
Package ‘bssm’
June 9, 2020

Type Package

Title Bayesian Inference of Non-Gaussian State Space Models

Version 1.0.0

Date 2020-06-09

Description Efficient methods for Bayesian inference of state space models
via particle Markov chain Monte Carlo (MCMC) and MCMC based on parallel
importance sampling type weighted estimators
(Vihola, Helske, and Franks, 2020, <arXiv:1609.02541>).
Gaussian, Poisson, binomial, negative binomial, and Gamma
observation densities and basic stochastic volatility models with Gaussian state
dynamics, as well as general non-linear Gaussian models and discretised
diffusion models are supported.

License GPL (>= 2)

Depends R (>= 3.1.3)

Suggests dplyr, ggplot2 (>= 2.0.0), Hmisc, KFAS (>= 1.2.1), knitr (>=
1.11), MASS, ramcmc, rmarkdown (>= 0.8.1), sde, sitmo, testthat

Imports coda (>= 0.18-1), diagis, Rcpp (>= 0.12.3)

LinkingTo Rcpp, RcppArmadillo, ramcmc, sitmo

SystemRequirements C++11

RoxygenNote 7.1.0

VignetteBuilder knitr

BugReports https://github.com/helske/bssm/issues

ByteCompile true

Encoding UTF-8

NeedsCompilation yes

Author Jouni Helske [aut, cre] (<https://orcid.org/0000-0001-7130-793X>),
Matti Vihola [aut] (<https://orcid.org/0000-0002-8041-7222>)

Maintainer Jouni Helske <jouni.helske@iki.fi>

Repository CRAN

Date/Publication 2020-06-09 15:20:07 UTC

1

https://github.com/helske/bssm/issues

2 R topics documented:

R topics documented:

ar1_lg . 3
ar1_ng . 3
as.data.frame.mcmc_output . 4
as_bssm . 5
bootstrap_filter . 6
bsm_lg . 7
bsm_ng . 9
bssm . 10
drownings . 11
ekf . 11
ekf_smoother . 12
ekpf_filter . 12
exchange . 13
expand_sample . 13
fast_smoother . 14
gaussian_approx . 15
importance_sample . 15
kfilter . 16
logLik.gaussian . 17
logLik.ssm_nlg . 18
logLik.ssm_sde . 19
particle_smoother . 19
poisson_series . 21
predict.mcmc_output . 21
print.mcmc_output . 23
run_mcmc . 23
run_mcmc.gaussian . 24
run_mcmc.nongaussian . 25
run_mcmc.ssm_nlg . 27
run_mcmc.ssm_sde . 29
sim_smoother . 30
ssm_mlg . 32
ssm_mng . 33
ssm_nlg . 35
ssm_sde . 36
ssm_ulg . 37
ssm_ung . 39
summary.mcmc_output . 40
svm . 41
ukf . 42
uniform . 42

Index 44

ar1_lg 3

ar1_lg Univariate Gaussian model with AR(1) latent process

Description

Constructs a simple Gaussian model where the state dynamics follow an AR(1) process.

Usage

ar1_lg(y, rho, sigma, mu, sd_y, beta, xreg = NULL)

Arguments

y Vector or a ts object of observations.

rho prior for autoregressive coefficient.

sigma Prior for the standard deviation of noise of the AR-process.

mu A fixed value or a prior for the stationary mean of the latent AR(1) process.
Parameter is omitted if this is set to 0.

sd_y Prior for the standard deviation of observation equation.

beta Prior for the regression coefficients.

xreg Matrix containing covariates.

Value

Object of class ar1_lg.

ar1_ng Non-Gaussian model with AR(1) latent process

Description

Constructs a simple non-Gaussian model where the state dynamics follow an AR(1) process.

Usage

ar1_ng(y, rho, sigma, mu, distribution, phi, u = 1, beta, xreg = NULL)

4 as.data.frame.mcmc_output

Arguments

y Vector or a ts object of observations.

rho prior for autoregressive coefficient.

sigma Prior for the standard deviation of noise of the AR-process.

mu A fixed value or a prior for the stationary mean of the latent AR(1) process.
Parameter is omitted if this is set to 0.

distribution distribution of the observation. Possible choices are "poisson", "binomial"
and "negative binomial".

phi Additional parameter relating to the non-Gaussian distribution. For Negative
binomial distribution this is the dispersion term, and for other distributions this
is ignored.

u Constant parameter for non-Gaussian models. For Poisson and negative bino-
mial distribution, this corresponds to the offset term. For binomial, this is the
number of trials.

beta Prior for the regression coefficients.

xreg Matrix containing covariates.

Value

Object of class ar1_ng.

as.data.frame.mcmc_output

Convert MCMC chain to data.frame

Description

Converts the MCMC chain output of run_mcmc to data.frame.

Usage

S3 method for class 'mcmc_output'
as.data.frame(
x,
row.names,
optional,
variable = c("theta", "states"),
times,
states,
expand = !(x$mcmc_type %in% paste0("is", 1:3)),
...

)

as_bssm 5

Arguments

x Output from run_mcmc.

row.names Ignored.

optional Ignored.

variable Return samples of "theta" (default) or "states"?

times Vector of indices. In case of states, what time points to expand? Default is all.

states Vector of indices. In case of states, what states to expand? Default is all.

expand Should the jump-chain be expanded? Defaults to TRUE for non-IS-MCMC, and
FALSE for IS-MCMC. For expand = FALSE and always for IS-MCMC, the re-
sulting data.frame contains variable weight (= counts times IS-weights).

... Ignored.

as_bssm Convert KFAS Model to bssm Model

Description

Converts SSModel object of KFAS package to bssm model.

Usage

as_bssm(model, kappa = 100, ...)

Arguments

model Object of class SSModel.

kappa For SSModel object, a prior variance for initial state used to replace exact diffuse
elements of the original model.

... Additional arguments to ssm_mlg and ssm_mng (such as prior and updating func-
tions).

Value

Object of class ssm_mlg or ssm_mng.

6 bootstrap_filter

bootstrap_filter Bootstrap Filtering

Description

Function bootstrap_filter performs a bootstrap filtering with stratification resampling.

Usage

bootstrap_filter(model, nsim, ...)

S3 method for class 'gaussian'
bootstrap_filter(
model,
nsim,
seed = sample(.Machine$integer.max, size = 1),
...

)

S3 method for class 'nongaussian'
bootstrap_filter(
model,
nsim,
seed = sample(.Machine$integer.max, size = 1),
...

)

S3 method for class 'ssm_nlg'
bootstrap_filter(
model,
nsim,
seed = sample(.Machine$integer.max, size = 1),
...

)

S3 method for class 'ssm_sde'
bootstrap_filter(
model,
nsim,
L,
seed = sample(.Machine$integer.max, size = 1),
...

)

Arguments

model of class bsm_lg, bsm_ng or svm.

bsm_lg 7

nsim Number of samples.

... Ignored.

seed Seed for RNG.

L Integer defining the discretization level for SDE models.

Value

A list containing samples, weights from the last time point, and an estimate of log-likelihood.

