty, a name will be generated
automatically.

shapefileDirectory

character. Directory in which to save the shapefile.
shapefileProjection

character. A character string of projection arguments to use in the shapefile.

Details

The column name stationCol must be identical in CTtable and recordTable and station IDs
must match.

Shapefile creation depends on the packages sp and rgdal. Argument shapefileProjection must
be a valid argument of CRS. If shapefileProjection is undefined, the resulting shapefile will lack
a coordinate reference system.

Value

An invisible data.frame with station coordinates, numbers of events by species at each station and
total species number by station. In addition and optionally, R graphics or png image files.

Author(s)

Juergen Niedballa

References

A great resource for CRS arguments is http://spatialreference.org/. Use the Proj4 string as
shapefileProjection argument.

Examples

load station information
data(camtraps)

load record table
data(recordTableSample)

http://spatialreference.org/

exifTagNames 39

create maps
Mapstest <- detectionMaps(CTtable = camtraps,

recordTable = recordTableSample,
Xcol = "utm_x",
Ycol = "utm_y",
stationCol = "Station",
speciesCol = "Species",
writePNG = FALSE,
plotR = TRUE,
printLabels = TRUE,
richnessPlot = TRUE,
addLegend = TRUE

)

with a polygon in the background, and for one species only

make a dummy polygon for the background
library(sp)
poly1 <- Polygon(cbind(c(521500,526500,527000, 521500),c(607500, 608000, 603500, 603500)))
poly2 <- Polygons(list(poly1), "s1")
poly3 <- SpatialPolygons(list(poly2))

Mapstest2 <- detectionMaps(CTtable = camtraps,
recordTable = recordTableSample,
Xcol = "utm_x",
Ycol = "utm_y",
backgroundPolygon = poly3, # this was added
speciesToShow = c("PBE", "VTA"), # this was added
stationCol = "Station",
speciesCol = "Species",
writePNG = FALSE,
plotR = TRUE,
printLabels = TRUE,
richnessPlot = TRUE,
addLegend = TRUE

)

exifTagNames Show Exif metadata of JPEG images or other image or video formats

Description

The function will return metadata values, metadata tag names and group names of Exif metadata of
JPEG images or other formats.

40 exifTagNames

Usage

exifTagNames(inDir,
whichSubDir = 1,
fileName,
returnMetadata = "DEPRECATED",
returnTagGroup = "DEPRECATED")

Arguments

inDir character. Directory containing camera trap images sorted into station subdirec-
tories (e.g. inDir/StationA/)

whichSubDir integer or character. Either number or name of subdirectory of inDir in which
to look for an image

fileName character. A filename, either the file name of an image in inDir or a full path
with file name (in which case inDir is not needed)

returnMetadata deprecated and ignored

returnTagGroup deprecated and ignored

Details

Many digital cameras record information such as ambient temperature or moon phase under maker-
specific tag names in Exif metadata of JPEG images. In addition, many technical information are
stored in Exif metadata. In order to extract those information from images and add them to the
record tables created by the functions recordTable and recordTableIndividual, the tag names
must be known so they can be passed to these functions via the additionalMetadataTags argu-
ment.

By default the function returns both metadata tag names and the metadata group they belong to
(via argument returnTagGroup). This is helpful to unambiguously address specific metadata tags,
because different groups can contain tags of identical names, which may cause problems execut-
ing the functions recordTable and recordTableIndividual. The format is "GROUP:tag", e.g.
"EXIF:Flash".

Value

A data frame containing three columns: metadata tag group, tag name, and values.

Author(s)

Juergen Niedballa

References

Phil Harvey’s ExifTool https://exiftool.org/

See Also

recordTable

https://exiftool.org/

exiftoolPath 41

Examples

Not run:

wd_images_ID <- system.file("pictures/sample_images_species_dir", package = "camtrapR")

specify directory, camtrapR will automatically take first image from first subdirectory
exifTagNames(inDir = wd_images_ID)

specify subdirectory by name, camtrapR will use first image
exifTagNames(inDir = wd_images_ID,

whichSubDir = "StationA")

specifying fileName only (line break due to R package policy)
exifTagNames(fileName = file.path(wd_images_ID, "StationC", "TRA",

"StationC__2009-05-02__00-10-00(1).JPG"))

specify inDir and fileName
exifTagNames(inDir = wd_images_ID,

fileName = file.path("StationC", "TRA", "StationC__2009-05-02__00-10-00(1).JPG"))

it also works this way
exifTagNames(inDir = file.path(wd_images_ID, "StationC", "TRA"),

fileName = "StationC__2009-05-02__00-10-00(1).JPG")

with tagged sample images
wd_images_ID_tagged <- system.file("pictures/sample_images_indiv_tag", package = "camtrapR")
exifTagNames(inDir = wd_images_ID_tagged)

End(Not run)

exiftoolPath Add a directory to PATH temporarily

Description

Temporarily adds a directory to the environmental variable PATH for system calls from within R.
This allows Windows users to store exiftool.exe anywhere on their hard drive. It is not needed on
Linux or MacOS machines.

Usage

exiftoolPath(exiftoolDir)

Arguments

exiftoolDir character. the directory in the file system containing exiftool.exe.

42 fixDateTimeOriginal

Details

Several functions within this package depend on ExifTool. Under Windows, exiftool.exe cannot be
used if it is not in a directory path specified in PATH. This can be solved by adding the directory
containing exiftool.exe for temporary use within the running R process.

Value

invisible logical indicating whether exiftoolDir was added to PATH successfully (in the running
R process).

Note

The directories in PATH can be queried by Sys.getenv("PATH").

Author(s)

Juergen Niedballa

Examples

exiftool_dir <- "C:/Path/To/Exiftool"
exiftoolPath(exiftoolDir = exiftool_dir)

check if it has been added to PATH
grepl(exiftool_dir, Sys.getenv("PATH"))

fixDateTimeOriginal Fix DateTimeOriginal Exif metadata tag in Reconyx Hyperfire cam-
eras

Description

Some camera models don’t store the date/time information in the standard Exif metadata tag. Con-
sequently, camtrapR cannot find that information. This function uses Exiftool to update the Date-
TimeOriginal metadata tag in all images within a directory to make them readable with camtrapR
(and other software).

Usage

fixDateTimeOriginal(inDir,
recursive = TRUE)

Arguments

inDir character. Name of the directory containing images to be fixed

recursive logical. Recursively find images in subdirectories of inDir?

getSpeciesImages 43

Details

Some Reconyx Hyperfire cameras (e.g. HC500) are known to show this problem.

Value

Returns invisibly the messages returned by the Exiftool call (warnings etc.).

Warning

Please make a backup of your images before running this function.

Author(s)

Juergen Niedballa

References

This function uses the code from:
Tobler, Mathias (2015). Camera Base Version 1.7 User Guide http://www.atrium-biodiversity.
org/tools/camerabase/files/CameraBaseDoc1.7.pdf

Examples

Not run:
a hypothetical example

wd_images_hyperfire <- "C:/Some/Directory"

fixDateTimeOriginal(inDir = wd_images_hyperfire,
recursive = TRUE)

End(Not run)

getSpeciesImages Collect all images of a species

Description

This function will fetch all images of a particular species from all camera trap stations and copies
these images to a new location. The images which are to be copied are found in one of 2 possible
ways, 1) by providing an existing record table (created with recordTable) or 2) by reading species
IDs from species directories or from metadata (calling ExifTool). Earlier in the workflow, i.e.,
before running this function, images should have been renamed (with imageRename) to give images
unique file names based on station ID and date/time.

http://www.atrium-biodiversity.org/tools/camerabase/files/CameraBaseDoc1.7.pdf
http://www.atrium-biodiversity.org/tools/camerabase/files/CameraBaseDoc1.7.pdf

44 getSpeciesImages

Usage

getSpeciesImages(species,
recordTable,
speciesCol = "Species",
stationCol = "Station",
inDir,
outDir,
createStationSubfolders = FALSE,
IDfrom,
metadataSpeciesTag,
metadataHierarchyDelimitor = "|")

Arguments

species character. Species whose images are to be fetched

recordTable data frame. A data frame as returned by function recordTable. If you specify
this argument, do not specify inDir

speciesCol character. Name of the column specifying species ID in recordTable. Only
required if recordTable is defined

stationCol character. Name of the column specifying station ID in recordTable. Only
required if recordTable is defined

inDir character. Directory containing identified (species level) camera trap images
sorted into station subdirectories (e.g. inDir/StationA/). If you specify this ar-
gument, do not specify recordTable.

outDir character. Directory in which to save species images. A species subdirectory
will be created in outDir automatically.

createStationSubfolders

logical. Save images in station directories within the newly created species di-
rectory in outDir?

