Package ‘cOde’

April 18, 2019

Type Package

Title Automated C Code Generation for 'deSolve', 'bvpSolve'
Version 1.0.0

NeedsCompilation no

Depends R (>=3.0)

Suggests deSolve, bvpSolve, testthat

Date 2019-04-13

Author Daniel Kaschek

Maintainer Daniel Kaschek <daniel.kaschek@gmail.com>

Description Generates all necessary C functions allowing the user to work with
the compiled-code interface of ode() and bvptwp(). The implementation supports
““forcings" and ““events". Also provides functions to symbolically compute
Jacobians, sensitivity equations and adjoint sensitivities being the basis for
sensitivity analysis.

License GPL (>=2)

RoxygenNote 6.1.0

Repository CRAN

Date/Publication 2019-04-18 05:50:03 UTC

R topics documented:

adjointSymb 2
bvptwpC . . . e 4
compileAndLoad 6
forcData 6
funC . . . e 7
getSymbols e e e e e 9
jacobianSymb L 9
odeC . . . L e e 10
oxygenData e e e e e 12
prodSymb 13

2 adjointSymb

reduceSensitivities Lo 13
replaceNumbers L e 14
replaceOperation 14
replaceSymbols oL 15
sensitivitiesSymb Lo 15
setForcings e 19
sumSymb ... L e e 20
Index 21
adjointSymb Compute adjoint equations of a function symbolically
Description
Compute adjoint equations of a function symbolically
Usage
adjointSymb(f, states = names(f), parameters = NULL, inputs = NULL)
Arguments
f Named vector of type character, the functions
states Character vector of the ODE states for which observations are available
parameters Character vector of the parameters
inputs Character vector of the "variable" input states, i.e. time-dependent parameters
(in contrast to the forcings).
Details

The adjoint equations are computed with respect to the functional

T
(z,u) — /0 lz(t) = 2P @1 + [lu(t) — u® (#)|*dt,

where x are the states being constrained by the ODE, u are the inputs and xD and uD indicate the
trajectories to be best possibly approached. When the ODE is linear with respect to u, the attribute
inputs of the returned equations can be used to replace all occurences of u by the corresponding
character in the attribute. This guarantees that the input course is optimal with respect to the above
function.

Value

Named vector of type character with the adjoint equations. The vector has attributes "chi" (inte-
grand of the chisquare functional), "grad" (integrand of the gradient of the chisquare functional),
"forcings" (character vector of the forcings necessary for integration of the adjoint equations) and
"inputs" (the input expressed as a function of the adjoint variables).

adjointSymb

Examples

Not run:

HHHHEHHHAHHHAHHHHHHEHHHHAEHAEH AR
Solve an optimal control problem:

S HEHHRHRHEH R AR E AR R R R R

library(bvpSolve)

02 +0<->03
03 is removed by a variable rate u(t)

f <= c(
03 = " build_03 * 02 * O - decay_03 * 03 - u * 03",
02 = "-build_03 * 02 * O + decay_03 * 03",
0 = "-build_03 * 02 * O + decay_03 * 03"

)

Compute adjoints equations and replace u by optimal input
f_a <- adjointSymb(f, states = c("03"), inputs = "u")
inputs <- attr(f_a, "inputs")

f_tot <- replaceSymbols("u", inputs, c(f, f_a))

forcings <- attr(f_a, "forcings")

Initialize times, states, parameters

times <- seq(@, 15, by = .1)

boundary <- data.frame(
name = c("03", "02", "0", "adj03", "adjO02", "adjo"),
yini = ¢(@.5, 2, 2.5, NA, NA, NA),
yend = c(NA, NA, NA, 9, 9, 0))

pars <- c(build_03 = .2, decay_03 = .1, eps = 1)

Generate ODE function

func <- funC(f = f_tot, forcings = forcings,
jacobian = "full”, boundary = boundary,
modelname = "example5")

Initialize forcings (the objective)
forcData <- data.frame(time = times,
name = rep(forcings, each=length(times)),
value = rep(
c(0.5, 9, 1, 1), each=length(times)))
forc <- setForcings(func, forcData)

Solve BVP
out <- bvptwpC(x = times, func = func, parms = pars, forcings = forc)