Examples

set.seed(1)
x <- cumsum(rnorm(50))
y <- rnorm(50, x, 0.5)
model <- bsm_lg(y, sd_y = 0.5, sd_level = 1, P1 = 1)

out <- bootstrap_filter(model, nsim = 1000)
ts.plot(cbind(y, x, out$att), col = 1:3)
ts.plot(cbind(kfilter(model)att, outatt), col = 1:3)

data("poisson_series")
model <- bsm_ng(poisson_series, sd_level = 0.1, sd_slope = 0.01,

P1 = diag(1, 2), distribution = "poisson")

out <- bootstrap_filter(model, nsim = 100)
ts.plot(cbind(poisson_series, exp(out$att[, 1])), col = 1:2)

bsm_lg Basic Structural (Time Series) Model

Description

Constructs a basic structural model with local level or local trend component and seasonal compo-
nent.

Usage

bsm_lg(
y,
sd_y,
sd_level,
sd_slope,
sd_seasonal,
beta,
xreg = NULL,
period = frequency(y),
a1,

8 bsm_lg

P1,
D,
C

)

Arguments

y Vector or a ts object of observations.

sd_y A fixed value or prior for the standard error of observation equation. See priors
for details.

sd_level A fixed value or a prior for the standard error of the noise in level equation. See
priors for details.

sd_slope A fixed value or a prior for the standard error of the noise in slope equation. See
priors for details. If missing, the slope term is omitted from the model.

sd_seasonal A fixed value or a prior for the standard error of the noise in seasonal equation.
See priors for details. If missing, the seasonal component is omitted from the
model.

beta Prior for the regression coefficients.

xreg Matrix containing covariates.

period Length of the seasonal component i.e. the number of

a1 Prior means for the initial states (level, slope, seasonals). Defaults to vector of
zeros.

P1 Prior covariance for the initial states (level, slope, seasonals). Default is diagonal
matrix with 1000 on the diagonal.

D, C Intercept terms for observation and state equations, given as a length n vector
and m times n matrix respectively.

Value

Object of class bsm_lg.

Examples

prior <- uniform(0.1 * sd(log10(UKgas)), 0, 1)
model <- bsm_lg(log10(UKgas), sd_y = prior, sd_level = prior,

sd_slope = prior, sd_seasonal = prior)

mcmc_out <- run_mcmc(model, iter = 5000)
summary(expand_sample(mcmc_out, "theta"))$stat
mcmc_out$theta[which.max(mcmc_out$posterior),]
sqrt((fit <- StructTS(log10(UKgas), type = "BSM"))$coef)[c(4, 1:3)]

bsm_ng 9

bsm_ng Non-Gaussian Basic Structural (Time Series) Model

Description

Constructs a non-Gaussian basic structural model with local level or local trend component, a sea-
sonal component, and regression component (or subset of these components).

Usage

bsm_ng(
y,
sd_level,
sd_slope,
sd_seasonal,
sd_noise,
distribution,
phi,
u = 1,
beta,
xreg = NULL,
period = frequency(y),
a1,
P1,
C

)

Arguments

y Vector or a ts object of observations.

sd_level A fixed value or a prior for the standard error of the noise in level equation. See
priors for details.

sd_slope A fixed value or a prior for the standard error of the noise in slope equation. See
priors for details. If missing, the slope term is omitted from the model.

sd_seasonal A fixed value or a prior for the standard error of the noise in seasonal equation.
See priors for details. If missing, the seasonal component is omitted from the
model.

sd_noise Prior for the standard error of the additional noise term. See priors for details.
If missing, no additional noise term is used.

distribution distribution of the observation. Possible choices are "poisson", "binomial",
"negative binomial".

phi Additional parameter relating to the non-Gaussian distribution. For Negative
binomial distribution this is the dispersion term, and for other distributions this
is ignored.

10 bssm

u Constant parameter for non-Gaussian models. For Poisson and negative bino-
mial distribution, this corresponds to the offset term. For binomial, this is the
number of trials.

beta Prior for the regression coefficients.

xreg Matrix containing covariates.

period Length of the seasonal component i.e. the number of observations per season.
Default is frequency(y).

a1 Prior means for the initial states (level, slope, seasonals). Defaults to vector of
zeros.

P1 Prior covariance for the initial states (level, slope, seasonals). Default is diagonal
matrix with 1e5 on the diagonal.

C Intercept terms for state equation, given as a m times n matrix.

Value

Object of class bsm_ng.

Examples

model <- bsm_ng(Seatbelts[, "VanKilled"], distribution = "poisson",
sd_level = halfnormal(0.01, 1),
sd_seasonal = halfnormal(0.01, 1),
beta = normal(0, 0, 10),
xreg = Seatbelts[, "law"])

Not run:
set.seed(123)
mcmc_out <- run_mcmc(model, iter = 5000, nsim = 10)
mcmc_out$acceptance_rate
theta <- expand_sample(mcmc_out, "theta")
plot(theta)
summary(theta)

library("ggplot2")
ggplot(as.data.frame(theta[,1:2]), aes(x = sd_level, y = sd_seasonal)) +

geom_point() + stat_density2d(aes(fill = ..level.., alpha = ..level..),
geom = "polygon") + scale_fill_continuous(low = "green", high = "blue") +
guides(alpha = "none")

End(Not run)

bssm Bayesian Inference of State Space Models

drownings 11

Description

This package contains functions for Bayesian inference of basic stochastic volatility model and
exponential family state space models, where the state equation is linear and Gaussian, and the con-
ditional observation density is either Gaussian, Poisson, binomial, negative binomial or Gamma
density. General non-linear Gaussian models and models with continuous SDE dynamics are
also supported. For formal definition of the currently supported models and methods, as well
as some theory behind the IS-MCMC and ψ-APF, see the package vignette and arXiv paper:
http://arxiv.org/abs/1609.02541.

drownings Deaths by drowning in Finland in 1969-2014

Description

Dataset containing number of deaths by drowning in Finland in 1969-2014, yearly average summer
temperatures (June to August) and corresponding population sizes (in hundreds of thousands).

Format

A time series object containing 46 observations and.

Source

Statistics Finland http://pxnet2.stat.fi/PXWeb/pxweb/en/StatFin/.

ekf (Iterated) Extended Kalman Filtering

Description

Function ekf runs the (iterated) extended Kalman filter for the given non-linear Gaussian model
of class ssm_nlg, and returns the filtered estimates and one-step-ahead predictions of the states αt

given the data up to time t.

Usage

ekf(model, iekf_iter = 0)

Arguments

model Model model
iekf_iter If iekf_iter > 0, iterated extended Kalman filter is used with iekf_iter iter-

ations.

Value

List containing the log-likelihood, one-step-ahead predictions at and filtered estimates att of states,
and the corresponding variances Pt and Ptt.

http://arxiv.org/abs/1609.02541
http://pxnet2.stat.fi/PXWeb/pxweb/en/StatFin/

12 ekpf_filter

ekf_smoother Extended Kalman Smoothing

Description

Function ekf_smoother runs the (iterated) extended Kalman smoother for the given non-linear
Gaussian model of class ssm_nlg, and returns the smoothed estimates of the states and the corre-
sponding variances.

Usage

ekf_smoother(model, iekf_iter = 0)

Arguments

model Model model

iekf_iter If iekf_iter > 0, iterated extended Kalman filter is used with iekf_iter iter-
ations.

Value

List containing the log-likelihood, smoothed state estimates alphahat, and the corresponding vari-
ances Vt and Ptt.

ekpf_filter Extended Kalman Particle Filtering

Description

Function ekpf_filter performs a extended Kalman particle filtering with stratification resampling,
based on Van Der Merwe et al (2001).

