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btergm-package Temporal Exponential Random Graph Models by Bootstrapped Pseu-
dolikelihood
Description

Temporal Exponential Random Graph Models (TERGM) estimated by maximum pseudolikelihood
with bootstrapped confidence intervals or Markov Chain Monte Carlo maximum likelihood. Good-
ness of fit assessment for ERGMs, TERGMs, and SAOMs. Micro-level interpretation of ERGMs
and TERGMs.

Details

The btergm package implements TERGMs with MPLE and bootstrapped confidence intervals
(btergm function) or MCMC MLE (mtergm function). Goodness of fit assessment for ERGMs,
TERGMs, SAOMs, and dyadic independence models is possible with the generic gof function and
its various methods. New networks can be simulated from TERGMs using the simulate.btergm
function. The package also implements micro-level interpretation for ERGMs and TERGMs us-
ing the interpret function. Furthermore, the package contains the chemnet and knecht datasets for
estimating (T)ERGMs. To display citation information, type citation("btergm”).

Author(s)

Philip Leifeld (http://www.philipleifeld.de)
Skyler J. Cranmer (http://www.skylercranmer.net)

Bruce A. Desmarais (http://brucedesmarais.com/)

References

Leifeld, Philip, Skyler J. Cranmer and Bruce A. Desmarais (2017): Temporal Exponential Random
Graph Models with btergm: Estimation and Bootstrap Confidence Intervals. Journal of Statistical
Software 83(6): 1-36. http://dx.doi.org/10.18637/jss.v083.106.


http://www.philipleifeld.de
http://www.skylercranmer.net
http://brucedesmarais.com/
http://dx.doi.org/10.18637/jss.v083.i06
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See Also
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btergm

TERGM by bootstrapped pseudolikelihood or MCMC MLE

Description

TERGM by bootstrapped pseudolikelihood or MCMC MLE.

Usage

btergm(formula, R = 500, offset = FALSE, returndata = FALSE,
parallel = c("no", "multicore”, "snow"), ncpus = 1,
cl = NULL, control.ergm = NULL, usefastglm = FALSE, verbose = TRUE,

L)
mtergm(formula, constraints = ~ ., returndata = FALSE,
verbose = TRUE, ...)

Arguments

formula

offset

Formula for the TERGM. Model construction works like in the ergm package
with the same model terms etc. (for a list of terms, see help("ergm-terms")).
The networks to be modeled on the left-hand side of the equation must be given
either as a list of network objects with more recent networks last (i.e., chronolog-
ical order) or as a list of matrices with more recent matrices at the end. dyadcov
and edgecov terms accept time-independent covariates (as network or matrix
objects) or time-varying covariates (as a list of networks or matrices with the
same length as the list of networks to be modeled).

Number of bootstrap replications. The higher the number of replications, the
more accurate but also the slower is the estimation.

If of fset = TRUE is set, a list of offset matrices (one for each time step) with
structural zeros is handed over to the pseudolikelihood preparation routine. The
offset matrices contain structural zeros where either the dependent networks or
any of the covariates have missing nodes (if auto.adjust = TRUE is used). All
matrices and network objects are inflated to the dimensions of the largest object,
and the offset matrices inform the estimation preparation routine which dyads
are constrained to be absent. After MPLE data preparation, the dyads with these
structural zeros are removed before the GLM is estimated. If offset = FALSE
is set (the default behavior) and auto.adjust is switched on, all nodes that are
not present across all covariates and networks within a time step are removed
completely from the respective object(s) before estimation begins.
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returndata Return the processed input data instead of estimating and returning the model?
In the btergm case, this will return a data frame with the dyads of the depen-
dent variable/network and the change statistics for all covariates. In the mtergm
case, this will return a list object with the blockdiagonal network object for the
dependent variable and blockdiagonal matrices for all dyadic covariates and the
offset matrix for the structural zeroes.

parallel Use multiple cores in a computer or nodes in a cluster to speed up bootstrapping
computations. The default value "no"” means parallel computing is switched
off. If "multicore” is used, the mclapply function from the parallel package
(formerly in the multicore package) is used for parallelization. This should run
on any kind of system except MS Windows because it is based on forking. It
is usually the fastest type of parallelization. If "snow" is used, the parLapply
function from the parallel package (formerly in the snow package) is used for
parallelization. This should run on any kind of system including cluster systems
and including MS Windows. It is slightly slower than the former alternative
if the same number of cores is used. However, "snow" provides support for
MPI clusters with a large amount of cores, which multicore does not offer (see
also the c1 argument). The backend for the bootstrapping procedure is the boot
package.

ncpus The number of CPU cores used for parallel computing (only if parallel is acti-
vated). If the number of cores should be detected automatically on the machine
where the code is executed, one can set ncpus = detectCores() after loading
the parallel package. On some HPC clusters, the number of available cores is
saved as an environment variable; for example, if MOAB is used, the number of
available cores can sometimes be accessed using Sys. getenv (”"MOAB_PROCCOUNT"),
depending on the implementation.

cl An optional parallel or snow cluster for use if parallel = "snow". If not sup-
plied, a PSOCK cluster is created temporarily on the local machine.

constraints Constraints of the ERGM. See ergm for details.
control.ergm  ergm controls for ergmMPLE calls. See control.ergm for details.

usefastglm Controls whether to use the fastglm estimation routine from the fastglm pack-
age with method = 3. Defaults to FALSE (and then uses speedglm.wfit instead).

verbose Print details about data preprocessing and estimation settings.

Further arguments to be handed over to subroutines. For example, one can spec-
ify arguments for the ergm function (in the case of an mtergm call) or the boot
function (in the case of a btergm call).

Details

The btergm function computes temporal exponential random graph models (TERGM) by boot-
strapped pseudolikelihood, as described in Desmarais and Cranmer (2012).

The mtergm function computes TERGMs by MCMC MLE (or MPLE with uncorrected standard
errors) via blockdiagonal matrices and structural zeros. The btergm function is faster than the
mtergm function.



btergm 5
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See Also
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Examples
# A simple toy example:

library("network™)
set.seed(5)

networks <- list()

for(i in 1:10) { # create 10 random networks with 10 actors
mat <- matrix(rbinom(10@, 1, .25), nrow = 10, ncol = 10)
diag(mat) <- @ # loops are excluded
nw <- network(mat) # create network object
networks[[i]] <- nw # add network to the list
3

covariates <- list()

for (i in 1:10) { # create 10 matrices as covariate
mat <- matrix(rnorm(100), nrow = 10, ncol = 10)
covariates[[i]] <- mat # add matrix to the list

}

fit <- btergm(networks ~ edges + istar(2) +
edgecov(covariates), R = 100)

summary (fit) # show estimation results

## Not run:
# The same example using MCMC MLE:

fit2 <- mtergm(networks ~ edges + istar(2) +
edgecov(covariates))


http://dx.doi.org/10.1016/j.socnet.2013.01.001
http://dx.doi.org/10.1016/j.socnet.2013.01.001
http://dx.doi.org/10.1016/j.physa.2011.10.018
http://dx.doi.org/10.1016/j.physa.2011.10.018
http://dx.doi.org/10.18637/jss.v083.i06
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summary (fit2)
## End(Not run)

# For examples with real data, see help("knecht”) or help("alliances"”).

ES

Examples for parallel processing:

Some preliminaries:

- "Forking" means running the code on multiple cores in the same
computer. It's fast but consumes a lot of memory because all
objects are copied for each node. It's also restricted to
cores within a physical computer, i.e. no distribution over a
network or cluster. Forking does not work on Windows systems.

- "MPI" is a protocol for distributing computations over many
cores, often across multiple physical computers/nodes. MPI
is fast and can distribute the work across hundreds of nodes
(but remember that R can handle a maximum of 128 connections,
which includes file access and parallel connections). However,
it requires that the Rmpi package is installed and that an MPI
server is running (e.g., OpenMPI).

- "PSOCK" is a TCP-based protocol. It can also distribute the
work to many cores across nodes (like MPI). The advantage of
PSOCK is that it can as well make use of multiple nodes within
the same node or desktop computer (as with forking) but without
consuming too much additional memory. However, the drawback is
that it is not as fast as MPI or forking.

The following code provides examples for these three scenarios.

T I I Y E E E E E E

# btergm works with clusters via the parallel package. That is, the
# user can create a cluster object (of type "PSOCK", "MPI", or

# "FORK") and supply it to the 'cl' argument of the 'btergm'

# function. If no cluster object is provided, btergm will try to

# create a temporary PSOCK cluster (if parallel = "snow"”) or it

# will use forking (if parallel = "multicore”).

## Not run:

# To use a PSOCK cluster without providing an explicit cluster

# object:

require("”parallel”)

fit <- btergm(networks ~ edges + istar(2) + edgecov(covariates),
R = 100, parallel = "snow"”, ncpus = 25)

# Equivalently, a PSOCK cluster can be provided as follows:

require("parallel”)

cores <- 25

cl <- makeCluster(cores, type = "PSOCK")

fit <- btergm(networks ~ edges + istar(2) + edgecov(covariates),
R = 100, parallel = "snow"”, ncpus = cores, cl = cl)

stopCluster(cl)
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# Forking (without supplying a cluster object) can be used as

# follows.

require("parallel”)

cores <- 25

fit <- btergm(networks ~ edges + istar(2) + edgecov(covariates),
R = 100, parallel = "multicore”, ncpus = cores)

stopCluster(cl)

# Forking (by providing a cluster object) works as follows:

require("parallel™)

cores <- 25

cl <- makeCluster(cores, type = "FORK")

fit <- btergm(networks ~ edges + istar(2) + edgecov(covariates),
R = 100, parallel = "snow"”, ncpus = cores, cl = cl)

stopCluster(cl)

# To use MPI, a cluster object MUST be created beforehand. In
# this example, a MOAB HPC server is used. It stores the number of
# available cores as a system option:
require("parallel”)
cores <- as.numeric(Sys.getenv("MOAB_PROCCOUNT"))
cl <- makeCluster(cores, type = "MPI")
fit <- btergm(networks ~ edges + istar(2) + edgecov(covariates),
R = 100, parallel = "snow"”, ncpus = cores, cl = cl)
stopCluster(cl)

In the following example, the Rmpi package is used to create a
cluster. This may not work on all systems; consult your local
support staff or the help files on your HPC server to find out how
to create a cluster object on your system.