IDfrom character. Read species ID from image metadata ("metadata") of from species
directory names ("directory")? Only required if inDir is defined.

metadataSpeciesTag

character. The species ID tag name in image metadata (if IDfrom = "metadata").
Only required if inDir is defined.

metadataHierarchyDelimitor

character. The character delimiting hierarchy levels in image metadata tags in
field "HierarchicalSubject". Either "|" or ":" (if IDfrom = "metadata"). Only
required if inDir is defined and IDfrom = "metadata".

Details

The function finds the images to be copied by either consulting a record table created with recordTable
or by reading species IDs from images. The former is considerable faster because ExifTool is not
called, but requires images to be in precisely the location given by the columns Directory and
FileName in recordTable. To use this feature, provide the function with a record table in argu-
ment recordTable.

getSpeciesImages 45

If you’d rather read species IDs from images within the function (to make sure all file paths are
correct), images need to be in the directory structure required by the package, e.g.

> inDir/Station/Species

or

> inDir/Station/Camera/Species

if using species directories for species IDs, and

> inDir/Station

or

> inDir/Station/Camera

if reading IDs from species metadata tags. In the latter case, only station directories are needed. In
any case, the argument species must match species IDs (either the speciesCol in recordTable,
species directory names or species metadata tags).

Before running the function, first rename the images using function imageRename to provide unique
file names and prevent several images from having the same name (if generic names like "IMGP0001.jpg"
are used). The function will not copy images if there are duplicate filenames to prevent overwriting
images unintentionally.

Value

A data.frame with old and new directories and file names and the copy status (copy_ok; TRUE if
copying was successful, FALSE if not).

Author(s)

Juergen Niedballa

Examples

Not run:
define image directory
wd_images_ID <- system.file("pictures/sample_images_species_dir", package = "camtrapR")
wd_images_ID_copy <- file.path(tempdir(), "sample_images_species_dir")

species_to_copy <- "VTA" # = Viverra tangalunga, Malay Civet

specImagecopy <- getSpeciesImages(species = species_to_copy,
inDir = wd_images_ID,
outDir = wd_images_ID_copy,
createStationSubfolders = FALSE,
IDfrom = "directory"
)

End(Not run)

46 imageRename

imageRename Copy and rename images based on camera trap station ID and cre-
ation date

Description

The function renames and copies raw camera trap images into a new location where they can be
identified. Images are renamed with camera trap station ID, camera ID (optional), creation date and
a numeric identifier for images taken within one minute of each other at a given station. Station ID
and camera ID are derived from the raw image directory structure. The creation date is extracted
from image metadata using ExifTool.

Usage

imageRename(inDir,
outDir,
hasCameraFolders,
keepCameraSubfolders,
createEmptyDirectories = FALSE,
copyImages = FALSE,
writecsv = FALSE)

Arguments

inDir character. Directory containing camera trap images sorted into station subdirec-
tories (e.g. inDir/StationA/)

outDir character. Directory into which the renamed images will be copied
hasCameraFolders

logical. Do the station directories in inDir have camera subdirectories (e.g.
"inDir/StationA/Camera1")?

keepCameraSubfolders

logical. Should camera directories be preserved as subdirectories of outDir
(e.g. "outDir/StationA/CameraA1")?

createEmptyDirectories

logical. If station or camera directories are empty, should they be copied never-
theless (causing empty directories in inDir, but preserving the whole directory
structure)?

copyImages logical. Copy images to outDir?

writecsv logical. Save a data frame with a summary as a .csv? The csv will be saved in
outDir.

Details

Setting up the correct raw image directory structure is necessary for running the function suc-
cessfully. inDir is the main directory that contains camera trap station subdirectories (e.g. in-
Dir/StationA). If one camera was deployed per station and no camera subdirectories are used within

imageRename 47

station directories, hasCameraFolders can be set to FALSE. If more than one camera was deployed
at stations, there must be subdirectories for the individual camera traps within the station directories
(e.g. "inDir/StationA/CameraA1" and "inDir/StationA/CameraA2"). Even if only some stations had
multiple cameras, all station will need camera subdirectories. The argument hasCameraFolders
must be TRUE. Within the camera subdirectories, the directory structure is irrelevant.

Renaming of images follows the following pattern: If hasCameraFolders is TRUE, it is: "Sta-
tionID__CameraID__Date__Time(Number).JPG", e.g. "StationA__CameraA1__2015-01-31__18-
59-59(1).JPG". If hasCameraFolders is FALSE, it is: "StationID__Date__Time(Number).JPG",
e.g. "StationA__2015-01-31__18-59-59(1).JPG".

The purpose of the number in parentheses is to prevent assigning identical file names to images
taken at the same station (and camera) in the same second, as can happen if cameras take sequences
of images. It is a consecutive number given to all images taken at the same station by the same
camera within one minute. The double underscore "__" in the image file names is for splitting
and extracting information from file names in other functions (e.g. for retrieving camera IDs in
recordTable if camera subdirectories are not preserved (keepCameraSubfolders = FALSE)).

The function finds all JPEG images and extracts the image timestamp from the image metadata
using ExifTool and copies the images (with new file names) into outDir, where it will set up a
directory structure based on the station IDs and, if required by keepCameraSubfolders = TRUE,
camera IDs (e.g. outDir/StationA/ or outDir/StationA/CameraA1).

copyImages can be set to FALSE to simulate the renaming and check the file names of the renamed
images without copying. If you are handling large number of images (>e.g., 100,000), the function
may take some time to run.

Value

A data.frame with original directory and file names, new directory and file names and an indicator
for whether images were copied successfully.

Author(s)

Juergen Niedballa

References

Phil Harvey’s ExifTool https://exiftool.org/

Examples

Not run:

"trial" run. create a table with file names after renaming, but don't copy images.

first, find sample image directory in package directory:
wd_images_raw <- system.file("pictures/raw_images", package = "camtrapR")

because copyImages = FALSE, outDir does not need to be defined
renaming.table <- imageRename(inDir = wd_images_raw,

https://exiftool.org/

48 recordTable

hasCameraFolders = FALSE,
copyImages = FALSE,
writecsv = FALSE

)

a real example in which images are copied and renamed

define raw image location
wd_images_raw <- system.file("pictures/raw_images", package = "camtrapR")

define destination for renamed images
wd_images_raw_renamed <- file.path(tempdir(), "raw_images_renamed")

now we have to define outDir because copyImages = TRUE
renaming.table2 <- imageRename(inDir = wd_images_raw,

outDir = wd_images_raw_renamed,
hasCameraFolders = FALSE,
copyImages = TRUE,
writecsv = FALSE

)

show output files
list.files(wd_images_raw_renamed, recursive = TRUE)

output table
renaming.table2

End(Not run)

recordTable Generate a species record table from camera trap images and videos

Description

Generates a record table from camera trap images or videos. Images/videos must be sorted into
station directories at least. The function can read species identification from a directory structure
(Station/Species or Station/Camera/Species) or from image metadata tags.

Usage

recordTable(inDir,
IDfrom,
cameraID,
camerasIndependent,
exclude,
minDeltaTime = 0,

recordTable 49

deltaTimeComparedTo,
timeZone,
stationCol,
writecsv = FALSE,
outDir,
metadataHierarchyDelimitor = "|",
metadataSpeciesTag,
additionalMetadataTags,
removeDuplicateRecords = TRUE,
returnFileNamesMissingTags = FALSE,
eventSummaryColumn,
eventSummaryFunction,
video

)

Arguments

inDir character. Directory containing station directories. It must either contain images
in species subdirectories (e.g. inDir/StationA/SpeciesA) or images with species
metadata tags (without species directories, e.g. inDir/StationA).