Usage

ekpf_filter(object, nsim, ...)

S3 method for class 'ssm_nlg'
ekpf_filter(object, nsim, seed = sample(.Machine$integer.max, size = 1), ...)

Arguments

object of class ssm_nlg.

nsim Number of samples.

... Ignored.

seed Seed for RNG.

exchange 13

Value

A list containing samples, filtered estimates and the corresponding covariances, weights from the
last time point, and an estimate of log-likelihood.

References

Van Der Merwe, R., Doucet, A., De Freitas, N., & Wan, E. A. (2001). The unscented particle filter.
In Advances in neural information processing systems (pp. 584-590).

exchange Pound/Dollar daily exchange rates

Description

Dataset containing daily log-returns from 1/10/81-28/6/85 as in [1]

Format

A vector of length 945.

Source

http://www.ssfpack.com/DKbook.html.

References

James Durbin, Siem Jan Koopman (2012). "Time Series Analysis by State Space Methods". Oxford
University Press.

expand_sample Expand the Jump Chain representation

Description

The MCMC algorithms of bssm use a jump chain representation where we store the accepted values
and the number of times we stayed in the current value. Although this saves bit memory and
is especially convenient for IS-corrected MCMC, sometimes we want to have the usual sample
paths. Function expand_sample returns the expanded sample based on the counts. Note that for
IS-corrected output the expanded sample corresponds to the approximate posterior.

Usage

expand_sample(x, variable = "theta", times, states, by_states = TRUE)

http://www.ssfpack.com/DKbook.html

14 fast_smoother

Arguments

x Output from run_mcmc.

variable Expand parameters "theta" or states "states".

times Vector of indices. In case of states, what time points to expand? Default is all.

states Vector of indices. In case of states, what states to expand? Default is all.

by_states If TRUE (default), return list by states. Otherwise by time.

fast_smoother Kalman Smoothing

Description

Methods for Kalman smoothing of the states. Function fast_smoother computes only smoothed
estimates of the states, and function smoother computes also smoothed variances.

Usage

fast_smoother(model, ...)

smoother(model, ...)

Arguments

model Model model.

... Ignored.

Details

For non-Gaussian models, the smoothing is based on the approximate Gaussian model.

Value

Matrix containing the smoothed estimates of states, or a list with the smoothed states and the vari-
ances.

gaussian_approx 15

gaussian_approx Gaussian Approximation of Non-Gaussian/Non-linear State Space
Model

Description

Returns the approximating Gaussian model. This function is rarely needed itself, and is mainly
available for testing and debugging purposes.

Usage

gaussian_approx(model, max_iter, conv_tol, ...)

S3 method for class 'nongaussian'
gaussian_approx(model, max_iter = 100, conv_tol = 1e-08, ...)

S3 method for class 'ssm_nlg'
gaussian_approx(model, max_iter = 100, conv_tol = 1e-08, iekf_iter = 0, ...)

Arguments

model Model to be approximated.

max_iter Maximum number of iterations.

conv_tol Tolerance parameter.

... Ignored.

iekf_iter For non-linear models, number of iterations in iterated EKF (defaults to 0).

Examples

data("poisson_series")
model <- bsm_ng(y = poisson_series, sd_slope = 0.01, sd_level = 0.1,

distribution = "poisson")
out <- gaussian_approx(model)

importance_sample Importance Sampling from non-Gaussian State Space Model

Description

Returns nsim samples from the approximating Gaussian model with corresponding (scaled) impor-
tance weights.

16 kfilter

Usage

importance_sample(model, nsim, use_antithetic, max_iter, conv_tol, seed, ...)

S3 method for class 'nongaussian'
importance_sample(
model,
nsim,
use_antithetic = TRUE,
max_iter = 100,
conv_tol = 1e-08,
seed = sample(.Machine$integer.max, size = 1),
...

)

Arguments

model of class bsm_ng, ar1_ng svm, ssm_ung, or ssm_mng.

nsim Number of samples.

use_antithetic Logical. If TRUE (default), use antithetic variable for location in simulation
smoothing. Ignored for ssm_mng models.

max_iter Maximum number of iterations used for the approximation.

conv_tol Convergence threshold for the approximation. Approximation is claimed to be
converged when the mean squared difference of the modes is less than conv_tol.

seed Seed for the random number generator.

... Ignored.

kfilter Kalman Filtering

Description

Function kfilter runs the Kalman filter for the given model, and returns the filtered estimates and
one-step-ahead predictions of the states αt given the data up to time t.

Usage

kfilter(model, ...)

Arguments

model Model Model object.

... Ignored.

Details

For non-Gaussian models, the filtering is based on the approximate Gaussian model.

logLik.gaussian 17

Value

List containing the log-likelihood (approximate in non-Gaussian case), one-step-ahead predictions
at and filtered estimates att of states, and the corresponding variances Pt and Ptt.

See Also

bootstrap_filter

logLik.gaussian Log-likelihood of a Gaussian State Space Model

Description

Computes the log-likelihood of the state space model of bssm package.

Computes the log-likelihood of the state space model of bssm package.

Usage

S3 method for class 'gaussian'
logLik(object, ...)

S3 method for class 'nongaussian'
logLik(
object,
nsim,
method = "psi",
max_iter = 100,
conv_tol = 1e-08,
seed = sample(.Machine$integer.max, size = 1),
...

)

Arguments

object Model model.

... Ignored.

nsim Number of samples for particle filter or importance sampling. If 0, approximate
log-likelihood based on the gaussian approximation is returned.

method Sampling method, default is psi-auxiliary filter ("psi"), other choices are "bsf"
bootstrap particle filter, and "spdk", which uses the importance sampling ap-
proach by Shephard and Pitt (1997) and Durbin and Koopman (1997).

max_iter Maximum number of iterations for gaussian approximation algorithm.

conv_tol Tolerance parameter for the approximation algorithm.

seed Seed for the random number generator.

18 logLik.ssm_nlg

Examples

model <- ssm_ulg(y = c(1,4,3), Z = 1, H = 1, T = 1, R = 1)
logLik(model)
model <- ssm_ung(y = c(1,4,3), Z = 1, T = 1, R = 0.5, P1 = 2,

distribution = "poisson")

model2 <- bsm_ng(y = c(1,4,3), sd_level = 0.5, P1 = 2,
distribution = "poisson")

logLik(model, nsim = 0)
logLik(model2, nsim = 0)
logLik(model, nsim = 10)
logLik(model2, nsim = 10)

logLik.ssm_nlg Log-likelihood of a Non-linear State Space Model

Description

Computes the log-likelihood of the state space model of bssm package.

Usage

S3 method for class 'ssm_nlg'
logLik(
object,
nsim,
method = "bsf",
max_iter = 100,
conv_tol = 1e-08,
iekf_iter = 0,
seed = sample(.Machine$integer.max, size = 1),
...