* % R

# snow/Rmpi start-up

if (!is.loaded("mpi_initialize")) {
library("Rmpi™)

3

library(snow);

mpirank <- mpi.comm.rank (@)
if (mpirank == 0) {
invisible(makeMPIcluster())

} else {
sink (file="/dev/null")
invisible(slavelLoop (makeMPImaster()))
mpi.finalize()
a0

3

# End snow/Rmpi start-up

cl <- getMPIcluster()

fit <- btergm(networks ~ edges + istar(2) + edgecov(covariates),
R = 100, parallel = "snow”, ncpus = 25, cl = cl)



## End(Not run)

btergm-class

btergm-class

Classes "btergm” and "mtergm”

Description

btergm objects result from the estimation of a bootstrapped TERGM via the btergm function in
the xergm package. btergm objects contain the coefficients, the bootstrapping samples of the co-
efficients, the number of replications, the number of observations, the number of time steps, the
original formula, and the response, effects and weights objects that were fed into the glm call for
estimating the model. mtergm objects result from MCMC-MLE-based estimation of a TERGM
via the mtergm function. They contain the coefficients, standard errors, and p-values, among other
details.

Usage

## S4 method for signature 'btergm'

summary(object, level = 0.95, type = "perc”,

invlogit = FALSE,

.2

## S4 method for
summary (object,

## S4 method for
show(object)

## S4 method for
show(object)

## S4 method for
nobs(object)

## S4 method for
nobs(object)

signature

D)

signature

signature

signature

signature

'mtergm'

'btergm'

'mtergm’

'btergm'

'mtergm’

## S4 method for signature 'btergm'

coef(object, invlogit = FALSE,

## S4 method for signature 'mtergm'

coef(object, invlogit = FALSE,

## S4 method for signature 'btergm'

confint(object, parm, level = 0.95, type

invlogit = FALSE, ...)

.2

.2
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btergm.se(object, print = FALSE)
timesteps.btergm(object)

timesteps.mtergm(object)

Arguments
object A btergm object.
level The significance level for computation of the confidence intervals. The default
is @.95 (that is, an alpha value of 0.05). Other common values include @.999,
0.99,0.9,and 0.5.
parm Parameters (specified by integer position or character string).
type Type of confidence interval, e.g., basic bootstrap interval (type = "basic"),
percentile-based interval (type = "perc”, which is the default option), or bias-
adjusted and accelerated confidence interval (type = "bca"). All options from
the type argument of the boot.ci function in the boot package can be used to
generate confidence intervals.
invlogit Apply inverse logit transformation to the estimates and/or confidence intervals?
Thatis, 1/ (1 +exp(-x)), where x is the respective value.
print Should the formatted coefficient table be printed to the R console along with sig-
nificance stars (print = TRUE), or should the plain coefficient matrix be returned
(print = FALSE)?
Further arguments to be handed over to subroutines.
Details

Various generic methods are available for btergm objects: The coef and show methods return the
coefficients; the summary method gives a model summary. The nobs method returns the number
of observations. The confint method returns confidence intervals from the bootstrap replications of
btergm objects, and the user can specify the confidence level. The method returns a matrix with
three columns: the estimate, the lower bound, and the upper bound of the confidence interval for
each model term.

The btergm.se function computes standard errors and p values for btergm objects. It returns a
matrix with four columns: the estimate, the standard error, the z value, and the p value for each
model term. If the argument print = TRUE is used, the matrix is printed to the R console as a
formatted coefficient matrix with significance stars instead. Note that confidence intervals are the
preferred way of interpretation for bootstrapped TERGMs; standard errors are only accurate if the
bootstrapped data are normally distributed, which is not always the case. Various methods for
checking for normality for each model term are available, for example quantile-quantile plots (e.g.,
ganorm(x@boot$t[,1]) for the first model term in the btergm object called x).

The timesteps.btergm function extracts the number of time steps from a btergm object. The
number of time steps is the number of networks being modeled on the left-hand side of the model
formula.

Some of these functions or methods are also available for mtergm objects.
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Slots

coef: Object of class "numeric”. The coefficients.

bootsamp: Object of class "matrix”. The bootstrapping sample.
R: Object of class "numeric”. Number of replications.

nobs: Object of class "numeric”. Number of observations.
time.steps: Object of class "numeric”. Number of time steps.

formula: Object of class "formula”. The original model formula (without indices for the time
steps).

response: Object of class "integer”. The response variable.
effects: Object of class "data.frame"”. The effects that went into the glm call.
weights: Object of class "integer". The weights of the observations.

auto.adjust: Object of class "logical”. Indicates whether automatic adjustment of dimensions
was done before estimation.

offset: Object of class "logical”. Indicates whether an offset matrix with structural zeros was
used.

directed: Object of class "logical”. Are the dependent networks directed?
bipartite: Object of class "logical”. Are the dependent networks bipartite?
se Standard errors.

pval p-values.

estimate Estimate: either MCMC MLE or MPLE.

loglik The log likelihood.

aic Akaike’s Information Criterion (AIC).

bic The Bayesian Information Criterion (BIC).

References

Cranmer, Skyler J., Tobias Heinrich and Bruce A. Desmarais (2014): Reciprocity and the Structural
Determinants of the International Sanctions Network. Social Networks 36(1): 5-22. http://dx.
doi.org/10.1016/j.socnet.2013.01.001.

Desmarais, Bruce A. and Skyler J. Cranmer (2012): Statistical Mechanics of Networks: Estimation
and Uncertainty. Physica A 391: 1865-1876. http://dx.doi.org/10.1016/j.physa.2011.10.
018.

Desmarais, Bruce A. and Skyler J. Cranmer (2010): Consistent Confidence Intervals for Maximum
Pseudolikelihood Estimators. Neural Information Processing Systems 2010 Workshop on Compu-
tational Social Science and the Wisdom of Crowds.

Leifeld, Philip, Skyler J. Cranmer and Bruce A. Desmarais (2017): Temporal Exponential Random
Graph Models with btergm: Estimation and Bootstrap Confidence Intervals. Journal of Statistical
Software 83(6): 1-36. http://dx.doi.org/10.18637/jss.v083.106.

See Also

btergm-package btergm simulate.btergm gofmethods knecht getformula interpret mtergm
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checkdegeneracy

Degeneracy check for btergm and mtergm objects

Description

Assess degeneracy of btergm and mtergm models.

Usage

## S4 method for signature 'mtergm'
checkdegeneracy(object, ...)

## S4 method for signature 'btergm'
checkdegeneracy(object, nsim = 1000,
MCMC.interval = 1000, MCMC.burnin = 10000, verbose = FALSE)

## S3 method for class 'degeneracy'

print(x, center

= FALSE, t = 1:length(x$sim),

terms = 1:length(x$target.stats[[111), ...)

## S3 method for class 'degeneracy'

plot(x, center = TRUE, t = 1:length(x$sim),
terms = 1:length(x$target.stats[[1]1]), vbar = TRUE,
main = NULL, xlab = NULL, target.col = "red",

target.lwd = 3, ...)
Arguments
object A btergm or mtergm object, as estimated using the btergm or mtergm function.

nsim

MCMC.burnin

MCMC. interval

The number of networks to be simulated at each time step. This number should
be sufficiently large for a meaningful comparison. If possible, much more than
1,000 simulations.

Internally, this package uses the simulation facilities of the ergm package to cre-
ate new networks against which to compare the original network(s) for goodness-
of-fit assessment. This argument sets the MCMC burnin to be passed over to the
simulation command. The default value is 10000. There is no general rule of
thumb on the selection of this parameter, but if the results look suspicious (e.g.,
when the model fit is perfect), increasing this value may be helpful.

Internally, this package uses the simulation facilities of the ergm package to cre-
ate new networks against which to compare the original network(s) for goodness-
of-fit assessment. This argument sets the MCMC interval to be passed over to
the simulation command. The default value is 1000, which means that every
1000th simulation outcome from the MCMC sequence is used. There is no
general rule of thumb on the selection of this parameter, but if the results look
suspicious (e.g., when the model fit is perfect), increasing this value may be
helpful.
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verbose
X

center

t

terms

vbar
main
xlab
target.col

target.lwd

Details

checkdegeneracy

Print details?
A degeneracy object created by the checkdegeneracy function.

If TRUE, print/plot the simulated minus the target statistics, with an expected
value of 0 in a non-degenerate model. If FALSE, print/plot the distribution of
simulated statistics and show the target statistic separately.

Time indices to include, e.g., t = 2: 4 for time steps 2 to 4.

Indices of the model terms to include, e.g., terms = 1:3 includes the first three
statistics.

Show vertical bar for target statistic in histogram.

Main title of the plot.

Label on the x-axis. Defaults to the name of the statistic.

Color of the vertical bar for the target statistic. Defaults to red.
Line width of the vertical bar for the target statistic. Defaults to 3.

Arbitrary further arguments.

The methods for the generic degeneracy function implement a degeneracy check for btergm and
mtergm objects. For btergm, this works by comparing the global statistics of simulated networks to
those of the observed networks at each observed time step. If the global statistics differ significantly,
this is indicated by small p-values. If there are many significant results, this indicates degeneracy.
For mtergm, the mcmc.diagnostics function from the ergm package is used.

Author(s)

Philip Leifeld (http://www.philipleifeld.com)

References

Hanneke, Steve, Wenjie Fu and Eric P. Xing (2010): Discrete Temporal Models of Social Networks.
Electronic Journal of Statistics 4: 585-605.

Leifeld, Philip, Skyler J. Cranmer and Bruce A. Desmarais (2017): Temporal Exponential Random
Graph Models with btergm: Estimation and Bootstrap Confidence Intervals. Journal of Statistical
Software 83(6): 1-36. http://dx.doi.org/10.18637/jss.v083.106.

