
Package ‘callr’
March 28, 2020

Title Call R from R

Version 3.4.3

Description It is sometimes useful to perform a computation in a
separate R process, without affecting the current R process at all.
This packages does exactly that.

License MIT + file LICENSE

LazyData true

URL https://github.com/r-lib/callr#readme

BugReports https://github.com/r-lib/callr/issues

RoxygenNote 7.0.2

Imports processx (>= 3.4.0), R6, utils

Suggests cliapp, covr, crayon, fansi, pingr, ps, rprojroot, spelling,
testthat, tibble, withr

Encoding UTF-8

Language en-US

NeedsCompilation no

Author Gábor Csárdi [aut, cre, cph] (<https://orcid.org/0000-0001-7098-9676>),
Winston Chang [aut],
RStudio [cph, fnd],
Mango Solutions [cph, fnd]

Maintainer Gábor Csárdi <csardi.gabor@gmail.com>

Repository CRAN

Date/Publication 2020-03-28 05:50:17 UTC

R topics documented:
callr . 2
default_repos . 3
r . 3
rcmd . 7

1

https://github.com/r-lib/callr#readme
https://github.com/r-lib/callr/issues

2 callr

rcmd_bg . 9
rcmd_copycat . 11
rcmd_process . 12
rcmd_process_options . 13
rcmd_safe_env . 14
rscript . 14
rscript_process . 16
rscript_process_options . 17
r_bg . 18
r_copycat . 20
r_process . 22
r_process_options . 23
r_session . 24
r_session_debug . 28
r_session_options . 29
r_vanilla . 29

Index 32

callr Call R from R

Description

It is sometimes useful to perform a computation in a separate R process, without affecting the
current R process at all. This packages does exactly that.

Author(s)

Maintainer: Gábor Csárdi <csardi.gabor@gmail.com> (ORCID) [copyright holder]

Authors:

• Winston Chang

Other contributors:

• RStudio [copyright holder, funder]

• Mango Solutions [copyright holder, funder]

See Also

Useful links:

• https://github.com/r-lib/callr#readme

• Report bugs at https://github.com/r-lib/callr/issues

https://orcid.org/0000-0001-7098-9676
https://github.com/r-lib/callr#readme
https://github.com/r-lib/callr/issues

default_repos 3

default_repos Default value for the repos option in callr subprocesses

Description

callr sets the repos option in subprocesses, to make sure that a CRAN mirror is set up. This is
because the subprocess cannot bring up the menu of CRAN mirrors for the user to choose from.

Usage

default_repos()

Value

Named character vector, the default value of the repos option in callr subprocesses.

Examples

default_repos()

r Evaluate an expression in another R session

Description

From callr version 2.0.0, r() is equivalent to r_safe(), and tries to set up a less error prone
execution environment. In particular:

• It makes sure that at least one reasonable CRAN mirror is set up.

• Adds some command line arguments are added to avoid saving .RData files, etc.

• Ignores the system and user profiles.

• Various environment variables are set: CYGWIN to avoid warnings about DOS-style paths,
R_TESTS to avoid issues when callr is invoked from unit tests, R_BROWSER and R_PDFVIEWER
to avoid starting a browser or a PDF viewer. See rcmd_safe_env().

Usage

r(
func,
args = list(),
libpath = .libPaths(),
repos = default_repos(),
stdout = NULL,
stderr = NULL,
poll_connection = TRUE,

4 r

error = getOption("callr.error", "error"),
cmdargs = c("--slave", "--no-save", "--no-restore"),
show = FALSE,
callback = NULL,
block_callback = NULL,
spinner = show && interactive(),
system_profile = FALSE,
user_profile = "project",
env = rcmd_safe_env(),
timeout = Inf,
...

)

r_safe(
func,
args = list(),
libpath = .libPaths(),
repos = default_repos(),
stdout = NULL,
stderr = NULL,
poll_connection = TRUE,
error = getOption("callr.error", "error"),
cmdargs = c("--slave", "--no-save", "--no-restore"),
show = FALSE,
callback = NULL,
block_callback = NULL,
spinner = show && interactive(),
system_profile = FALSE,
user_profile = "project",
env = rcmd_safe_env(),
timeout = Inf,
...

)

Arguments

func Function object to call in the new R process. The function should be self-
contained and only refer to other functions and use variables explicitly from
other packages using the :: notation. The environment of the function is set to
.GlobalEnv before passing it to the child process. Because of this, it is good
practice to create an anonymous function and pass that to callr, instead of
passing a function object from a (base or other) package. In particular

r(.libPaths)

does not work, because .libPaths is defined in a special environment, but

r(function() .libPaths())

works just fine.

args Arguments to pass to the function. Must be a list.

r 5

libpath The library path.

repos The repos option. If NULL, then no repos option is set. This options is only
used if user_profile or system_profile is set FALSE, as it is set using the
system or the user profile.

stdout The name of the file the standard output of the child R process will be written
to. If the child process runs with the --slave option (the default), then the com-
mands are not echoed and will not be shown in the standard output. Also note
that you need to call print() explicitly to show the output of the command(s).

