
Package ‘breakfast’
September 28, 2017

Title Multiple Change-Point Detection and Segmentation

Version 1.0.0

Description The breakfast package performs multiple change-point detection in data
sequences, or sequence segmentation, using computationally efficient multiscale
methods. This version of the package implements the ``Tail-Greedy Unbalanced Haar'',
``Wild Binary Segmentation'' and ``Adaptive Wild Binary Segmentation'' change-point
detection and segmentation methodologies. To start with, see the function
segment.mean.

Depends R (>= 3.4.0)

License GPL

Encoding UTF-8

LazyData true

RoxygenNote 6.0.1

Imports plyr

NeedsCompilation no

Author Piotr Fryzlewicz [aut, cre]

Maintainer Piotr Fryzlewicz <p.fryzlewicz@lse.ac.uk>

Repository CRAN

Date/Publication 2017-09-28 15:49:36 UTC

R topics documented:
breakfast . 2
hybrid.cpt . 2
segment.mean . 4
tguh.cpt . 5
tguh.decomp . 6
tguh.denoise . 7
tguh.reconstr . 9
wbs.bic.cpt . 10
wbs.cpt . 11
wbs.K.cpt . 13
wbs.thresh.cpt . 14

1

2 hybrid.cpt

Index 17

breakfast breakfast: Multiple change-point detection and segmentation for data
sequences

Description

The breakfast package performs multiple change-point detection in data sequences, or sequence
segmentation, using computationally efficient multiscale methods. This version of the package
implements the "Tail-Greedy Unbalanced Haar", "Wild Binary Segmentation" and "Adaptive Wild
Binary Segmentation" change-point detection and segmentation methodologies. To start with, see
the function segment.mean.

Author(s)

Piotr Fryzlewicz, <p.fryzlewicz@lse.ac.uk>

References

"Tail-greedy bottom-up data decompositions and fast multiple change-point detection", P. Fry-
zlewicz (2017), preprint. "Wild Binary Segmentation for multiple change-point detection", P. Fry-
zlewicz (2014), Annals of Statistics, 42, 2243-2281. "Data-adaptive Wild Binary Segmentation", P.
Fryzlewicz (2017), in preparation as of September 28th, 2017.

See Also

segment.mean

Examples

#See Examples for segment.mean

hybrid.cpt Multiple change-point detection in the mean of a vector using a hybrid
between the TGUH and Adaptive WBS methods.

Description

This function estimates the number and locations of change-points in the piecewise-constant mean
of the noisy input vector, combining the Tail-Greedy Unbalanced Haar and Adaptive Wild Binary
Segmentation methods (see Details for the relevant literature references). The constant means be-
tween each pair of neighbouring change-points are also estimated. The method works best when
the noise in the input vector is independent and identically distributed Gaussian.

hybrid.cpt 3

Usage

hybrid.cpt(x, M = 1000, sigma = stats::mad(diff(x)/sqrt(2)), th.const = 1,
p = 0.01, minseglen = 1, bal = 1/20, num.zero = 10^(-5))

Arguments

x A vector containing the data in which you wish to find change-points.
M The same as the corresponding parameter in wbs.K.cpt.
sigma The same as the corresponding parameter in tguh.cpt.
th.const The same as the corresponding parameter in tguh.cpt.
p The same as the corresponding parameter in tguh.cpt.
minseglen The same as the corresponding parameter in tguh.cpt.
bal The same as the corresponding parameter in tguh.cpt.
num.zero The same as the corresponding parameter in tguh.cpt.

Details

This is a hybrid method, which first estimates the number of change-points using tguh.cpt and
then estimates their locations using wbs.K.cpt.

The change-point detection algorithms used in tguh.cpt are: the Tail-Greedy Unbalanced Haar
method as described in "Tail-greedy bottom-up data decompositions and fast multiple change-point
detection", P. Fryzlewicz (2017), preprint, and Adaptive Wild Binary Segmentation as described in
"Data-adaptive Wild Binary Segmentation", P. Fryzlewicz (2017), in preparation as of September
28th, 2017.

