
Package ‘bootSVD’
August 29, 2016

Title Fast, Exact Bootstrap Principal Component Analysis for High
Dimensional Data

Description Implements fast, exact bootstrap Principal Component Analysis and
Singular Value Decompositions for high dimensional data, as described in
<http://arxiv.org/abs/1405.0922>. For data matrices that are too large to operate
on in memory, users can input objects with class 'ff' (see the 'ff'
package), where the actual data is stored on disk. In response, this
package will implement a block matrix algebra procedure for calculating the
principal components (PCs) and bootstrap PCs. Depending on options set by
the user, the 'parallel' package can be used to parallelize the calculation of
the bootstrap PCs.

Version 0.5

Author Aaron Fisher <fisher@jhu.edu>

Maintainer Aaron Fisher <fisher@jhu.edu>

URL http://arxiv.org/abs/1405.0922

Depends R (>= 3.0.2)

Imports ff, parallel

License GPL-2

LazyData true

NeedsCompilation no

Repository CRAN

Date/Publication 2015-06-02 00:22:54

R topics documented:
As2Vs . 2
bootPCA . 3
bootSVD . 4
bootSVD_LD . 8
EEG_leadingV . 10
EEG_mu . 11

1

http://arxiv.org/abs/1405.0922

2 As2Vs

EEG_score_var . 11
fastSVD . 12
ffmatrixmult . 13
genBootIndeces . 15
genQ . 16
getMomentsAndMomentCI . 16
os . 18
qrSVD . 18
reindexMatricesByK . 19
reindexVectorsByK . 21
simEEG . 22

Index 24

As2Vs Convert low dimensional bootstrap components to high dimensional
bootstrap components

Description

Let B be the number of bootstrap samples, indexed by b = 1, 2, ...B. As2Vs is a simple function
converts the list of principal component (PC) matrices for the bootstrap scores to a list of principal
component matrices on the original high dimensional space. Both of these lists, the input and the
output of As2Vs, are indexed by b.

Usage

As2Vs(AsByB, V, pattern = NULL, ...)

Arguments

AsByB a list of the PCs matrices for each bootstrap sample, indexed by b. Each element
of this list should be a (n by K) matrix, where K is the number of PCs of
interest, and n is the sample size.

V a tall (p by n) matrix containing the PCs of the original sample, where n is
sample size, and p is sample dimension.

pattern if V is a class ff object, the returned value will also be a class ff object. pattern
is passed to ff in creation of the output.

... passed to mclapply.

Value

a B-length list of (p by K) PC matrices on the original sample coordinate space (denoted here as
V b). This is achieved by the matrix multiplication V b = V Ab. Note that here, V b denotes the bth

bootstrap PC matrix, not V raised to the power b. This notation is the same as the notation used in
(Fisher et al., 2014).

bootPCA 3

References

Aaron Fisher, Brian Caffo, and Vadim Zipunnikov. Fast, Exact Bootstrap Principal Component
Analysis for p>1 million. 2014. http://arxiv.org/abs/1405.0922

Examples

#use small n, small B, for a quick illustration
set.seed(0)
Y<-simEEG(n=100, centered=TRUE, wide=TRUE)
svdY<-fastSVD(Y)
DUt<- tcrossprod(diag(svdY$d),svdY$u)
bInds<-genBootIndeces(B=50,n=dim(DUt)[2])
bootSVD_LD_output<-bootSVD_LD(DUt=DUt,bInds=bInds,K=3,verbose=interactive())

Vs<-As2Vs(As=bootSVD_LD_output$As,V=svdY$v)
Yields the high dimensional bootstrap PCs (left singular
vectors of the bootstrap sample Y),
indexed by b = 1,2...B, where B is the number of bootstrap samples

bootPCA Quickly calculates bootstrap PCA results (wrapper for bootSVD)

Description

All arguments are passed to bootSVD. This function should be used in exactly the same way as
bootSVD. The only difference is that PCA typically involves re-centering each bootstrap sample,
whereas calculations involving the SVD might not.

Usage

bootPCA(centerSamples = TRUE, ...)

Arguments

centerSamples whether each bootstrap sample should be centered before computing the boot-
strap principal components.

... passed to bootSVD

Value

bootSVD(...)

4 bootSVD

bootSVD Calculates bootstrap distribution of PCA (i.e. SVD) results

Description

Applies fast bootstrap PCA, using the method from (Fisher et al., 2014). Dimension of the sample
is denoted by p, and sample size is denoted by n, with p > n.

Usage

bootSVD(Y = NULL, K, V = NULL, d = NULL, U = NULL, B = 50,
output = "HD_moments", verbose = getOption("verbose"), bInds = NULL,
percentiles = c(0.025, 0.975), centerSamples = TRUE, pattern_V = "V_",
pattern_Vb = "Vb_")

Arguments

Y initial data sample, which can be either a matrix or a ff matrix. Y can be either
tall (p by n) or wide (n by p). If Y is entered and V, d and U (see definitions
below) are not entered, then bootSVD will also compute the SVD of Y. In this
case where the SVD is computed, bootSVD will assume that the larger dimension
of Y is p, and the smaller dimension of code Y is n (i.e. bootSVD assumes that
(p > n). This assumption can be overriden by manually entering V, U and d.
For cases where the entire data matrix can be easily stored in memory (e.g.
p < 50000), it is generally appropriate to enter Y as a standard matrix. When Y
is large enough that matrix algebra on Y is too demanding for memory though,
Y should be entered as a ff object, where the actual data is stored on disk. If Y
has class ff, and V, d or U is not entered, then block matrix algebra will be used
to calculate the PCs and bootstrap PCs. The results of these calculations will be
returned as ff objects as well.