stderr The name of the file the standard error of the child R process will be written
to. In particular message() sends output to the standard error. If nothing was
sent to the standard error, then this file will be empty. This argument can be the
same file as stdout, in which case they will be correctly interleaved. If this is
the string "2>&1", then standard error is redirected to standard output.

poll_connection

Whether to have a control connection to the process. This is used to transmit
messages from the subprocess to the main process.

error What to do if the remote process throws an error. See details below.

cmdargs Command line arguments to pass to the R process. Note that c("-f",rscript)
is appended to this, rscript is the name of the script file to run. This contains
a call to the supplied function and some error handling code.

show Logical, whether to show the standard output on the screen while the child pro-
cess is running. Note that this is independent of the stdout and stderr argu-
ments. The standard error is not shown currently.

callback A function to call for each line of the standard output and standard error from the
child process. It works together with the show option; i.e. if show = TRUE, and a
callback is provided, then the output is shown of the screen, and the callback is
also called.

block_callback A function to call for each block of the standard output and standard error. This
callback is not line oriented, i.e. multiple lines or half a line can be passed to the
callback.

spinner Whether to show a calming spinner on the screen while the child R session is
running. By default it is shown if show = TRUE and the R session is interactive.

system_profile Whether to use the system profile file.

user_profile Whether to use the user’s profile file. If this is "project", then only the pro-
file from the working directory is used, but the R_PROFILE_USER environment
variable and the user level profile are not. See also "Security considerations"
below.

env Environment variables to set for the child process.

timeout Timeout for the function call to finish. It can be a base::difftime object, or a
real number, meaning seconds. If the process does not finish before the timeout
period expires, then a system_command_timeout_error error is thrown. Inf
means no timeout.

... Extra arguments are passed to processx::run().

6 r

Details

The r() function from before 2.0.0 is called r_copycat() now.

Value

Value of the evaluated expression.

Error handling

callr handles errors properly. If the child process throws an error, then callr throws an error with
the same error message in the main process.

The error expert argument may be used to specify a different behavior on error. The following
values are possible:

• error is the default behavior: throw an error in the main process, with a prefix and the same
error message as in the subprocess.

• stack also throws an error in the main process, but the error is of a special kind, class
callr_error, and it contains both the original error object, and the call stack of the child,
as written out by utils::dump.frames(). This is now deprecated, because the error thrown
for "error" has the same information.

• debugger is similar to stack, but in addition to returning the complete call stack, it also start
up a debugger in the child call stack, via utils::debugger().

The default error behavior can be also set using the callr.error option. This is useful to debug
code that uses callr.

callr uses parent errors, to keep the stacks of the main process and the subprocess(es) in the same
error object.

Security considerations

callr makes a copy of the user’s .Renviron file and potentially of the local or user .Rprofile,
in the session temporary directory. Avoid storing sensitive information such as passwords, in your
environment file or your profile, otherwise this information will get scattered in various files, at least
temporarily, until the subprocess finishes. You can use the keyring package to avoid passwords in
plain files.

See Also

Other callr functions: r_copycat(), r_vanilla()

Examples

Workspace is empty
r(function() ls())

library path is the same by default
r(function() .libPaths())
.libPaths()

rcmd 7

rcmd Run an R CMD command

Description

Run an R CMD command form within R. This will usually start another R process, from a shell
script.

Usage

rcmd(
cmd,
cmdargs = character(),
libpath = .libPaths(),
repos = default_repos(),
stdout = NULL,
stderr = NULL,
poll_connection = TRUE,
echo = FALSE,
show = FALSE,
callback = NULL,
block_callback = NULL,
spinner = show && interactive(),
system_profile = FALSE,
user_profile = "project",
env = rcmd_safe_env(),
timeout = Inf,
wd = ".",
fail_on_status = FALSE,
...

)

rcmd_safe(
cmd,
cmdargs = character(),
libpath = .libPaths(),
repos = default_repos(),
stdout = NULL,
stderr = NULL,
poll_connection = TRUE,
echo = FALSE,
show = FALSE,
callback = NULL,
block_callback = NULL,
spinner = show && interactive(),
system_profile = FALSE,
user_profile = "project",

8 rcmd

env = rcmd_safe_env(),
timeout = Inf,
wd = ".",
fail_on_status = FALSE,
...

)

Arguments

cmd Command to run. See R --help from the command line for the various com-
mands. In the current version of R (3.2.4) these are: BATCH, COMPILE, SHLIB,
INSTALL, REMOVE, build, check, LINK, Rprof, Rdconv, Rd2pdf, Rd2txt, Stangle,
Sweave, Rdiff, config, javareconf, rtags.

cmdargs Command line arguments.

libpath The library path.

repos The repos option. If NULL, then no repos option is set. This options is only
used if user_profile or system_profile is set FALSE, as it is set using the
system or the user profile.

stdout Optionally a file name to send the standard output to.

stderr Optionally a file name to send the standard error to. It may be the same as
stdout, in which case standard error is redirected to standard output. It can also
be the special string "2>&1", in which case standard error will be redirected to
standard output.

poll_connection

Whether to have a control connection to the process. This is used to transmit
messages from the subprocess to the parent.