See Also

btergm-package btergm gof
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edgeprob Compute all dyadic edge probabilities for an ERGM or TERGM.

Description

edgeprob is a convenience function that creates a data frame with all dyads in the ERGM or
TERGM along with their edge probabilities and their predictor values (i.e., change statistics). This
is useful for creating marginal effects plots or contrasting multiple groups of dyads. This function
works faster than the interpret function. See also the interpret help page.

Usage

edgeprob(object, verbose = FALSE)

Arguments
object An ergm, btergm, or mtergm object.
verbose Print details?

Value

The first variable in the resulting data frame contains the edge value (i.e., the dependent variable,
which is usually binary). The next variables contain all the predictors from the ERGM or TERGM
(i.e., the change statistics). The next five variables contain the indices of the sender (i), the receiver
(§), the time step (t), the vertex id of i (i.name), and the vertex id of j (j.name). These five variables
serve to identify the dyad. The last variable contains the computed edge probabilities.

Author(s)
Philip Leifeld

References

Czarna, Anna Z., Philip Leifeld, Magdalena Smieja, Michael Dufner and Peter Salovey (2016): Do
Narcissism and Emotional Intelligence Win Us Friends? Modeling Dynamics of Peer Popularity
Using Inferential Network Analysis. Personality and Social Psychology Bulletin 42(11): 1588—
1599.

Desmarais, Bruce A. and Skyler J. Cranmer (2012): Micro-Level Interpretation of Exponential
Random Graph Models with Application to Estuary Networks. The Policy Studies Journal 40(3):
402-434.

Leifeld, Philip, Skyler J. Cranmer and Bruce A. Desmarais (2017): Temporal Exponential Random
Graph Models with btergm: Estimation and Bootstrap Confidence Intervals. Journal of Statistical
Software 83(6): 1-36. http://dx.doi.org/10.18637/jss.v083.106.

See Also

interpret btergm-package btergm
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14 gof-methods

getformula Extract the formula from a model.

Description

Extract the model formula from ergm or btergm objects.

Usage

## S4 method for signature 'ergm'
getformula(x)

## S4 method for signature 'btergm'
getformula(x)

## S4 method for signature 'mtergm'
getformula(x)

Arguments

X A model object, for example a btergm or an ergm object.

Details

Extract the model formula from ergm or btergm objects.

See Also
gofmethods
gof-methods Conduct Goodness-of-Fit Diagnostics on ERGMs, TERGMs, SAOMs,
and logit models
Description

Assess goodness of fit of btergm and other network models.

Usage

## S4 method for signature 'btergm'

gof (object, target = NULL, formula = getformula(object),
nsim = 100, MCMC.interval = 1000, MCMC.burnin = 10000,
parallel = c("no", "multicore”, "snow"), ncpus = 1, cl = NULL,
statistics = c(dsp, esp, deg, ideg, geodesic, rocpr,
walktrap.modularity), verbose = TRUE, ...)
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## S4 method for signature 'mtergm'
gof(object, target = NULL, formula = getformula(object),
nsim = 100, MCMC.interval = 1000, MCMC.burnin = 10000,

parallel = c("no", "multicore”, "snow"), ncpus = 1, cl = NULL,
statistics = c(dsp, esp, deg, ideg, geodesic, rocpr,
walktrap.modularity), verbose = TRUE, ...)

## S4 method for signature 'ergm'

gof(object, target = NULL, formula = getformula(object),
nsim = 100, MCMC.interval = 1000, MCMC.burnin = 10000,
parallel = c("no”, "multicore”, "snow"), ncpus = 1, cl = NULL,
statistics = c(dsp, esp, deg, ideg, geodesic, rocpr,
walktrap.modularity), verbose = TRUE, ...)

## S4 method for signature 'matrix’

gof(object, covariates, coef, target = NULL, nsim = 100,
mcmc = FALSE, MCMC.interval = 1000, MCMC.burnin = 10000,
parallel = c("no", "multicore”, "snow"), ncpus = 1, cl = NULL,
statistics = c(dsp, esp, deg, ideg, geodesic, rocpr,
walktrap.modularity), verbose = TRUE, ...)

## S4 method for signature 'network'

gof(object, covariates, coef, target = NULL,
nsim = 100, mcmc = FALSE, MCMC.interval = 1000,
MCMC.burnin = 10000, parallel = c("no", "multicore”, "snow"),
ncpus = 1, cl = NULL, statistics = c(dsp, esp, deg, ideg,
geodesic, rocpr, walktrap.modularity), verbose = TRUE, ...)

## S4 method for signature 'sienaFit'

gof (object, period = NULL, parallel = c("no",
"multicore”, "snow"), ncpus = 1, cl = NULL, structzero = 10,
statistics = c(esp, deg, ideg, geodesic, rocpr, walktrap.modularity),
groupName = object$f$groupNames[[1]1], varName = NULL,
outofsample = FALSE, sienaData = NULL, sienaEffects = NULL,
nsim = NULL, verbose = TRUE, ...)

createGOF (simulations, target, statistics = c(dsp, esp, deg,

ideg, geodesic, rocpr, walktrap.modularity), parallel = "no",
ncpus = 1, ¢l = NULL, verbose = TRUE, ...)
Arguments
cl An optional parallel or snow cluster for use if parallel = "snow". If not sup-
plied, a cluster on the local machine is created temporarily.
coef A vector of coefficients.
covariates A list of matrices or network objects that serve as covariates for the dependent

network. The covariates in this list are automatically added to the formula as
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formula

groupName

mcmc

MCMC.burnin

MCMC.interval

ncpus

nsim

object

outofsample

gof-methods

edgecov terms.

A model formula from which networks are simulated for comparison. By de-
fault, the formula from the btergm object x is used. It is possible to hand over
a formula with only a single response network and/or dyad or edge covariates
or with lists of response networks and/or covariates. It is also possible to use
indices like networks[[4]] or networks[3:5] inside the formula.

The group name used in the Siena model.

Should statnet’s MCMC methods be used for simulating new networks? If memc
= FALSE, new networks are simulated based on predicted tie probabilities of the
regression equation.

Internally, this package uses the simulation facilities of the ergm package to cre-
ate new networks against which to compare the original network(s) for goodness-
of-fit assessment. This argument sets the MCMC burnin to be passed over to the
simulation command. The default value is 10000. There is no general rule of
thumb on the selection of this parameter, but if the results look suspicious (e.g.,
when the model fit is perfect), increasing this value may be helpful.

Internally, this package uses the simulation facilities of the ergm package to cre-
ate new networks against which to compare the original network(s) for goodness-
of-fit assessment. This argument sets the MCMC interval to be passed over to
the simulation command. The default value is 1000, which means that every
1000th simulation outcome from the MCMC sequence is used. There is no
general rule of thumb on the selection of this parameter, but if the results look
suspicious (e.g., when the model fit is perfect), increasing this value may be
helpful.

The number of CPU cores used for parallel GOF assessment (only if parallel
is activated). If the number of cores should be detected automatically on the ma-
chine where the code is executed, one can try the detectCores() function from
the parallel package. On some HPC clusters, the number of available cores is
saved as an environment variable; for example, if MOAB is used, the number of

available cores can sometimes be accessed using Sys . getenv (”"MOAB_PROCCOUNT"),

depending on the implementation. Note that the maximum number of connec-
tions in a single R session (i.e., to other cores or for opening files etc.) is 128,
so fewer than 128 cores should be used at a time.

The number of networks to be simulated at each time step. Example: If there
are six time steps in the formula and nsim = 100, a total of 600 new networks
is simulated. The comparison between simulated and observed networks is only
done within time steps. For example, the first 100 simulations are compared
with the first observed network, simulations 101-200 with the second observed
network etc.

A btergm, ergm, or sienaFit object (for the btergm, ergm, and sienaFit
methods, respectively). Or a network object or matrix (for the network and
matrix methods, respectively).

Should out-of-sample prediction be attempted? If so, some additional arguments
must be provided: sienaData, sienaEffects, and nsim. The sienaData ob-
ject must contain a base and a target network for out-of-sample prediction. The
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sienaEffects must contain the effects to be used for the simulations. The es-
timates will be taken from the estimated object, and they will be injected into
a new SAOM and fixed during the sampling procedure. nsim determines how
many simulations are used for the out-of-sample comparison.

parallel Use multiple cores in a computer or nodes in a cluster to speed up the simu-
lations. The default value "no"” means parallel computing is switched off. If
"multicore” is used (only available for sienaAlgorithm and sienaModel ob-
jects), the mclapply function from the parallel package (formerly in the multi-
core package) is used for parallelization. This should run on any kind of system
except MS Windows because it is based on forking. It is usually the fastest type
of parallelization. If "snow" is used, the parLapply function from the parallel
package (formerly in the snow package) is used for parallelization. This should
run on any kind of system including cluster systems and including M'S Windows.
It is slightly slower than the former alternative if the same number of cores is
used. However, "snow” provides support for MPI clusters with a large amount
of cores, which multicore does not offer (see also the c1 argument). Note that
"multicore"” will only work if all cores are on the same node. For example, if
there are three nodes with eight cores each, a maximum of eight CPUs can be
used. Parallel computing is described in more detail on the help page of btergm.

period Which transition between time periods should be used for GOF assessment? By
default, all transitions between all time periods are used. For example, if there
are three consecutive networks, this will extract simulations from the transitions
between 1 and 2 and between 2 and 3, respectively, and these simulations will
be compared to the networks at time steps 2 and 3, respectively. The time period
can be provided as a numeric, e.g., period = 4 for extracting the simulations
between time steps 4 and 5 (= the fourth transition) and predicting the fifth
network. Values lower than 1 or larger than the number of consecutive networks
minus 1 are therefore not permitted. This argument is only used if out-of-sample
prediction is switched off.

sienaData An object of the class siena, which is usually created using the sienaDataCreate

function in the RSiena package. This argument is only used for out-of-sample
prediction. The object must be based on a sienaDependent object that contains
two networks: the base network from which to simulate forward, and the tar-
get network which you want to predict out-of-sample. The object can contain
further objects for storing covariates etc. that are necessary for estimating new
networks. The best practice is to create an object that is identical to the siena
object used for estimating the model, except that it contains the base and the
target network instead of the dependent variable/networks.