K number of PCs to calculate the bootstrap distribution for.

V (optional) the (p by n) full matrix of p-dimensional PCs for the sample data
matrix. If Y is wide, these are the right singular vectors of Y (i.e. Y = UDV ′).
If Y is tall, these are the left singular vectors of Y (i.e. Y = V DU ′). In general
it is assumed that p > n, however, this can be overridden by setting V and U
appropriately.
Like Y, the argument V can be either a standard matrix or a ff matrix. If V is a
ff object, the bootstrap PCs, if requested, will be returned as ff objects as well.

d (optional) n-length vector of the singular values of Y. For example, if Y is tall,
then we have Y = V DU ′ with D=diag(d).

U (optional) the (n by n) full set of n-dimensional singular vectors of Y. If Y is
wide, these are the left singular vectors of Y (i.e. Y = UDV ′). If Y is tall, these
are the right singular vectors of Y (i.e. Y = V DU ′).

B number of bootstrap samples to compute.

bootSVD 5

output a vector telling which descriptions of the bootstrap distribution should be cal-
culated. Can include any of the following: ’initial_SVD’, ’HD_moments’,
’full_HD_PC_dist’, and ’HD_percentiles’. See below for explanations of these
outputs.
For especially high dimensional cases, caution should be used if requesting
’full_HD_PC_dist’ due to potential storage limitations.

verbose if TRUE, the function will print progress during calculation procedure.
bInds a (B by n) matrix of bootstrap indeces, where B is the number of bootstrap

samples, and n is the sample size. The purpose of setting a specific bootstrap
sampling index is to allow the results to be more precisely compared against
standard bootstrap PCA calculations. If entered, the bInds argument will over-
ride the B argument.

percentiles a vector containing percentiles to be used to calculate element-wise percentiles
across the bootstrap distribution (both across the distribution of p-dimensional
components and the distribution of n-dimensional components). For example,
percentiles=c(.025,.975) will return the 2.5 and 97.5 percentiles, which can
be used as 95 percent bootstrap percentile CIs. Alternatively, a longer vector of
percentiles can be entered.

centerSamples whether each bootstrap sample should be centered before calculating the SVD.
pattern_V if Y is a class ff object, then the returned PCs of Y will also be a class ff object.

pattern_V is passed to ff in creation of the initial_SVD output. Specifically,
pattern_V is a filename prefix used for storing the high dimensional PCs of the
original sample.

pattern_Vb if Y or V is a class ff object, then the returned bootstrap PCs will also be class
ff objects. pattern_Vb is passed to ff in creation of the full_HD_PC_dist
output. Specifically, pattern_Vb is a filename prefix used for storing the high
dimensional bootstrap PCs.

Details

Users might also consider changing the global options ffbatchbytes, from the ff package, and
mc.cores, from the parallel package. When ff objects are entered as arguments for bootSVD, the
required matrix algebra is done using block matrix alebra. The ffbatchbytes option determines
the size of the largest block matrix that will be held in memory at any one time. The mc.cores
option (set to 1 by default) determines the level of parallelization to use when calculating the high
dimensional distribution of the bootstrap PCs (see mclapply).

Value

bootSVD returns a list that can include any of the following elements, depending on what is specified
in the output argument:

initial_SVD The singular value decomposition of the centered, original data matrix. initial_SVD
is a list containing V, the matrix of p-dimensional principal components, d, the vector of sin-
gular values of Y, and U, the matrix of n-dimensional singular vectors of Y.

HD_moments A list containing the bootstrap expected value (EPCs), element-wise bootstrap vari-
ance (varPCs), and element-wise bootstrap standard deviation (sdPCs) for each of the p-
dimensional PCs. Each of these three elements of HD_moments is also a list, which contains

6 bootSVD

K vectors, one for each PC. HD_moments also contains momentCI, a K-length list of (p by 2)
matrices containing element-wise moment based confidence intervals for the PCs.

full_HD_PC_dist A B-length list of matrices (or ff matrices), with the bth list element equal to
the (p by K) matrix of high dimensional PCs for the bth bootstrap sample.
For especially high dimensional cases when the output is returned as ff matrices, caution
should be used if requesting ’full_HD_PC_dist’ due to potential storage limitations.
To reindex these PCs by k (the PC index) as opposed to b (the bootstrap index), see reindexMatricesByK.
Again though, caution shoulded be used when reindexing PCs stored as ff objects, as this will
double the number of files stored.

HD_percentiles A list of K matrices, each of dimension (p by q), where q is the number of per-
centiles requested (i.e. q = length(percentiles)). The kth matrix in HD_percentiles
contains element-wise percentiles for the kth, p-dimensional PC.

In addition, the following results are always included in the output, regardless of what is specified
in the output argument:

full_LD_PC_dist

A B-length list of matrices, with the bth list element equal to the (p by K) matrix
of PCs of the scores in the bth bootstrap sample. To reindex these vectors by k
(the PC index), see reindexMatricesByK.

d_dist A B-length list of vectors, with the bth element of d_dist containing the n-
length vector of singular values from the bth bootstrap sample. To reindex these
values by k (the PC index), see reindexVectorsByK.

U_dist A B-length list of (n by K) matrices, with the columns of the bth matrix con-
taining the n-length singular vectors from the bth bootstrap sample. To reindex
these vectors by k (the PC index), see reindexMatricesByK.