IDfrom character. Read species ID from image metadata ("metadata") of from species
directory names ("directory")?

cameraID character. Where should the function look for camera IDs: ’filename’, ’direc-
tory’. ’filename’ requires images renamed with imageRename. ’directory’ re-
quires a camera subdirectory within station directories (station/camera/species).
Can be missing.

camerasIndependent

logical. If TRUE, species records are considered to be independent between cam-
eras at a station.

exclude character. Vector of species names to be excluded from the record table

minDeltaTime integer. Time difference between records of the same species at the same station
to be considered independent (in minutes)

deltaTimeComparedTo

character. For two records to be considered independent, must the second one
be at least minDeltaTime minutes after the last independent record of the same
species ("lastIndependentRecord"), or minDeltaTime minutes after the last
record ("lastRecord")?

timeZone character. Must be a value returned by OlsonNames

stationCol character. Name of the camera trap station column. Assuming "Station" if un-
defined.

writecsv logical. Should the record table be saved as a .csv?

outDir character. Directory to save csv to. If NULL and writecsv = TRUE, recordTable
will be written to inDir.

metadataHierarchyDelimitor

character. The character delimiting hierarchy levels in image metadata tags in
field "HierarchicalSubject". Either "|" or ":".

50 recordTable

metadataSpeciesTag

character. In custom image metadata, the species ID tag name.
additionalMetadataTags

character. Additional camera model-specific metadata tags to be extracted. (If
possible specify tag groups as returned by exifTagNames)

removeDuplicateRecords

logical. If there are several records of the same species at the same station (also
same camera if cameraID is defined) at exactly the same time, show only one?

returnFileNamesMissingTags

logical. If species are assigned with metadata and images are not tagged, return
a few file names of these images as a message?

eventSummaryColumn

character. A column in the record table (e.g. from a metadata tag) by to sum-
marise non-independent records (those within minDeltaTime of a given record)
with a user-defined function (eventSummaryFunction)

eventSummaryFunction

character. The function by which to summarise eventSummaryColumn of non-
independent records, e.g. "sum", "max" (optional)

video list. Contains information on how to handle video data (otional). See details.

Details

The function can handle a number of different ways of storing images, and supports species identifi-
cation by moving images into species directories as well as metadata tagging. In every case, images
need to be stored into station directories. If images are identified by moving them into species direc-
tories, a camera directory is optional: "Station/Species/XY.JPG" or "Station/Camera/Species/XY.JPG".
Likewise, if images are identified using metadata tagging, a camera directory can be used option-
ally: "Station/XY.JPG" or "Station/Camera/XY.JPG".

If images are identified by metadata tagging, metadataSpeciesTag specifies the metadata tag group
name that contains species identification tags. metadataHierarchyDelimitor is "|" for images
tagged in DigiKam and images tagged in Adobe Bridge / Lightroom with the default settings. It is
only necessary to change it if the default was changed in these programs.

minDeltaTime is a criterion for temporal independence of species recorded at the same station. Set-
ting it to 0 will make the function return all records. Setting it to a higher value will remove records
that were taken less than minDeltaTime minutes after the last record (deltaTimeComparedTo =
"lastRecord") or the last independent record (deltaTimeComparedTo = "lastIndependentRecord").

camerasIndependent defines if the cameras at a station are to be considered independent. If TRUE,
records of the same species taken by different cameras are considered independent (e.g. if they face
different trails). Use FALSE if both cameras face each other and possibly TRUE).

exclude can be used to exclude "species" directories containing irrelevant images (e.g. "team",
"blank", "unidentified"). stationCol can be set to match the station column name in the camera
trap station table (see camtraps).

Many digital images contain Exif metadata tags such as "AmbientTemperature" or "MoonPhase"
that can be extracted if specified in metadataTags. Because these are manufacturer-specific and not
standardized, function exifTagNames provides a vector of all available tag names. Multiple names

recordTable 51

can be specified as a character vector as: c(Tag1,Tag2,...). The metadata tags thus extracted
may be used as covariates in modelling species distributions.

eventSummaryColumn and eventSummaryFunction can be used to extract summary statistics for
independent sampling events. For example, you assigned a "count" tag to your images, indicat-
ing the number of individuals in a picture. In a sequence of pictures taken within 1 minute,
most pictures show one individual, but one image shows two individuals. You tagged the im-
ages accordingly (count = 1 or count = 2) and run recordTable. Set eventSummaryColumn =
"count" and eventSummaryFunction = "max" to obtain the maximum number of count in all
images within minDeltaTime minutes of a given record. The results is in a new column, in this ex-
ample count_max. You can also calculate several statistics at the same time, by supplying vectors of
values, e.g. eventSummaryColumn = c("count","count","camera") and eventSummaryFunction
= c("min","max","unique") to get minimum and maximum count and all unique camera IDs for
that event. Note that eventSummaryColumn and eventSummaryFunction must be of same length.

Argument video is a named list with 2 or 4 items. 2 items (file_formats, dateTimeTag) are
always required, and are sufficent if IDfrom = "directory". In that case, no digiKam tags will be
returned. To return digiKam tags, two additional items are required (db_directory, db_filename).
This is essential when using IDfrom = "metadata". When using IDfrom = "directory", it is op-
tional, but allows to extract metadata tags assigned to videos in digiKam. This workaround is nec-
essary because digiKam tags are not written into video metadata, but are only saved in the digiKam
database. So in contrast to JPG images, they can not be extracted with ExifTool. It also requires
that inDir is in your digiKam database.

The items of argument video are:

file_formats The video formats to extract (include "jpg" if you want .JPG image metadata)
dateTimeTag the metadata tag to extract date/time from (use exifTagNames to find out which tag is suitable)
db_directory The directory containing digiKam database (optional if IDfrom = "directory")
db_filename The digiKam database file in db_directory (optional if IDfrom = "directory")

See the examples below for for how to specify the argument video.

Value

A data frame containing species records and additional information about stations, date, time and
(optionally) further metadata.

Warning

Custom image metadata must be organised hierarchically (tag group - tag; e.g. "Species" - "Leopard
Cat"). Detailed information on how to set up and use metadata tags can be found in vignette 2:
Species and Individual Identification.

Custom image metadata tags must be written to the images. The function cannot read tags from
.xmp sidecar files. Make sure you set the preferences accordingly. In DigiKam, go to Settings/Configure
digiKam/Metadata. There, make sure "Write to sidecar files" is unchecked.

Please note the section about defining argument timeZone in the vignette on data extraction (acces-
sible via vignette("DataExtraction") or online (https://cran.r-project.org/package=
camtrapR/vignettes/camtrapr3.html)).

https://CRAN.R-project.org/package=camtrapR/vignettes/camtrapr2.html#metadata-tagging
https://CRAN.R-project.org/package=camtrapR/vignettes/camtrapr2.html#metadata-tagging
https://cran.r-project.org/package=camtrapR/vignettes/camtrapr3.html
https://cran.r-project.org/package=camtrapR/vignettes/camtrapr3.html

52 recordTable

Note

The results of a number of other function will depend on the output of this function (namely on the
arguments exclude for excluding species and minDeltaTime/ deltaTimeComparedTo for temporal
independence):

detectionMaps
detectionHistory
activityHistogram
activityDensity
activityRadial
activityOverlap
activityHistogram
surveyReport

Author(s)

Juergen Niedballa

References

Phil Harvey’s ExifTool https://exiftool.org/

Examples

Not run: # the examples take too long to pass CRAN tests

set directory with camera trap images in station directories
wd_images_ID_species <- system.file("pictures/sample_images_species_dir",

package = "camtrapR")

if (Sys.which("exiftool") != ""){ # only run these examples if ExifTool is available

rec_table1 <- recordTable(inDir = wd_images_ID_species,
IDfrom = "directory",
minDeltaTime = 60,
deltaTimeComparedTo = "lastRecord",
writecsv = FALSE,
additionalMetadataTags = c("EXIF:Model", "EXIF:Make")