sienaEffects An object of the class sienaEffects, which is usually created using the getEffects()

and the includeEffects() functions in the RSiena package. The best practice
is to provide a sienaEffects object that is identical to the object used to cre-
ate the original model (that is, it should contain the same effects), except that
it should be based on the siena object provided through the sienaData argu-
ment. In other words, the sienaEffects object should be based on the base and
target network used for out-of-sample prediction, and it should contain the same
effects as those used for the original estimation. This argument is used only for
out-of-sample prediction.
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simulations A list of network objects or sparse matrices (generated using the Matrix pack-
age) representing simulated networks.

statistics A list of functions used for comparison of observed and simulated networks.
Note that the list should contain the actual functions, not a character representa-
tion of them. See gof-statistics for details.

target In the gof function: A network or list of networks to which the simulations are
compared. If left empty, the original networks from the btergm object x are
used as observed networks. In the createGOF function: a list of sparse matrices
(generated using the Matrix package) or a list of network objects (generated
using the network package). The simulations are compared against these target
networks.

structzero Which value was used for structural zeros (usually nodes that have dropped
out of the network or have not yet joined the network) in the dependent vari-
able/network? These nodes are removed from the observed network and the
simulations before comparison. Usually, the value 10 is used for structural ze-
ros in Siena.

varName The variable name that denotes the dependent networks in the Siena model.
verbose Print details?

Arbitrary further arguments to be passed on to the statistics. See also the help
page for the gof-statistics.

Details

The generic gof function provides goodness-of-fit measures and degeneracy checks for btergm,
mtergm, ergm, sienaFit, and custom dyadic-independent models. The user can provide a list
of network statistics for comparing simulated networks based on the estimated model with the
observed network(s). See gof-statistics. The objects created by these methods can be displayed
using various plot and print methods (see gof-plot).

In-sample GOF assessment is the default, which means that the same time steps are used for creating
simulations and for comparison with the observed network(s). It is possible to do out-of-sample
prediction by specifying a (list of) target network(s) using the target argument. If a formula is
provided, the simulations are based on the networks and covariates specified in the formula. This
is helpful in situations where complex out-of-sample predictions have to be evaluated. A usage
scenario could be to simulate from a network at time t (provided through the formula argument)
and compare to an observed network at time t + 1 (the target argument). This can be done, for
example, to assess predictive performance between time steps of the original networks, or to check
whether the model performs well with regard to a newly measured network given the old data from
the previous time step.

Predictive fit can also be assessed for stochastic actor-oriented models (SAOM) as implemented in
the RSiena package. After compiling the usual objects (model, data, effects), one of the time steps
can be predicted based on the previous time step and the SAOM using the sienaFit method of the
gof function. By default, however, within-sample fit is used for SAOMs, just like for (T)ERGMs.

The gof methods for networks and matrices serve to assess the goodness of fit of a dyadic-independence
model. To do this, the method requires a vector of coefficients (one coefficient for the intercept or
edges term and one coefficient for each covariate), a list of covariates (in matrix or network shape),
and a dependent network or matrix. This is useful for assessing the goodness of fit of QAP-adjusted
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logistic regression models (as implemented in the netlogit function in the sna package) or other
dyadic-independence models, such as models fitted using glm. Note that this method only works
with cross-sectional models and does not accept lists of networks as input data.

The createGOF function is used internally by the gof function in order to create a gof object from
a list of simulated networks and a list of target networks to compare against. It can also be used
directly by the end user if the user wants to supply lists of simulated and target networks from other
sources.

Author(s)
Philip Leifeld (http://www.philipleifeld.com)

References

Leifeld, Philip, Skyler J. Cranmer and Bruce A. Desmarais (2017): Temporal Exponential Random
Graph Models with btergm: Estimation and Bootstrap Confidence Intervals. Journal of Statistical
Software 83(6): 1-36. http://dx.doi.org/10.18637/jss.v083.106.

Leifeld, Philip and Skyler J. Cranmer (2014): A Theoretical and Empirical Comparison of the
Temporal Exponential Random Graph Model and the Stochastic Actor-Oriented Model. Paper pre-
sented at the 7th Political Networks Conference, McGill University, Montreal, Canada, May 30.
http://arxiv.org/abs/1506.06696.

See Also

btergm-package btergm simulate.btergm simulate.ergm gof gof-statistics gof-plot

Examples

## Not run:
# First, create data and fit a TERGM...
networks <- list()

for(i in 1:10){ # create 10 random networks with 10 actors
mat <- matrix(rbinom(100, 1, .25), nrow = 10, ncol = 10)
diag(mat) <- @ # loops are excluded
nw <- network(mat) # create network object
networks[[i]] <- nw # add network to the list
3

covariates <- list()

for (i in 1:10) { # create 10 matrices as covariate
mat <- matrix(rnorm(100), nrow = 10, ncol = 10)
covariates[[i]] <- mat # add matrix to the list

3

fit <- btergm(networks ~ edges + istar(2) +
edgecov(covariates), R = 100)

# Then assess the goodness of fit:
g <- gof(fit, statistics = c(triad.directed, esp, fastgreedy.modularity,
rocpr), nsim = 50)


http://www.philipleifeld.com
http://dx.doi.org/10.18637/jss.v083.i06
http://arxiv.org/abs/1506.06696
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plot(g) # see ?"gof-plot” for details

# createGOF can also be used with user-supplied simulations:
library("statnet"”)

data(florentine)

gest <- ergm(flomarriage ~ edges + absdiff("wealth”))

sim <- simulate(gest, nsim = 50)

g <- createGOF(sim, list(flomarriage), statistics = c(esp, ideg), roc = FALSE)
g

plot(g)

# The help page for the Knecht dataset (?knecht) contains another example.

## End(Not run)

gof-plot Plot and print methods for gof output.

Description

Plot and print methods for goodness-of-fit output for network models.

Usage

## S3 method for class 'boxplot'

plot(x, relative = TRUE, transform = function(x) x,
xlim = NULL, main = x$label, xlab = x$label, ylab = "Frequency",
border = "darkgray"”, boxplot.lwd = 0.8, outline = FALSE,
median = TRUE, median.col = "black"”, median.lty = "solid",
median.lwd = 2, mean = TRUE, mean.col = "black"”,
mean.lty = "dashed”, mean.lwd =1, ...)

## S3 method for class 'gof'
plot(x, mfrow = TRUE, ...)

## S3 method for class 'pr'
plot(x, add = FALSE, main = x$label, avg = c("none”,

"horizontal”, "vertical”, "threshold"), spread.estimate =
c("boxplot”, "stderror”, "stddev"), lwd = 3, rgraph = FALSE,
col = "#5886be"”, random.col = "#5886be44", pr.poly = 0, ...)

## S3 method for class 'roc'
plot(x, add = FALSE, main = x$label, avg = c("none”,

"horizontal”, "vertical"”, "threshold"), spread.estimate =
c("boxplot”, "stderror”, "stddev"”), lwd = 3, rgraph = FALSE,
col = "#bd0@17", random.col = "#bde@1744", ...)

## S3 method for class 'rocpr'
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plot(x, main = x$label, roc.avg = c("none”,
"horizontal”, "vertical”, "threshold"),
roc.spread.estimate = c("boxplot”, "stderror”, "stddev"),
roc.lwd = 3, roc.rgraph = FALSE, roc.col = "#bd0o17",
roc.random.col = "#bd@01744", pr.avg = c("none”, "horizontal”,
"vertical"”, "threshold"”), pr.spread.estimate = c("boxplot”,
"stderror”, "stddev"), pr.lwd = 3, pr.rgraph = FALSE,
pr.col = "#5886be"”, pr.random.col = "#5886be44", pr.poly = 0,

)

## S3 method for class 'univariate'

plot(x, main = x$label, sim.hist = TRUE,
sim.bar = TRUE, sim.density = TRUE, obs.hist = FALSE,
obs.bar = TRUE, obs.density = TRUE, sim.adjust =1,
obs.adjust = 1, sim.lwd = 2, obs.lwd = 2, sim.col = "black",
obs.col = "red”, ...)

## S3 method for class 'boxplot'
print(x, ...)

## S3 method for class 'gof'
print(x, ...)

## S3 method for class 'pr'
print(x, ...)

## S3 method for class 'roc'
print(x, ...)

## S3 method for class 'rocpr'
print(x, ...)

## S3 method for class 'univariate'

print(x, ...)
Arguments

add Add the ROC and/or PR curve to an existing plot?

avg Averaging pattern for the ROC and PR curve(s) if multiple target time steps were
used. Allowed values are "none” (plot all curves separately), "horizontal”
(horizontal averaging), "vertical” (vertical averaging), and "threshold” (thresh-
old (= cutoff) averaging). Note that while threshold averaging is always feasi-
ble, vertical and horizontal averaging are not well-defined if the graph cannot be
represented as a function x->y and y->x, respectively. More information can be
obtained from the help pages of the ROCR package, the functions of which are
employed here.

border Color of the borders of the boxplots.

boxplot.lwd Line width of boxplot.
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col
1wd
mai
mea
mea
mea
mea
med
med
med
med

mfr

obs.
obs.
obs.
obs.
obs.

obs.

out

pr.

pr.
pr.
pr.

pr.
pr.

n
n

n.col
n.lty
n.lwd
ian
ian.col
ian.lty
ian.1lwd

ow

adjust
bar

col
density
hist
lwd
line

avg

col

1wd
poly

random. col

rgraph

gof-plot

Color of the ROC or PR curve.

Line width.

Main title of a GOF plot.

Plot the mean curve for the observed network?

Color of the mean of the observed network statistic.
Line type of mean line. For example "dashed" or "solid".
Line width of mean line.

Plot the median curve for the observed network?

Color of the median of the observed network statistic.
Line type of median line. For example "dashed" or "solid".
Line width of median line.