LD_moments A list that is comparable to HD_moments, but that instead describes the vari-
ability of the n-dimensional principal components of the resampled score ma-
trices. LD_moments contains the bootstrap expected value (EPCs), element-wise
bootstrap variances (varPCs), and element-wise bootstrap standard deviations
(sdPCs) for each of the n-dimensional PCs. Each of these three elements of
LD_moments is also a list, which contains K vectors, one for each PC. LD_moments
also contains momentCI, a list of K (n by 2) matrices containing element-wise,
moment-based confidence intervals for the PCs.

LD_percentiles A list of K matrices, each of dimension (p by q), where q is the number of
percentiles requested (i.e. q = length(percentiles)). The kth matrix in
LD_percentiles contains element-wise percentiles for the kth n-dimensional
PC.

References

Aaron Fisher, Brian Caffo, and Vadim Zipunnikov. Fast, Exact Bootstrap Principal Component
Analysis for p>1 million. 2014. http://arxiv.org/abs/1405.0922

Examples

#use small n, small B, for a quick illustration
set.seed(0)

bootSVD 7

Y<-simEEG(n=100, centered=TRUE, wide=TRUE)
b<-bootSVD(Y, B=50, K=2, output=

c('initial_SVD', 'HD_moments', 'full_HD_PC_dist',
'HD_percentiles'), verbose=interactive())

#explore results
matplot(b$initial_SVD$V[,1:4],type='l',main='Fitted PCs',lty=1)
legend('bottomright',paste0('PC',1:4),col=1:4,lty=1,lwd=2)

######################
look specifically at 2nd PC
k<-2

######
#looking at HD variability

#plot several draws from bootstrap distribution
VsByK<-reindexMatricesByK(b$full_HD_PC_dist)
matplot(t(VsByK[[k]][1:20,]),type='l',lty=1,
main=paste0('20 Draws from bootstrap\ndistribution of HD PC ',k))

#plot pointwise CIs
matplot(b$HD_moments$momentCI[[k]],type='l',col='blue',lty=1,
main=paste0('CIs For HD PC ',k))
matlines(b$HD_percentiles[[k]],type='l',col='darkgreen',lty=1)
lines(b$initial_SVD$V[,k])
legend('topright',c('Fitted PC','Moment CIs','Percentile CIs'),
lty=1,col=c('black','blue','darkgreen'))
abline(h=0,lty=2,col='darkgrey')

######
looking at LD variability

plot several draws from bootstrap distribution
AsByK<-reindexMatricesByK(b$full_LD_PC_dist)
matplot(t(AsByK[[k]][1:50,]),type='l',lty=1,
main=paste0('50 Draws from bootstrap\ndistribution of LD PC ',k),
xlim=c(1,10),xlab='PC index (truncated)')

plot pointwise CIs
matplot(b$LD_moments$momentCI[[k]],type='o',col='blue',
lty=1,main=paste0('CIs For LD PC ',k),xlim=c(1,10),
xlab='PC index (truncated)',pch=1)
matlines(b$LD_percentiles[[k]],type='o',pch=1,col='darkgreen',lty=1)
abline(h=0,lty=2,col='darkgrey')
legend('topright',c('Moment CIs','Percentile CIs'),lty=1,
pch=1,col=c('blue','darkgreen'))
#Note: variability is mostly due to rotations with the third and fourth PC.

Bootstrap eigenvalue distribution
dsByK<-reindexVectorsByK(b$d_dist)
boxplot(dsByK[[k]]^2,main=paste0('Covariance Matrix Eigenvalue ',k),
ylab='Bootstrap Distribution',

8 bootSVD_LD

ylim=range(c(dsByK[[k]]^2,b$initial_SVD$d[k]^2)))
points(b$initial_SVD$d[k]^2,pch=18,col='red')
legend('bottomright','Sample Value',pch=18,col='red')

##################
#Example with ff input
library(ff)
Yff<-as.ff(Y, pattern='Y_')
If desired, change options in 'ff' package to
adjust the size of matrix blocks held in RAM.
For example:
options('ffbatchbytes'=100000)
ff_dir<-tempdir()
pattern_V <- paste0(ff_dir,'/V_')
pattern_Vb <- paste0(ff_dir,'/Vb_')
bff <- bootSVD(Yff, B=50, K=2, output=c('initial_SVD', 'HD_moments',

'full_HD_PC_dist', 'HD_percentiles'), pattern_V= pattern_V,
pattern_Vb=pattern_Vb, verbose=interactive())

Note that elements of full_HD_PC_dist and initial_SVD
have class 'ff'
lapply(bff,function(x) class(x[[1]]))
#Show some results of bootstrap draws
plot(bff$full_HD_PC_dist[[1]][,k],type='l')
#Reindexing by K will create a new set of ff files.
VsByKff<-reindexMatricesByK(bff$full_HD_PC_dist,

pattern=paste0(ff_dir,'/Vk_'))
physical(bff$full_HD_PC_dist[[1]])$filename
physical(VsByKff[[1]])$filename
matplot(t(VsByKff[[k]][1:10,]),type='l',lty=1,
main=paste0('Bootstrap Distribution of PC',k))

Saving and moving results:
saveRDS(bff,file=paste0(ff_dir,'/bff.rds'))
close(bff$initial_SVD$V)
physical(bff$initial_SVD$V)$filename
If the 'ff' files on disk are moved or renamed,
this filename attribute can be changed:
old_ff_path <- physical(bff$initial_SVD$V)$filename
new_ff_path <- paste0(tempdir(),'/new_V_file.ff')
file.rename(from= old_ff_path, to= new_ff_path)
physical(bff$initial_SVD$V)$filename <- new_ff_path
matplot(bff$initial_SVD$V[,1:4],type='l',lty=1)

bootSVD_LD Calculate bootstrap distribution of n-dimensional PCs

bootSVD_LD 9

Description

bootSVD_LD Calculates the bootstrap distribution of the principal components (PCs) of a low di-
mensional matrix. If the score matrix is inputted, the output of bootSVD_LD can be used to to
calculate bootstrap standard errors, confidence regions, or the full bootstrap distribution of the high
dimensional components. Most users may want to instead consider using bootSVD, which also
calculates descriptions of the high dimensional components. Note that bootSVD calls bootSVD_LD.