Value

A list with the following components:

est The estimated piecewise-constant mean of x.
no.of.cpt The estimated number of change-points in the piecewise-constant mean of x.
cpt The estimated locations of change-points in the piecewise-contant mean of x

(these are the final indices before the location of each change-point).

Author(s)

Piotr Fryzlewicz, <p.fryzlewicz@lse.ac.uk>

See Also

segment.mean, wbs.bic.cpt, wbs.thresh.cpt, wbs.cpt, tguh.cpt, wbs.K.cpt

Examples

teeth <- rep(rep(0:1, each=5), 20)
teeth.noisy <- teeth + rnorm(200)/5
teeth.cleaned <- hybrid.cpt(teeth.noisy)
ts.plot(teeth.cleaned$est)

4 segment.mean

segment.mean Multiple change-point detection in the mean of a vector

Description

This function estimates the number and locations of change-points in the piecewise-constant mean
of the noisy input vector, using a method that puts more emphasis either on "speed" (i.e. is faster but
possibly less accurate) or on "accuracy" (i.e. is possibly more accurate but slower). It also estimates
the constant means between each pair of neighbouring change-points. It works best when the noise
in the input vector is independent and identically distributed Gaussian.

Usage

segment.mean(x, attribute = "speed", M = 1000,
sigma = stats::mad(diff(x)/sqrt(2)), th.const = 1, p = 0.01,
minseglen = 1, bal = 1/20, num.zero = 10^(-5))

Arguments

x A vector containing the data in which you wish to find change-points.

attribute As described in the Details section of this help file.

M The same as the corresponding parameter in hybrid.cpt.

sigma The same as the corresponding parameter in tguh.cpt and hybrid.cpt.

th.const The same as the corresponding parameter in tguh.cpt and hybrid.cpt.

p The same as the corresponding parameter in tguh.cpt and hybrid.cpt.

minseglen The same as the corresponding parameter in tguh.cpt and hybrid.cpt.

bal The same as the corresponding parameter in tguh.cpt and hybrid.cpt.

num.zero The same as the corresponding parameter in tguh.cpt and hybrid.cpt.

Details

In the current version of the package, attribute="speed" triggers the function tguh.cpt and
attribute="accuracy" triggers the function hybrid.cpt. Warning: this can change in future
versions of the package. Note that tguh.cpt and hybrid.cpt return the same number of change-
points and the only difference lies in their estimated locations.

Value

A list with the following components:

est The estimated piecewise-constant mean of x.

no.of.cpt The estimated number of change-points in the piecewise-constant mean of x.

cpt The estimated locations of change-points in the piecewise-contant mean of x
(these are the final indices before the location of each change-point).

tguh.cpt 5

Author(s)

Piotr Fryzlewicz, <p.fryzlewicz@lse.ac.uk>

See Also

tguh.cpt, hybrid.cpt, wbs.cpt

Examples

stairs <- rep(1:50, each=10)
stairs.noisy <- stairs + rnorm(500)/5
stairs.cleaned <- segment.mean(stairs.noisy)
ts.plot(stairs.cleaned$est)
stairs.cleaned$no.of.cpt
stairs.cleaned$cpt

tguh.cpt Multiple change-point detection in the mean of a vector using the
TGUH method

Description

This function estimates the number and locations of change-points in the piecewise-constant mean
of the noisy input vector, using the Tail-Greedy Unbalanced Haar method (see Details for the rel-
evant literature reference). It also estimates the constant means between each pair of neighbouring
change-points. It works best when the noise in the input vector is independent and identically
distributed Gaussian.

Usage

tguh.cpt(x, sigma = stats::mad(diff(x)/sqrt(2)), th.const = 1, p = 0.01,
minseglen = 1, bal = 1/20, num.zero = 10^(-5))

Arguments

x A vector containing the data in which you wish to find change-points.

sigma The estimate or estimator of the standard deviation of the noise in x; the default
is the Median Absolute Deviation of x computed under the assumption that the
noise is independent and identically distributed Gaussian.

th.const Tuning parameter. Change-points are estimated by connected thresholding (of
the Tail-Greedy Unbalanced Haar decomposition of x) in which the threshold
has magnitude sigma * sqrt(2 * (1 + 0.01) * log(n)) * th.const,
where n is the length of x. The default value of th.const is 1.

p Specifies the number of region pairs merged in each pass through the data, as
the proportion of all remaining region pairs. The default is 0.01.

minseglen The minimum permitted length of each segment of constancy in the estimated
mean of x; the default is 1.