Should the GOF plots come out separately (mfrow = FALSE), or should all statis-
tics be aligned in a single diagram (mfrow = TRUE)? Returning the plots sepa-
rately can be helpful if the output is redirected to a multipage PDF or TIFF file.

Bandwidth adjustment parameter for the density curve.

Draw a bar for the median of the statistic for the observed networks?
Color for the observed network(s).

Draw a density curve fot the statistic for the observed networks?
Draw a histogram for the observed networks?

Line width for the observed network(s).

Print outliers in the boxplots?

Averaging pattern for the PR curve(s) if multiple target time steps were used. Al-
lowed values are "none” (plot all curves separately), "horizontal” (horizontal
averaging), "vertical” (vertical averaging), and "threshold” (threshold (=
cutoff) averaging). Note that while threshold averaging is always feasible, ver-
tical and horizontal averaging are not well-defined if the graph cannot be rep-
resented as a function x->y and y->X, respectively. More information can be
obtained from the help pages of the ROCR package, the functions of which are
employed here.

Color of the PR curve.
Line width.

If a value of @ is set, nothing special happens. If a value of 1 is set, a straight line
is fitted through the PR curve and displayed. Values between 2 and 9 fit higher-
order polynomial curves through the PR curve and display the resulting curve.
This argument allows to check whether the imputation of the first precision value
in the PR curve yielded a reasonable result (in case the value had to be imputed).

Color of the PR curve of the random graph prediction.

Should an PR curve also be drawn for a random graph? This serves as a baseline
against which to compare the actual PR curve.



gof-plot 23

pr.spread.estimate

When multiple target time steps are used and curve averaging is enabled, the
variation around the average curve can be visualized as standard error bars
("stderror"), standard deviation bars ("stddev"), or by using box plots ("boxplot™).
Note that the function plotCI, which is used internally by the ROCR package

to draw error bars, might raise a warning if the spread of the curves at certain
positions is 0. More details can be found in the documentation of the ROCR
package, the functions of which are employed here.

random. col Color of the ROC or PR curve of the random graph prediction.

relative Print relative frequencies (as opposed to absolute frequencies) of a statistic on
the y axis?

rgraph Should an ROC or PR curve also be drawn for a random graph? This serves as

a baseline against which to compare the actual ROC or PR curve.

roc.avg Averaging pattern for the ROC curve(s) if multiple target time steps were used.
Allowed values are "none” (plot all curves separately), "horizontal” (horizon-
tal averaging), "vertical” (vertical averaging), and "threshold” (threshold
(= cutoff) averaging). Note that while threshold averaging is always feasible,
vertical and horizontal averaging are not well-defined if the graph cannot be
represented as a function x->y and y->x, respectively. More information can be
obtained from the help pages of the ROCR package, the functions of which are
employed here.

roc.col Color of the ROC curve.
roc.lwd Line width.
roc.random.col Color of the ROC curve of the random graph prediction.

roc.rgraph Should an ROC curve also be drawn for a random graph? This serves as a
baseline against which to compare the actual ROC curve.

roc.spread.estimate
When multiple target time steps are used and curve averaging is enabled, the
variation around the average curve can be visualized as standard error bars
("stderror"), standard deviation bars ("stddev"), or by using box plots ("boxplot™).
Note that the function plotCI, which is used internally by the ROCR package
to draw error bars, might raise a warning if the spread of the curves at certain
positions is 0. More details can be found in the documentation of the ROCR
package, the functions of which are employed here.

sim.adjust Bandwidth adjustment parameter for the density curve.

sim.bar Draw a bar for the median of the statistic for the simulated networks?
sim.col Color for the simulated networks.

sim.density Draw a density curve fot the statistic for the simulated networks?
sim.hist Draw a histogram for the simulated networks?

sim.lwd Line width for the simulated networks.

spread.estimate
When multiple target time steps are used and curve averaging is enabled, the
variation around the average curve can be visualized as standard error bars
("stderror"), standard deviation bars ("stddev"), or by using box plots ("boxplot").
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Note that the function plotCI, which is used internally by the ROCR package
to draw error bars, might raise a warning if the spread of the curves at certain
positions is 0. More details can be found in the documentation of the ROCR
package, the functions of which are employed here.

transform A function which transforms the y values used for the boxplots. For exam-
ple, if some of the values become very large and make the output illegible,
transform = function(x) x*@.1 or a similar transformation of the values can
be used. Note that logarithmic transformations often produce infinite values
because log(@) = -Inf, so one should rather use something like transform =
function(x) loglp to avoid infinite values.

X An object created by one of the gof methods.

xlab Label of the x-axis of a GOF plot.

x1lim Horizontal limit of the boxplots. Only the maximum value must be provided,
e.g., xlim=8.

ylab Label of the y-axis of a GOF plot.

Arbitrary further arguments.

Details

These plot and print methods serve to display the output generated by the gof function and its
methods. See the help page of gof-methods for details on how to compute gof.

Author(s)
Philip Leifeld (http://www.philipleifeld.com)

References

Leifeld, Philip, Skyler J. Cranmer and Bruce A. Desmarais (2017): Temporal Exponential Random
Graph Models with btergm: Estimation and Bootstrap Confidence Intervals. Journal of Statistical
Software 83(6): 1-36. http://dx.doi.org/10.18637/jss.v083.106.

See Also

btergm-package gof gof-methods gof-statistics

gofstatistics Statistics for goodness-of-fit assessment of network models

Description

Statistics for goodness-of-fit assessment of network models.


http://www.philipleifeld.com
http://dx.doi.org/10.18637/jss.v083.i06

gofstatistics

Usage
bldeg(mat, ...)
blstar(mat, ...)

b2deg(mat, ...)

b2star(mat, ...)
comemb (vec)
deg(mat, ...)
dsp(mat, ...)

edgebetweenness.modularity(mat,
edgebetweenness.pr(sim, obs,
edgebetweenness.roc(sim, obs,
esp(mat, ...)
fastgreedy.modularity(mat, ...)
fastgreedy.pr(sim, obs, ...)
fastgreedy.roc(sim, obs, ...)
geodesic(mat, ...)

ideg(mat, ...)

istar(mat, ...)

kcycle(mat, ...)

kstar(mat, ...)
louvain.modularity(mat, ...)
louvain.pr(sim, obs, ...)
louvain.roc(sim, obs, ...)
maxmod.modularity(mat, ...)

maxmod.pr(sim, obs, ...)

.2

)
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maxmod.roc(sim, obs, ...)
nsp(mat, ...)

odeg(mat, ...)

ostar(mat, ...)

rocpr(sim, obs, roc = TRUE, pr = TRUE, joint = FALSE,

pr.impute = "poly4", ...)

spinglass.modularity(mat, ...)

spinglass.pr(sim, obs, ...)

spinglass.roc(sim, obs, ...)

triad.directed(mat, ...)

triad.undirected(mat, ...)

walktrap.modularity(mat, ...)

walktrap.pr(sim, obs, ...)

walktrap.roc(sim, obs, ...)

Arguments

vec A vector of community memberships in order to create a community co-membership
matrix.

mat A sparse network matrix as created by the Matrix function in the Matrix pack-
age.

sim A list of simulated networks. Each element in the list should be a sparse matrix
as created by the Matrix function in the Matrix package.

obs A list of observed (= target) networks. Each element in the list should be a sparse
matrix as created by the Matrix function in the Matrix package.

roc Compute receiver-operating characteristics (ROC)?

pr Compute precision-recall curve (PR)?

joint Merge all time steps into a single big prediction task and compute predictive fit

(instead of computing GOF for all time steps separately)?

pr.impute In some cases, the first precision value of the precision-recall curve is undefined.
The pr.impute argument serves to impute this missing value to ensure that the
AUC-PR value is not severely biased. Possible values are "no"” for no imputa-
tion, "one"” for using a value of 1.0, "second” for using the next (= adjacent)
precision value, "poly1” for fitting a straight line through the remaining curve
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to predict the first value, "poly2” for fitting a second-order polynomial curve
etc. until "poly9”. Warning: this is a pragmatic solution. Please double-check
whether the imputation makes sense. This can be checked by plotting the result-
ing object and using the pr.poly argument to plot the predicted curve on top of
the actual PR curve.

Additional arguments. This must be present in all auxiliary GOF statistics.

Details

These functions can be plugged into the statistics argument of the gof methods in order to
compare observed with simulated networks (see the gof-methods help page). There are three types
of statistics:

(1) Univariate statistics, which aggregate a network into a single quantity. For example, modularity
measures or density. The distribution of statistics can be displayed using histograms, density plots,
and median bars. Univariate statistics take a sparse matrix (mat) as an argument and return a single
numeric value that summarize a network matrix.

(2) Multivariate statistics, which aggregate a network into a vector of quantities. For example, the
distribution of geodesic distances, edgewise shared partners, or indegree. These statistics typically
have multiple values, e.g., esp(1), esp(2), esp(3) etc. The results can be displayed using multiple
boxplots for simulated networks and a black curve for the observed network(s). Multivariate statis-
tics take a sparse matrix (mat) as an argument and return a vector of numeric values that summarize
a network matrix.

(3) Tie prediction statistics, which predict dyad states the observed network(s) by the dyad states in
the simulated networks. For example, receiver operating characteristics (ROC) or precision-recall
curves (PR) of simulated networks based on the model, or ROC or PR predictions of community
co-membership matrices of the simulated vs. the observed network(s). Tie prediction statistics take
a list of simulated sparse network matrices and another list of observed sparse network matrices
(possibly containing only a single sparse matrix) as arguments and return a rocpr, roc, or pr object
(as created by the rocpr function).

Users can create their own statistics for use with the codegof methods. To do so, one needs to write
a function that accepts and returns the respective objects described in the enumeration above. It is
advisable to look at the definitions of some of the existing functions to add custom functions. It is
also possible to add an attribute called 1abel to the return object, which describes what is being
returned by the function. This label will be used as a descriptive label in the plot and for verbose
output during computations. The examples section contains an example of a custom user statistic.
Note that all statistics _must_ contain the ... argument to ensure that custom arguments of other
statistics do not cause an error.