)

Arguments

object Model model.

nsim Number of samples for particle filter. If 0, approximate log-likelihood is re-
turned either based on the gaussian approximation or EKF, depending on the
method argument.

method Sampling method. Default is the bootstrap particle filter ("bsf"). Other choices
are "psi" which uses psi-auxiliary filter (or approximating gaussian model in
the case of nsim = 0), and "ekf" which uses EKF-based particle filter (or just
EKF approximation in the case of nsim = 0).

max_iter Maximum number of iterations for gaussian approximation algorithm.

conv_tol Tolerance parameter for the approximation algorithm.

logLik.ssm_sde 19

iekf_iter If iekf_iter > 0, iterated extended Kalman filter is used with iekf_iter iter-
ations in place of standard EKF. Defaults to zero.

seed Seed for the random number generator.

... Ignored.

logLik.ssm_sde Log-likelihood of a State Space Model with SDE dynamics

Description

Computes the log-likelihood of the state space model of bssm package.

Usage

S3 method for class 'ssm_sde'
logLik(object, nsim, L, seed = sample(.Machine$integer.max, size = 1), ...)

Arguments

object Model model.

nsim Number of samples for particle filter. If 0, approximate log-likelihood is re-
turned either based on the gaussian approximation or EKF, depending on the
method argument.

L Integer defining the discretization level defined as (2^L).

seed Seed for the random number generator.

... Ignored.

particle_smoother Particle Smoothing

Description

Function particle_smoother performs filter-smoother or forward-backward smoother, using a
either bootstrap filtering or psi-auxiliary filter with stratification resampling.

20 particle_smoother

Usage

particle_smoother(model, nsim, ...)

S3 method for class 'nongaussian'
particle_smoother(
model,
nsim,
method = "psi",
seed = sample(.Machine$integer.max, size = 1),
max_iter = 100,
conv_tol = 1e-08,
...

)

S3 method for class 'ssm_nlg'
particle_smoother(
model,
nsim,
method = "psi",
seed = sample(.Machine$integer.max, size = 1),
max_iter = 100,
conv_tol = 1e-08,
iekf_iter = 0,
...

)

S3 method for class 'ssm_sde'
particle_smoother(
model,
nsim,
L,
seed = sample(.Machine$integer.max, size = 1),
...

)

Arguments

model Model.

nsim Number of samples.

... Ignored.

method Choice of particle filter algorithm. For Gaussian and non-Gaussian models with
linear dynamics, options are "bsf" (bootstrap particle filter) and "psi" (ψ-APF,
the default), and for non-linear models options "ekf" (extended Kalman particle
filter) is also available.

seed Seed for RNG.

max_iter Maximum number of iterations used in Gaussian approximation. Used ψ-APF.

conv_tol Tolerance parameter used in Gaussian approximation. Used ψ-APF.

poisson_series 21

iekf_iter If zero (default), first approximation for non-linear Gaussian models is obtained
from extended Kalman filter. If iekf_iter > 0, iterated extended Kalman filter
is used with iekf_iter iterations.

L Integer defining the discretization level.

poisson_series Simulated Poisson time series data

Description

See example for code for reproducing the data.

Format

A vector of length 100

Examples

The data is generated as follows:
set.seed(321)
slope <- cumsum(c(0, rnorm(99, sd = 0.01)))
y <- rpois(100, exp(cumsum(slope + c(0, rnorm(99, sd = 0.1)))))

predict.mcmc_output Predictions for State Space Models

Description

Draw samples from the posterior predictive distribution given the posterior draws of hyperparame-
ters theta and alpha_n+1.

Usage

S3 method for class 'mcmc_output'
predict(
object,
future_model,
type = "response",
seed = sample(.Machine$integer.max, size = 1),
nsim,
...

)

22 predict.mcmc_output

Arguments

object mcmc_output object obtained from run_mcmc

future_model Model for future observations. Should have same structure as the original model
which was used in MCMC, in order to plug the posterior samples of the model
parameters to the right places.

type Return predictions on "mean" "response", or "state" level.

seed Seed for RNG.

nsim Number of samples to draw.

... Ignored.

Value

Data frame of predicted samples.

Examples

require("graphics")
y <- log10(JohnsonJohnson)
prior <- uniform(0.01, 0, 1)
model <- bsm_lg(window(y, end = c(1974, 4)), sd_y = prior,

sd_level = prior, sd_slope = prior, sd_seasonal = prior)

mcmc_results <- run_mcmc(model, iter = 5000)
future_model <- model
future_model$y <- ts(rep(NA, 25),

start = tsp(model$y)[2] + 2 * deltat(model$y),
frequency = frequency(model$y))

pred <- predict(mcmc_results, future_model, type = "state",
nsim = 1000)

require("dplyr")
sumr_fit <- as.data.frame(mcmc_results, variable = "states") %>%

group_by(time, iter) %>%
mutate(signal =

value[variable == "level"] +
value[variable == "seasonal_1"]) %>%

group_by(time) %>%
summarise(mean = mean(signal),

lwr = quantile(signal, 0.025),
upr = quantile(signal, 0.975))

sumr_pred <- pred %>%
group_by(time, sample) %>%
mutate(signal =

value[variable == "level"] +
value[variable == "seasonal_1"]) %>%

group_by(time) %>%
summarise(mean = mean(signal),

lwr = quantile(signal, 0.025),
upr = quantile(signal, 0.975))

print.mcmc_output 23

require("ggplot2")
rbind(sumr_fit, sumr_pred) %>%

ggplot(aes(x = time, y = mean)) +
geom_ribbon(aes(ymin = lwr, ymax = upr),
fill = "#92f0a8", alpha = 0.25) +
geom_line(colour = "#92f0a8") +
theme_bw() +
geom_point(data = data.frame(

mean = log10(JohnsonJohnson),
time = time(JohnsonJohnson)))

print.mcmc_output Print Results from MCMC Run

Description

Prints some basic summaries from the MCMC run by run_mcmc.

Usage

S3 method for class 'mcmc_output'
print(x, ...)

Arguments

x Output from run_mcmc.

... Ignored.

Details

In case of IS-corrected MCMC, the SE-IS is based only on importance sampling estimates, with
weights corresponding to the block sizes of the jump chain multiplied by the importance correction
weights (if IS-corrected method was used). These estimates ignore the possible autocorrelations but
provide a lower-bound for the asymptotic standard error.

run_mcmc Bayesian Inference of State Space Models

Description

Adaptive Markov chain Monte Carlo simulation of state space models using Robust Adaptive
Metropolis algorithm by Vihola (2012).

24 run_mcmc.gaussian

Usage

run_mcmc(model, iter, ...)

Arguments

model State space model model of bssm package.

iter Number of MCMC iterations.

... Parameters to specific methods. See run_mcmc.gaussian and run_mcmc.nongaussian
for details.

References

Matti Vihola (2012). "Robust adaptive Metropolis algorithm with coerced acceptance rate". Statis-
tics and Computing, Volume 22, Issue 5, pages 997–1008. Matti Vihola, Jouni Helske, Jordan
Franks (2020). "Importance sampling type estimators based on approximate marginal MCMC"
ArXiv:1609.02541.

run_mcmc.gaussian Bayesian Inference of Linear-Gaussian State Space Models

Description

Bayesian Inference of Linear-Gaussian State Space Models

Usage

S3 method for class 'gaussian'
run_mcmc(
model,
iter,
output_type = "full",
burnin = floor(iter/2),
thin = 1,
gamma = 2/3,
target_acceptance = 0.234,
S,
end_adaptive_phase = TRUE,
n_threads = 1,
seed = sample(.Machine$integer.max, size = 1),
...