6 tguh.decomp

bal Specifies the minimum ratio of the length of the shorter wing of each Unbal-
anced Haar wavelet whose coefficient survives the thresholding, to the length of
its support. The default is 0.05.

num.zero Numerical zero; the default is 0.00001.

Details

The change-point detection algorithm used in tguh.cpt is the Tail-Greedy Unbalanced Haar method
as described in "Tail-greedy bottom-up data decompositions and fast multiple change-point detec-
tion", P. Fryzlewicz (2017), preprint. This paper describes two optional post-processing steps;
neither of them is implemented in this package.

Value

A list with the following components:

est The estimated piecewise-constant mean of x.

no.of.cpt The estimated number of change-points in the piecewise-constant mean of x.

cpt The estimated locations of change-points in the piecewise-contant mean of x
(these are the final indices before the location of each change-point).

Author(s)

Piotr Fryzlewicz, <p.fryzlewicz@lse.ac.uk>

See Also

segment.mean, hybrid.cpt, tguh.decomp, tguh.denoise, tguh.reconstr

Examples

stairs <- rep(1:50, each=10)
stairs.noisy <- stairs + rnorm(500)/5
stairs.cleaned <- tguh.cpt(stairs.noisy)
ts.plot(stairs.cleaned$est)
stairs.cleaned$no.of.cpt
stairs.cleaned$cpt

tguh.decomp The Tail-Greedy Unbalanced Haar decomposition of a vector

Description

This function performs the Tail-Greedy Unbalanced Haar decomposition of the input vector.

Usage

tguh.decomp(x, p = 0.01)

tguh.denoise 7

Arguments

x A vector you wish to decompose.

p Specifies the number of region pairs merged in each pass through the data, as
the proportion of all remaining region pairs. The default is 0.01.

Details

The Tail-Greedy Unbalanced Haar decomposition algorithm is described in "Tail-greedy bottom-up
data decompositions and fast multiple change-point detection", P. Fryzlewicz (2017), preprint.

Value

A list with the following components:

n The length of x.

decomp.hist The decomposition history: the complete record of the n-1 steps taken to de-
compose x. This is an array of dimensions 4 by 2 by n-1. Each of the n-1
matrices of dimensions 4 by 2 contains the following: first row - the indices of
the regions merged, in increasing order (note: the indexing changes through the
transform); second row - the values of the Unbalanced Haar filter coefficients
used to produce the corresponding detail coefficient; third row - the (detail co-
efficient, smooth coefficient) of the decomposition; fourth row - the lengths of
(left wing, right wing) of the corresponding Unbalanced Haar wavelet.

tguh.coeffs The coefficients of the Tail-Greedy Unbalanced Haar transform of x.

Author(s)

Piotr Fryzlewicz, <p.fryzlewicz@lse.ac.uk>

See Also

tguh.cpt, tguh.denoise, tguh.reconstr

Examples

rnoise <- rnorm(10)
tguh.decomp(rnoise)

tguh.denoise Noise removal from Tail-Greedy Unbalanced Haar coefficients via
connected thresholding

Description

This function performs the connected thresholding of the Tail-Greedy Unbalanced Haar coefficients.

8 tguh.denoise

Usage

tguh.denoise(tguh.decomp.obj, lambda, minseglen = 1, bal = 1/20)

Arguments

tguh.decomp.obj

A variable returned by tguh.decomp or tguh.denoise.

lambda The threshold value.

minseglen The minimum permitted length of either wing of any Unbalanced Haar wavelet
whose corresponding coefficient survives the thresholding.

bal The minimum permitted ratio of the length of either wing to the sum of the
lengths of both wings of any Unbalanced Haar wavelet whose corresponding
coefficient survives the thresholding.