To aid the development of custom statistics, the helper function comemb is available: it accepts a
vector of community memberships and converts it to a co-membership matrix. This function is also
used internally by statistics like walktrap.roc and others.

Network statistics

The following built-in functions can be handed over to the statistics argument. See the usage
section for their respective arguments.

(1) Univariate statistics:
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walktrap.modularity(mat, ...) Modularity distribution as computed by the Walktrap algo-
rithm.

fastgreedy.modularity(mat, ...) Modularity distribution as computed by the fast and greedy
algorithm. Only sensible with undirected networks.

louvain.modularity(mat, ...) Modularity distribution as computed by the Louvain algorithm.
maxmod.modularity(mat, ...) Optimal modularity distribution.

edgebetweenness.modularity(mat, ...) Modularity distribution as computed by the Girvan-
Newman edge betweenness community detection method.

spinglass.modularity(mat, ...) Modularity distribution as computed by the Spinglass algo-
rithm.

(2) Multivariate statistics:

dsp, ... Dyad-wise shared partner distribution.

esp(mat, ...) Edge-wise shared partner distribution.
nsp(mat, ...) Non-edge-wise shared partner distribution.
deg(mat, ...) Degree distribution (for undirected networks).
ideg(mat, ...) Indegree distribution (for directed networks).
odeg(mat, ...) Outdegree distribution (for directed networks).
bldeg(mat, ...
b2deg(mat, ...

Degree distribution (for the first mode in a two-mode network).
Degree distribution (for the second mode in a two-mode network).

istar(mat, ...

)
)
kstar(mat, ...) k-star distribution (for undirected networks).
) in-star distribution (for directed networks).
)

ostar(mat, ...) out-star distribution (for directed networks).

b1star(mat, ...) k-star distribution (for the first mode in a two-mode network).
b2star(mat, ...) k-star distribution (for the second mode in a two-mode network).
kcycle(mat, ...) k-cycle distribution (for undirected networks).

geodesic(mat, ...) Geodesic distance (or shortest path) distribution.
triad.directed(mat, ...) Triad census (directed networks).

triad.undirected(mat, ...) Triad census (undirected networks).
(3) Tie prediction statistics:

walktrap.roc(sim, obs, ...) Receiver-operating characteristics of predicting the community
structure in the observed network(s) by the community structure in the simulated networks, as
computed by the Walktrap algorithm.

walktrap.pr(sim, obs, ...) Precision-recall curve for predicting the community structure in the
observed network(s) by the community structure in the simulated networks, as computed by
the Walktrap algorithm.

fastgreedy.roc(sim, obs, ...) Receiver-operating characteristics of predicting the community
structure in the observed network(s) by the community structure in the simulated networks, as
computed by the fast and greedy algorithm. Only sensible with undirected networks.
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fastgreedy.pr(sim, obs, ...) Precision-recall curve for predicting the community structure in
the observed network(s) by the community structure in the simulated networks, as computed
by the fast and greedy algorithm. Only sensible with undirected networks.

louvain.roc(sim, obs, ...) Receiver-operating characteristics of predicting the community struc-
ture in the observed network(s) by the community structure in the simulated networks, as
computed by the Louvain algorithm.

louvain.pr(sim, obs, ...) Precision-recall curve for predicting the community structure in the
observed network(s) by the community structure in the simulated networks, as computed by
the Louvain algorithm.

maxmod.roc(sim, obs, ...) Receiver-operating characteristics of predicting the community struc-
ture in the observed network(s) by the community structure in the simulated networks, as
computed by the modularity maximization algorithm.

maxmod.pr(sim, obs, ...) Precision-recall curve for predicting the community structure in the
observed network(s) by the community structure in the simulated networks, as computed by
the modularity maximization algorithm.

edgebetweenness.roc(sim, obs, ...) Receiver-operating characteristics of predicting the com-
munity structure in the observed network(s) by the community structure in the simulated net-
works, as computed by the Girvan-Newman edge betweenness community detection method.

edgebetweenness.pr(sim, obs, ...) Precision-recall curve for predicting the community struc-
ture in the observed network(s) by the community structure in the simulated networks, as
computed by the Girvan-Newman edge betweenness community detection method.

spinglass.roc(sim, obs, ...) Receiver-operating characteristics of predicting the community
structure in the observed network(s) by the community structure in the simulated networks, as
computed by the Spinglass algorithm.

spinglass.pr(sim, obs, ...) Precision-recall curve for predicting the community structure in
the observed network(s) by the community structure in the simulated networks, as computed
by the Spinglass algorithm.

rocpr(sim, obs, roc = TRUE, pr = TRUE, joint = FALSE, pr.impute = "poly4"”, ...) Receiver-
operating characteristics (ROC) and precision-recall curve (PR). Prediction of the dyad states
of the observed network(s) by the dyad states of the simulated networks.

Author(s)

Philip Leifeld (http://www.philipleifeld.com)

References

Leifeld, Philip, Skyler J. Cranmer and Bruce A. Desmarais (2017): Temporal Exponential Random
Graph Models with btergm: Estimation and Bootstrap Confidence Intervals. Journal of Statistical
Software 83(6): 1-36. http://dx.doi.org/10.18637/jss.v083.106.

See Also

btergm-package gof gof-methods
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Examples

# To see how these statistics are used, look at the examples section of
# ?"gof-methods”. The following example illustrates how custom

# statistics can be created. Suppose one is interested in the density

# of a network. Then a univariate statistic can be created as follows.

dens <- function(mat, ...) { # univariate: one argument
mat <- as.matrix(mat) # sparse matrix -> normal matrix
d <- sna::gden(mat) # compute the actual statistic
attributes(d)$label <- "Density” # add a descriptive label
return(d) # return the statistic

3

# Note that the '...' argument must be present in all statistics.

# Now the statistic can be used in the statistics argument of one of

H

the gof methods.

For illustrative purposes, let us consider an existing statistic, the
indegree distribution, a multivariate statistic. It also accepts a
single argument. Note that the sparse matrix is converted to a

normal matrix object when it is used. First, statnet's summary

method is used to compute the statistic. Names are attached to the
resulting vector for the different indegree values. Then the vector
is returned.

% ¥ oM O H W

ideg <- function(mat, ...) {
d <- summary(mat ~ idegree(@:(nrow(mat) - 1)))
names(d) <- 0:(length(d) - 1)
attributes(d)$label <- "Indegree"
return(d)

3

# See the gofstatistics.R file in the package for more complex examples.

interpret Interpretation functions for ergm and btergm objects

Description

Interpretation functions for ergm and btergm objects.

Usage

## S4 method for signature 'ergm'
interpret(object, formula = getformula(object),
coefficients = coef(object), target = NULL, type = "tie", i, j)

## S4 method for signature 'btergm'
interpret(object, formula = getformula(object),
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coefficients = coef(object), target = NULL, type = "tie", i, j,
t = 1:object@time.steps)

## S4 method for signature 'mtergm'

interpret(object, formula = getformula(object),
coefficients = coef(object), target = NULL, type = "tie”, i, j,

t = 1:object@time.steps)

Arguments

object
formula

coefficients

target

type

An ergm, btergm, or mtergm object.

The formula to be used for computing probabilities. By default, the formula
embedded in the model object is retrieved and used.

The estimates on which probabilities should be based. By default, the coeffi-
cients from the model object are retrieved and used. Custom coefficients can be
handed over, for example, in order to compare versions of the model where the
reciprocity term is fixed at O versus versions of the model where the reciprocity
term is left as in the empirical result. This is one of the examples described in
Desmarais and Cranmer (2012).

The response network on which probabilities are based. Depending on whether
the function is applied to an ergm or btergm/mtergm object, this can be either a
single network or a list of networks. By default, the (list of) network(s) provided
as the left-hand side of the (T)ERGM formula is used.

If type = "tie" is used, probabilities at the edge level are computed. For ex-
ample, what is the probability of a specific node i to be connected to a specific
node j given the rest of the network and given the model? If type = "dyad”
is used, probabilities at the dyad level are computed. For example, what is the
probability that node i is connected to node j but not vice-versa, or what is the
probability that nodes i and j and mutually connected in a directed network? If
type = "node” is used, probabilities at the node level are computed. For exam-
ple, what is the probability that node i is connected to a set of three other j nodes
given the rest of the network and the model?

A single (sender) node i or a set of (sender) nodes i. If type = "node” is used,
this can be more than one node and should be provided as a vector. The i
argument can be either provided as the index of the node in the sociomatrix (e.g.,
the fourth node would be i = 4) or the row name of the node in the sociomatrix
(e.g., i = "Peter”). If more than one node is provided and type = "node”, there
can be only one (receiver) node j. The i and j arguments are used to specify
for which nodes probabilities should be computed. For example, what is the
probability that i = 4 is connected to i = 7?

A single (receiver) node j or a set of (receiver) nodes j. If type = "node” is
used, this can be more than one node and should be provided as a vector. The j
argument can be either provided as the index of the node in the sociomatrix (e.g.,
the fourth node would be j = 4) or the row name of the node in the sociomatrix
(e.g., j = "Mary"). If more than one node is provided and type = "node”, there
can be only one (sender) node i. The i and j arguments are used to specify
for which nodes probabilities should be computed. For example, what is the
probability that i = 4 is connected to i = 7?
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t A vector of (numerical) time steps for which the probabilities should be com-
puted. This only applies to btergm objects because ergm objects are by defini-
tion based on a single time step. By default, all available time steps are used.
It is, for example, possible to compute probabilities only for a single time step
by specifying, e.g., t = 5 in order to compute probabilities for the fifth response
network.

Details

The interpret function facilitates interpretation of ERGMs and TERGMs at the micro level via
block Gibbs sampling, as described in Desmarais and Cranmer (2012). There are generic methods
for ergm objects, btergm objects, and mtergm objects. The function can be used to interpret these
models at the tie or edge level, dyad level, and block level.