Usage

bootSVD_LD(UD, DUt = t(UD), bInds = genBootIndeces(B = 1000, n =
dim(DUt)[2]), K, warning_type = "silent", verbose = getOption("verbose"),
centerSamples = TRUE)

Arguments

UD (optional) a (n by n) matrix of scores, were rows denote individuals, and columns
denote measurements in the PC space.

DUt the transpose of UD. If both UD and UDt are entered and t(UD)!=DUt, the DUt
argument will override the UD argument.

bInds a (B by n) matrix of bootstrap indeces, where B is the number of bootstrap sam-
ples, and n is the sample size. Each row should be an indexing vector that can
be used to generate a new bootstrap sample (i.e. sample(n,replace=TRUE)).
The matrix of bootstrap indeces is taken as input, rather than being calculated
within bootSVD_LD, so that this method can be more easily compared against
traditional bootstrap SVD methods on the exact same bootstrap samples. The
bInds matrix can be calculated using the helper function genBootIndeces).

K the number of PCs to be estimated.

warning_type passed to qrSVD, when taking the SVD of the low dimensional bootstrap score
matrices.

verbose if TRUE, a progress bar will appear.

centerSamples whether each bootstrap sample should be centered before calculating the SVD.

Value

For each bootstrap matrix (DU ′)b, let svd(DU ′) =: AbDbU b, where Ab and U b are (n by n)
orthonormal matrices, and Db is a (n by n) diagonal matrix K. Here we calculate only the first K
columns of Ab, but all n columns of U b. The results are stored as a list containing

As a B-length list of the (n by K) matrices containing the first K PCs from each
bootstrap sample. This list is indexed by b, with the bth element containing the
results from the bth bootstrap sample.

ds a B-length list of vectors, indexed by the bootstrap index b, with each vector
containing the singular values of the corresponding bootstrap sample.

Us a B-length list, indexed by the bootstrap index b, of the (n by n) matrices U b.

time The computation time required for the procedure, taken using system.time.

10 EEG_leadingV

If the score matrix is inputted to bootSVD_LD, the results can be transformed to get the PCs on the
original space by multiplying each matrix Ab by the PCs of the original sample, V (see As2Vs). The
bootstrap scores of the original sample are equal to U bDb.

Examples

#use small n, small B, for a quick illustration
set.seed(0)
Y<-simEEG(n=100, centered=TRUE, wide=TRUE)
svdY<-fastSVD(Y)
DUt<- tcrossprod(diag(svdY$d),svdY$u)
bInds<-genBootIndeces(B=50,n=dim(DUt)[2])
bootSVD_LD_output<-bootSVD_LD(DUt=DUt,bInds=bInds,K=3,verbose=interactive())

EEG_leadingV Leading 5 Principal Components (PCs) from EEG dataset

Description

This package is based on (Fisher et al., 2014), which uses as an example a subset of the elec-
troencephalogram (EEG) measurements from the Sleep Heart Health Study (SHHS) (Quan et al.
1997). Since we cannot publish the EEG recordings from SHHS participants in this package, we
instead include the summary statistics of the PCs from our subsample of the processed SHHS EEG
data. These summary statistics were generated from measurements of smoothed Normalized Delta
Power. This data is used by the simEEG to simulate data examples to demonstrate our functions.

Details

Specifically, EEG_leadingV is a matrix whose columns contain the leading 5 principal components
of the EEG dataset.

References

Aaron Fisher, Brian Caffo, and Vadim Zipunnikov. Fast, Exact Bootstrap Principal Component
Analysis for p>1 million. 2014. http://arxiv.org/abs/1405.0922

Stuart F Quan, Barbara V Howard, Conrad Iber, James P Kiley, F Javier Nieto, George T O’Connor,
David M Rapoport, Susan Redline, John Robbins, JM Samet, et al. The sleep heart health study:
design, rationale, and methods. Sleep, 20(12):1077-1085, 1997. 1.1

See Also

EEG_mu, EEG_score_var

EEG_mu 11

EEG_mu Functional mean from EEG dataset

Description

This package is based on (Fisher et al., 2014), which uses as an example a subset of the elec-
troencephalogram (EEG) measurements from the Sleep Heart Health Study (SHHS) (Quan et al.
1997). Since we cannot publish the EEG recordings from SHHS participants in this package, we
instead include the summary statistics of the PCs from our subsample of the processed SHHS EEG
data. These summary statistics were generated from measurements of smoothed Normalized Delta
Power. This data is used by the simEEG to simulate data examples to demonstrate our functions.

Details

Specifically, EEG_mu is a vector containing the mean normalized delta power function across all
subjects, for the first 7.5 hours of sleep.