Details

Typically, the first parameter of tguh.denoise will be an object returned by tguh.decomp. The
function tguh.denoise performs the "connected thresholding" of this object, in the sense that if a
Tail-Greedy Unbalanced Haar detail coefficient does not have any surviving children coefficients,
then it gets set to zero if it falls under the threshold, or if the corresponding Unbalanced Haar
wavelet is too unbalanced or has too short a wing. See "Tail-greedy bottom-up data decompositions
and fast multiple change-point detection", P. Fryzlewicz (2017), preprint, for details.

Value

Modified object tguh.decomp.obj; the modification is that the detail coefficients in the decomp.hist
field that do not survive the thresholding get set to zero.

Author(s)

Piotr Fryzlewicz, <p.fryzlewicz@lse.ac.uk>

See Also

tguh.cpt, tguh.decomp, tguh.reconstr

Examples

rnoise <- rnorm(10)
rnoise.tguh <- tguh.decomp(rnoise)
print(rnoise.tguh)
rnoise.denoise <- tguh.denoise(rnoise.tguh, 3)
rnoise.clean <- tguh.reconstr(rnoise.denoise)
print(rnoise.clean)

tguh.reconstr 9

tguh.reconstr The inverse Tail-Greedy Unbalanced Haar transformation

Description

This function performs the inverse Tail-Greedy Unbalanced Haar transformation, also referred to as
reconstruction.

Usage

tguh.reconstr(tguh.decomp.obj)

Arguments

tguh.decomp.obj

A variable returned by tguh.decomp or tguh.denoise.

Details

The Tail-Greedy Unbalanced Haar decomposition and reconstruction algorithms are described in
"Tail-greedy bottom-up data decompositions and fast multiple change-point detection", P. Fry-
zlewicz (2017), preprint.

Value

A vector being the result of the inverse Tail-Greedy Unbalanced Haar transformation of tghu.decomp.obj.

Author(s)

Piotr Fryzlewicz, <p.fryzlewicz@lse.ac.uk>

See Also

tguh.cpt, tguh.decomp, tguh.denoise

Examples

rnoise <- rnorm(10)
rnoise.tguh <- tguh.decomp(rnoise)
print(rnoise.tguh)
rnoise.denoise <- tguh.denoise(rnoise.tguh, 3)
rnoise.clean <- tguh.reconstr(rnoise.denoise)
print(rnoise.clean)

10 wbs.bic.cpt

wbs.bic.cpt Multiple change-point detection in the mean of a vector using the WBS
method, with the number of change-points chosen by BIC

Description

This function estimates the number and locations of change-points in the piecewise-constant mean
of the noisy input vector, using the Wild Binary Segmentation method (see Details for the relevant
literature reference). The number of change-points is chosen via the Bayesian Information Crite-
rion. The constant means between each pair of neighbouring change-points are also estimated. The
method works best when the noise in the input vector is independent and identically distributed
Gaussian, and when the number change-points is small.

Usage

wbs.bic.cpt(x, M = 20000, Kmax = ceiling(length(x)/5))

Arguments

x A vector containing the data in which you wish to find change-points.
M The number of randomly selected sub-segments of the data on which to build

the CUSUM statistics in the Wild Binary Segmentation algorithm; generally, the
larger the value of M, the more accurate but slower the algorithm - but see the
remarks below about the BIC penalty.

Kmax The maximum number of change-points that can be detected.

Details

The BIC penalty is unsuitable as a model selection tool in long signals with frequent change-points;
if you need a more versatile function that works well regardless of the number of change-points,
try segment.mean (for a default recommended estimation technique), wbs.thresh.cpt, wbs.cpt
(if you require an (Adaptive) WBS-based technique), tguh.cpt (if you require a TGUH-based
technique), or hybrid.cpt (to use a hybrid between TGUH and Adaptive WBS). If you are unsure
where to start, try segment.mean. (If you know how many change-points you wish to detect, try
wbs.K.cpt.)