Plot solution

par(mfcol=c(1,2))

t <- out[,1]

M1 <- out[,2:4]

M2 <- with(list(uD = @, 03 = out[,2],

adjo3 = out[,5], eps = 1, weightuD = 1),
eval (parse(text=inputs)))

matplot(t, M1, type="1", 1lty=1, col=1:3,

xlab="time", ylab="value”, main="states")
abline(h = .5, 1ty=2)
legend("topright”, legend = names(f), lty=1, col=1:3)
matplot(t, M2, type="1", 1lty=1, col=1,

xlab="time", ylab="value"”, main="input u")
abline(h = @, 1ty=2)

End(Not run)

bvptwpC

bvptwpC Interface to bvptwp()
Description
Interface to bvptwp()
Usage
bvptwpC(yini = NULL, x, func, yend = NULL, parms, xguess = NULL,
yguess = NULL, ...)
Arguments
yini named vector of type numeric. Initial values to be overwritten.
X vector of type numeric. Integration times
func return value from funC() with a boundary argument.
yend named vector of type numeric. End values to be overwritten.
parms named vector of type numeric. The dynamic parameters.
Xguess vector of type numeric, the x values
yguess matrix with as many rows as variables and columns as x values

further arguments going to bvptwp()

Details

See bvpSolve-package for a full description of possible arguments

Value

matrix with times and states

bvptwpC

Examples

Not run:

HHHHEHHHAHHHAHHHHHHEHHHHAEHAEH AR
Boundary value problem: Ozon formation with fixed ozon/oxygen ratio
at final time point

HHHHEHHHHHAHEEHHHHHEHHHHAEEAEHEHEHAHAHHRHEEHEHHH A

library(bvpSolve)
02 + 0 <->03
diff = 02 - 03
build_03 = const.
f <= c(
03 = " build_03 * 02 * O - decay_03 * 03",
02 = "-build_03 * 02 x 0 + decay_03 % 03",
0 = "-build_03 * 02 * O + decay_03 * 03",
diff = "-2 x build_03 * 02 * O + 2 * decay_03 * 03",
build_03 = "0@"

)

bound <- data.frame(
name = names(f),
yini = c(0, 3, 2, 3, NA),
yend = c(NA, NA, NA, @, NA)
)

Generate ODE function
func <- funC(f, jacobian="full”, boundary = bound, modelname = "example4")

Initialize times, states, parameters and forcings

times <- seq(@, 15, by = .1)

pars <- c(decay_03 = .1)

xguess <- times

yguess <- matrix(c(1, 1, 1, 1, 1), ncol=length(times),
nrow = length(f))

Solve BVP
out <- bvptwpC(x = times, func = func, parms = pars,
Xguess = Xguess, Yyguess = yguess)

Solve BVP for different ini values, end values and parameters

yini <- ¢(03 = 2)

yend <- c(diff = 0.2)

pars <- c(decay_03 = .01)

out <- bvptwpC(yini = yini, yend = yend, x = times, func = func,
parms = pars, Xguess = Xguess, Yguess = yguess)

Plot solution
par(mfcol=c(1,2))
t <- out[,1]

M1 <- out[,2:5]

6 forcData

M2 <- cbind(out[,6], pars)

matplot(t, M1, type="1", 1lty=1, col=1:4,

xlab="time", ylab="value”, main="states")
legend("topright”, legend = c("03", "02", "0", "02 - 03"),

1ty=1, col=1:4)
matplot(t, M2, type="1", 1lty=1, col=1:2,

xlab="time", ylab="value"”, main="parameters")
legend("right”, legend = c("build_03", "decay_03"), lty=1, col=1:2)

End(Not run)

compileAndLoad Compile and load shared object implementing the ODE system.

Description

Compile and load shared object implementing the ODE system.

