Model-based clustering using Bayesian parsimonious Gaussian mixture models. MCMC (Markov chain Monte Carlo) are used for parameter estimation. The RJMCMC (Reversible-jump Markov chain Monte Carlo) is used for model selection. GREEN et al. (1995) <doi:10.1093/biomet/82.4.711>.
Version: | 1.0.7 |
Depends: | R (≥ 3.1.0) |
Imports: | methods (≥ 3.5.1), mcmcse (≥ 1.3-2), pgmm (≥ 1.2.3), mvtnorm (≥ 1.0-10), MASS (≥ 7.3-51.1), Rcpp (≥ 1.0.1), gtools (≥ 3.8.1), label.switching (≥ 1.8), fabMix (≥ 5.0), mclust (≥ 5.4.3) |
LinkingTo: | Rcpp, RcppArmadillo |
Suggests: | testthat |
Published: | 2020-05-19 |
Author: | Xiang Lu <Xiang_Lu at urmc.rochester.edu>, Yaoxiang Li <yl814 at georgetown.edu>, Tanzy Love <tanzy_love at urmc.rochester.edu> |
Maintainer: | Yaoxiang Li <yl814 at georgetown.edu> |
License: | GPL-3 |
NeedsCompilation: | yes |
SystemRequirements: | C++11 |
CRAN checks: | bpgmm results |
Reference manual: | bpgmm.pdf |
Package source: | bpgmm_1.0.7.tar.gz |
Windows binaries: | r-devel: bpgmm_1.0.7.zip, r-release: bpgmm_1.0.7.zip, r-oldrel: bpgmm_1.0.7.zip |
macOS binaries: | r-release: bpgmm_1.0.7.tgz, r-oldrel: bpgmm_1.0.7.tgz |
Old sources: | bpgmm archive |
Please use the canonical form https://CRAN.R-project.org/package=bpgmm to link to this page.