The change-point detection algorithm used in wbs.bic.cpt is the Wild Binary Segmentaton method
as described in "Wild Binary Segmentation for multiple change-point detection", P. Fryzlewicz
(2014), Annals of Statistics, 42, 2243-2281.

Value

A list with the following components:

est The estimated piecewise-constant mean of x.
no.of.cpt The estimated number of change-points in the piecewise-constant mean of x.
cpt The estimated locations of change-points in the piecewise-contant mean of x

(these are the final indices before the location of each change-point).

wbs.cpt 11

Author(s)

Piotr Fryzlewicz, <p.fryzlewicz@lse.ac.uk>

See Also

segment.mean, wbs.thresh.cpt, wbs.cpt, tguh.cpt, hybrid.cpt, wbs.K.cpt

Examples

teeth <- rep(rep(0:1, each=5), 20)
teeth.noisy <- teeth + rnorm(200)/5
teeth.cleaned <- wbs.bic.cpt(teeth.noisy)
ts.plot(teeth.cleaned$est)
teeth.cleaned$no.of.cpt
teeth.cleaned$cpt

wbs.cpt Multiple change-point detection in the mean of a vector using the
(Adaptive) WBS method.

Description

This function estimates the number and locations of change-points in the piecewise-constant mean
of the noisy input vector, using the (Adaptive) Wild Binary Segmentation method (see Details for
the relevant literature references). The constant means between each pair of neighbouring change-
points are also estimated. The method works best when the noise in the input vector is independent
and identically distributed Gaussian.

Usage

wbs.cpt(x, sigma = stats::mad(diff(x)/sqrt(2)), M.bic = 20000,
Kmax = ceiling(length(x)/5), universal = TRUE, M.thresh = NULL,
th.const = NULL, th.const.min.mult = 0.825, adapt = TRUE,
lambda = 0.9)

Arguments

x A vector containing the data in which you wish to find change-points.

sigma Only relevant to the wbs.thresh.cpt part (see Details below); the same as the
corresponding parameter in wbs.thresh.cpt.

M.bic Only relevant to the wbs.bic.cpt part (see Details below); the same as the M
parameter in wbs.bic.cpt.

Kmax Only relevant to the wbs.bic.cpt part (see Details below); the same as the
corresponding parameter in wbs.bic.cpt.

universal Only relevant to the wbs.thresh.cpt part (see Details below); the same as the
corresponding parameter in wbs.thresh.cpt.

12 wbs.cpt

M.thresh Only relevant to the wbs.thresh.cpt part (see Details below); the same as the
M parameter in wbs.thresh.cpt.

th.const Only relevant to the wbs.thresh.cpt part (see Details below); the same as the
corresponding parameter in wbs.thresh.cpt.

th.const.min.mult

Only relevant to the wbs.thresh.cpt part (see Details below); the same as the
corresponding parameter in wbs.thresh.cpt.

adapt Only relevant to the wbs.thresh.cpt part (see Details below); the same as the
corresponding parameter in wbs.thresh.cpt.

lambda Only relevant to the wbs.thresh.cpt part (see Details below); the same as the
corresponding parameter in wbs.thresh.cpt.

Details

This is a hybrid method, which returns the result of wbs.thresh.cpt or wbs.bic.cpt, whichever
of the two detect the larger number of change-points. If there is a tie, wbs.bic.cpt is returned.

The change-point detection algorithms used in wbs.thresh.cpt are: standard Wild Binary Seg-
mentation [see "Wild Binary Segmentation for multiple change-point detection", P. Fryzlewicz
(2014), Annals of Statistics, 42, 2243-2281] and Adaptive Wild Binary Segmentation [see "Data-
adaptive Wild Binary Segmentation", P. Fryzlewicz (2017), in preparation as of September 28th,
2017].

Value

A list with the following components:

est The estimated piecewise-constant mean of x.

no.of.cpt The estimated number of change-points in the piecewise-constant mean of x.

cpt The estimated locations of change-points in the piecewise-contant mean of x
(these are the final indices before the location of each change-point).

