Package 'boussinesq' February 19, 2015 | Maintainer Emanuele Cordano <pre><manuele.cordano@gmail.com></manuele.cordano@gmail.com></pre> | | | |---|--|--| | License GPL (>= 2) | | | | Title Analytic Solutions for (ground-water) Boussinesq Equation | | | | Type Package | | | | Depends R (>= 2.10) | | | | Author Emanuele Cordano | | | | Description This package is a collection of R functions implemented from published and available analytic solutions for the One-Dimensional Boussinesq Equation (ground-water). In particular, the function ``beq.lin" is the analytic solution of the linearized form of Boussinesq Equation between two different head-based boundary (Dirichlet) conditions; ``beq.song" is the non-linear power-series analytic solution of the motion of a wetting front over a dry bedrock (Song at al, 2007, see complete reference on function documentation). Bugs/comments/questions/collaboration of any kind are warmly welcomed. | | | | Version 1.0.3 | | | | Repository CRAN | | | | Date 2013-04-18 | | | | URL http://onlinelibrary.wiley.com/doi/10.1002/wrcr.20072/abstract Collate 'beq.lin.dimensionless.R' 'beq.lin.R' 'beq.song.dimensionless.R' 'beq.song.R' 'boussinesq-package.R' 'coefficient.song.solution.R' | | | | NeedsCompilation no | | | | Date/Publication 2013-04-19 16:29:04 | | | | R topics documented: | | | | boussinesq-package | | | beq.lin.dimensionless Index 8 boussinesq-package Analytic solutions for (ground-water) Boussinesq Equation beq.lin ## Description Analytic solutions for (ground-water) Boussinesq Equation #### **Details** 2 Package: boussinesq Type: Package Version: 1.0.2 Date: 2013-04-18 License: GPL (>= 2) LazyLoad: yes Depends: R(>=2.12) #### Author(s) Emanuele Cordano <emanuele.cordano@gmail.org> beq.lin Analytic exact solution for One-Dimensional Boussinesq Equation in a two-bounded domain with two constant-value Dirichlet Condition ## **Description** Analytic exact solution for One-Dimensional Boussinesq Equation in a two-bounded domain with two constant-value Dirichlet Condition ## Usage ``` beq.lin(t = 0, x = seq(from = 0, to = L, by = by), h1 = 1, h2 = 1, L = 100, ks = 0.01, s = 0.4, big = 10^7, by = L/100, p = 0.5) ``` beq.lin 3 ## Arguments | t | time coordinate. | |-----|---| | х | spatial coordinate. Default is seq(from=0, to=L, by=by). | | big | maximum level of Fourier series considered. Default is 10^7. | | by | see seq | | L | length of the domain. | | h1 | water surface level at x=0. Left Dirichlet Bounday Condition. | | h2 | water surface level at x=L. Right Dirichlet Bondary Condition. | | ks | Hydraulic conductivity | | S | drainable pororosity (assumed to be constant) | | p | empirical coefficient to estimate hydraulic diffusivity $D=ks/(s*(p*h1+(1-p)*h2))$. It ranges between 0 and 1. | #### Value Solutions for the indicated values of x and t. ## Author(s) Emanuele Cordano ## See Also beq.lin.dimensionless ## Examples ``` L <- 1000 x <- seq(from=0,to=L,by=L/100) t <- 4 # 4 days h_sol0 <- beq.lin(x=x,t=t*24*3600,h1=2,h2=1,ks=0.01,L=L,s=0.4,big=100,p=0.0) h_solp <- beq.lin(x=x,t=t*24*3600,h1=2,h2=1,ks=0.01,L=L,s=0.4,big=100,p=0.5) h_sol1 <- beq.lin(x=x,t=t*24*3600,h1=2,h2=1,ks=0.01,L=L,s=0.4,big=100,p=1.0) plot(x,h_sol0,type="1",lty=1,main=paste("Water Surface Elevetion after",t,"days",sep=" "),xlab="x[m]",ylab="h[m lines(x,h_solp,lty=2) lines(x,h_sol1,lty=3) legend("topright",lty=1:3,legend=c("p=0","p=0.5","p=1")) ``` beq.lin.dimensionless beq.lin.dimensionless Analytic exact solution for Dimentionless (i. e. diffusivity equal to 1 - unity) One Dimensional Heat Equation in a two-bounded domain with two constant-value Dirichlet Conditions ## Description Analytic exact solution for Dimentionless (i. e. diffusivity equal to 1 - unity) One Dimensional Heat Equation in a two-bounded domain with two constant-value Dirichlet Conditions ## Usage ``` beq.lin.dimensionless(t = 0, x = seq(from = 0, to = L, by = by), big = 1e+05, by = L * 0.01, L = 1) ``` #### **Arguments** | t | time coordinate. | |-----|--| | x | spatial coordinate. Default is $seq(from=0, to=L, by=by)$. | | big | maximum level of Fourier series considered. Default is 100000. | | by | see seq | | L | length of the domain. It is used if x is not specified. | #### Value Solutions for the specificied values of x and t ## Author(s) Emanuele Cordano ## References Rozier-Cannon, J. (1984), The