Usage

compileAndLoad(filename, dllname, fcontrol, verbose)

Arguments
filename Full file name of the source file.
dllname Base name for source and dll file.
fcontrol Interpolation method for forcings.
verbose Print compiler output or not.
Author(s)

Daniel Kaschek, <daniel.kaschek@physik.uni-freiburg.de>
Wolfgang Mader, <Wolfgang.Mader@fdm.uni-freiburg.de>

forcData Forcings data.frame

Description

Forcings data.frame

funC 7

funC Generate C code for a function and compile it

Description

Generate C code for a function and compile it

Usage
funC(f, forcings = NULL, events = NULL, fixed = NULL,
outputs = NULL, jacobian = c("none”, "full"”, "inz.lsodes",
"jacvec.lsodes"”), rootfunc = NULL, boundary = NULL, compile = TRUE,
fcontrol = c("nospline”, "einspline"”), nGridpoints = -1,

includeTimeZero = TRUE, precision = 1e-05, modelname = NULL,
verbose = FALSE, solver = c("deSolve”, "Sundials"))

Arguments

f Named character vector containing the right-hand sides of the ODE. You may
use the key word time in your equations for non-autonomous ODE:s.

forcings Character vector with the names of the forcings

events data.frame of events with columns "var" (character, the name of the state to be
affected), "time" (numeric or character, time point), "value" (numeric or charac-
ter, value), "method" (character, either "replace” or "add"). See events. If "var"
and "time" are characters, their values need to be speciefied in the parameter
vector when calling odeC. An event function is generated and compiled with the
ODE.

fixed character vector with the names of parameters (initial values and dynamic) for
which no sensitivities are required (will speed up the integration).

outputs Named character vector for additional output variables, see arguments nout and
outnames of Isode

jacobian Character, either "none" (no jacobian is computed), "full" (full jacobian is com-
puted and written as a function into the C file) or "inz.Isodes" (only the non-zero
elements of the jacobian are determined, see Isodes)

rootfunc Named character vector. The root function (see Isoda). Besides the variable
names (names(f)) also other symbols are allowed that are treated like new pa-
rameters.

boundary data.frame with columns name, yini, yend specifying the boundary condition
set-up. NULL if not a boundary value problem

compile Logical. If FALSE, only the C file is written

fcontrol Character, either "nospline” (default, forcings are handled by deSolve) or

"einspline” (forcings are handled as splines within the C code based on the
einspline library).

8 funC

nGridpoints Integer, defining for which time points the ODE is evaluated or the solution is
returned: Set -1 to return only the explicitly requested time points (default). If
additional time points are introduced through events, they will not be returned.
Set >= 0 to introduce additional time points between tmin and tmax where the
ODE is evaluated in any case. Additional time points that might be introduced
by events will be returned. If splines are used with fcontrol = "einspline”,
nGridpoinnts also indicates the number of spline nodes.

includeTimeZero
Logical. Include t = O in the integration time points if TRUE (default). Conse-
quently, integration starts at t = 0 if only positive time points are provided by the
user and at tmin, if also negtive time points are provided.

precision Numeric. Only used when fcontrol = "einspline”.

modelname Character. The C file is generated in the working directory and is named <mod-
elname>.c. If NULL, a random name starting with ".f" is chosen, i.e. the file is
hidden on a UNIX system.

verbose Print compiler output to R command line.

solver Select the solver suite as either deSolve or Sundials (not available any more).

Defaults to deSolve.

Details

The function replaces variables by arrays y[i], etc. and replaces "" by pow() in order to have the
correct C syntax. The file name of the C-File is derived from f. L.e. funC(abc, ... will generate
a file abc.c in the current directory. Currently, only explicit ODE specification is supported, i.e. you
need to have the right-hand sides of the ODE.

Value

the name of the generated shared object file together with a number of attributes

Examples
Not run:
Exponential decay plus constant supply
f <- c(x = "-kxx + supply"”)

func <- funC(f, forcings = "supply")

Example 2: root function

f <= c(A = "-k1*A + k2#%B", B = "k1xA - k2*B")

rootfunc <- c(steadyState = "-k1*A + k2*B - tol")

func <- funC(f, rootfunc = rootfunc, modelname = "test")
yini <- c(A =1, B =2)

parms <- c(kl =1, k2 =5, tol = 0.1)

times <- seq(@, 10, len = 100)

odeC(yini, times, func, parms)

End(Not run)

getSymbols 9

getSymbols Get symbols from a character

Description

Get symbols from a character

Usage

getSymbols(char, exclude = NULL)