)
note argument additionalMetadataTags: it contains tag names as returned by function exifTagNames

rec_table2 <- recordTable(inDir = wd_images_ID_species,
IDfrom = "directory",
minDeltaTime = 60,
deltaTimeComparedTo = "lastRecord",
exclude = "UNID",

https://exiftool.org/

recordTable 53

writecsv = FALSE,
timeZone = "Asia/Kuala_Lumpur",

additionalMetadataTags = c("EXIF:Model", "EXIF:Make", "NonExistingTag"),
eventSummaryColumn = "EXIF:Make",
eventSummaryFunction = "unique"
)

note the warning that the last tag in "additionalMetadataTags" ("NonExistingTag") was not found

any(rec_table1$Species == "UNID") # TRUE
any(rec_table2$Species == "UNID") # FALSE

here's how the removeDuplicateRecords argument works

rec_table3a <- recordTable(inDir = wd_images_ID_species,
IDfrom = "directory",
minDeltaTime = 0,
exclude = "UNID",
timeZone = "Asia/Kuala_Lumpur",
removeDuplicateRecords = FALSE

)

rec_table3b <- recordTable(inDir = wd_images_ID_species,
IDfrom = "directory",
minDeltaTime = 0,
exclude = "UNID",
timeZone = "Asia/Kuala_Lumpur",
removeDuplicateRecords = TRUE

)

anyDuplicated(rec_table3a[, c("Station", "Species", "DateTimeOriginal")]) # got duplicates
anyDuplicated(rec_table3b[, c("Station", "Species", "DateTimeOriginal")]) # no duplicates

after removing duplicates, both are identical:
whichAreDuplicated <- which(duplicated(rec_table3a[,c("Station", "Species", "DateTimeOriginal")]))
all(rec_table3a[-whichAreDuplicated,] == rec_table3b)

extracting species IDs from metadata

wd_images_ID_species_tagged <- system.file("pictures/sample_images_species_tag",
package = "camtrapR")

rec_table4 <- recordTable(inDir = wd_images_ID_species_tagged,
IDfrom = "metadata",
metadataSpeciesTag = "Species",
exclude = "unidentified")

Including videos

54 recordTableIndividual

sample videos are not included in package

with videos, IDfrom = "directory", not extracting digiKam metadata

rec_table4 <- recordTable(inDir = wd_images_ID_species,
IDfrom = "directory",
video = list(file_formats = c("jpg", "mp4"),

dateTimeTag = "QuickTime:CreateDate")
)

with videos, IDfrom = "metadata", extracting digiKam metadata

rec_table5 <- recordTable(inDir = wd_images_ID_species,
IDfrom = "metadata",
metadataSpeciesTag = "Species",
video = list(file_formats = c("jpg", "mp4", "avi", "mov"),

dateTimeTag = "QuickTime:CreateDate",
db_directory = "C:/Users/YourName/Pictures",
db_filename = "digikam4.db")

)

} else {
show function output if ExifTool is not available
message("ExifTool is not available. Cannot test function. Loading recordTableSample instead")
data(recordTableSample)
}

End(Not run)

recordTableIndividual Generate a single-species record table with individual identification
from camera trap images or videos

Description

The function generates a single-species record table containing individual IDs, e.g. for (spatial)
capture-recapture analyses. It prepares input for the function spatialDetectionHistory.

Usage

recordTableIndividual(inDir,
hasStationFolders,
IDfrom,
cameraID,
camerasIndependent,
minDeltaTime = 0,
deltaTimeComparedTo,
timeZone,

recordTableIndividual 55

stationCol,
writecsv = FALSE,
outDir,
metadataHierarchyDelimitor = "|",
metadataIDTag,
additionalMetadataTags,
removeDuplicateRecords = TRUE,
returnFileNamesMissingTags = FALSE,
eventSummaryColumn,
eventSummaryFunction,
video

)

Arguments

inDir character. Directory containing images of individuals. Must end with species
name (e.g. ".../speciesImages/Clouded Leopard")

hasStationFolders

logical. Does inDir have station subdirectories? If TRUE, station IDs will be
taken from directory names. If FALSE, they will be taken from image filenames
(requires images renamed with imageRename).

IDfrom character. Read individual ID from image metadata ("metadata") of from direc-
tory names ("directory")?

cameraID character. Should the function look for camera IDs in the image file names? If
so, set to ’filename’. Requires images renamed with imageRename. If missing,
no camera ID will be assigned and it will be assumed there was 1 camera only
per station.

camerasIndependent

logical. If TRUE, cameras at a station are assumed to record individuals inde-
pendently. If FALSE, cameras are assumed to be non-independent (e.g. in pairs).
Takes effect only if there was more than 1 camera per station and cameraID =
"filename".

minDeltaTime numeric. time difference between observation of the same individual at the same
station/camera to be considered independent (in minutes)

deltaTimeComparedTo

character. For two records to be considered independent, must the second one
be at least minDeltaTime minutes after the last independent record of the same
individual ("lastIndependentRecord"), or minDeltaTime minutes after the
last record ("lastRecord")?

timeZone character. Must be a value returned by OlsonNames

stationCol character. Name of the camera trap station column in the output table.
writecsv logical. Should the individual record table be saved as a .csv file?
outDir character. Directory to save csv file to. If NULL and writecsv = TRUE, the

output csv will be written to inDir.
metadataHierarchyDelimitor

character. The character delimiting hierarchy levels in image metadata tags in
field "HierarchicalSubject". Either "|" or ":".

56 recordTableIndividual

metadataIDTag character. In custom image metadata, the individual ID tag name.
additionalMetadataTags

character. additional camera model-specific metadata tags to be extracted. (If
possible specify tag groups as returned by exifTagNames)

removeDuplicateRecords

logical. If there are several records of the same individual at the same station
(also same camera if cameraID is defined) at exactly the same time, show only
one?

returnFileNamesMissingTags

logical. If species are assigned with metadata and images are not tagged, return
a few file names of these images as a message?

eventSummaryColumn

character. A column in the record table (e.g. from a metadata tag) by to sum-
marise non-independent records (those within minDeltaTime of a given record)
with a user-defined function (eventSummaryFunction)

eventSummaryFunction

character. The function by which to summarise eventSummaryColumn of non-
independent records, e.g. "sum", "max" (optional)

video list. Contains information on how to handle video data (otional). See details.

Details

The function can handle a number of different ways of storing images and videos. In every case,
images need to be stored in a species directory first (e.g. using function getSpeciesImages). Sta-
tion subdirectories are optional. Camera subdirectories are not supported. This directory structure
can be created easily with function getSpeciesImages.

As with species identification, individuals can be identified in 2 different ways: by moving images
into individual directories ("Species/Station/Individual/XY.JPG" or "Species/Individual/XY.JPG")
or by metadata tagging (without the need for individual directories: "Species/XY.JPG" or "Species/Station/XY.JPG").

minDeltaTime is a criterion for temporal independence of records of an individual at the same
station/location. Setting it to 0 will make the function return all records. camerasIndependent
defines if the cameras at a station are to be considered independent (e.g. FALSE if both cameras
face each other and possibly TRUE if they face different trails). stationCol is the station column
name to be used in the resulting table. Station IDs are read from the station directory names if
hasStationFolders = TRUE. Otherwise, the function will try to extract station IDs from the image
filenames (requires images renamed with imageRename.

If individual IDs were assigned with image metadata tags, metadataIDTag must be set to the name
of the metadata tag group used for individual identification. metadataHierarchyDelimitor is
"|" for images tagged in DigiKam and images tagged in Adobe Bridge/ Lightroom with the de-
fault settings. Manufacturer-specific Exif metadata tags such as "AmbientTemperature" or "Moon-
Phase" can be extracted if specified in additionalMetadataTags. Multiple names can be spec-
ified as a character vector as: c(Tag1,Tag2,...). Because they are not standardized, function
exifTagNames provides a vector of all available tag names. The metadata tags thus extracted may
be used as individual covariates in spatial capture-recapture models.

eventSummaryColumn and eventSummaryFunction can be used to extract summary statistics for
independent sampling events. For example, you assigned a "count" tag to your images, indicat-
ing the number of individuals in a picture. In a sequence of pictures taken within 1 minute,

recordTableIndividual 57

most pictures show one individual, but one image shows two individuals. You tagged the im-
ages accordingly (count = 1 or count = 2) and run recordTable. Set eventSummaryColumn =
"count" and eventSummaryFunction = "max" to obtain the maximum number of count in all
images within minDeltaTime minutes of a given record. The results is in a new column, in this ex-
ample count_max. You can also calculate several statistics at the same time, by supplying vectors of
values, e.g. eventSummaryColumn = c("count","count","camera") and eventSummaryFunction
= c("min","max","unique") to get minimum and maximum count and all unique camera IDs for
that event. Note that eventSummaryColumn and eventSummaryFunction must be of same length.