References

Aaron Fisher, Brian Caffo, and Vadim Zipunnikov. Fast, Exact Bootstrap Principal Component
Analysis for p>1 million. 2014. http://arxiv.org/abs/1405.0922

Stuart F Quan, Barbara V Howard, Conrad Iber, James P Kiley, F Javier Nieto, George T O’Connor,
David M Rapoport, Susan Redline, John Robbins, JM Samet, et al. The sleep heart health study:
design, rationale, and methods. Sleep, 20(12):1077-1085, 1997. 1.1

See Also

EEG_leadingV, EEG_score_var

EEG_score_var Empirical variance of the first 5 score variables from EEG dataset

Description

This package is based on (Fisher et al., 2014), which uses as an example a subset of the elec-
troencephalogram (EEG) measurements from the Sleep Heart Health Study (SHHS) (Quan et al.
1997). Since we cannot publish the EEG recordings from SHHS participants in this package, we
instead include the summary statistics of the PCs from our subsample of the processed SHHS EEG
data. These summary statistics were generated from measurements of smoothed Normalized Delta
Power. This data is used by the simEEG to simulate data examples to demonstrate our functions.

Details

Specifically, EEG_score_var is a vector containing the variances of the first 5 empirical score vari-
ables. Here, we refer to the score variables refer to the n-dimensional, uncorrelated variables, whose
coordinate vectors are the principal components EEG_leadingV.

12 fastSVD

References

Aaron Fisher, Brian Caffo, and Vadim Zipunnikov. Fast, Exact Bootstrap Principal Component
Analysis for p>1 million. 2014. http://arxiv.org/abs/1405.0922

Stuart F Quan, Barbara V Howard, Conrad Iber, James P Kiley, F Javier Nieto, George T O’Connor,
David M Rapoport, Susan Redline, John Robbins, JM Samet, et al. The sleep heart health study:
design, rationale, and methods. Sleep, 20(12):1077-1085, 1997. 1.1

See Also

EEG_mu, EEG_leadingV

fastSVD Fast SVD of a wide or tall matrix

Description

fastSVD uses the inherent low dimensionality of a wide, or tall, matrix to quickly calculate its
SVD. For a matrix A, this function solves svd(A) = UDV ′. This function can be applied to either
standard matrices, or, when the data is too large to be stored in memeory, to matrices with class
ff. ff objects have a representation in memory, but store their contents on disk. In these cases,
fastSVD will implement block matrix algebra to compute the SVD.

Usage

fastSVD(A, nv = min(dim(A)), warning_type = "silent", center_A = FALSE,
pattern = NULL)

Arguments

A matrix of dimension (n by m). This can be either of class matrix or ff.

nv number of high dimensional singular vectors to obtain. If n > m, this is the
number of n-dimensional left singular vectors to be computed. If n < m, this is
the number of m-dimensional right singular vectors to be computed.

warning_type passed to qrSVD, which calculates either svd(tcrossprod(A)) or svd(crossprod(A)),
whichever is of lower dimension.

center_A Whether the matrix A should be centered before taking it’s SVD. Centering is
done along whichever dimension of A is larger. For example, if A is tall, then
setting center_A=TRUE will return the SVD of A after centering the rows of A.
This centering is implemented as a low dimensional matrix operation that does
not require creating a copy of the original matrix A.

pattern passed to ff. When A has class ff, the returned high dimensional singular vec-
tors will also have class ff. The argument pattern is passed to ff when creating
the files on disk for the high dimensional singular vectors.

ffmatrixmult 13

Details

Users might also consider changing the global option ffbatchbytes, from the ff package. When
a ff object is entered, the ffbatchbytes option determines the maximum block size in the block
matrix algebra used to calculate the SVD.

Value

Let r be the rank of the matrix A. fastSVD solves svd(A) = UDV ′, where U is an (n by r)
orthonormal matrix, D is an (r by r) diagonal matrix; and V is a (m by r) orthonormal matrix.
When A is entered as an ff object, the high dimensional singular vectors of A will be returned as an
ff object as well. For matrices where one dimension is substantially large than the other, calculation
times are considerably faster than the standard svd function.

Examples

Y<-simEEG(n=100,centered=TRUE,wide=TRUE)
svdY<-fastSVD(Y)
V<-svdY$v #sample PCs for a wide matrix are the right singular vectors
matplot(V[,1:5],type='l',lty=1) #PCs from simulated data

#Note: For a tall, demeaned matrix Y, with columns corresponding
#to subjects and rows to measurements,
#the PCs are the high dimensional left singular vectors.

#Example with 'ff'
dev.off()
library(ff)
Yff<-as.ff(Y)
Vff<-fastSVD(Yff)$v
matplot(Vff[,1:5],type='l',lty=1)

ffmatrixmult Matrix multiplication with "ff_matrix" or "matrix" inputs

Description

A function for crossprod(x,y), for tcrossprod(x,y), or for regular matrix multiplication, that
is compatible with ff matrices. Multiplication is done without creating new matrices for the trans-
poses of x or y. Note, the crossproduct function can’t be applied directly to objects with class
ff.

Usage

ffmatrixmult(x, y = NULL, xt = FALSE, yt = FALSE, ram.output = FALSE,
override.big.error = FALSE, ...)

14 ffmatrixmult

Arguments

x a matrix or ff_matrix

y a matrix or ff_matrix. If NULL, this is set equal to x, although a second copy of
the matrix x is not actually stored.

xt should the x matrix be transposed before multiplying

yt should the y matrix be transposed before multiplying (e.g. xt=TRUE, yt=FALSE
leads to crossprod(x,y)).

ram.output force output to be a normal matrix, as opposed to an object with class ff.
override.big.error

If the dimension of the final output matrix is especially large, ffmatrixmult
will abort, giving an error. This is meant to avoid the accidental creation of very
large matrices. Set override.big.error=TRUE to bypass this error.