)

run_mcmc.nongaussian 25

Arguments

model Model model.

iter Number of MCMC iterations.

output_type Type of output. Default is "full", which returns samples from the posterior
p(α, θ). Option "summary" does not simulate states directly but computes the
posterior means and variances of states using fast Kalman smoothing. This is
slightly faster, more memory efficient and more accurate than calculations based
on simulation smoother. Using option "theta" will only return samples from
the marginal posterior of the hyperparameters θ.

burnin Length of the burn-in period which is disregarded from the results. Defaults to
iter / 2. Note that all MCMC algorithms of bssm used adaptive MCMC during
the burn-in period in order to find good proposal.

thin Thinning rate. All MCMC algorithms in bssm use the jump chain representation,
and the thinning is applied to these blocks. Defaults to 1.

gamma Tuning parameter for the adaptation of RAM algorithm. Must be between 0 and
1 (not checked).

target_acceptance

Target acceptance ratio for RAM. Defaults to 0.234.

S Initial value for the lower triangular matrix of RAM algorithm, so that the co-
variance matrix of the Gaussian proposal distribution is SS′. Note that for
some parameters (currently the standard deviation and dispersion parameters
of bsm_lg models) the sampling is done for transformed parameters with inter-
nal_theta = log(theta).

end_adaptive_phase

If TRUE (default), S is held fixed after the burnin period.

n_threads Number of threads for state simulation.

seed Seed for the random number generator.

... Ignored.

run_mcmc.nongaussian Bayesian Inference of Non-Gaussian State Space Models

Description

Methods for posterior inference of states and parameters.

Usage

S3 method for class 'nongaussian'
run_mcmc(
model,
iter,
nsim,

26 run_mcmc.nongaussian

output_type = "full",
mcmc_type = "da",
sampling_method = "psi",
burnin = floor(iter/2),
thin = 1,
gamma = 2/3,
target_acceptance = 0.234,
S,
end_adaptive_phase = TRUE,
local_approx = TRUE,
n_threads = 1,
seed = sample(.Machine$integer.max, size = 1),
max_iter = 100,
conv_tol = 1e-08,
...

)

Arguments

model Model model.

iter Number of MCMC iterations.

nsim Number of state samples per MCMC iteration. Ignored if mcmc_type is "approx".

output_type Either "full" (default, returns posterior samples of states alpha and hyperpa-
rameters theta), "theta" (for marginal posterior of theta), or "summary" (return
the mean and variance estimates of the states and posterior samples of theta).

mcmc_type What MCMC algorithm to use? Possible choices are "pm" for pseudo-marginal
MCMC, "da" for delayed acceptance version of PMCMC (default), "approx"
for approximate inference based on the Gaussian approximation of the model,
or one of the three importance sampling type weighting schemes: "is3" for
simple importance sampling (weight is computed for each MCMC iteration in-
dependently), "is2" for jump chain importance sampling type weighting, or
"is1" for importance sampling type weighting where the number of particles
used for weight computations is proportional to the length of the jump chain
block.

sampling_method

If "psi", ψ-auxiliary particle filter is used for state sampling (default). If "spdk",
non-sequential importance sampling based on Gaussian approximation is used.
If "bsf", bootstrap filter is used.

burnin Length of the burn-in period which is disregarded from the results. Defaults to
iter / 2.

thin Thinning rate. Defaults to 1. Increase for large models in order to save memory.
For IS-corrected methods, larger value can also be statistically more effective.
Note: With output_type = "summary", the thinning does not affect the compu-
tations of the summary statistics in case of pseudo-marginal methods.

gamma Tuning parameter for the adaptation of RAM algorithm. Must be between 0 and
1 (not checked).

run_mcmc.ssm_nlg 27

target_acceptance

Target acceptance ratio for RAM. Defaults to 0.234.

S Initial value for the lower triangular matrix of RAM algorithm, so that the co-
variance matrix of the Gaussian proposal distribution is SS′. Note that for
some parameters (currently the standard deviation and dispersion parameters
of bsm_ng models) the sampling is done for transformed parameters with inter-
nal_theta = log(theta).

end_adaptive_phase

If TRUE (default), S is held fixed after the burnin period.

local_approx If TRUE (default), Gaussian approximation needed for importance sampling is
performed at each iteration. If false, approximation is updated only once at the
start of the MCMC.

n_threads Number of threads for state simulation.

seed Seed for the random number generator.

max_iter Maximum number of iterations used in Gaussian approximation.

conv_tol Tolerance parameter used in Gaussian approximation.

... Ignored. set.seed(1) n <- 50 slope <- cumsum(c(0, rnorm(n - 1, sd = 0.001)))
level <- cumsum(slope + c(0, rnorm(n - 1, sd = 0.2))) y <- rpois(n, exp(level))
poisson_model <- bsm_ng(y, sd_level = halfnormal(0.01, 1), sd_slope = halfnor-
mal(0.01, 0.1), P1 = diag(c(10, 0.1)), distribution = "poisson") mcmc_is <-
run_mcmc(poisson_model, iter = 1000, nsim = 10, mcmc_type = "is2") sum-
mary(mcmc_is, what = "theta", return_se = TRUE)

run_mcmc.ssm_nlg Bayesian Inference of non-linear state space models

Description

Methods for posterior inference of states and parameters.

Usage

S3 method for class 'ssm_nlg'
run_mcmc(
model,
iter,
nsim,
output_type = "full",
mcmc_type = "da",
sampling_method = "bsf",
burnin = floor(iter/2),
thin = 1,
gamma = 2/3,
target_acceptance = 0.234,
S,

28 run_mcmc.ssm_nlg

end_adaptive_phase = TRUE,
n_threads = 1,
seed = sample(.Machine$integer.max, size = 1),
max_iter = 100,
conv_tol = 1e-08,
iekf_iter = 0,
...

)

Arguments

model Model model.

iter Number of MCMC iterations.

nsim Number of state samples per MCMC iteration. Ignored if mcmc_type is "approx"
or "ekf".

output_type Either "full" (default, returns posterior samples of states alpha and hyperpa-
rameters theta), "theta" (for marginal posterior of theta), or "summary" (return
the mean and variance estimates of the states and posterior samples of theta).

mcmc_type What MCMC algorithm to use? Possible choices are "pm" for pseudo-marginal
MCMC, "da" for delayed acceptance version of PMCMC (default), "approx"
for approximate inference based on the Gaussian approximation of the model,
"ekf" for approximate inference using extended Kalman filter, or one of the
three importance sampling type weighting schemes: "is3" for simple impor-
tance sampling (weight is computed for each MCMC iteration independently),
"is2" for jump chain importance sampling type weighting, or "is1" for impor-
tance sampling type weighting where the number of particles used for weight
computations is proportional to the length of the jump chain block.

sampling_method

If "psi", ψ-auxiliary particle filter is used for state sampling. If "ekf", particle
filter based on EKF-proposals are used. If "bsf" (default), bootstrap filter is
used.

burnin Length of the burn-in period which is disregarded from the results. Defaults to
iter / 2.

thin Thinning rate. Defaults to 1. Increase for large models in order to save memory.
For IS-corrected methods, larger value can also be statistically more effective.
Note: With output_type = "summary", the thinning does not affect the compu-
tations of the summary statistics in case of pseudo-marginal methods.

gamma Tuning parameter for the adaptation of RAM algorithm. Must be between 0 and
1 (not checked).

target_acceptance

Target acceptance ratio for RAM. Defaults to 0.234.