One-Dimensional Heat Equation, Addison-Wesley Publishing Company, Manlo Park, California, encyclopedia of Mathematics and its applications. #### See Also ``` beq.lin ``` beq.song 5 | beq.song | Song et al.'s analytic solution to Boussinesq equation in a 1D semi- | |----------|--| | | infinite domain with a Dirichlet boundary condition | ## Description Song et al.'s analytic solution to Boussinesq equation in a 1D semi-infinite domain with a Dirichlet boundary condition ## Usage ``` beq.song(t = 0.5, x = 1, s = 0.4, h1 = 1, ks = 0.01, nmax = 4, alpha = 1) ``` ## **Arguments** | t | time coordinate. | |-------|---| | x | spatial coordinate. Default is seq(from=0, to=L, by=by). | | h1 | water surface level or boundary condition coefficient at x=0. Left Dirichlet Bounday Condition. | | ks | Hydraulic conductivity | | S | drainable pororosity (assumed to be constant) | | nmax | order of power series considered for the analytic solution solution. Default is 4. | | alpha | α exponent see Song at al, 2007 | ## Value The water surface eletion vs time and space obtained by the analytic solution of Boussinesq Equation #### Note For major details, see Song at al, 2007 ## Author(s) Emanuele Cordano #### References Song, Zhi-yao;Li, Ling;David, Lockington. (2007), "Note on Barenblatt power series solution to Boussinesq equation",Applied Mathematics and Mechanics, http://www.springerlink.com/content/w0u8667772712801/,http://dx.doi.org/10.1007/s10483-007-0612-x #### See Also ``` beq.song.dimensionless ``` #### **Examples** ``` L <- 1000 x <- seq(from=0,to=L,by=L/100) t <- c(4,5,20) # days h_sol1 <- beq.song(t=t[1]*3600*24,x=x,s=0.4,h1=1,ks=0.01,nmax=10,alpha=0) h_sol2 <- beq.song(t=t[2]*3600*24,x=x,s=0.4,h1=1,ks=0.01,nmax=10,alpha=0) h_sol3 <- beq.song(t=t[3]*3600*24,x=x,s=0.4,h1=1,ks=0.01,nmax=10,alpha=0) plot(x,h_sol1,type="1",lty=1,main="Water Surface Elevetion (Song at's solution) ",xlab="x[m]",ylab="h[m]") lines(x,h_sol2,lty=2) lines(x,h_sol3,lty=3) legend("topright",lty=1:3,legend=paste("t=",t,"days",sep=" "))</pre> ``` beq.song.dimensionless Dimensionless solution for one-dimensional derived equation from scaling Boussinesq Equation (Song et al, 2007) ## **Description** Dimensionless solution for one-dimensional derived equation from scaling Boussinesq Equation (Song et al, 2007) #### Usage ``` beq.song.dimensionless(xi, xi0, a) ``` ## Arguments | xi | dimensionless coordinate (see Note) | |-----|--| | xi0 | displacement of wetting front expressed as dimensionless coordinate (see Note) | | а | vector of coefficient returned by coefficient, song, solution | ## Value the dimesioneless solution, i.e. the variable H #### Note The expession for the dimensionless coordinate (Song at al., 2007) is $\xi = x(\frac{2s}{\eta_1 K_s t^{\alpha+1}})^{1/2}$ and the solution for the dimensionless equation derived by Boussinesq Equation is: $H = \sum_{n=0}^{\infty} a_n (1 - \frac{\xi}{\xi_0})^n$ for $\xi < \xi_0$, otherwise is 0. #### Author(s) Emanuele Cordano #### References Song, Zhi-yao;Li, Ling;David, Lockington. (2007), "Note on Barenblatt power series solution to Boussinesq equation",Applied Mathematics and Mechanics, http://www.springerlink.com/content/w0u8667772712801/,http://dx.doi.org/10.1007/s10483-007-0612-x #### See Also beq.song coefficient.song.solution Alogoritm for resolution of the series coefficient a_n for the dimensionless formula for H in beq.song.dimensionless #### **Description** Alogoritm for resolution of the series coefficient a_n for the dimensionless formula for H in beq. song. dimensionless ## Usage ``` coefficient.song.solution(n = 4, lambda = 0) ``` ## Arguments n approximation order lambda dimensionless parameter releted to α see Song at al, 2007 #### Value the a_n series coefficient #### Note For major details, see Song at al, 2007 #### Author(s) Emanuele Cordano ## References Song, Zhi-yao;Li, Ling;David, Lockington. (2007), "Note on Barenblatt power series solution to Boussinesq equation",Applied Mathematics and Mechanics, http://www.springerlink.com/content/w0u8667772712801/,http://dx.doi.org/10.1007/s10483-007-0612-x ## **Index** ``` *Topic package boussinesq-package, 2 beq.lin, 2, 4 beq.lin.dimensionless, 3, 4 beq.song, 5, 7 beq.song.dimensionless, 5, 6, 7 boussinesq(boussinesq-package), 2 boussinesq-package, 2 coefficient.song.solution, 6, 7 seq, 3, 4 ```