echo Whether to echo the complete command run by rcmd.

show Logical, whether to show the standard output on the screen while the child pro-
cess is running. Note that this is independent of the stdout and stderr argu-
ments. The standard error is not shown currently.

callback A function to call for each line of the standard output and standard error from the
child process. It works together with the show option; i.e. if show = TRUE, and a
callback is provided, then the output is shown of the screen, and the callback is
also called.

block_callback A function to call for each block of the standard output and standard error. This
callback is not line oriented, i.e. multiple lines or half a line can be passed to the
callback.

spinner Whether to show a calming spinner on the screen while the child R session is
running. By default it is shown if show = TRUE and the R session is interactive.

system_profile Whether to use the system profile file.

user_profile Whether to use the user’s profile file. If this is "project", then only the pro-
file from the working directory is used, but the R_PROFILE_USER environment
variable and the user level profile are not. See also "Security considerations"
below.

env Environment variables to set for the child process.

rcmd_bg 9

timeout Timeout for the function call to finish. It can be a base::difftime object, or a
real number, meaning seconds. If the process does not finish before the timeout
period expires, then a system_command_timeout_error error is thrown. Inf
means no timeout.

wd Working directory to use for running the command. Defaults to the current
working directory.

fail_on_status Whether to throw an R error if the command returns with a non-zero status code.
By default no error is thrown.

... Extra arguments are passed to processx::run().

Details

Starting from callr 2.0.0, rcmd() has safer defaults, the same as the rcmd_safe() default values.
Use rcmd_copycat() for the old defaults.

Value

A list with the command line $command), standard output ($stdout), standard error (stderr), exit
status ($status) of the external R CMD command, and whether a timeout was reached ($timeout).

Security considerations

callr makes a copy of the user’s .Renviron file and potentially of the local or user .Rprofile,
in the session temporary directory. Avoid storing sensitive information such as passwords, in your
environment file or your profile, otherwise this information will get scattered in various files, at least
temporarily, until the subprocess finishes. You can use the keyring package to avoid passwords in
plain files.

See Also

Other R CMD commands: rcmd_bg(), rcmd_copycat()

Examples

rcmd("config", "CC")

rcmd_bg Run an R CMD command in the background

Description

The child process is started in the background, and the function return immediately.

10 rcmd_bg

Usage

rcmd_bg(
cmd,
cmdargs = character(),
libpath = .libPaths(),
stdout = "|",
stderr = "|",
poll_connection = TRUE,
repos = default_repos(),
system_profile = FALSE,
user_profile = "project",
env = rcmd_safe_env(),
wd = ".",
supervise = FALSE,
...

)

Arguments

cmd Command to run. See R --help from the command line for the various com-
mands. In the current version of R (3.2.4) these are: BATCH, COMPILE, SHLIB,
INSTALL, REMOVE, build, check, LINK, Rprof, Rdconv, Rd2pdf, Rd2txt, Stangle,
Sweave, Rdiff, config, javareconf, rtags.

cmdargs Command line arguments.

libpath The library path.

stdout Optionally a file name to send the standard output to.

stderr Optionally a file name to send the standard error to. It may be the same as
stdout, in which case standard error is redirected to standard output. It can also
be the special string "2>&1", in which case standard error will be redirected to
standard output.

poll_connection

Whether to have a control connection to the process. This is used to transmit
messages from the subprocess to the parent.

repos The repos option. If NULL, then no repos option is set. This options is only
used if user_profile or system_profile is set FALSE, as it is set using the
system or the user profile.

system_profile Whether to use the system profile file.

user_profile Whether to use the user’s profile file. If this is "project", then only the pro-
file from the working directory is used, but the R_PROFILE_USER environment
variable and the user level profile are not. See also "Security considerations"
below.

env Environment variables to set for the child process.

wd Working directory to use for running the command. Defaults to the current
working directory.

rcmd_copycat 11

supervise Whether to register the process with a supervisor. If TRUE, the supervisor will
ensure that the process is killed when the R process exits.

... Extra arguments are passed to the processx::process constructor.

Value

It returns a process object.

Security considerations

callr makes a copy of the user’s .Renviron file and potentially of the local or user .Rprofile,
in the session temporary directory. Avoid storing sensitive information such as passwords, in your
environment file or your profile, otherwise this information will get scattered in various files, at least
temporarily, until the subprocess finishes. You can use the keyring package to avoid passwords in
plain files.

See Also

Other R CMD commands: rcmd_copycat(), rcmd()

rcmd_copycat Call and R CMD command, while mimicking the current R session

Description

This function is similar to rcmd(), but it has slightly different defaults:

• The repos options is unchanged.

• No extra environment variables are defined.

Usage

rcmd_copycat(
cmd,
cmdargs = character(),
libpath = .libPaths(),
repos = getOption("repos"),
env = character(),
...

)

Arguments

cmd Command to run. See R --help from the command line for the various com-
mands. In the current version of R (3.2.4) these are: BATCH, COMPILE, SHLIB,
INSTALL, REMOVE, build, check, LINK, Rprof, Rdconv, Rd2pdf, Rd2txt, Stangle,
Sweave, Rdiff, config, javareconf, rtags.