Arguments

char Character vector (e.g. equation)

exclude Character vector, the symbols to be excluded from the return value
Value

character vector with the symbols

Examples

getSymbols(c("A*xAB+B*2"))

jacobianSymb Compute Jacobian of a function symbolically

Description

Compute Jacobian of a function symbolically

Usage

jacobianSymb(f, variables = NULL)

Arguments
f named vector of type character, the functions
variables other variables, e.g. paramters, f depends on. If variables is given, f is derived
with respect to variables instead of names (f)
Value

named vector of type character with the symbolic derivatives

10 odeC

Examples

jacobianSymb(c(A="A*B", B="A+B"))
jacobianSymb(c(x="AxB", y="A+B"), c("A", "B"))

odeC Interface to ode()

Description

Interface to ode()

Usage
odeC(y, times, func, parms, ...)
Arguments
y named vector of type numeric. Initial values for the integration
times vector of type numeric. Integration times. If includeTimeZero is TRUE (see
funC), the times vector is augmented by t = 0. If nGridpoints (see funC) was
set >= 0, uniformly distributed time points between the first and last time point
are introduced and the solution is returned for these time points, too. Any addi-
tional time points that are introduced during integration (e.g. event time points)
are returned unless nGridpoints = -1 (the default).
func return value from funC()
parms named vector of type numeric.
further arguments going to ode ()
Details

See deSolve-package for a full description of possible arguments

Value

matrix with times and states

Examples

Not run:

HHHHHHHEHEE AR AR R
Ozone formation and decay, modified by external forcings
B s S S S S i

library(deSolve)
data(forcData)
forcData$value <- forcData$value + 1

odeC 11

02 + 0<->03

f <= c(
03 = " (build_03 + u_build) * 02 * O - (decay_03 + u_degrade) * 03",
02 = "-(build_03 + u_build) * 02 * O + (decay_03 + u_degrade) * 03",
0 = "-(build_03 + u_build) * 02 * 0 + (decay_03 + u_degrade) x 03"
)
Generate ODE function
forcings <- c("u_build"”, "u_degrade")
func <- funC(f, forcings = forcings, modelname = "test”,
fcontrol = "nospline”, nGridpoints = 10)

Initialize times, states, parameters and forcings
times <- seq(@, 8, by = .1)

yini <- ¢(03 =0, 02 =3, 0 = 2)

pars <- c(build_03 = 1/6, decay_03 = 1)

forc <- setForcings(func, forcData)

Solve ODE
out <- odeC(y = yini, times = times, func = func, parms = pars,
forcings = forc)

Plot solution

par(mfcol=c(1,2))

t1 <- unique(forcDatal,2])

M1 <- matrix(forcDatal,3], ncol=2)
t2 <- out[,1]

M2 <- out[,2:4]

M3 <- out[,5:6]

matplot(tl, M1, type="1", lty=1, col=1:2, xlab="time", ylab="value",
main="forcings"”, ylim=c(0, 4))

matplot(t2, M3, type="1", lty=2, col=1:2, xlab="time", ylab="value",
main="forcings"”, add=TRUE)

legend("topleft”, legend = c("u_build”, "u_degrade"”), 1lty=1, col=1:2)
matplot(t2, M2, type="1", lty=1, col=1:3, xlab="time", ylab="value",
main="response")

legend("topright”, legend = c("03", "02", "0"), lty=1, col=1:3)

B s S S
Ozone formation and decay, modified by events
HHHEHHHBHBEEE AR AR AR

f <= c(
03 = " (build_03 + u_build) * 02 * O -
(decay_03 + u_degrade) * 03",

oxygenData

02 = "-(build_03 + u_build) * 02 * O +
(decay_03 + u_degrade) * 03",

0 = "-(build_03 + u_build) * 02 x O +
(decay_03 + u_degrade) * 03",

u_build = "@", # piecewise constant

u_degrade = "@" # piecewise constant

)

Define parametric events
events.pars <- data.frame(

var = c("u_degrade”, "u_degrade”, "u_build"),
time = c("t_on", "t_off", "2"),
value = c("plus”, "minus”, "2"),
method = "replace”
)
Declar parameteric events when generating funC object
func <- funC(f, forcings = NULL, events = events.pars, modelname = "test"”,
fcontrol = "nospline”, nGridpoints = -1)