Author(s)

Piotr Fryzlewicz, <p.fryzlewicz@lse.ac.uk>

See Also

segment.mean, wbs.bic.cpt, wbs.thresh.cpt, tguh.cpt, hybrid.cpt, wbs.K.cpt

Examples

teeth <- rep(rep(0:1, each=5), 20)
teeth.noisy <- teeth + rnorm(200)/5
teeth.cleaned <- wbs.cpt(teeth.noisy)
ts.plot(teeth.cleaned$est)

wbs.K.cpt 13

wbs.K.cpt Detecting exactly K change-points in the mean of a vector using the
Adaptive WBS method

Description

This function estimates the number and locations of change-points in the piecewise-constant mean
of the noisy input vector, using the Adaptive Wild Binary Segmentation method (see Details for
the relevant literature reference). The number of change-points is exactly K. The constant means
between each pair of neighbouring change-points are also estimated. The method works best when
the noise in the input vector is independent and identically distributed Gaussian. As a by-product,
the function also computes the entire solution path, i.e. all estimated n-1 change-point locations
(where n is the length of the input data) sorted from the most to the least important.

Usage

wbs.K.cpt(x, K, M = 1000)

Arguments

x A vector containing the data in which you wish to find change-points.

K The number of change-points you wish to detect.

M The number of randomly selected sub-segments of the data on which to build the
CUSUM statistics on each recursively identified interval in the Adaptive Wild
Binary Segmentation algorithm.

Details

This function should only be used if (a) you know exactly how many change-points you wish to
detect, or (b) you wish to order all possible change-points from the most to the least important.
If you need a function to estimate the number of change-points for you, try segment.mean (for
a default recommended estimation technique), wbs.thresh.cpt, wbs.bic.cpt, wbs.cpt (if you
require an (Adaptive) WBS-based technique), tguh.cpt (if you require a TGUH-based technique),
or hybrid.cpt (to use a hybrid between TGUH and Adaptive WBS). If you are unsure where to
start, try segment.mean.

The change-point detection algorithm used in wbs.K.cpt is the Adaptive Wild Binary Segmenta-
ton method as described in "Data-adaptive Wild Binary Segmentation", P. Fryzlewicz (2017), in
preparation as of September 28th, 2017.

Value

A list with the following components:

est The estimated piecewise-constant mean of x.

no.of.cpt The estimated number of change-points in the piecewise-constant mean of x; the
minumum of K and n-1, where n is the length of x

14 wbs.thresh.cpt

cpt The estimated locations of change-points in the piecewise-contant mean of x
(these are the final indices before the location of each change-point).

cpt.sorted The list of all possible change-point locations, sorted from the most to the least
likely

Author(s)

Piotr Fryzlewicz, <p.fryzlewicz@lse.ac.uk>

See Also

segment.mean, wbs.thresh.cpt, wbs.cpt, tguh.cpt, hybrid.cpt, wbs.bic.cpt

Examples

teeth <- rep(rep(0:1, each=5), 20)
teeth.noisy <- teeth + rnorm(200)/5
teeth.cleaned <- wbs.K.cpt(teeth.noisy, 39)
teeth.cleaned$cpt
teeth.cleaned <- wbs.K.cpt(teeth.noisy, 78)
teeth.cleaned$cpt
teeth.cleaned$cpt.sorted

wbs.thresh.cpt Multiple change-point detection in the mean of a vector using the
(Adaptive) WBS method, with the number of change-points chosen by
thresholding

Description

This function estimates the number and locations of change-points in the piecewise-constant mean
of the noisy input vector, using the (Adaptive) Wild Binary Segmentation method (see Details for
the relevant literature references). The number of change-points is chosen via a thresholding-type
criterion. The constant means between each pair of neighbouring change-points are also estimated.
The method works best when the noise in the input vector is independent and identically distributed
Gaussian.