For example, what is the probability that two specific nodes i (the sender) and node j (the receiver)
are connected given the rest of the network and given the model? Or what is the probability that
any two nodes are tied at t = 2 if they were tied (or disconnected) at t = 1 (i.e., what is the amount
of tie stability)? These tie- or edge-level questions can be answered if the type = "tie"” argument
is used.

Another example: What is the probability that node i has a tie to node j but not vice-versa? Or that
i and j maintain a reciprocal tie? Or that they are disconnected? How much more or less likely
are i and j reciprocally connected if the mutual term in the model is fixed at 0 (compared to the
model that includes the estimated parameter for reciprocity)? See example below. These dyad-level
questions can be answered if the type = "dyad” argument is used.

Or what is the probability that a specific node i is connected to nodes j1 and j2 but not to j5 and j7?
And how likely is any node i to be connected to exactly four j nodes? These node-level questions
(focusing on the ties of node i or node j) can be answered by using the type = "node” argument.

The typical procedure is to manually enumerate all dyads or sender-receiver-time combinations with
certain properties and repeat the same thing with some alternative properties for contrasting the two
groups. Then apply the interpret function to the two groups of dyads and compute a measure
of central tendency (e.g., mean or median) and possibly some uncertainy measure (i.e., confidence
intervals) from the distribution of dyadic probabilities in each group. For example, if there is a
gender attribute, one can sample male-male or female-female dyads, compute the distributions of
edge probabilities for the two sets of dyads, and create boxplots or barplots with confidence intervals
for the two types of dyads in order to contrast edge probabilities for male versus female same-sex
dyads.

See also the edgeprob function for automatic computation of all dyadic edge probabilities.

References

Czarna, Anna Z., Philip Leifeld, Magdalena Smieja, Michael Dufner and Peter Salovey (2016): Do
Narcissism and Emotional Intelligence Win Us Friends? Modeling Dynamics of Peer Popularity
Using Inferential Network Analysis. Personality and Social Psychology Bulletin 42(11): 1588—
1599.

Desmarais, Bruce A. and Skyler J. Cranmer (2012): Micro-Level Interpretation of Exponential
Random Graph Models with Application to Estuary Networks. The Policy Studies Journal 40(3):
402-434.
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Leifeld, Philip, Skyler J. Cranmer and Bruce A. Desmarais (2017): Temporal Exponential Random
Graph Models with btergm: Estimation and Bootstrap Confidence Intervals. Journal of Statistical
Software 83(6): 1-36. http://dx.doi.org/10.18637/jss.v083.106

See Also

edgeprob btergm-package btergm timesteps.btergm

Examples

#i#### The following example is a TERGM adaptation of the ##t#i##
#i#### dyad-level example provided in figure 5(c) on page #it#i#
#i##HH# 424 of Desmarais and Cranmer (2012) in the PSJ. At #it###
#i##HH# each time step, it compares dyadic probabilities — #i####
##### (no tie, unidirectional tie, and reciprocal tie HHHH
#i##HH# probability) between a fitted model and a model H#iHHHH
#i#### where the reciprocity effect is fixed at @ based  #i#t#it#
#i###H on 20 randomly selected dyads per time step. The  ###i##
###H## results are visualized using a grouped bar plot. HiHHHH

## Not run:
# create toy dataset and fit a model
networks <- list()

for (i in 1:3) { # create 3 random networks with 10 actors
mat <- matrix(rbinom(100, 1, ©.25), nrow = 10, ncol = 10)
diag(mat) <- @ # loops are excluded
nw <- network(mat) # create network object
networks[[i]] <- nw # add network to the list

3

fit <- btergm(networks ~ edges + istar(2) + mutual, R = 200)

# extract coefficients and create null hypothesis vector
null <- coef(fit) # estimated coefs
null[3] <- @ # set mutual term = @

# sample 20 dyads per time step and compute probability ratios
probabilities <- matrix(nrow = 9, ncol = length(networks))
# nrow = 9 because three probabilities + upper and lower CIs
colnames(probabilities) <- paste(”t =", 1:length(networks))
for (t in 1:length(networks)) {

d <- dim(as.matrix(networks[[t]])) # how many row and column nodes?

size <- d[1] * d[2] # size of the matrix

nw <- matrix(1:size, nrow = d[1], ncol = d[2])

nw <- nw[lower.tri(nw)] # sample only from lower triangle b/c
samp <- sample(nw, 20) # dyadic probabilities are symmetric

prob.est.00 <- numeric(@)
prob.est.01 <- numeric(@)
prob.est.11 <- numeric(@)
prob.null.@@ <- numeric(@)
prob.null.@1 <- numeric(0)
prob.null.11 <- numeric(@)
for (k in 1:20) {
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i <- arrayInd(samp[k], d)[1, 1] # recover 'i's and 'j's from sample

j <- arrayInd(samp[k], d)[1, 2]

# run interpretation function with estimated coefs and mutual = @:
int.est <- interpret(fit, type = "dyad”, i =i, j =3, t =1t)
int.null <- interpret(fit, coefficients = null, type = "dyad”,

i=1,3=3,t=1%
prob.est.00 <- c(prob.est.00, int.est[[1]1]1[1, 1])
prob.est.11 <- c(prob.est.11, int.est[[1]11[2, 2])

mean.est.@1 <- (int.est[[1]1[1, 2] + int.est[[1]1]1[2, 1]1) / 2

prob.est.@1 <- c(prob.est.@1, mean.est.01)
prob.null.@@ <- c(prob.null.@@, int.null[[1]11[1, 11)
prob.null.11 <- c(prob.null.11, int.null[[1]1[2, 21])

mean.null.@1 <- (int.null[[1]][1, 2] + int.null[[1]][2, 11) / 2

prob.null.@1 <- c(prob.null.@1, mean.null.Q1)
}

prob.ratio.0@ <- prob.est.00 / prob.null.@@ # ratio of est. and null hyp

prob.ratio.@1 <- prob.est.@1 / prob.null.o1l
prob.ratio.11 <- prob.est.11 / prob.null.11

probabilities[1, t] <- mean(prob.ratio.@@) # mean estimated
probabilities[2, t] <- mean(prob.ratio.@1) # mean estimated
probabilities[3, t] <- mean(prob.ratio.11) # mean estimated

ci.00 <- t.test(prob.ratio.@o, conf.level
ci.01 <- t.test(prob.ratio.@l1, conf.level
ci.11 <- t.test(prob.ratio.11, conf.level
probabilities[4, t] <- ci.@0@[1]
probabilities[5, t] <- ci.Q1[1]
probabilities[6, t] <- ci.11[1]
probabilities[7, t] <- ci.@0[2]
probabilities[8, t] <- ci.Q1[2]
probabilities[9, t] <- ci.11[2]
3

0.99)$conf.int
0.99)%$conf.int
0.99)$conf.int

Y

# create barplots from probability ratios and CIs
require("gplots")

lower 00 conf.
lower @1 conf.
lower 11 conf.
upper 00 conf.
upper 01 conf.
upper 11 conf.

00 tie prob
01 tie prob
11 tie prob

interval
interval
interval
interval
interval
interval

bp <- barplot2(probabilities[1:3, 1, beside = TRUE, plot.ci = TRUE,

ci.l = probabilities[4:6, 1, ci.u = probabilities[7:9, ],
col = c("tan", "tan2", "tan3"), ci.col = "grey40",

xlab = "Dyadic tie values”, ylab = "Estimated Prob./Null Prob.")
mtext(1, at = bp, text = c("(0,0)", "(0,1)", "(1,1)"), line = 0, cex = 0.5)

#i####t The following examples illustrate the behavior of  #i#t#it#
#i#### the interpret function with undirected and/or HHHHH
#i##HH# bipartite graphs with or without structural zeros. #it###

library("statnet"”)
library("btergm")

# micro-level interpretation for undirected network with structural zeros

set.seed(12345)

mat <- matrix(rbinom(400, 1, @.1), nrow = 20, ncol = 20)
mat[1, 5] <- 1

mat[10, 7] <- 1

interpret
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mat[15, 3] <- 1

mat[18, 4] <1

nw <- network(mat, directed = FALSE, bipartite = FALSE)

cv <- matrix(rnorm(400), nrow = 20, ncol = 20)

offsetmat <- matrix(rbinom(400, 1, @.1), nrow = 20, ncol = 20)

offsetmat[1, 5] <- 1

offsetmat[10, 7] <- 1

offsetmat[15, 3] <- 1

offsetmat[18, 4] < 1

model <- ergm(nw ~ edges + kstar(2) + edgecov(cv) + offset(edgecov(offsetmat)),
offset.coef = -Inf)

summary (model)

# tie-level interpretation (note that dyad interpretation would not make any
# sense in an undirected network):

interpret(model, type = "tie", i =1,
interpret(model, type = "tie", i =

2) # 0.28 (= normal dyad)
=5) # 0.00 (= structural zero)

|
—
[SFPRyEry
n

# node-level interpretation; note the many @ probabilities due to the

# structural zeros; also note the warning message that the probabilities may
# be slightly imprecise because -Inf needs to be approximated by some large
# negative number (-9e8):

interpret(model, type = "node”, i =1, j = 3:5)

# repeat the same exercise for a directed network

nw <- network(mat, directed = TRUE, bipartite = FALSE)

model <- ergm(nw ~ edges + istar(2) + edgecov(cv) + offset(edgecov(offsetmat)),
offset.coef = -Inf)

interpret(model, type = "tie", i =1, j =2) # 0.13 (= normal dyad)
interpret(model, type = "tie", i =1, j =5) # 0.00 (= structural zero)
interpret(model, type = "dyad”, i =1, j = 2) # results for normal dyad
interpret(model, type = "dyad”, i =1, j = 5) # results for i->j struct. zero
interpret(model, type = "node”, i =1, j = 3:5)

# micro-level interpretation for bipartite graph with structural zeros
set.seed(12345)
mat <- matrix(rbinom(200, 1, 0.1), nrow = 20, ncol = 10)
mat[1, 5] <- 1
mat[10, 7] <- 1
mat[15, 3] <- 1
mat[18, 4] < 1
nw <- network(mat, directed = FALSE, bipartite = TRUE)
cv <- matrix(rnorm(200), nrow = 20, ncol = 10) # some covariate
offsetmat <- matrix(rbinom(200, 1, ©0.1), nrow = 20, ncol = 10)
offsetmat[1, 5] <- 1
offsetmat[10, 7] <- 1
offsetmat[15, 3] <- 1
offsetmat[18, 4] < 1
model <- ergm(nw ~ edges + blstar(2) + edgecov(cv)
+ offset(edgecov(offsetmat)), offset.coef = -Inf)
summary (model)

# tie-level interpretation; note the index for the second mode starts with 21
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interpret(model, type = "tie", i =1, j = 21)

# dyad-level interpretation does not make sense because network is undirected;
# node-level interpretation prints warning due to structural zeros, but

# computes the correct probabilities (though slightly imprecise because -Inf
# is approximated by some small number:

interpret(model, type = "node”, i =1, j = 21:25)

# compute all dyadic probabilities
dyads <- edgeprob(model)
dyads

## End(Not run)

marginalplot Plot marginal effects for two-way interactions in ERGMs

Description

Plot marginal effects for two-way interactions in ERGMs.