Set Parameters

yini <- ¢(03 =0, 02 = 3, 0 = 2, u_build = 1, u_degrade = 1)

times <- seq(@, 8, by = .1)

pars <- c(build_03 = 1/6, decay_03 =1, t_on = exp(rnorm(1, @)), t_off =6, plus = 3, minus = 1)

Solve ODE with additional fixed-value events
out <- odeC(y = yini, times = times, func = func, parms = pars)

Plot solution

par(mfcol=c(1,2))
t2 <- out[,1]

M2 <- out[,2:4]
M3 <- out[,5:6]

matplot(t2, M3, type="1", lty=2, col=1:2, xlab="time", ylab="value"”,
main="events")

legend("topleft”, legend = c("u_build"”, "u_degrade"”), 1lty=1, col=1:2)

matplot(t2, M2, type="1", lty=1, col=1:3, xlab="time", ylab="value"”,
main="response")

legend("topright”, legend = c("03", "02", "0"), lty=1, col=1:3)

End(Not run)

oxygenData Time-course data of O, O2 and O3

prodSymb 13

Description

Forcings data.frame

prodSymb Compute matrix product symbolically

Description

Compute matrix product symbolically

Usage
prodSymb (M, N)

Arguments
M matrix of type character
N matrix of type character
Value

Matrix of type character, the matrix product of M and N

reduceSensitivities reduceSensitivities

Description

reduceSensitivities

Usage

reduceSensitivities(sens, vanishing)

Arguments
sens Named character, the sensitivity equations
vanishing Character, names of the vanishing sensitivities
Details

Given the set vanishing of vanishing sensitivities, the algorithm determins sensitivities that vanish
as a consequence of the first set.

Value

Named character, the sensitivity equations with zero entries for vanishing sensitivities.

14 replaceOperation

replaceNumbers Replace integer number in a character vector by other double

Description

Replace integer number in a character vector by other double

Usage

replaceNumbers(x)
Arguments

X vector of type character, the object where the replacement should take place
Value

vector of type character, conserves the names of x.

replaceOperation Replace a binary operator in a string by a function

Description

Replace a binary operator in a string by a function

Usage

replaceOperation(what, by, x)

Arguments

what character, the operator symbol, e.g. """

by character, the function string, e.g. "pow"

X vector of type character, the object where the replacement should take place
Value

vector of type character

Examples

replaceOperation(”"*", "pow", "(x*2 + y*2)*.5")

replaceSymbols 15

replaceSymbols Replace symbols in a character vector by other symbols

Description

Replace symbols in a character vector by other symbols

Usage

replaceSymbols(what, by, x)

Arguments

what vector of type character, the symbols to be replaced, e.g. c("A", "B")

by vector of type character, the replacement, e.g. c("x[0]", "x[1]")

X vector of type character, the object where the replacement should take place
Value

vector of type character, conserves the names of x.

Examples

replaceSymbols(c("A", "B"), c("x[01", "x[11"), c("AxB", "A+B+C"))

sensitivitiesSymb Compute sensitivity equations of a function symbolically

Description

Compute sensitivity equations of a function symbolically

Usage

sensitivitiesSymb(f, states = names(f), parameters = NULL,
inputs = NULL, events = NULL, reduce = FALSE)

16

Arguments

.F

states

parameters

inputs

events

reduce

Details

sensitivitiesSymb

named vector of type character, the functions

Character vector. Sensitivities are computed with respect to initial values of
these states

Character vector. Sensitivities are computed with respect to initial values of
these parameters

Character vector. Input functions or forcings. They are excluded from the com-
putation of sensitivities.

data.frame of events with columns "var" (character, the name of the state to be
affected), "time" (numeric or character, time point), "value" (numeric or charac-
ter, value), "method" (character, either "replace" or "add"). See events. Within
sensitivitiesSymb() a data.frame of additional events is generated to reset
the sensitivities appropriately, depending on the event method.

Logical. Attempts to determine vanishing sensitivities, removes their equations
and replaces their right-hand side occurences by 0.

The sensitivity equations are ODEs that are derived from the original ODE f. They describe the
sensitivity of the solution curve with respect to parameters like initial values and other parameters
contained in f. These equtions are also useful for parameter estimation by the maximum-likelihood
method. For consistency with the time-continuous setting provided by adjointSymb, the returned
equations contain attributes for the chisquare functional and its gradient.