12 rcmd_process

cmdargs Command line arguments.

libpath The library path.

repos The repos option. If NULL, then no repos option is set. This options is only
used if user_profile or system_profile is set FALSE, as it is set using the
system or the user profile.

env Environment variables to set for the child process.

... Additional arguments are passed to rcmd().

Security considerations

callr makes a copy of the user’s .Renviron file and potentially of the local or user .Rprofile,
in the session temporary directory. Avoid storing sensitive information such as passwords, in your
environment file or your profile, otherwise this information will get scattered in various files, at least
temporarily, until the subprocess finishes. You can use the keyring package to avoid passwords in
plain files.

See Also

Other R CMD commands: rcmd_bg(), rcmd()

rcmd_process External R CMD Process

Description

An R CMD * command that runs in the background. This is an R6 class that extends the pro-
cessx::process class.

Super class

processx::process -> rcmd_process

Methods

Public methods:
• rcmd_process$new()

• rcmd_process$finalize()

• rcmd_process$clone()

Method new(): Start an R CMD process.

Usage:
rcmd_process$new(options)

Arguments:
options A list of options created via rcmd_process_options().

Returns: A new rcmd_process object.

rcmd_process_options 13

Method finalize(): Clean up the temporary files created for an R CMD process.

Usage:
rcmd_process$finalize()

Method clone(): The objects of this class are cloneable with this method.

Usage:
rcmd_process$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

options <- rcmd_process_options(cmd = "config", cmdargs = "CC")
rp <- rcmd_process$new(options)
rp$wait()
rp$read_output_lines()

rcmd_process_options Create options for an rcmd_process object

Description

Create options for an rcmd_process object

Usage

rcmd_process_options(...)

Arguments

... Options to override, named arguments.

Value

A list of options.

rcmd_process_options() creates a set of options to initialize a new object from the rcmd_process
class. Its arguments must be named, the names are used as option names. The options correspond to
(some of) the arguments of the rcmd() function. At least the cmd option must be specified, to select
the R CMD subcommand to run. Typically cmdargs is specified as well, to supply more arguments
to R CMD.

Examples

List all options and their default values:
rcmd_process_options()

14 rscript

rcmd_safe_env rcmd_safe_env returns a set of environment variables that are more
appropriate for rcmd_safe(). It is exported to allow manipulating
these variables (e.g. add an extra one), before passing them to the
rcmd() functions.

Description

It currently has the following variables:

• CYGWIN="nodosfilewarning": On Windows, do not warn about MS-DOS style file names.

• R_TESTS="" This variable is set by R CMD check, and makes the child R process load a startup
file at startup, from the current working directory, that is assumed to be the /test directory of
the package being checked. If the current working directory is changed to something else (as
it typically is by testthat, then R cannot start. Setting it to the empty string ensures that
callr can be used from unit tests.

• R_BROWSER="false": typically we don’t want to start up a browser from the child R process.

• R_PDFVIEWER="false": similarly for the PDF viewer.

Usage

rcmd_safe_env()

Details

Note that callr also sets the R_ENVIRON, R_ENVIRON_USER, R_PROFILE and R_PROFILE_USER en-
vironment variables appropriately, unless these are set by the user in the env argument of the r, etc.
calls.

Value

A named character vector of environment variables.

rscript Run an R script

Description

It uses the Rscript program corresponding to the current R version, to run the script. It streams
stdout and stderr of the process.

rscript 15

Usage

rscript(
script,
cmdargs = character(),
libpath = .libPaths(),
repos = default_repos(),
stdout = NULL,
stderr = NULL,
poll_connection = TRUE,
echo = FALSE,
show = TRUE,
callback = NULL,
block_callback = NULL,
spinner = FALSE,
system_profile = FALSE,
user_profile = "project",
env = rcmd_safe_env(),
timeout = Inf,
wd = ".",
fail_on_status = TRUE,
color = TRUE,
...

)

Arguments

script Path of the script to run.

cmdargs Command line arguments.

libpath The library path.

repos The repos option. If NULL, then no repos option is set. This options is only
used if user_profile or system_profile is set FALSE, as it is set using the
system or the user profile.

stdout Optionally a file name to send the standard output to.

stderr Optionally a file name to send the standard error to. It may be the same as
stdout, in which case standard error is redirected to standard output. It can also
be the special string "2>&1", in which case standard error will be redirected to
standard output.

poll_connection

Whether to have a control connection to the process. This is used to transmit
messages from the subprocess to the parent.

echo Whether to echo the complete command run by rcmd.

show Logical, whether to show the standard output on the screen while the child pro-
cess is running. Note that this is independent of the stdout and stderr argu-
ments. The standard error is not shown currently.

callback A function to call for each line of the standard output and standard error from the
child process. It works together with the show option; i.e. if show = TRUE, and a

16 rscript_process

callback is provided, then the output is shown of the screen, and the callback is
also called.

block_callback A function to call for each block of the standard output and standard error. This
callback is not line oriented, i.e. multiple lines or half a line can be passed to the
callback.

spinner Whether to show a calming spinner on the screen while the child R session is
running. By default it is shown if show = TRUE and the R session is interactive.

system_profile Whether to use the system profile file.

user_profile Whether to use the user’s profile file. If this is "project", then only the pro-
file from the working directory is used, but the R_PROFILE_USER environment
variable and the user level profile are not. See also "Security considerations"
below.

env Environment variables to set for the child process.

timeout Timeout for the function call to finish. It can be a base::difftime object, or a
real number, meaning seconds. If the process does not finish before the timeout
period expires, then a system_command_timeout_error error is thrown. Inf
means no timeout.

wd Working directory to use for running the command. Defaults to the current
working directory.

fail_on_status Whether to throw an R error if the command returns with a non-zero status code.
By default no error is thrown.

color Whether to use terminal colors in the child process, assuming they are active in
the parent process.