... passed to ff.

Value

A standard matrix, or a matrix with class ff if one of the input matrices has class ff.

Examples

Not run:
library(ff)

#Tall data
y_tall<-matrix(rnorm(5000),500,10) #y tall
x_tall<-matrix(rnorm(5000),500,10)
y_wide<-t(y_tall)
x_wide<-t(x_tall)
y_tall_ff<-as.ff(y_tall) #y tall and ff
x_tall_ff<-as.ff(x_tall)
y_wide_ff<-as.ff(y_wide) #y tall and ff
x_wide_ff<-as.ff(x_wide)

#Set options to ensure that block matrix algebra is actually done,
#and the entire algebra isn't just one in one step.
#Compare ffmatrixmult against output from standard methods
options('ffbytesize'=100)

#small final matrices
#x'x
range(crossprod(x_tall) - ffmatrixmult(x_tall_ff, xt=TRUE))
range(tcrossprod(x_wide) - ffmatrixmult(x_wide_ff, yt=TRUE))
range(crossprod(x_tall,y_tall) - ffmatrixmult(x_tall_ff,y_tall_ff, xt=TRUE))
range(tcrossprod(x_wide,y_wide) - ffmatrixmult(x_wide_ff,y_wide_ff, yt=TRUE))
range((x_wide%*%y_tall) - ffmatrixmult(x_wide_ff,y_tall_ff))

#ff + small data
s_tall <- matrix(rnorm(80),10,8)
s_wide <- matrix(rnorm(80),8,10)

genBootIndeces 15

#tall output
range(crossprod(x_wide, s_tall) - ffmatrixmult(x_wide_ff, s_tall,xt=TRUE)[])
range(tcrossprod(x_tall, s_wide) - ffmatrixmult(x_tall_ff, s_wide,yt=TRUE)[])
range(x_tall%*%s_tall - ffmatrixmult(x_tall_ff, s_tall)[])

#Wide output
range(crossprod(s_tall, y_wide) - ffmatrixmult(s_tall, y_wide_ff,xt=TRUE)[])
range(tcrossprod(s_wide, y_tall) - ffmatrixmult(s_wide,y_tall_ff,yt=TRUE)[])
range(s_wide%*%y_wide - ffmatrixmult(s_wide,y_wide_ff)[])

#Reset options for more practical use
options('ffbytesize'=16777216)

End(Not run)

genBootIndeces Generate a random set of bootstrap resampling indeces

Description

Let n be the original sample size, p be the number of measurements per subject, and B be the
number of bootstrap samples. genBootIndeces generates a (B by n) matrix containing B indexing
vectors that can be used to create B bootstrap samples, each of size n.

Usage

genBootIndeces(B, n)

Arguments

B number of desired bootstrap samples

n size of original sample from which we’ll be resampling.

Value

A (B by n) matrix of bootstrap indeces. Let bInds denote the output of getBootIndeces, and Y
denote the original (p by n) sample. Then Y[,bInds[b,]] is the bth bootstrap sample.

Examples

bInds<-genBootIndeces(B=50,n=200)

16 getMomentsAndMomentCI

genQ Generate random orthonormal matrix

Description

genQ generates a square matrix of random normal noise, and then takes the QR decomposition to
return Q, a random orthogonal square matrix.

Usage

genQ(n, lim_attempts = 200)

Arguments

n the dimension of the desired random orthonormal matrix

lim_attempts the random matrix of normal noise must be full rank to generate the appropriate
QR decomposition. lim_attempts gives the maximum number of attempts for
generating a full rank matrix of normal noise.

Value

a random orthonormal (n by n) matrix

Examples

A<-genQ(3)
round(crossprod(A),digits=10)

getMomentsAndMomentCI Calculate bootstrap moments and moment-based confidence intervals
for the PCs.

Description

Let K be the number of PCs of interest, let B be the number of bootstrap samples, and let p be the
number of measurements per subject, also known as the dimension of the sample. In general, we
use k to refer to the principal component (PC) index, where k = 1, 2, ...K, and use b to refer to the
bootstrap index, where b = 1, 2, ...B.

Usage

getMomentsAndMomentCI(AsByK, V, K = length(AsByK), verbose = FALSE)

getMomentsAndMomentCI 17

Arguments

AsByK a list of the bootstrap PC matrices. This list should be indexed by k, with the kth

element of the lsit containing a b by p matrix of results for the kth PC, across
bootstrap samples.

V a (p by n) matrix containing the coordinate vectors for the matrices within the
AsByK list, where n is sample size and p is sample dimension. Generally for
bootstrap PCA, AsByK should contain the PCs for the bootstrap scores, and V
should be the matrix of PCs from the original sample. The argument V may also
be a ff object.

K the number of leading PCs for which moments and confidence intervals should
be obtained.

verbose setting to TRUE will cause the function to print its progress in calculating the
bootstrap variance for each PC.

Value

a list containing

EVs a list containing element-wise bootstrap means for each of the K fitted PCs, in-
dexed by k.

varVs a list containing element-wise bootstrap variances for each of the K fitted PCs,
indexed by k.

sdVs a list containing element-wise bootstrap standard errors for each of the K fitted
PCs, indexed by k.

momentCI a list of (p by 2) matrices, indexed by k, where momentCI[[k]][j,] is the
pointwise moment-based CI for the jth element of the kth PC.