S Initial value for the lower triangular matrix of RAM algorithm, so that the co-
variance matrix of the Gaussian proposal distribution is SS′. Note that for
some parameters (currently the standard deviation and dispersion parameters
of bsm_ng models) the sampling is done for transformed parameters with inter-
nal_theta = log(theta).

run_mcmc.ssm_sde 29

end_adaptive_phase

If TRUE (default), S is held fixed after the burnin period.

n_threads Number of threads for state simulation.

seed Seed for the random number generator.

max_iter Maximum number of iterations used in Gaussian approximation.

conv_tol Tolerance parameter used in Gaussian approximation.

iekf_iter If iekf_iter > 0, iterated extended Kalman filter is used with iekf_iter iter-
ations in place of standard EKF. Defaults to zero.

... Ignored.

run_mcmc.ssm_sde Bayesian Inference of SDE

Description

Methods for posterior inference of states and parameters.

Usage

S3 method for class 'ssm_sde'
run_mcmc(
model,
iter,
nsim,
output_type = "full",
mcmc_type = "da",
L_c,
L_f,
burnin = floor(iter/2),
thin = 1,
gamma = 2/3,
target_acceptance = 0.234,
S,
end_adaptive_phase = TRUE,
n_threads = 1,
seed = sample(.Machine$integer.max, size = 1),
...

)

Arguments

model Model model.

iter Number of MCMC iterations.

nsim Number of state samples per MCMC iteration.

30 sim_smoother

output_type Either "full" (default, returns posterior samples of states alpha and hyperpa-
rameters theta), "theta" (for marginal posterior of theta), or "summary" (return
the mean and variance estimates of the states and posterior samples of theta). If
nsim = 0, this is argument ignored and set to "theta".

mcmc_type What MCMC algorithm to use? Possible choices are "pm" for pseudo-marginal
MCMC, "da" for delayed acceptance version of PMCMC (default), or one of the
three importance sampling type weighting schemes: "is3" for simple impor-
tance sampling (weight is computed for each MCMC iteration independently),
"is2" for jump chain importance sampling type weighting, or "is1" for impor-
tance sampling type weighting where the number of particles used for weight
computations is proportional to the length of the jump chain block.

L_c, L_f Integer values defining the discretization levels for first and second stages (de-
fined as 2^L). For PM methods, maximum of these is used.

burnin Length of the burn-in period which is disregarded from the results. Defaults to
iter / 2.

thin Thinning rate. Defaults to 1. Increase for large models in order to save memory.
For IS-corrected methods, larger value can also be statistically more effective.
Note: With output_type = "summary", the thinning does not affect the compu-
tations of the summary statistics in case of pseudo-marginal methods.

gamma Tuning parameter for the adaptation of RAM algorithm. Must be between 0 and
1 (not checked).

target_acceptance

Target acceptance ratio for RAM. Defaults to 0.234.

S Initial value for the lower triangular matrix of RAM algorithm, so that the co-
variance matrix of the Gaussian proposal distribution is SS′. Note that for
some parameters (currently the standard deviation and dispersion parameters
of bsm_ng models) the sampling is done for transformed parameters with inter-
nal_theta = log(theta).

end_adaptive_phase

If TRUE (default), S is held fixed after the burnin period.

n_threads Number of threads for state simulation.

seed Seed for the random number generator.

... Ignored.

sim_smoother Simulation Smoothing

Description

Function sim_smoother performs simulation smoothing i.e. simulates the states from the condi-
tional distribution p(α|y, θ).

sim_smoother 31

Usage

sim_smoother(model, nsim, seed, use_antithetic = FALSE, ...)

S3 method for class 'gaussian'
sim_smoother(
model,
nsim = 1,
seed = sample(.Machine$integer.max, size = 1),
use_antithetic = FALSE,
...

)

S3 method for class 'nongaussian'
sim_smoother(
model,
nsim = 1,
seed = sample(.Machine$integer.max, size = 1),
use_antithetic = FALSE,
...

)

Arguments

model Model object.

nsim Number of independent samples.

seed Seed for the random number generator.

use_antithetic Use an antithetic variable for location. Default is FALSE. Ignored for multivariate
models.

... Ignored.

Details

For non-Gaussian/non-linear models, the simulation is based on the approximating Gaussian model.

Value

An array containing the generated samples.

Examples

model <- bsm_lg(rep(NA, 50), sd_level = uniform(1,0,5), sd_y = uniform(1,0,5))
sim <- sim_smoother(model, 12)
ts.plot(sim[, 1,])

32 ssm_mlg

ssm_mlg General multivariate linear Gaussian state space models

Description

Constructs an object of class ssm_mlg by defining the corresponding terms of the observation and
state equation:

Usage

ssm_mlg(
y,
Z,
H,
T,
R,
a1,
P1,
init_theta = numeric(0),
D,
C,
state_names,
update_fn = default_update_fn,
prior_fn = default_prior_fn

)

Arguments

y Observations as multivariate time series or matrix with dimensions n x p.

Z System matrix Z of the observation equation as p x m matrix or p x m x n array.

H Lower triangular matrix H of the observation. Either a scalar or a vector of
length n.

T System matrix T of the state equation. Either a m x m matrix or a m x m x n
array. UPDATE!!

R Lower triangular matrix R the state equation. Either a m x k matrix or a m x k x
n array.

a1 Prior mean for the initial state as a vector of length m.

P1 Prior covariance matrix for the initial state as m x m matrix.

init_theta Initial values for the unknown hyperparameters theta.

D Intercept terms for observation equation, given as a p x n matrix.

C Intercept terms for state equation, given as m x n matrix.

state_names Names for the states.

ssm_mng 33

update_fn Function which returns list of updated model components given input vector
theta. This function should take only one vector argument which is used to
create list with elements named as Z, H T, R, a1, P1, D, and C, where each element
matches the dimensions of the original model. If any of these components is
missing, it is assumed to be constant wrt. theta.

prior_fn Function which returns log of prior density given input vector theta.

Details

yt = D(t, θ) + Z(t, θ)αt +H(t, θ)εt, (observation equation)

αt+1 = C(t, θ) + T (t, θ)αt +R(t, θ)ηt, (transition equation)

where εt ∼ N(0, Ip), ηt ∼ N(0, Im) and α1 ∼ N(a1, P1) independently of each other.

Value

Object of class ssm_mlg.

ssm_mng General Non-Gaussian State Space Model

Description

Constructs an object of class ssm_mng by defining the corresponding terms of the observation and
state equation:

Usage

ssm_mng(
y,
Z,
T,
R,
a1,
P1,
distribution,
phi = 1,
u = 1,
init_theta = numeric(0),
D,
C,
state_names,
update_fn = default_update_fn,
prior_fn = default_prior_fn

)

34 ssm_mng

Arguments

y Observations as multivariate time series or matrix with dimensions n x p.

Z System matrix Z of the observation equation as p x m matrix or p x m x n array.

T System matrix T of the state equation. Either a m x m matrix or a m x m x n
array.

R Lower triangular matrix R the state equation. Either a m x k matrix or a m x k x
n array.

a1 Prior mean for the initial state as a vector of length m.