... Extra arguments are passed to processx::run().

Security considerations

callr makes a copy of the user’s .Renviron file and potentially of the local or user .Rprofile,
in the session temporary directory. Avoid storing sensitive information such as passwords, in your
environment file or your profile, otherwise this information will get scattered in various files, at least
temporarily, until the subprocess finishes. You can use the keyring package to avoid passwords in
plain files.

rscript_process External Rscript process

Description

An Rscript script.R command that runs in the background. This is an R6 class that extends the
processx::process class.

Super class

processx::process -> rscript_process

rscript_process_options 17

Methods

Public methods:

• rscript_process$new()

• rscript_process$finalize()

• rscript_process$clone()

Method new(): Create a new Rscript process.

Usage:
rscript_process$new(options)

Arguments:

options A list of options created via rscript_process_options().

Method finalize(): Clean up after an Rsctipt process, remove temporary files.

Usage:
rscript_process$finalize()

Method clone(): The objects of this class are cloneable with this method.

Usage:
rscript_process$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

options <- rscript_process_options(script = "script.R")
rp <- rscript_process$new(options)
rp$wait()
rp$read_output_lines()

rscript_process_options

Create options for an rscript_process object

Description

Create options for an rscript_process object

Usage

rscript_process_options(...)

18 r_bg

Arguments

... Options to override, named arguments.

Value

A list of options.

rscript_process_options() creates a set of options to initialize a new object from the rscript_process
class. Its arguments must be named, the names are used as option names. The options correspond to
(some of) the arguments of the rscript() function. At least the script option must be specified,
the script file to run.

Examples

List all options and their default values:
rscript_process_options()

r_bg Evaluate an expression in another R session, in the background

Description

Starts evaluating an R function call in a background R process, and returns immediately.

Usage

r_bg(
func,
args = list(),
libpath = .libPaths(),
repos = default_repos(),
stdout = "|",
stderr = "|",
poll_connection = TRUE,
error = getOption("callr.error", "error"),
cmdargs = c("--slave", "--no-save", "--no-restore"),
system_profile = FALSE,
user_profile = "project",
env = rcmd_safe_env(),
supervise = FALSE,
...

)

r_bg 19

Arguments

func Function object to call in the new R process. The function should be self-
contained and only refer to other functions and use variables explicitly from
other packages using the :: notation. The environment of the function is set to
.GlobalEnv before passing it to the child process. Because of this, it is good
practice to create an anonymous function and pass that to callr, instead of
passing a function object from a (base or other) package. In particular

r(.libPaths)

does not work, because .libPaths is defined in a special environment, but

r(function() .libPaths())

works just fine.

args Arguments to pass to the function. Must be a list.

libpath The library path.

repos The repos option. If NULL, then no repos option is set. This options is only
used if user_profile or system_profile is set FALSE, as it is set using the
system or the user profile.

stdout The name of the file the standard output of the child R process will be written
to. If the child process runs with the --slave option (the default), then the com-
mands are not echoed and will not be shown in the standard output. Also note
that you need to call print() explicitly to show the output of the command(s).

stderr The name of the file the standard error of the child R process will be written
to. In particular message() sends output to the standard error. If nothing was
sent to the standard error, then this file will be empty. This argument can be the
same file as stdout, in which case they will be correctly interleaved. If this is
the string "2>&1", then standard error is redirected to standard output.

poll_connection

Whether to have a control connection to the process. This is used to transmit
messages from the subprocess to the main process.

error What to do if the remote process throws an error. See details below.

cmdargs Command line arguments to pass to the R process. Note that c("-f",rscript)
is appended to this, rscript is the name of the script file to run. This contains
a call to the supplied function and some error handling code.

system_profile Whether to use the system profile file.

user_profile Whether to use the user’s profile file. If this is "project", then only the pro-
file from the working directory is used, but the R_PROFILE_USER environment
variable and the user level profile are not. See also "Security considerations"
below.

env Environment variables to set for the child process.

supervise Whether to register the process with a supervisor. If TRUE, the supervisor will
ensure that the process is killed when the R process exits.

... Extra arguments are passed to the processx::process constructor.

20 r_copycat

Value

An r_process object, which inherits from process, so all process methods can be called on it, and
in addition it also has a get_result() method to collect the result.