Usage

wbs.thresh.cpt(x, sigma = stats::mad(diff(x)/sqrt(2)), universal = TRUE,
M = NULL, th.const = NULL, th.const.min.mult = 0.825, adapt = TRUE,
lambda = 0.9)

wbs.thresh.cpt 15

Arguments

x A vector containing the data in which you wish to find change-points.

sigma The estimate or estimator of the standard deviation of the noise in x; the default
is the Median Absolute Deviation of x computed under the assumption that the
noise is independent and identically distributed Gaussian.

universal If TRUE, then M and th.const (see below) are chosen automatically in such a
way that if the mean of x is constant (i.e. if there are no change-points), the
probability of no detection (i.e. est being constant) is approximately lambda.
When universal is TRUE, then M=1000 for longer signals and M<1000 for shorter
signals to avoid th.const being larger than 1.3, which empirically appears to
be too high a value. If universal is FALSE, then both M and th.const must be
specified.

M The number of randomly selected sub-segments of the data on which to build the
CUSUM statistics in the (Adaptive) Wild Binary Segmentation algorithm. If you
are using Adaptive Wild Binary Segmentation (adapt=TRUE) and do not wish to
set universal to TRUE (and therefore have M chosen for you), try M=1000. If
you are using standard Wild Binary Segmentation (adapt=TRUE), try M=20000
or higher.

th.const Tuning parameter. Change-points are estimated by thresholding [of the (Adap-
tive) WBS CUSUMs of x] in which the threshold has magnitude th.const * sqrt(2 * log(n)) * sigma,
where n is the length of x. There is an extra twist if adapt=TRUE, see th.const.min.mult
below.

th.const.min.mult

If adapt=TRUE, then the threshold gradually decreases in each recursive pass
through the data, but in such a way that in never goes below th.const.min.mult * th.const * sqrt(2 * log(n)) * sigma.

adapt If TRUE (respectively, FALSE), then Adaptive (respectively, standard) Wild Bi-
nary Segmentation is used.

lambda See the description for the universal parameter above. Currently, the only
permitted values are 0.9 and 0.95.

Details

The change-point detection algorithms used in wbs.thresh.cpt are: standard Wild Binary Seg-
mentation [see "Wild Binary Segmentation for multiple change-point detection", P. Fryzlewicz
(2014), Annals of Statistics, 42, 2243-2281] and Adaptive Wild Binary Segmentation [see "Data-
adaptive Wild Binary Segmentation", P. Fryzlewicz (2017), in preparation as of September 28th,
2017].

Value

A list with the following components:

est The estimated piecewise-constant mean of x.

no.of.cpt The estimated number of change-points in the piecewise-constant mean of x.

cpt The estimated locations of change-points in the piecewise-contant mean of x
(these are the final indices before the location of each change-point).

16 wbs.thresh.cpt

Author(s)

Piotr Fryzlewicz, <p.fryzlewicz@lse.ac.uk>

See Also

segment.mean, wbs.bic.cpt, wbs.cpt, tguh.cpt, hybrid.cpt, wbs.K.cpt

Examples

teeth <- rep(rep(0:1, each=5), 20)
teeth.noisy <- teeth + rnorm(200)/5
teeth.cleaned <- wbs.thresh.cpt(teeth.noisy)
ts.plot(teeth.cleaned$est)
teeth.cleaned$no.of.cpt
teeth.cleaned$cpt

Index

breakfast, 2
breakfast-package (breakfast), 2

hybrid.cpt, 2, 4–6, 10–14, 16

segment.mean, 2, 3, 4, 6, 10–14, 16

tguh.cpt, 3–5, 5, 7–14, 16
tguh.decomp, 6, 6, 8, 9
tguh.denoise, 6, 7, 7, 9
tguh.reconstr, 6–8, 9

wbs.bic.cpt, 3, 10, 11–14, 16
wbs.cpt, 3, 5, 10, 11, 11, 13, 14, 16
wbs.K.cpt, 3, 10–12, 13, 16
wbs.thresh.cpt, 3, 10–14, 14

17

	breakfast
	hybrid.cpt
	segment.mean
	tguh.cpt
	tguh.decomp
	tguh.denoise
	tguh.reconstr
	wbs.bic.cpt
	wbs.cpt
	wbs.K.cpt
	wbs.thresh.cpt
	Index