P1 Prior covariance matrix for the initial state as m x m matrix.

distribution vector of distributions of the observed series. Possible choices are "poisson",
"binomial", "negative binomial", "gamma", and "gaussian".

phi Additional parameters relating to the non-Gaussian distributions. For negative
binomial distribution this is the dispersion term, for gamma distribution this
is the shape parameter, for gaussian this is standard deviation, and for other
distributions this is ignored.

u Constant parameter for non-Gaussian models. For Poisson, gamma, and nega-
tive binomial distribution, this corresponds to the offset term. For binomial, this
is the number of trials.

init_theta Initial values for the unknown hyperparameters theta.

D Intercept terms for observation equation, given as p x n matrix.

C Intercept terms for state equation, given as m x n matrix.

state_names Names for the states.

update_fn Function which returns list of updated model components given input vector
theta. This function should take only one vector argument which is used to create
list with elements named as Z, T, R, a1, P1, D, C, and phi, where each element
matches the dimensions of the original model. If any of these components is
missing, it is assumed to be constant wrt. theta.

prior_fn Function which returns log of prior density given input vector theta.

Details

pi(yit|Dt + Ztαt), (observation equation)

αt+1 = Ct + Ttαt +Rtηt, (transition equation)

where ηt ∼ N(0, Ik) and α1 ∼ N(a1, P1) independently of each other, and pi(yt|.) is either
Poisson, binomial, gamma, gaussian, or negative binomial distribution for each observation series
i = 1, ..., k.

Value

Object of class ssm_mng. UDPATE!!

ssm_nlg 35

ssm_nlg General multivariate nonlinear Gaussian state space models

Description

Constructs an object of class ssm_nlg by defining the corresponding terms of the observation and
state equation:

Usage

ssm_nlg(
y,
Z,
H,
T,
R,
Z_gn,
T_gn,
a1,
P1,
theta,
known_params = NA,
known_tv_params = matrix(NA),
n_states,
n_etas,
log_prior_pdf,
time_varying = rep(TRUE, 4),
state_names = paste0("state", 1:n_states)

)

Arguments

y Observations as multivariate time series (or matrix) of length n.

Z, H, T, R An external pointers for the C++ functions which define the corresponding model
functions.

Z_gn, T_gn An external pointers for the C++ functions which define the gradients of the
corresponding model functions.

a1 Prior mean for the initial state as a vector of length m.

P1 Prior covariance matrix for the initial state as m x m matrix.

theta Parameter vector passed to all model functions.

known_params Vector of known parameters passed to all model functions.
known_tv_params

Matrix of known parameters passed to all model functions.

n_states Number of states in the model.

36 ssm_sde

n_etas Dimension of the noise term of the transition equation.

log_prior_pdf An external pointer for the C++ function which computes the log-prior density
given theta.

time_varying Optional logical vector of length 4, denoting whether the values of Z, H, T, and
R vary with respect to time variable (given identical states). If used, this can
speed up some computations.

state_names Names for the states.

Details

yt = Z(t, αt, θ) +H(t, θ)εt, (observation equation)

αt+1 = T (t, αt, θ) +R(t, θ)ηt, (transition equation)

where εt ∼ N(0, Ip), ηt ∼ N(0, Im) and α1 ∼ N(a1, P1) independently of each other, and
functions Z,H, T,R can depend on αt and parameter vector θ.

Compared to other models, these general models need a bit more effort from the user, as you must
provide the several small C++ snippets which define the model structure. See examples in the
vignette.

Value

Object of class ssm_nlg.

ssm_sde Univariate state space model with continuous SDE dynamics

Description

Constructs an object of class ssm_sde by defining the functions for the drift, diffusion and derivative
of diffusion terms of univariate SDE, as well as the log-density of observation equation. We assume
that the observations are measured at integer times (missing values are allowed).

Usage

ssm_sde(
y,
drift,
diffusion,
ddiffusion,
obs_pdf,
prior_pdf,
theta,
x0,
positive

)

ssm_ulg 37

Arguments

y Observations as univariate time series (or vector) of length n.
drift, diffusion, ddiffusion

An external pointers for the C++ functions which define the drift, diffusion and
derivative of diffusion functions of SDE.

obs_pdf An external pointer for the C++ function which computes the observational log-
density given the the states and parameter vector theta.

prior_pdf An external pointer for the C++ function which computes the prior log-density
given the parameter vector theta.

theta Parameter vector passed to all model functions.

x0 Fixed initial value for SDE at time 0.

positive If TRUE, positivity constraint is forced by abs in Millstein scheme.

Details

As in case of ssm_nlg models, these general models need a bit more effort from the user, as you
must provide the several small C++ snippets which define the model structure. See SDE vignette
for an example.

Value

Object of class ssm_sde.

ssm_ulg General univariate linear-Gaussian state space models

Description

Construct an object of class ssm_ulg by defining the corresponding terms of the observation and
state equation:

Usage

ssm_ulg(
y,
Z,
H,
T,
R,
a1,
P1,
init_theta = numeric(0),
D,
C,
state_names,

38 ssm_ulg

update_fn = default_update_fn,
prior_fn = default_prior_fn

)

Arguments

y Observations as time series (or vector) of length n.

Z System matrix Z of the observation equation as m x 1 or m x n matrix.

H Vector of standard deviations. Either a scalar or a vector of length n.

T System matrix T of the state equation. Either a m x m matrix or a m x m x n
array.

R Lower triangular matrix R the state equation. Either a m x k matrix or a m x k x
n array.

a1 Prior mean for the initial state as a vector of length m.

P1 Prior covariance matrix for the initial state as m x m matrix.

init_theta Initial values for the unknown hyperparameters theta.

D Intercept terms for observation equation, given as a length n vector.

C Intercept terms for state equation, given as m x n matrix.

state_names Names for the states.

update_fn Function which returns list of updated model components given input vector
theta. This function should take only one vector argument which is used to
create list with elements named as Z, H T, R, a1, P1, D, and C, where each element
matches the dimensions of the original model. If any of these components is
missing, it is assumed to be constant wrt. theta.

prior_fn Function which returns log of prior density given input vector theta.

Details

yt = Xtbeta+Dt + Ztαt +Htεt, (observation equation)

αt+1 = Ct + Ttαt +Rtηt, (transition equation)

where εt ∼ N(0, 1), ηt ∼ N(0, Ik) and α1 ∼ N(a1, P1) independently of each other, Xt are fixed
covariates and beta contains the corresponding (known) coefficients.

Value

Object of class ssm_ulg.

ssm_ung 39

ssm_ung General univariate non-Gaussian state space model

Description

Construct an object of class ssm_ung by defining the corresponding terms of the observation and
state equation:

Usage

ssm_ung(
y,
Z,
T,
R,
a1,
P1,
distribution,
phi = 1,
u = 1,
init_theta = numeric(0),
D,
C,
state_names,
update_fn = default_update_fn,
prior_fn = default_prior_fn

)

Arguments

y Observations as time series (or vector) of length n.

Z System matrix Z of the observation equation. Either a vector of length m, a m x
n matrix, or object which can be coerced to such.

T System matrix T of the state equation. Either a m x m matrix or a m x m x n
array, or object which can be coerced to such.

R Lower triangular matrix R the state equation. Either a m x k matrix or a m x k x
n array, or object which can be coerced to such.

a1 Prior mean for the initial state as a vector of length m.