Security considerations

callr makes a copy of the user’s .Renviron file and potentially of the local or user .Rprofile,
in the session temporary directory. Avoid storing sensitive information such as passwords, in your
environment file or your profile, otherwise this information will get scattered in various files, at least
temporarily, until the subprocess finishes. You can use the keyring package to avoid passwords in
plain files.

Examples

rx <- r_bg(function() 1 + 2)

wait until it is done
rx$wait()
rx$is_alive()
rx$get_result()

r_copycat Run an R process that mimics the current R process

Description

Differences to r():

• No extra repositories are set up.

• The --no-save, --no-restore command line arguments are not used. (But --slave still is.)

• The system profile and the user profile are loaded.

• No extra environment variables are set up.

Usage

r_copycat(
func,
args = list(),
libpath = .libPaths(),
repos = getOption("repos"),
cmdargs = "--slave",
system_profile = TRUE,
user_profile = TRUE,
env = character(),
...

)

r_copycat 21

Arguments

func Function object to call in the new R process. The function should be self-
contained and only refer to other functions and use variables explicitly from
other packages using the :: notation. The environment of the function is set to
.GlobalEnv before passing it to the child process. Because of this, it is good
practice to create an anonymous function and pass that to callr, instead of
passing a function object from a (base or other) package. In particular

r(.libPaths)

does not work, because .libPaths is defined in a special environment, but

r(function() .libPaths())

works just fine.

args Arguments to pass to the function. Must be a list.

libpath The library path.

repos The repos option. If NULL, then no repos option is set. This options is only
used if user_profile or system_profile is set FALSE, as it is set using the
system or the user profile.

cmdargs Command line arguments to pass to the R process. Note that c("-f",rscript)
is appended to this, rscript is the name of the script file to run. This contains
a call to the supplied function and some error handling code.

system_profile Whether to use the system profile file.

user_profile Whether to use the user’s profile file. If this is "project", then only the pro-
file from the working directory is used, but the R_PROFILE_USER environment
variable and the user level profile are not. See also "Security considerations"
below.

env Environment variables to set for the child process.

... Additional arguments are passed to r().

Security considerations

callr makes a copy of the user’s .Renviron file and potentially of the local or user .Rprofile,
in the session temporary directory. Avoid storing sensitive information such as passwords, in your
environment file or your profile, otherwise this information will get scattered in various files, at least
temporarily, until the subprocess finishes. You can use the keyring package to avoid passwords in
plain files.

See Also

Other callr functions: r_vanilla(), r()

22 r_process

r_process External R Process

Description

An R process that runs in the background. This is an R6 class that extends the processx::process
class. The process starts in the background, evaluates an R function call, and then quits.

Super class

processx::process -> r_process

Methods

Public methods:
• r_process$new()

• r_process$get_result()

• r_process$finalize()

• r_process$clone()

Method new(): Start a new R process in the background.

Usage:
r_process$new(options)

Arguments:
options A list of options created via r_process_options().

Returns: A new r_process object.

Method get_result(): Return the result, an R object, from a finished background R process.
If the process has not finished yet, it throws an error. (You can use wait() method (see pro-
cessx::process) to wait for the process to finish, optionally with a timeout.) You can also use
processx::poll() to wait for the end of the process, together with other processes or events.

Usage:
r_process$get_result()

Returns: The return value of the R expression evaluated in the R process.

Method finalize(): Clean up temporary files once an R process has finished and its handle is
garbage collected.

Usage:
r_process$finalize()

Method clone(): The objects of this class are cloneable with this method.

Usage:
r_process$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

r_process_options 23

Examples

List all options and their default values:
r_process_options()

Start an R process in the background, wait for it, get result
opts <- r_process_options(func = function() 1 + 1)
rp <- r_process$new(opts)
rp$wait()
rp$get_result()

r_process_options Create options for an r_process object

Description

Create options for an r_process object

Usage

r_process_options(...)

Arguments

... Options to override, named arguments.

Value

A list of options.

r_process_options() creates a set of options to initialize a new object from the r_process class.
Its arguments must be named, the names are used as option names. The options correspond to
(some of) the arguments of the r() function. At least the func option must be specified, this is the
R function to run in the background.

Examples

List all options and their default values:
r_process_options()

24 r_session

r_session External R Session

Description

A permanent R session that runs in the background. This is an R6 class that extends the pro-
cessx::process class.

The process is started at the creation of the object, and then it can be used to evaluate R function
calls, one at a time.

Super class

processx::process -> r_session

Methods

Public methods:
• r_session$new()

• r_session$run()

• r_session$run_with_output()

• r_session$call()

• r_session$poll_process()

• r_session$get_state()

• r_session$get_running_time()

• r_session$read()

• r_session$close()

• r_session$traceback()

• r_session$debug()

• r_session$attach()

• r_session$finalize()

• r_session$print()

• r_session$clone()

Method new(): creates a new R background process. It can wait for the process to start up (wait
= TRUE), or return immediately, i.e. before the process is actually ready to run. In the latter case
you may call the poll_process() method to make sure it is ready.

Usage:
r_session$new(options = r_session_options(), wait = TRUE, wait_timeout = 3000)

Arguments:
options A list of options created via r_session_options().
wait Whether to wait for the R process to start and be ready for running commands.
wait_timeout Timeout for waiting for the R process to start, in milliseconds.