Argument video is analogous to recordTable, a named list with 2 or 4 items. 2 items (file_formats,
dateTimeTag) are always required, and are sufficent if IDfrom = "directory". In that case, no
digiKam tags will be returned. To return digiKam tags, two additional items are required (db_directory,
db_filename). This is essential when using IDfrom = "metadata". When using IDfrom = "directory",
it is optional, but allows to extract metadata tags assigned to videos in digiKam. This workaround
is necessary because digiKam tags are not written into video metadata, but are only saved in the
digiKam database. So in contrast to JPG images, they can not be extracted with ExifTool. It also
requires that inDir is in your digiKam database.

The items of argument video are:

file_formats The video formats to extract (include "jpg" if you want .JPG image metadata)
dateTimeTag the metadata tag to extract date/time from (use exifTagNames to find out which tag is suitable)
db_directory The directory containing digiKam database (optional if IDfrom = "directory")
db_filename The digiKam database file in db_directory (optional if IDfrom = "directory")

See the example below for for how to specify the argument video.

Value

A data frame containing species records with individual IDs and additional information about sta-
tions, date, time and (optionally) further metadata.

Warning

Be sure to read the section on individual identification in the package vignette (https://CRAN.
R-project.org/package=camtrapR/vignettes/camtrapr2.html).

Af you use image metadata tags for identification, the tags must be written to the image metadata.
The function cannot read tags from .xmp sidecar files. Make sure you set the preferences of your im-
age management software accordingly. In DigiKam, go to Settings/Configure digiKam/Metadata.
There, make sure "Write to sidecar files" is unchecked.

Please note the section about defining argument timeZone in the vignette on data extraction (acces-
sible via vignette("DataExtraction") or online (https://cran.r-project.org/package=
camtrapR/vignettes/camtrapr3.html)).

Author(s)

Juergen Niedballa

https://CRAN.R-project.org/package=camtrapR/vignettes/camtrapr2.html
https://CRAN.R-project.org/package=camtrapR/vignettes/camtrapr2.html
https://cran.r-project.org/package=camtrapR/vignettes/camtrapr3.html
https://cran.r-project.org/package=camtrapR/vignettes/camtrapr3.html

58 recordTableIndividual

References

Phil Harvey’s ExifTool https://exiftool.org/

Examples

Not run: # the examples run too long to pass CRAN tests

wd_images_ID_individual <- system.file("pictures/sample_images_indiv_tag/LeopardCat",
package = "camtrapR")

missing space in species = "LeopardCat" is because of CRAN package policies
note argument additionalMetadataTags: contains tag names as returned by function exifTagNames

if (Sys.which("exiftool") != ""){ # only run these examples if ExifTool is available

rec_table_pbe <- recordTableIndividual(inDir = wd_images_ID_individual,
minDeltaTime = 60,
deltaTimeComparedTo = "lastRecord",
hasStationFolders = FALSE,
IDfrom = "metadata",
camerasIndependent = FALSE,
writecsv = FALSE,
metadataIDTag = "individual",

additionalMetadataTags = c("EXIF:Model", "EXIF:Make"),
timeZone = "Asia/Kuala_Lumpur"

)

extracting some example summary stats too
a nonsensical example, get all unique cameras with which the event was photographed

rec_table_pbe2 <- recordTableIndividual(inDir = wd_images_ID_individual,
minDeltaTime = 60,
deltaTimeComparedTo = "lastRecord",
hasStationFolders = FALSE,
IDfrom = "metadata",
camerasIndependent = FALSE,
writecsv = FALSE,
metadataIDTag = "individual",

additionalMetadataTags = c("EXIF:Model", "EXIF:Make"),
timeZone = "Asia/Kuala_Lumpur",
eventSummaryColumn = "EXIF:Make",
eventSummaryFunction = "unique"

)

Video example (the sample data don't contain a video, this is hypothetical)
with JPG, video mp4, avi, mov, ID = metadata

rec_table_ind_video <- recordTableIndividual(inDir = wd_images_ID_individual,
hasStationFolder = FALSE,
IDfrom = "metadata",
metadataIDTag = "individual",

https://exiftool.org/

recordTableIndividualSample 59

video = list(file_formats = c("jpg", "mp4", "avi", "mov"),
dateTimeTag = "QuickTime:CreateDate",
db_directory = "C:/Users/YourName/Pictures",
db_filename = "digikam4.db")

)

} else {
show function output if ExifTool is not available
message("ExifTool is not available. Cannot test function. Loading recordTableSample instead")
data(recordTableSample)
}

End(Not run)

recordTableIndividualSample

Sample single-species record table with custom metadata from camera
trap images

Description

Sample single-species record table with individual IDs from the tagged sample images in the pack-
age. Generated with function recordTableIndividual.

Usage

data(recordTableIndividualSample)

Format

A data frame with 21 rows and 17 variables

Details

The variables are as follows:

• Station. Camera trap station ID

• Species. Species ID

• Individual. Individual ID

• DateTimeOriginal. Date and time as extracted from image

• Date. record date

• Time. record time of day

• delta.time.secs. time difference to first species record at a station (seconds)

• delta.time.mins. time difference to first species record at a station (minutes)

60 recordTableIndividualSampleMultiSeason

• delta.time.hours. time difference to first species record at a station (hours)

• delta.time.days. time difference to first species record at a station (days)

• Directory. Image directory

• FileName. image filename

• HierarchicalSubject. content of the HierarchicalSubject image metadata tag

• Model. camera model extracted from image metadata

• Make. camera make extracted from image metadata

• metadata_Species. content of custom image metadata tag "Species" (see HierarchicalSubject)

• metadata_individual. content of custom image metadata tag "individual" (see Hierarchical-
Subject)

recordTableIndividualSampleMultiSeason

Sample single-species multi-season record table with custom metadata
from camera trap images

Description

Sample single-species multi-season record table with individual IDs from the tagged sample images
in the package. Generated with function recordTableIndividual, then duplicated to simulate a
second year.

Usage

data(recordTableIndividualSampleMultiSeason)

Format

A data frame with 31 rows and 17 variables

Details

The variables are as follows:

• Station. Camera trap station ID

• Species. Species ID

• Individual. Individual ID

• DateTimeOriginal. Date and time as extracted from image

• Date. record date

• Time. record time of day

• delta.time.secs. time difference to first species record at a station (seconds)

• delta.time.mins. time difference to first species record at a station (minutes)

• delta.time.hours. time difference to first species record at a station (hours)

recordTableSample 61

• delta.time.days. time difference to first species record at a station (days)

• Directory. Image directory

• FileName. image filename

• HierarchicalSubject. content of the HierarchicalSubject image metadata tag

• Model. camera model extracted from image metadata

• Make. camera make extracted from image metadata

• metadata_Species. content of custom image metadata tag "Species" (see HierarchicalSubject)

• metadata_individual. content of custom image metadata tag "individual" (see Hierarchical-
Subject)

Examples

example data were created as follows:
data(recordTableIndividualSample)

recordTableIndividualSample_season2 <- recordTableIndividualSample[1:10,]
recordTableIndividualSample_season2$DateTimeOriginal <- gsub("2009", "2010",

recordTableIndividualSample_season2$DateTimeOriginal)
recordTableIndividualSampleMultiSeason <- rbind(recordTableIndividualSample,

recordTableIndividualSample_season2)

recordTableSample Sample species record table from camera trap images

Description

Sample species record table from camera trap images generated from the sample images in the
package with the function recordTable .

Usage

data(recordTableSample)

Format

A data frame with 39 rows and 11 variables

Details

The variables are as follows:

• Station. Camera trap station ID

• Species. Species ID

• DateTimeOriginal. Date and time as extracted from image

• Date. record date

62 recordTableSampleMultiSeason

• Time. record time of day

• delta.time.secs. time difference to first species record at a station (seconds)

• delta.time.mins. time difference to first species record at a station (minutes)

• delta.time.hours. time difference to first species record at a station (hours)

• delta.time.days. time difference to first species record at a station (days)

• Directory. Image directory

• FileName. image filename

recordTableSampleMultiSeason

Sample multi-season species record table from camera trap images

Description

Sample multi-season species record table from camera trap images generated from the sample im-
ages in the package with the function recordTable. Season 2009 is the same as recordTableSample,
season 2010 was simulated by adding 1 year to these records.