Value

Named vector of type character with the sensitivity equations. Furthermore, attributes "chi" (the
integrand of the chisquare functional), "grad" (the integrand of the gradient of the chisquare func-
tional), "forcings" (Character vector of the additional forcings being necessare to compute chi and
grad) and "yini" (The initial values of the sensitivity equations) are returned.

Examples

Not run:

A AR HHEHE AR AR A
Sensitivity analysis of ozone formation
B
library(deSolve)

02 + 0 <->03

f <= c(
03 = " build_03 * 02 * O - decay_03 * 03",
02 = "-build_03 * 02 * O + decay_03 * 03",
0 = "-build_03 * 02 * O + decay_03 * 03"

sensitivitiesSymb

Compute sensitivity equations
f_s <- sensitivitiesSymb(f)

Generate ODE function
func <- funC(c(f, f_s))

Initialize times, states, parameters and forcings
times <- seq(@, 15, by = .1)

yini <- ¢(03 =0, 02 = 3, 0 = 2, attr(f_s, "yini"))
pars <- c(build_03 = .1, decay_03 = .01)

Solve ODE
out <- odeC(y = yini, times = times, func = func, parms = pars)

Plot solution
par(mfcol=c(2,3))
t <- out[,1]

M1 <- out[,2:4]
M2 <- out[,5:7]
M3 <- out[,8:10]
M4 <- out[,11:13]
M5 <- out[,14:16]
M6 <- out[,17:19]

matplot(t, M1, type="1", 1lty=1, col=1:3,

xlab="time", ylab="value"”, main="solution”)
legend("topright”, legend = c("03", "02", "0"), lty=1, col=1:3)
matplot(t, M2, type="1", 1lty=1, col=1:3,

xlab="time", ylab="value"”, main="d/(d 03)")
matplot(t, M3, type="1", 1lty=1, col=1:3,

xlab="time", ylab="value", main="d/(d 02)")
matplot(t, M4, type="1", 1ty=1, col=1:3,

xlab="time", ylab="value”, main="d/(d 0)")
matplot(t, M5, type="1", 1lty=1, col=1:3,

xlab="time", ylab="value"”, main="d/(d build_03)")
matplot(t, M6, type="1", 1lty=1, col=1:3,

xlab="time", ylab="value", main="d/(d decay_03)")

End(Not run)
Not run:

B s S S S
Estimate parameter values from experimental data
HHHEHEHBHBEHEH AR AR R

library(deSolve)

02 + 0 <-> 03
diff = 02 - 03
build_03 = const.
f <= c(
03 = " build_03 * 02 * O - decay_03 % 03",

17

18

sensitivitiesSymb

02 = "-build_03 * 02 * O + decay_03 * 03",
= "-build_03 * 02 * O + decay_03 * 03"

o
!

)

Compute sensitivity equations and get attributes
f_s <- sensitivitiesSymb(f)

chi <- attr(f_s, "chi")

grad <- attr(f_s, "grad")

forcings <- attr(f_s, "forcings")

Generate ODE function
func <- funC(f = c(f, f_s, chi, grad), forcings = forcings,
fcontrol = "nospline”, modelname = "example3")

Initialize times, states, parameters

times <- seq(@, 15, by = .1)

yini <- ¢c(03 =0, 02 =2, 0 = 2.5)

yini_s <- attr(f_s, "yini")

yini_chi <- c(chi = @)

yini_grad <- rep(@, length(grad)); names(yini_grad) <- names(grad)
pars <- c(build_03 = .2, decay_03 = .1)

Initialize forcings (the data)
data(oxygenData)
forcData <- data.frame(time = oxygenDatal,1],
name = rep(
colnames(oxygenDatal,-11),
each=dim(oxygenData)[1]),
value = as.vector(oxygenDatal,-1]))
forc <- setForcings(func, forcData)

Solve ODE

out <- odeC(y = c(yini, yini_s, yini_chi, yini_grad),
times = times, func = func, parms = pars, forcings = forc,
method = "lsodes")

Plot solution
par(mfcol=c(1,2))

t <- out[,1]

M1 <- out[,2:4]