Returns: An r_session object.

r_session 25

Method run(): Similar to r(), but runs the function in a permanent background R session. It
throws an error if the function call generated an error in the child process.

Usage:
r_session$run(func, args = list())

Arguments:

func Function object to call in the background R process. Please read the notes for the similar
argument of r().

args Arguments to pass to the function. Must be a list.

Returns: The return value of the R expression.

Method run_with_output(): Similar to $run(), but returns the standard output and error of the
child process as well. It does not throw on errors, but returns a non-NULL error member in the
result list.

Usage:
r_session$run_with_output(func, args = list())

Arguments:

func Function object to call in the background R process. Please read the notes for the similar
argument of r().

args Arguments to pass to the function. Must be a list.

Returns: A list with the following entries.
• result: The value returned by func. On error this is NULL.
• stdout: The standard output of the process while evaluating
• stderr: The standard error of the process while evaluating the func call.
• error: On error it contains an error object, that contains the error thrown in the subprocess.

Otherwise it is NULL.
• code, message: These fields are used by call internally and you can ignore them.

Method call(): Starts running a function in the background R session, and returns immediately.
To check if the function is done, call the poll_process() method.

Usage:
r_session$call(func, args = list())

Arguments:

func Function object to call in the background R process. Please read the notes for the similar
argument of r().

args Arguments to pass to the function. Must be a list.

Method poll_process(): Poll the R session with a timeout. If the session has finished the
computation, it returns with "ready". If the timeout is reached, it returns with "timeout".

Usage:
r_session$poll_process(timeout)

Arguments:

timeout Timeout period in milliseconds.

26 r_session

Returns: Character string "ready" or "timeout".

Method get_state(): Return the state of the R session.

Usage:
r_session$get_state()

Returns: Possible values:
• "starting": starting up,
• "idle": ready to compute,
• "busy": computing right now,
• "finished": the R process has finished.

Method get_running_time(): Returns the elapsed time since the R process has started, and
the elapsed time since the current computation has started. The latter is NA if there is no active
computation.

Usage:
r_session$get_running_time()

Returns: Named vector of POSIXct objects. The names are "total" and "current".

Method read(): Reads an event from the child process, if there is one available. Events might
signal that the function call has finished, or they can be progress report events.
This is a low level function that you only need to use if you want to process events (messages)
from the R session manually.

Usage:
r_session$read()

Returns: NULL if no events are available. Otherwise a named list, which is also a callr_session_result
object. The list always has a code entry which is the type of the event. Event types:

• 200: The computation is done, and the event includes the result, in the same form as for the
run() method.

• 201: An R session that was in ’starting’ state is ready to go.
• 202: Used by the attach() method.
• 301: A message from the subprocess. The message is a condition object with class callr_message.

(It typically has other classes, e.g. cli_message for output from the cli package.
• 500: The R session finished cleanly. This means that the evaluated expression quit R.
• 501: The R session crashed or was killed.
• 502: The R session closed its end of the connection that callr uses for communication.

Method close(): Terminate the current computation and the R process. The session object will
be in "finished" state after this.

Usage:
r_session$close(grace = 1000)

Arguments:

grace Grace period in milliseconds, to wait for the subprocess to exit cleanly, after its standard
input is closed. If the process is still running after this period, it will be killed.

r_session 27

Method traceback(): The traceback() method can be used after an error in the R subprocess.
It is equivalent to the base::traceback() call, in the subprocess.

Usage:
r_session$traceback()

Returns: The same output as from base::traceback()

Method debug(): Interactive debugger to inspect the dumped frames in the subprocess, after an
error. See more at r_session_debug.

Usage:
r_session$debug()

Method attach(): Experimental function that provides a REPL (Read-Eval-Print-Loop) to the
subprocess.

Usage:
r_session$attach()

Method finalize(): Finalizer that is called when garbage collecting an r_session object, to
clean up temporary files.

Usage:
r_session$finalize()

Method print(): Print method for an r_session.

Usage:
r_session$print(...)

Arguments:
... Arguments are not used currently.

Method clone(): The objects of this class are cloneable with this method.

Usage:
r_session$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

rs <- r_ression$new()

rs$run(function() 1 + 2)

rs$call(function() Sys.sleep(1))
rs$get_state()

rs$poll_process(-1)
rs$get_state()
rs$read()

28 r_session_debug

r_session_debug Interactive debugging of persistent R sessions

Description

The r_session$debug() method is an interactive debugger to inspect the stack of the background
process after an error.

Details
$debug() starts a REPL (Read-Eval-Print-Loop), that evaluates R expressions in the subprocess. It
is similar to browser() and debugger() and also has some extra commands:

• .help prints a short help message.

• .where prints the complete stack trace of the error. (The same as the $traceback() method.
• .inspect <n> switches the "focus" to frame <n>. Frame 0 is the global environment, so .in-

spect 0 will switch back to that.

To exit the debugger, press the usual interrupt key, i.e. CTRL+c or ESC in some GUIs.