Usage

data(recordTableSampleMultiSeason)

Format

A data frame with 78 rows and 11 variables

Details

The variables are as follows:

• Station. Camera trap station ID

• Species. Species ID

• DateTimeOriginal. Date and time as extracted from image

• Date. record date

• Time. record time of day

• delta.time.secs. time difference to first species record at a station (seconds)

• delta.time.mins. time difference to first species record at a station (minutes)

• delta.time.hours. time difference to first species record at a station (hours)

• delta.time.days. time difference to first species record at a station (days)

• Directory. Image directory

• FileName. image filename

spatialDetectionHistory 63

Examples

data were created with the following code:

data(recordTableSample)
recordTableSample_season2 <- recordTableSample

substitute 2009 with 2010
recordTableSample_season2$DateTimeOriginal <- gsub("2009", "2010",

recordTableSample_season2$DateTimeOriginal)
combine with season 2009

recordTableSampleMultiSeason <- rbind(recordTableSample, recordTableSample_season2)

spatialDetectionHistory

Generate a capthist object for spatial capture-recapture analyses
from camera-trapping data

Description

This function generates spatial detection histories of individuals of a species for spatial capture-
recapture analyses with package secr. Data are stored in a capthist object. The capthist object
contains detection histories, camera-trap station location and possibly individual and station-level
covariates. Detection histories can have adjustable occasion length and occasion start time (as in
the function detectionHistory).

Usage

spatialDetectionHistory(recordTableIndividual,
species,
camOp,
CTtable,
output,
stationCol = "Station",
speciesCol = "Species",
sessionCol,
Xcol,
Ycol,
stationCovariateCols,
individualCol,
individualCovariateCols,
recordDateTimeCol = "DateTimeOriginal",
recordDateTimeFormat = "%Y-%m-%d %H:%M:%S",
occasionLength,
minActiveDaysPerOccasion,
occasionStartTime = 0,
maxNumberDays,
day1,

64 spatialDetectionHistory

buffer,
includeEffort = TRUE,
scaleEffort = FALSE,
binaryEffort,
timeZone,
makeRMarkInput

)

Arguments

recordTableIndividual

data.frame. the record table with individual IDs created by recordTableIndividual

species character. the species for which to compute the detection history

camOp The camera operability matrix as created by cameraOperation

CTtable data.frame. contains station IDs and coordinates. Same as used in cameraOperation.

output character. Return individual counts ("count") or binary observations ("binary")?

stationCol character. name of the column specifying Station ID in recordTableIndividual
and CTtable

speciesCol character. name of the column specifying species in recordTableIndividual

sessionCol character. name of the column specifying session IDs, either in recordTableIndividual
or in CTtable. See ’Details’ for more information. Session ID values must be a
sequence of integer numbers beginning with 1 (i.e., 1,2,3,...).

Xcol character. name of the column specifying x coordinates in CTtable

Ycol character. name of the column specifying y coordinates in CTtable

stationCovariateCols

character. name of the column(s) specifying station-level covariates in CTtable

individualCol character. name of the column specifying individual IDs in recordTableIndividual

individualCovariateCols

character. name of the column(s) specifying individual covariates in recordTableIndividual

recordDateTimeCol

character. name of the column specifying date and time in recordTableIndividual

recordDateTimeFormat

format of column recordDateTimeCol in recordTableIndividual

occasionLength integer. occasion length in days
minActiveDaysPerOccasion

integer. minimum number of active trap days for occasions to be included (op-
tional)

occasionStartTime

integer. time of day (the full hour) at which to begin occasions.

maxNumberDays integer. maximum number of trap days per station (optional)

day1 character. When should occasions begin: station setup date ("station"), first day
of survey ("survey"), a specific date (e.g. "2015-12-31")?

buffer integer. Makes the first occasion begin a number of days after station setup.
(optional)

spatialDetectionHistory 65

includeEffort logical. Include trapping effort (number of active camera trap days per station
and occasion) as usage in capthist object?

scaleEffort logical. scale and center effort matrix to mean = 0 and sd = 1? Currently not
used. Must be FALSE.

binaryEffort logical. Should effort be binary (1 if >1 active day per occasion, 0 otherwise)?

timeZone character. Must be a value returned by OlsonNames

makeRMarkInput logical. If FALSE, output will be a data frame for RMark. If FALSE or not speci-
fied, a secr capthist object

Details

The function creates a capthist object by combining three different objects: 1) a record table of
identified individuals of a species, 2) a camera trap station table with station coordinates and 3) a
camera operation matrix computed with cameraOperation. The record table must contain a column
with individual IDs and optionally individual covariates. The camera trap station table must contain
station coordinates and optionally station-level covariates. The camera operation matrix provides
the dates stations were active or not and the number of active stations.

day1 defines if each stations detection history will begin on that station’s setup day (day1 = "station")
or if all station’s detection histories have a common origin (the day the first station was set up if
day1 = "survey" or a fixed date if, e.g. day1 = "2015-12-31").

includeEffort controls whether an effort matrix is computed or not. If TRUE, effort will be
used for object usage information in a traps. binaryEffort makes the effort information binary.
scaleEffort is currently not used and must be set to FALSE. The reason is that usage can only be
either binary, or nonnegative real values, whereas scaling effort would return negative values.

The number of days that are aggregated is controlled by occasionLength. occasionStartTime
can be used to make occasions begin another hour than midnight (the default). This may be relevant
for nocturnal animals, in which 1 whole night would be considered an occasion. Output can be
returned as individual counts per occasion (output = "count") or as binary observation (output =
"binary").

Argument sessionCol can be used to a create multi-session capthist object. There are two differ-
ent ways in which the argument is interpreted. It depends on whether a column with the name you
specify in argument sessionCol exists in recordTableIndividual or in CTtable. If sessionCol
is found in recordTableIndividual, the records will be assigned to the specified sessions, and it
will be assumed that all camera trap station were used in all sessions. Alternatively, if sessionCol
is found inCTtable, it will be assumed that only a subset of stations was used in each session, and
the records will be assigned automatically (using the station IDs to identify which session they be-
long into). In both cases, session information must be provided as a sequence of integer numbers
beginnign with 1, i.e., you provide the session number directly in sessionCol. See session for
more information about sessions in secr.

capthist objects (as created by spatialDetectionHistory for spatial capture-recapture analy-
ses) expect the units of coordinates (Xcol and col in CTtable) to be meters. Therefore, please use
a suitable coordinate system (e.g. UTM).

recordDateTimeFormat defaults to the "YYYY-MM-DD HH:MM:SS" convention, e.g. "2014-
09-30 22:59:59". recordDateTimeFormat can be interpreted either by base-R via strptime or in
lubridate via parse_date_time (argument "orders"). lubridate will be used if there are no "%"
characters in recordDateTimeFormat.

66 spatialDetectionHistory

For "YYYY-MM-DD HH:MM:SS", recordDateTimeFormat would be either "%Y-%m-%d %H:%M:%S"
or "ymd HMS". For details on how to specify date and time formats in R see strptime or
parse_date_time.

Value

Output depends on argument makeRMarkInput:

makeRMarkInput = FALSE

A capthist object
makeRMarkInput = TRUE

A data frame for use in RMark

Warning

Please note the section about defining argument timeZone in the vignette on data extraction (acces-
sible via vignette("DataExtraction") or online (https://cran.r-project.org/package=
camtrapR/vignettes/camtrapr3.html)).