P1 Prior covariance matrix for the initial state as m x m matrix.

distribution Distribution of the observed time series. Possible choices are "poisson", "binomial",
"gamma", and "negative binomial".

phi Additional parameter relating to the non-Gaussian distribution. For negative
binomial distribution this is the dispersion term, for gamma distribution this is
the shape parameter, and for other distributions this is ignored.

40 summary.mcmc_output

u Constant parameter for non-Gaussian models. For Poisson, gamma, and nega-
tive binomial distribution, this corresponds to the offset term. For binomial, this
is the number of trials.

init_theta Initial values for the unknown hyperparameters theta.

D Intercept termsDt for the observations equation, given as a 1 x 1 or 1 x n matrix.

C Intercept terms Ct for the state equation, given as a m times 1 or m times n
matrix.

state_names Names for the states.

update_fn Function which returns list of updated model components given input vector
theta. This function should take only one vector argument which is used to create
list with elements named as Z, T, R, a1, P1, D, C, and phi, where each element
matches the dimensions of the original model. If any of these components is
missing, it is assumed to be constant wrt. theta.

prior_fn Function which returns log of prior density given input vector theta.

Details

p(yt|Dt + Ztαt), (observation equation)

αt+1 = Ct + Ttαt +Rtηt, (transition equation)

where ηt ∼ N(0, Ik) and α1 ∼ N(a1, P1) independently of each other, and p(yt|.) is either Pois-
son, binomial, gamma, or negative binomial distribution.

Value

Object of class ssm_ung.

summary.mcmc_output Summary of MCMC object

Description

This functions returns a list containing mean, standard deviations, standard errors, and effective
sample size estimates for parameters and states.

Usage

S3 method for class 'mcmc_output'
summary(object, return_se = FALSE, variable = "theta", only_theta = FALSE, ...)

svm 41

Arguments

object Output from run_mcmc

return_se if FALSE (default), computation of standard errors and effective sample sizes is
omitted.

variable Are the summary statistics computed for either "theta" (default), "states", or
"both"?

only_theta Deprecated. If TRUE, summaries are computed only for hyperparameters theta.

... Ignored.

svm Stochastic Volatility Model

Description

Constructs a simple stochastic volatility model with Gaussian errors and first order autoregressive
signal.

Usage

svm(y, rho, sd_ar, sigma, mu)

Arguments

y Vector or a ts object of observations.

rho prior for autoregressive coefficient.

sd_ar Prior for the standard deviation of noise of the AR-process.

sigma Prior for sigma parameter of observation equation.

mu Prior for mu parameter of transition equation. Ignored if sigma is provided.

Value

Object of class svm or svm2.

Examples

data("exchange")
exchange <- exchange[1:100] # faster CRAN check
model <- svm(exchange, rho = uniform(0.98,-0.999,0.999),
sd_ar = halfnormal(0.15, 5), sigma = halfnormal(0.6, 2))

obj <- function(pars) {
-logLik(svm(exchange, rho = uniform(pars[1],-0.999,0.999),
sd_ar = halfnormal(pars[2],sd=5),
sigma = halfnormal(pars[3],sd=2)), nsim = 0)

42 uniform

}
opt <- nlminb(c(0.98, 0.15, 0.6), obj, lower = c(-0.999, 1e-4, 1e-4), upper = c(0.999,10,10))
pars <- opt$par
model <- svm(exchange, rho = uniform(pars[1],-0.999,0.999),

sd_ar = halfnormal(pars[2],sd=5),
sigma = halfnormal(pars[3],sd=2))

ukf Unscented Kalman Filtering

Description

Function ukf runs the unscented Kalman filter for the given non-linear Gaussian model of class
ssm_nlg, and returns the filtered estimates and one-step-ahead predictions of the states αt given the
data up to time t.

Usage

ukf(model, alpha = 1, beta = 0, kappa = 2)

Arguments

model Model model
alpha, beta, kappa

Tuning parameters for the UKF.

Value

List containing the log-likelihood, one-step-ahead predictions at and filtered estimates att of states,
and the corresponding variances Pt and Ptt.

uniform Prior objects for bssm models

Description

These simple objects of class bssm_prior are used to construct a prior distributions for the MCMC
runs of bssm package. Currently supported priors are uniform (uniform()), half-normal (halfnormal()),
normal (normal()), and truncated normal distribution (tnormal()).

uniform 43

Usage

uniform(init, min, max)

halfnormal(init, sd)

normal(init, mean, sd)

tnormal(init, mean, sd, min = -Inf, max = Inf)

Arguments

init Initial value for the parameter, used in initializing the model components and as
a starting value in MCMC.

min Lower bound of the uniform and truncated normal prior.

max Upper bound of the uniform and truncated normal prior.

sd Standard deviation of the (underlying i.e. non-truncated) Normal distribution.

mean Mean of the Normal prior.

Value

object of class bssm_prior.

Index

∗Topic datasets
drownings, 11
exchange, 13
poisson_series, 21

ar1_lg, 3
ar1_ng, 3
as.data.frame.mcmc_output, 4
as_bssm, 5

bootstrap_filter, 6, 17
bsm_lg, 7
bsm_ng, 9
bssm, 10

drownings, 11

ekf, 11
ekf_smoother, 12
ekpf_filter, 12
exchange, 13
expand_sample, 13

fast_smoother, 14

gaussian_approx, 15

halfnormal (uniform), 42

importance_sample, 15

kfilter, 16

logLik.gaussian, 17
logLik.nongaussian (logLik.gaussian), 17
logLik.ssm_nlg, 18
logLik.ssm_sde, 19

normal (uniform), 42

particle_smoother, 19
poisson_series, 21

predict.mcmc_output, 21
print.mcmc_output, 23
priors, 8, 9

run_mcmc, 4, 5, 14, 22, 23, 23
run_mcmc.gaussian, 24, 24
run_mcmc.nongaussian, 24, 25
run_mcmc.ssm_nlg, 27
run_mcmc.ssm_sde, 29

sim_smoother, 30
smoother (fast_smoother), 14
ssm_mlg, 32
ssm_mng, 33
ssm_nlg, 35
ssm_sde, 36
ssm_ulg, 37
ssm_ung, 39
summary.mcmc_output, 40
svm, 41

tnormal (uniform), 42
ts, 3, 4, 8, 9, 41

ukf, 42
uniform, 42

44

	ar1_lg
	ar1_ng
	as.data.frame.mcmc_output
	as_bssm
	bootstrap_filter
	bsm_lg
	bsm_ng
	bssm
	drownings
	ekf
	ekf_smoother
	ekpf_filter
	exchange
	expand_sample
	fast_smoother
	gaussian_approx
	importance_sample
	kfilter
	logLik.gaussian
	logLik.ssm_nlg
	logLik.ssm_sde
	particle_smoother
	poisson_series
	predict.mcmc_output
	print.mcmc_output
	run_mcmc
	run_mcmc.gaussian
	run_mcmc.nongaussian
	run_mcmc.ssm_nlg
	run_mcmc.ssm_sde
	sim_smoother
	ssm_mlg
	ssm_mng
	ssm_nlg
	ssm_sde
	ssm_ulg
	ssm_ung
	summary.mcmc_output
	svm
	ukf
	uniform
	Index