Here is an example session that uses $debug() (some output is omitted for brevity):

--
> rs <- r_session$new()
> rs$run(function() knitr::knit("no-such-file"))
Error in rs_run(self, private, func, args) :
callr subprocess failed: cannot open the connection

> rs$debug()
Debugging in process 87361, press CTRL+C (ESC) to quit. Commands:
.where -- print stack trace
.inspect <n> -- inspect a frame, 0 resets to .GlobalEnv
.help -- print this message
<cmd> -- run <cmd> in frame or .GlobalEnv

3: file(con, "r")
2: readLines(input2, encoding = "UTF-8", warn = FALSE)
1: knitr::knit("no-such-file") at #1

RS 87361 > .inspect 1

RS 87361 (frame 1) > ls()
[1] "encoding" "envir" "ext" "in.file" "input" "input.dir"
[7] "input2" "ocode" "oconc" "oenvir" "oopts" "optc"

[13] "optk" "otangle" "out.purl" "output" "quiet" "tangle"
[19] "text"

RS 87361 (frame 1) > input

r_session_options 29

[1] "no-such-file"

RS 87361 (frame 1) > file.exists(input)
[1] FALSE

RS 87361 (frame 1) > # <CTRL + C>
--

r_session_options Create options for an r_session object

Description

Create options for an r_session object

Usage

r_session_options(...)

Arguments

... Options to override, named arguments.

r_vanilla Run an R child process, with no configuration

Description

It tries to mimic a fresh R installation. In particular:

• No library path setting.
• No CRAN(-like) repository is set.
• The system and user profiles are not run.

Usage

r_vanilla(
func,
args = list(),
libpath = character(),
repos = c(CRAN = "@CRAN@"),
cmdargs = "--slave",
system_profile = FALSE,
user_profile = "project",
env = character(),
...

)

30 r_vanilla

Arguments

func Function object to call in the new R process. The function should be self-
contained and only refer to other functions and use variables explicitly from
other packages using the :: notation. The environment of the function is set to
.GlobalEnv before passing it to the child process. Because of this, it is good
practice to create an anonymous function and pass that to callr, instead of
passing a function object from a (base or other) package. In particular

r(.libPaths)

does not work, because .libPaths is defined in a special environment, but

r(function() .libPaths())

works just fine.

args Arguments to pass to the function. Must be a list.

libpath The library path.

repos The repos option. If NULL, then no repos option is set. This options is only
used if user_profile or system_profile is set FALSE, as it is set using the
system or the user profile.

cmdargs Command line arguments to pass to the R process. Note that c("-f",rscript)
is appended to this, rscript is the name of the script file to run. This contains
a call to the supplied function and some error handling code.

system_profile Whether to use the system profile file.

user_profile Whether to use the user’s profile file. If this is "project", then only the pro-
file from the working directory is used, but the R_PROFILE_USER environment
variable and the user level profile are not. See also "Security considerations"
below.

env Environment variables to set for the child process.

... Additional arguments are passed to r().

Security considerations

callr makes a copy of the user’s .Renviron file and potentially of the local or user .Rprofile,
in the session temporary directory. Avoid storing sensitive information such as passwords, in your
environment file or your profile, otherwise this information will get scattered in various files, at least
temporarily, until the subprocess finishes. You can use the keyring package to avoid passwords in
plain files.

See Also

Other callr functions: r_copycat(), r()

Examples

Compare to r()
r(function() .libPaths())

r_vanilla 31

r_vanilla(function() .libPaths())

r(function() getOption("repos"))
r_vanilla(function() getOption("repos"))

Index

base::difftime, 5, 9, 16
base::traceback(), 27
browser(), 28

callr, 2
callr-package (callr), 2

debugger(), 28
default_repos, 3

process, 11, 20
processx::poll(), 22
processx::process, 11, 12, 16, 19, 22, 24
processx::run(), 5, 9, 16

r, 3, 21, 30
r(), 20, 21, 23, 25, 30
r_bg, 18
r_copycat, 6, 20, 30
r_copycat(), 6
r_process, 22, 23
r_process_options, 23
r_process_options(), 22
r_safe (r), 3
r_session, 24, 29
r_session_debug, 27, 28
r_session_options, 29
r_session_options(), 24
r_vanilla, 6, 21, 29
rcmd, 7, 11, 12
rcmd(), 11–14
rcmd_bg, 9, 9, 12
rcmd_copycat, 9, 11, 11
rcmd_copycat(), 9
rcmd_process, 12, 13
rcmd_process_options, 13
rcmd_process_options(), 12
rcmd_safe (rcmd), 7
rcmd_safe(), 14
rcmd_safe_env, 14

rcmd_safe_env(), 3
rscript, 14
rscript(), 18
rscript_process, 16, 17
rscript_process_options, 17
rscript_process_options(), 17

utils::debugger(), 6
utils::dump.frames(), 6

32

	callr
	default_repos
	r
	rcmd
	rcmd_bg
	rcmd_copycat
	rcmd_process
	rcmd_process_options
	rcmd_safe_env
	rscript
	rscript_process
	rscript_process_options
	r_bg
	r_copycat
	r_process
	r_process_options
	r_session
	r_session_debug
	r_session_options
	r_vanilla
	Index