Examples

#use small n, small B, for a quick illustration
set.seed(0)
Y<-simEEG(n=100, centered=TRUE, wide=TRUE)
svdY<-fastSVD(Y)
V<-svdY$v #right singular vectors of the wide matrix Y
DUt<- tcrossprod(diag(svdY$d),svdY$u)
bInds<-genBootIndeces(B=50,n=dim(DUt)[2])
bootSVD_LD_output<-bootSVD_LD(DUt=DUt,bInds=bInds,K=3,verbose=interactive())

AsByB<-bootSVD_LD_output$As
AsByK<-reindexMatricesByK(AsByB)
moments<-getMomentsAndMomentCI(AsByK,V,verbose=interactive())
plot(V[,1],type='l',ylim=c(-.1,.1),main='Original PC1, with CI in blue')
matlines(moments$momentCI[[1]],col='blue',lty=1)

#Can also use this function to get moments for low dimensional
#vectors A^b[,k], by setting V to the identity matrix.
moments_A<- getMomentsAndMomentCI(As=AsByK,V=diag(ncol(AsByK[[1]])))

18 qrSVD

os Quickly print an R object’s size

Description

Quickly print an R object’s size

Usage

os(x, units = "Mb")

Arguments

x an object of interest

units measure to print size in

Value

print(object.size(x),units=units)

Examples

Y<-simEEG(n=50)
os(Y)

qrSVD Wrapper for svd, which uses random preconditioning to restart when
svd fails to converge

Description

In order to generate the SVD of the matrix x, qrSVD calls genQ to generate a random orthonormal
matrix, and uses this random matrix to precondition x. The svd of the preconditioned matrix is
calculated, and adjusted to account for the preconditioning process in order to find svd(x).

Usage

qrSVD(x, lim_attempts = 50, warning_type = "silent",
warning_file = "qrSVD_warnings.txt", ...)

reindexMatricesByK 19

Arguments

x a matrix to calculate the svd for

lim_attempts the number of tries to randomly precondition x. We generally find that one
preconditioning attempt is sufficient.

warning_type controls whether the user should be told if an orthogonal preconditioning matrix
is required, or if svd gives warnings. ’silent’ ignores these warnings, ’print’
prints the warning to the console, and ’file’ saves the warnings in a text file.

warning_file gives the location of a file to print warnings to, if warning_type is set to ’file’.

... parameters passed to svd, such as nv and nu.

Value

Solves svd(x) = UDV ′, where U is an matrix containing the left singular vectors of x, D is a
diagonal matrix containing the singular values of x; and V is a matrix containing the right singular
vectors of x (output follows the same notation convention as the svd function).

qrSVD will attempt the standard svd function before preconditioning the matrix x.

See Also

fastSVD

Examples

x <-matrix(rnorm(3*5),nrow=3,ncol=5)
svdx <- qrSVD(x)
svdx

reindexMatricesByK Used for calculation of low dimensional standard errors & percentiles,
by re-indexing the Aˆb by PC index (k) rather than bootstrap index (b).

Description

This function is used as a precursor step for calculate bootstrap standard errors, or percentiles. For
very high dimensional data, we recommend that the this function be applied to the low dimensional
components Ab, but the function can also be used to reorder a list of high dimensional bootstrap
PCs. It can equivalently be used to reorder a list of scores. In general, we recommend that as
many operations as possible be applied to the low dimensional components, as opposed to their
high dimensional counterparts. This function is called by getMomentsAndMomentCI.

Usage

reindexMatricesByK(matricesByB, pattern)

20 reindexMatricesByK

Arguments

matricesByB a B-length list of (r by K) matrices from each bootstrap sample. If the list ele-
ments have class ff, the returned matrices will also have class ff.

pattern (optional) passed to ff.

Value

a K-length list of (B by r) matrices. If elements of matricesByB have class ff, then the returned,
reordered matrices will also have class ff.

Examples

#use small n, small B, for a quick illustration
set.seed(0)
Y<-simEEG(n=100, centered=TRUE, wide=TRUE)
svdY<-fastSVD(Y)
V<- svdY$v #original sample PCs
DUt<- tcrossprod(diag(svdY$d),svdY$u)
bInds<-genBootIndeces(B=50,n=dim(DUt)[2])
bootSVD_LD_output<-bootSVD_LD(DUt=DUt,bInds=bInds,K=3,verbose=interactive())

########
to get 'low dimensional PC' moments and lower percentiles
AsByB<-bootSVD_LD_output$As
AsByK<-reindexMatricesByK(AsByB)

meanA1<-apply(AsByK[[1]],2,mean)
seA1<-apply(AsByK[[1]],2,sd)
pA1<-apply(AsByK[[1]],2,function(x) quantile(x,.05))
#can also use lapply to get a list (indexed by k=1,...K) of
#the means, standard errors, or percentiles for each PC.
#See example below, for high dimensional bootstrap PCs.