Author(s)

Juergen Niedballa

See Also

secr RMark

Examples

data(recordTableIndividualSample)
data(camtraps)

create camera operation matrix (with problems/malfunction)
camop_problem <- cameraOperation(CTtable = camtraps,

stationCol = "Station",
setupCol = "Setup_date",
retrievalCol = "Retrieval_date",
writecsv = FALSE,
hasProblems = TRUE,
dateFormat = "%d/%m/%Y"

)

sdh <- spatialDetectionHistory(recordTableIndividual = recordTableIndividualSample,
species = "LeopardCat",
camOp = camop_problem,
CTtable = camtraps,
output = "binary",
stationCol = "Station",
speciesCol = "Species",
Xcol = "utm_x",
Ycol = "utm_y",

https://cran.r-project.org/package=camtrapR/vignettes/camtrapr3.html
https://cran.r-project.org/package=camtrapR/vignettes/camtrapr3.html

spatialDetectionHistory 67

individualCol = "Individual",
recordDateTimeCol = "DateTimeOriginal",
recordDateTimeFormat = "%Y-%m-%d %H:%M:%S",
occasionLength = 10,
day1 = "survey",
includeEffort = TRUE,
timeZone = "Asia/Kuala_Lumpur"

)

missing space in species = "LeopardCat" was introduced by recordTableIndividual
(because of CRAN package policies.
In your data you can have spaces in your directory names)

summary(sdh)
plot(sdh, tracks = TRUE)

multi-season capthist object
see vignette "3. Extracting Data from Camera Trapping Images, creating occupancy & secr input"

data(camtrapsMultiSeason)
camtrapsMultiSeason$session[camtrapsMultiSeason$session == 2009] <- 1
camtrapsMultiSeason$session[camtrapsMultiSeason$session == 2010] <- 2

data(recordTableIndividualSampleMultiSeason)

create camera operation matrix (with problems/malfunction)
camop_session <- cameraOperation(CTtable = camtrapsMultiSeason,

stationCol = "Station",
setupCol = "Setup_date",
sessionCol = "session",
retrievalCol = "Retrieval_date",
hasProblems = TRUE,
dateFormat = "%d/%m/%Y"

)

sdh_multi <- spatialDetectionHistory(recordTableIndividual = recordTableIndividualSampleMultiSeason,
species = "LeopardCat",
output = "binary",
camOp = camop_session,
CTtable = camtrapsMultiSeason,
stationCol = "Station",
speciesCol = "Species",
sessionCol = "session",
Xcol = "utm_x",
Ycol = "utm_y",
individualCol = "Individual",
recordDateTimeCol = "DateTimeOriginal",
recordDateTimeFormat = "%Y-%m-%d %H:%M:%S",
occasionLength = 10,
day1 = "survey",
includeEffort = TRUE,
timeZone = "Asia/Kuala_Lumpur",
stationCovariateCols = "utm_y", # example

68 surveyReport

individualCovariateCols = "Individual" # example
)

summary(sdh_multi)
plot(sdh_multi, tracks = TRUE)

surveyReport Create a report about a camera trapping survey and species detections

Description

This function creates a report about a camera trapping survey and species records. It uses a camera
trap station information table and a record table (generated with recordTable) as input. Output
tables can be saved and a zip file for simple data sharing can be created easily.

Usage

surveyReport (recordTable,
CTtable,
speciesCol = "Species",
stationCol = "Station",
cameraCol,
setupCol,
retrievalCol,
CTDateFormat = "%Y-%m-%d",
CTHasProblems = FALSE,
recordDateTimeCol = "DateTimeOriginal",
recordDateTimeFormat = "%Y-%m-%d %H:%M:%S",
Xcol,
Ycol,
sinkpath,
makezip

)

Arguments

recordTable data.frame containing a species record table as given by recordTable

CTtable data.frame containing information about location and trapping period of camera
trap stations (equivalent to camtraps

speciesCol character. name of the column specifying Species ID in recordTable

stationCol character. name of the column specifying Station ID in CTtable and recordTable

cameraCol character. name of the column specifying Camera ID in CTtable and recordTable

setupCol character. name of the column containing camera setup dates in CTtable

retrievalCol character. name of the column containing camera retrieval dates in CTtable

surveyReport 69

CTDateFormat character. The format of columns setupCol and retrievalCol (and potential
problem columns) in CTtable. Must be interpretable by either as.Date or the
"orders" argument parse_date_time in lubridate.

CTHasProblems logical. Are there periods of camera malfunction specified in CTtable?
recordDateTimeCol

character. The name of the column containing date and time of records in
recordTable

recordDateTimeFormat

character. The date/time format of column recordDateTimeCol in recordTable.

Xcol character. name of the column specifying x coordinates in CTtable. Used to
create detection maps if makezip is TRUE. (optional)

Ycol character. name of the column specifying y coordinates in CTtable. Used to
create detection maps if makezip is TRUE. (optional)

sinkpath character. The directory into which the survey report is saved (optional)

makezip logical. Create a zip file containing tables, plots and maps in sinkpath?

Details

dateFormat defaults to "YYYY-MM-DD", e.g. "2014-10-31". It can be specified either in the for-
mat required by strptime or the ’orders’ argument in parse_date_time in lubridate. In the ex-
ample above, "YYYY-MM-DD" would be specified as "%Y-%m-%d" or "ymd". If CTHasProblems
is set to TRUE, the function tries to find columns ProblemX_from and ProblemX_to in CTtable
(X designates numbers from 1 to n in which a camera or station was not operational). If there are
no such columns all stations are assumed to have been operational uninterruptedly from setup to
retrieval.

recordDateTimeFormat defaults to the "YYYY-MM-DD HH:MM:SS" convention, e.g. "2014-
09-30 22:59:59". recordDateTimeFormat can be interpreted either by base-R via strptime or in
lubridate via parse_date_time (argument "orders"). lubridate will be used if there are no "%"
characters in recordDateTimeFormat.

For "YYYY-MM-DD HH:MM:SS", recordDateTimeFormat would be either "%Y-%m-%d %H:%M:%S"
or "ymd HMS". For details on how to specify date and time formats in R see strptime or
parse_date_time.

Value

An invisible list containing 5 data.frames.

survey_dates station and image date ranges, number of total and active trap nights, number of
cameras per station

species_by_station

species numbers by station
events_by_species

number of events and stations by species
events_by_station

number of events for every species by station (only species that were recorded)

70 surveyReport

events_by_station2

number of events for all species at all stations (including species that were not
recorded)

The output will be saved to a .txt file if sinkpath is defined.

If makezip is TRUE, a zip file will be created in sinkpath. It contains single-species activity plots,
detection maps (if Xcol and Ycol are defined), the survey report tables, the record table and the
camera trap station table, and an example R script.

Author(s)

Juergen Niedballa

See Also

recordTable

Examples

data(camtraps)
data(recordTableSample)

reportTest <- surveyReport (recordTable = recordTableSample,
CTtable = camtraps,
speciesCol = "Species",
stationCol = "Station",
setupCol = "Setup_date",
retrievalCol = "Retrieval_date",
CTDateFormat = "%d/%m/%Y",
recordDateTimeCol = "DateTimeOriginal",
recordDateTimeFormat = "%Y-%m-%d %H:%M:%S")

class(reportTest) # a list with
length(reportTest) # 5 elements

reportTest[[1]] # camera trap operation times and image date ranges
reportTest[[2]] # number of species by station
reportTest[[3]] # number of events and number of stations by species
reportTest[[4]] # number of species events by station
reportTest[[5]] # number of species events by station including 0s (non-observed species)

with camera problems

reportTest_problem <- surveyReport (recordTable = recordTableSample,
CTtable = camtraps,
speciesCol = "Species",
stationCol = "Station",
setupCol = "Setup_date",
retrievalCol = "Retrieval_date",
CTDateFormat = "%d/%m/%Y",
recordDateTimeCol = "DateTimeOriginal",
recordDateTimeFormat = "%Y-%m-%d %H:%M:%S",

timeShiftImages 71

CTHasProblems = TRUE)

reportTest_problem$survey_dates

Not run:
run again with sinkpath defined
reportTest <- surveyReport (recordTable = recordTableSample,

CTtable = camtraps,
speciesCol = "Species",
stationCol = "Station",
setupCol = "Setup_date",
retrievalCol = "Retrieval_date",
CTDateFormat = "%d/%m/%Y",
recordDateTimeCol = "DateTimeOriginal",
recordDateTimeFormat = "%Y-%m-%d %H:%M:%S",
sinkpath = getwd())

have a look at the text file
readLines(list.files(getwd(), pattern = paste("survey_report_", Sys.Date(), ".txt", sep = ""),
full.names = TRUE))

End(Not run)

timeShiftImages Apply time shifts to JPEG image metadata

Description

Change the values of digital timestamps in image metadata using ExifTool. If date/time of images
were set incorrectly, they can be corrected easily in batch mode for further analyses. Please, always
make a backup of your data before using this function to avoid data loss or damage. This is be-
cause ExifTool will make a copy of your images and applies the time shifts to the copies. The file
extentsion of the original images (.JPG) will be renamed to ".JPG_original".