Usage

marginalplot(model, varl, var2, inter, ci = 0.95, rug = FALSE,
point = FALSE, structzeromat = NULL, zeroline = TRUE,
color = "black”, xlab = NULL, ylab = NULL)

Arguments

model An ergm object as generated by the ergm package. Note that marginal effects
plots cannot be created for btergm objects because the variance-covariance ma-
trix is not valid. However, it should be possible to apply the marginalplot
function to MCMC-MLE-estimated TERGMSs because the ergm object is stored
in the ergm slot of an mtergm object. To do this, supply the ergm object instead
of the mtergm object (e.g., marginalplot(mtergmobject@ergm)).

varil Name of the first main variable. This is the focal variable.

var2 Name of the second main variable. This is the conditioning variable.

inter Name of the interaction effect.

ci Significance level.

rug Display the distribution of the conditioning variable at the bottom of the plot?

point Display error bars for the levels of the conditioning variable (instead of a con-

tinuous curve)?

structzeromat An optional matrix object which indicates dyads that should be deleted prior to
the calculation of the confidence interval for the marginal effect curve. This is
useful when such a matrix was used to indicate structural zeros during estima-
tion. In this event, the dyads characterized by structural zeros are not allowed
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to be tied, therefore they should be removed from the set of dyads used for the
calculation of marginal effects. The matrix should contain ones for structural
zeros and zeros for entries that should be used.

zeroline Draw a horizontal line to indicate zero for the first main variable?
color Color of the curve, confidence interval, and distribution.
xlab Axis label for the second (conditioning) variable.
ylab Axis label for the first (focal) variable.
Details

The marginalplot function creates marginal effects plots for ERGMs with interaction effects. The
user has to supply the ergm object and the coefficient names of the first main variable, the second
main variable, and the interaction term as stored in the coefficients vector inside the ergm object.
It is possible to draw continuous curves or discrete error bars depending on the nature of the data
(using the point argument). The distribution of the second (conditioning) variable can be plotted
at the bottom of the viewport using the rug argument.

The resulting marginal effects plot is a ggplot2 plot. This means it can be extended by plotting
additional elements and using themes.

Author(s)

Philip Leifeld (http://www.philipleifeld.com)

See Also

btergm-package interpret edgeprob

Examples

## Not run:

# data preparation

data("florentine")

n <- network.size(flobusiness)

wealth <- get.vertex.attribute(flobusiness, "wealth")

priorates <- get.vertex.attribute(flobusiness, "priorates”)
wealth.icov <- matrix(rep(wealth, n), ncol = n, byrow = TRUE)
priorates.icov <- matrix(rep(priorates, n), ncol = n, byrow = TRUE)
interac <- wealth.icov * priorates.icov

# estimate model with interaction effect
model <- ergm(flobusiness ~ edges + esp(1) + edgecov(wealth.icov)

+ edgecov(priorates.icov) + edgecov(interac))

# plot the interaction (note the additional optional ggplot2 elements)
marginalplot(model, varl = "edgecov.wealth.icov"”,
var2 = "edgecov.priorates.icov”, inter = "edgecov.interac”,
color = "darkred”, rug = TRUE, point = FALSE, xlab = "Priorates”,
ylab = "Wealth"”) + theme_bw() + ggtitle("Interaction effect"”)

## End(Not run)
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simulate.btergm

Simulate new networks from btergm objects

Description

Simulate new networks from btergm objects.

Usage

## S3 method for class 'btergm'
simulate(object, nsim = 1, seed = NULL,

index = NULL, formula = getformula(object),
coef = object@coef, verbose = TRUE, ...)
Arguments

object A btergm object, resulting from a call of the btergm function.

nsim The number of networks to be simulated. Note that for values greater than one,
a network.list object is returned, which can be indexed just like a 1ist ob-
ject, for example mynetworks[[1]] for the first simulated network in the object
mynetworks.

seed Random number integer seed. See set.seed.

formula A model formula from which the new network(s) should be simulated. By de-
fault, the formula is taken from the btergm object.

index Index of the network from which the new network(s) should be simulated. The
index refers to the list of response networks on the left-hand side of the model
formula. Note that more recent networks are located at the end of the list. By
default, the last (= most recent) network is used.

coef A vector of parameter estimates. By default, the coefficients are extracted from
the given btergm object.

verbose Print additional details while running the simulations?
Arbitrary further arguments are handed over to the simulate function (and its
formula method) in the ergm package. For details, refer to the simulate.ergm
help page.

Details

The simulate.btergm function is a wrapper for the "formula" method of the simulate.ergm
function in the ergm package (see help("simulate.ergm”)). It can be used to simulate new net-
works from a btergm object. The index argument specifies from which of the original networks
the new network(s) should be simulated. For example, if object is an estimation based on cospon-
sorship networks from the 99th to the 107th Congress (as in Desmarais and Cranmer 2012), and
the cosponsorship network in the 108th Congress should be predicted using the simulate.btergm
function, then the argument index = 9 should be passed to the function because the network should
be based on the 9th network in the list (that is, the latest network, which is the cosponsorship net-
work for the 107th Congress). Note that all relevant objects (the networks and the covariates) must
be present in the workspace (as was the case during the estimation of the model).
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See Also
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Examples

# fit a TERGM to some toy data
library("network™)

set.seed(5)

networks <- list()

for(i in 1:10){ # create 10 random networks with 10 actors
mat <- matrix(rbinom(100, 1, .25), nrow = 10, ncol = 10)
diag(mat) <- @ # loops are excluded
nw <- network(mat) # create network object
networks[[i]] <- nw # add network to the list
}
covariates <- list()
for (i in 1:10) { # create 10 matrices as covariate

mat <- matrix(rnorm(100), nrow = 10, ncol = 10)
covariates[[i]] <- mat # add matrix to the list
3
fit <- btergm(networks ~ edges + istar(2) +
edgecov(covariates), R = 100)

# simulate 12 new networks from the last (= 10th) time step
siml <- simulate(fit, nsim = 12)

# simulate 1 network from the first time step
sim2 <- simulate(fit, index = 1)

# simulate network from t = 5 with larger covariate coefficient
coefs <- coef(fit)

coefs["edgecov.covariates[[i]]"] <- 0.5

sim3 <- simulate(fit, index = 5, coef = coefs)

tergm-terms Temporal dependencies for TERGMs

Description

Network statistics that span multiple time points.
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Details

In addition to the ERGM user terms that can be estimated within a single network (see ergm-terms),
the btergm package provides additional model terms that can be used within a formula. These
additional statistics span multiple time periods and are therefore called "temporal dependencies."
Examples include memory terms (i.e., positive autoregression, dyadic stability, edge innovation, or
edge loss), delayed reciprocity or mutuality, and time covariates (i.e., functions of time or interac-
tions with time):

delrecip(mutuality = FALSE, lag =1) The delrecip term checks for delayed reciprocity. For
example, if node j is tied to node i at t = 1, does this lead to a reciprocation of that tie back
fromitojatt=27 [f mutuality = TRUE is set, this extends not only to ties, but also non-ties.
That is, if i is not tied to j at t = 1, will this lead to j not being tied to i at t = 2, in addition to
positively reciprocal patterns over time? The lag argument controls the size of the temporal
lag: with lag = 1, reciprocity over one consecutive time period is checked. Note that as lag
increases, the number of time steps on the dependent variable decreases.

memory (type = "stability"”, lag =1) Memory terms control for the impact of a previous net-
work on the current network. Four different types of memory terms are available: positive
autoregression (type = "autoregression”) checks whether previous ties are carried over to
the current network; dyadic stability (type = "stability") checks whether both edges and
non-edges are stable between the previous and the current network; edge loss (type = "loss")
checks whether ties in the previous network have been dissolved and no longer exist in the
current network; and edge innovation (type = "innovation") checks whether previously un-
connected nodes have the tendency to become tied in the current network. The lag argument
accepts integer values and controls whether the comparison is made with the previous network
(lag = 1), the pre-previous network (lag = 2) etc. Note that as lag increases, the number of
time steps on the dependent variable decreases.

timecov(x =NULL, minimum =1, maximum =NULL, transform= function(t) t) The timecov model

term checks for linear or non-linear time trends with regard to edge formation. Optionally, this
can be combined with a covariate to create an interaction effect between a dyadic covariate and
time in order to test whether the importance of a covariate increases or decreases over time. In
the default case, edges modeled as being linearly increasingly important over time. By tweak-
ing the transform function, arbitrary functional forms of time can be tested. For example,
transform = sgrt (for a geometrically decreasing time effect), transform = function(x)
x*2 (for a geometrically increasing time effect), transform = function(t) t (for a linear
time trend) or polynomial functional forms (e.g., @ + (1 * t) + (1 * t*2)) can be used. For
time steps below the minimum value and above the maximum value, the time covariate is set to
0. These arguments can be used to create step-wise, discrete effects, for example to use a value
of 0 up to an external event and 1 from that event onwards in order to control for influences of
external events.
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