M2 <- out[,names(grad)]
tD <- oxygenData[,1]
M1D <- oxygenDatal,2:4]

matplot(t, M1, type="1", 1lty=1, col=1:3,

xlab="time", ylab="value”, main="states")
matplot(tD, MID, type="b", 1lty=2, col=1:3, pch=4, add=TRUE)
legend("topright”, legend = names(f), lty=1, col=1:3)
matplot(t, M2, type="1", 1lty=1, col=1:5,

xlab="time", ylab="value”, main="gradient"”)
legend("topleft”, legend = names(grad), lty=1, col=1:5)

Define objective function

setForcings 19

obj <- function(p) {
out <- odeC(y = c(p[names(f)], yini_s, yini_chi, yini_grad),
times = times, func = func, parms = p[names(pars)],
forcings = forc, method="lsodes")

value <- as.vector(tail(out, 1)[,"chi"])
gradient <- as.vector(

tail(out, 1)[,paste(”"chi”, names(p), sep=".")1)
hessian <- gradient%*%t(gradient)

return(list(value = value, gradient = gradient, hessian = hessian))

}

Fit the data
myfit <- optim(par = c(yini, pars),
fn = function(p) obj(p)$value,
gr = function(p) obj(p)$gradient,
method = "L-BFGS-B”,
lower=0,
upper=5)

Model prediction for fit parameters
prediction <- odeC(y = c(myfit$par[1:3], yini_s, yini_chi, yini_grad),
times = times, func = func, parms = myfit$par[4:5],

forcings = forc, method = "lsodes")

Plot solution
par(mfcol=c(1,2))

t <- prediction[,1]

M1 <- prediction[,2:4]

M2 <- prediction[,names(grad)]
tD <- oxygenDatal,1]

M1D <- oxygenDatal,2:4]

matplot(t, M1, type="1", 1lty=1, col=1:3,

xlab="time", ylab="value”, main="states")
matplot(tD, M1D, type="b", 1lty=2, col=1:3, pch=4, add=TRUE)
legend("topright”, legend = names(f), 1lty=1, col=1:3)
matplot(t, M2, type="1", 1lty=1, col=1:5,

xlab="time", ylab="value", main="gradient")
legend("topleft”, legend = names(grad), lty=1, col=1:5)

End(Not run)

setForcings Generate interpolation spline for the forcings and write into list of
matrices

20 sumSymb

Description

Generate interpolation spline for the forcings and write into list of matrices

Usage

setForcings(func, forcings)

Arguments

func result from funC()

forcings data.frame with columns name (factor), time (numeric) and value (numeric)
Details

Splines are generated for each name in forcings and both, function value and first derivative are
evaluated at the time points of the data frame.

Value

list of matrices with time points and values assigned to the forcings interface of deSolve

Examples

f <-c(x="-kxx +a-b")
func <- funC(f, forcings = c("a", "b"))
forcData <- rbind(
data.frame(name = "a", time = c(@, 1, 10), value = c(@, 5, 2)),
data.frame(name = "b", time = c(@, 5, 10), value = c(1, 3, 6)))
forc <- setForcings(func, forcData)

sumSymb Compute matrix sumSymbolically

Description

Compute matrix sumSymbolically

Usage
sumSymb (M, N)

Arguments
M matrix of type character
N matrix of type character
Value

Matrix of type character, the matrix sum of M and N

Index

adjointSymb, 2, 16
bvptwpC, 4
compileAndLoad, 6
events, 7, 16

forcData, 6
funC, 7, 10

getSymbols, 9
jacobianSymb, 9

lsoda, 7
lsode, 7
lsodes, 7

odeC, 7, 10
oxygenData, 12

prodSymb, 13

reduceSensitivities, 13
replaceNumbers, 14
replaceOperation, 14
replaceSymbols, 15

sensitivitiesSymb, 15

setForcings, 19
sumSymb, 20

21

	adjointSymb
	bvptwpC
	compileAndLoad
	forcData
	funC
	getSymbols
	jacobianSymb
	odeC
	oxygenData
	prodSymb
	reduceSensitivities
	replaceNumbers
	replaceOperation
	replaceSymbols
	sensitivitiesSymb
	setForcings
	sumSymb
	Index