Usage

timeShiftImages (inDir,
hasCameraFolders,
timeShiftTable,
stationCol,
cameraCol,
timeShiftColumn,
timeShiftSignColumn,
undo = FALSE

)

72 timeShiftImages

Arguments

inDir character. Name of directory containing station directories with images

hasCameraFolders

logical. Do the station directories in inDir have camera subdirectories (e.g.
"inDir/StationA/Camera1")?

timeShiftTable data.frame containing information about station-/camera-specific time shifts.

stationCol character. name of the column specifying Station ID in timeShiftTable

cameraCol character. name of the column specifying Camera ID in timeShiftTable (op-
tional)

timeShiftColumn

character. The name of the column containing time shift values in timeShiftTable

timeShiftSignColumn

character. The name of the column with the direction of time shifts in timeShiftTable.
Can only be "-" or "+".

undo logical. Undo changes and restore the original images? Please be careful, this
deletes any edited images if TRUE

Details

timeShiftTable is a data frame with columns for station ID, camera ID (optional), time shift value
and direction of time shift (for an example see timeShiftTable). Images in inDir must be sorted
into station directories. If hasCameraFolders = TRUE, the function expects camera subdirectories
in the station directories and will only apply time shifts to the camera subdirectories specified by
CameraCol in timeShiftTable. If hasCameraFolders = FALSE, shifts will be applied to the whole
station directory (including potential subdirectories).

The values of timeShiftColumn must adhere to the following pattern: "YYYY:mm:dd HH:MM:SS"
("year:month:day hour:minute:second"). Examples: "1:0:0 0:0:0" is a shift of exactly 1 year and
"0:0:0 12:10:01" 12 hours and 10 minutes and 1 second. Note that stating "00" may cause problems,
so use "0" instead if an entry is zero.

timeShiftSignColumn signifies the direction of the time shift. "+" moves image dates into the
future (i.e. the image date lagged behind the actual date) and "-" moves image dates back (if the
image dates were ahead of actual time).

ExifTool stores the original images as .JPG_original files in the original file location. By setting
undo = TRUE, any JPG files in the directories specified by timeShiftTable will be deleted and the
original JPEGs will be restored from the JPG_original files. Please make a backup before using
undo.

Years can have 365 or 366 days, and months 28 to 31 days. Here is how the function handles these
(from the exiftool help page): "The ability to shift dates by Y years, M months, etc, conflicts with
the design goal of maintaining a constant shift for all time values when applying a batch shift. This
is because shifting by 1 month can be equivalent to anything from 28 to 31 days, and 1 year can be
365 or 366 days, depending on the starting date. The inconsistency is handled by shifting the first
tag found with the actual specified shift, then calculating the equivalent time difference in seconds
for this shift and applying this difference to subsequent tags in a batch conversion."

timeShiftImages 73

Value

A data.frame containing the information about the processed directories and the number of im-
ages.

Author(s)

Juergen Niedballa

References

https://exiftool.org/#shift

Examples

Not run:

copy sample images to temporary directory (so we don't mess around in the package directory)
wd_images_ID <- system.file("pictures/sample_images_species_dir", package = "camtrapR")
file.copy(from = wd_images_ID, to = tempdir(), recursive = TRUE)
wd_images_ID_copy <- file.path(tempdir(), "sample_images_species_dir")

data(timeShiftTable)

timeshift_run <- timeShiftImages(inDir = wd_images_ID_copy,
timeShiftTable = timeShiftTable,
stationCol = "Station",
hasCameraFolders = FALSE,
timeShiftColumn = "timeshift",
timeShiftSignColumn = "sign",
undo = FALSE

)

timeshift_undo <- timeShiftImages(inDir = wd_images_ID_copy,
timeShiftTable = timeShiftTable,
stationCol = "Station",
hasCameraFolders = FALSE,
timeShiftColumn = "timeshift",
timeShiftSignColumn = "sign",
undo = TRUE

)

End(Not run)

https://exiftool.org/#shift

74 timeShiftTable

timeShiftTable Sample camera trap time shift table

Description

Sample camera trap time shift table

Usage

data(timeShiftTable)

Format

A data frame with 2 rows and 4 variables

Details

If image Exif metadata timestamps are wrong systematically (e.g. because camera system time was
not set after changing batteries), it can be corrected using a data.frame in the following format
using function timeShiftImages. For details on data format, please see timeShiftImages.

The variables are as follows:

• Station. Camera trap station ID

• camera. Camera trap ID (optional)

• timeshift. time shift amount to be applied

• sign. direction of time shift

Index

∗ datasets
camtraps, 21
camtrapsMultiSeason, 22
recordTableIndividualSample, 59
recordTableIndividualSampleMultiSeason,

60
recordTableSample, 61
recordTableSampleMultiSeason, 62
timeShiftTable, 74

∗ package
camtrapR-package, 3

activityDensity, 4, 6, 9, 11, 14, 52
activityHistogram, 4, 7, 8, 14, 52
activityOverlap, 4, 7, 9, 10, 14, 52
activityRadial, 4, 7, 9, 12, 52
addCopyrightTag, 4, 15
appendSpeciesNames, 4, 16
as.Date, 33

cameraOperation, 4, 18, 32, 33, 64, 65
camtrapR (camtrapR-package), 3
camtrapR-package, 3
camtraps, 5, 19, 21, 50, 68
camtrapsMultiSeason, 5, 22
capthist, 19, 22, 23, 63, 65, 66
checkSpeciesIdentification, 4, 17, 24
checkSpeciesNames, 4, 26
createSpeciesFolders, 4, 28
createStationFolders, 3, 30
CRS, 38

densityPlot, 6
detectionHistory, 4, 18, 20, 31, 52, 63
detectionMaps, 4, 36, 52

exifTagNames, 4, 39, 50, 51, 56, 57
exiftoolPath, 4, 41

fixDateTimeOriginal, 3, 42

get_tsn, 27
getSpeciesImages, 4, 43, 56

hist, 8

imageRename, 3, 29, 43, 45, 46, 49, 55, 56

OlsonNames, 33, 49, 55, 65
overlapEst, 10, 11
overlapPlot, 10, 11

parse_date_time, 7, 9, 11, 13, 14, 19, 33, 65,
66, 69

radial.plot, 12, 13
recordTable, 4, 6, 8, 10, 12, 13, 32, 37, 40,

43, 44, 47, 48, 57, 61, 62, 68, 70
recordTableIndividual, 4, 40, 54, 59, 60, 64
recordTableIndividualSample, 5, 59
recordTableIndividualSampleMultiSeason,

5, 60
recordTableSample, 5, 61, 62
recordTableSampleMultiSeason, 5, 62

secr, 63
session, 65
spatialDetectionHistory, 4, 18, 20, 22, 23,

33, 54, 63, 65
strptime, 7, 9, 11, 13, 14, 19, 33, 65, 66, 69
surveyReport, 4, 52, 68

timeShiftImages, 3, 71, 74
timeShiftTable, 5, 72, 74
traps, 65

unmarked, 31
unmarkedMultFrame, 19, 33
usage, 65

75

	camtrapR-package
	activityDensity
	activityHistogram
	activityOverlap
	activityRadial
	addCopyrightTag
	appendSpeciesNames
	cameraOperation
	camtraps
	camtrapsMultiSeason
	checkSpeciesIdentification
	checkSpeciesNames
	createSpeciesFolders
	createStationFolders
	detectionHistory
	detectionMaps
	exifTagNames
	exiftoolPath
	fixDateTimeOriginal
	getSpeciesImages
	imageRename
	recordTable
	recordTableIndividual
	recordTableIndividualSample
	recordTableIndividualSampleMultiSeason
	recordTableSample
	recordTableSampleMultiSeason
	spatialDetectionHistory
	surveyReport
	timeShiftImages
	timeShiftTable
	Index