#Alternatively, moments can be calculated with
seA1_v2<- getMomentsAndMomentCI(As=AsByK,
V=diag(dim(AsByK[[1]])[2]))$sdPCs[[1]]
all(seA1_v2==seA1)

#Additional examples of exploring the low dimensional bootstrap
#PC distribution are given in the documentation for
#the 'bootSVD' function.
#########

#########
#High dimensional percentiles for each PC
VsByB<-As2Vs(As=AsByB,V=V)
VsByK<-reindexMatricesByK(VsByB)
percentileCI_Vs<-lapply(VsByK,function(mat_k){
apply(mat_k,2,function(x) quantile(x,c(.025,.975)))
})
k=2 # the 2nd PC is a little more interesting here.

reindexVectorsByK 21

matplot(t(percentileCI_Vs[[k]]),type='l',lty=1,col='blue')
lines(V[,k])
########

Note: This function can also be used to reorganize the
high dimensional PCs. For 'ff' matrices, this will
create a new set of files on disk.

reindexVectorsByK Used to study of the bootstrap distribution of the k^th singular values,
by re-indexing the list of dˆb vectors to be organized by PC index (k)
rather than bootstrap index (b).

Description

Used to study of the bootstrap distribution of the k^th singular values, by re-indexing the list of db

vectors to be organized by PC index (k) rather than bootstrap index (b).

Usage

reindexVectorsByK(vectorsByB)

Arguments

vectorsByB a B-length list, containing vectors with the n values from each bootstrap sample.

Value

a K-length list of (B by n) matrices, where each matrices’ rows refers to the values from a different
bootstrap sample.

Examples

#use small n, small B, for a quick illustration
set.seed(0)
Y<-simEEG(n=100, centered=TRUE, wide=TRUE)
svdY<-fastSVD(Y)
DUt<- tcrossprod(diag(svdY$d),svdY$u)
bInds<-genBootIndeces(B=50,n=dim(DUt)[2])
bootSVD_LD_output<-bootSVD_LD(DUt=DUt,bInds=bInds,K=3,verbose=interactive())

dsByK<-reindexVectorsByK(bootSVD_LD_output$ds)

boxplot(dsByK[[1]],main='Bootstrap distribution of 1st singular value')

22 simEEG

simEEG Simulation functional EEG data

Description

Our data from (Fisher et al. 2014) consists of EEG measurements from the Sleep Heart Health Study
(SHHS) (Quan et al. 1997). Since we cannot publish the EEG recordings from the individuals in the
SHHS, we instead include the summary statistics of the PCs from our subsample of the processed
SHHS EEG data. This data is used by the simEEG to simulate functional data that is approximately
similar to the data used in our work. The resulting simulated vectors are always of length 900, and
are generated from 5 basis vectors (see EEG_leadingV).

Usage

simEEG(n = 100, centered = TRUE, propVarNoise = 0.45, wide = TRUE)

Arguments

n the desired sample size

centered if TRUE, the sample will be centered to have mean zero for each dimension. If
FALSE, measurements will be simulated from a population where the mean is
equal to that observed in the sample used in (Fisher et al. 2014) (see EEG_mu).

propVarNoise the approximate proportion of total sample variance attributable to random noise.

wide if TRUE, the resulting data is outputted as a n by 900 matrix, with each row
corresponding to a different subject. If FALSE, the resulting data is outputted as
a 900 by n matrix, with each column corresponding to a different subject.

Value

A matrix containing n simulated measurement vectors of Normalized Delta Power, for the first 7.5
hours of sleep. These vectors are generated according to the equation:

y =
∑5

j=1 Bj ∗ sj + e

Where y is the simulated measurement for a subject, Bj is the jth basis vector, sj is a random
normal variable with mean zero, and e is a vector of random normal noise. The specific values for
Bj and var(sj) are determined from the EEG data sample studied in (Fisher et al., 2014), and are
respectively equal to the jth empirical principal component vector (see EEG_leadingV), and the
empirical variance of the jth score variable (see EEG_score_var).

References

Aaron Fisher, Brian Caffo, and Vadim Zipunnikov. Fast, Exact Bootstrap Principal Component
Analysis for p>1 million. 2014. http://arxiv.org/abs/1405.0922

Stuart F Quan, Barbara V Howard, Conrad Iber, James P Kiley, F Javier Nieto, George T O’Connor,
David M Rapoport, Susan Redline, John Robbins, JM Samet, et al. The sleep heart health study:
design, rationale, and methods. Sleep, 20(12):1077-1085, 1997. 1.1

simEEG 23

Examples

set.seed(0)

#Low noise example, for an illustration of smoother functions
Y<-simEEG(n=20,centered=FALSE,propVarNoise=.02,wide=FALSE)
matplot(Y,type='l',lty=1)

#Higher noise example, for PCA
Y<-simEEG(n=100,centered=TRUE,propVarNoise=.5,wide=TRUE)
svdY<-fastSVD(Y)
V<-svdY$v #since Y is wide, the PCs are the right singular vectors (svd(Y)$v).
d<-svdY$d
head(cumsum(d^2)/sum(d^2),5) #first 5 PCs explain about half the variation

Compare fitted PCs to true, generating basis vectors
Since PCs have arbitrary sign, we match the sign of
the fitted sample PCs to the population PCs first
V_sign_adj<- array(NA,dim=dim(V))
for(i in 1:5){
V_sign_adj[,i]<-V[,i] * sign(crossprod(V[,i],EEG_leadingV[,i]))
}
par(mfrow=c(1,2))
matplot(V_sign_adj[,1:5],type='l',lty=1,
main='PCs from simulated data,\n sign adjusted')
matplot(EEG_leadingV,type='l',lty=1,main='Population PCs')

Index

∗Topic data
EEG_leadingV, 10
EEG_mu, 11
EEG_score_var, 11

As2Vs, 2, 10

bootPCA, 3
bootSVD, 3, 4, 9
bootSVD_LD, 8

EEG_leadingV, 10, 11, 12, 22
EEG_mu, 10, 11, 12, 22
EEG_score_var, 10, 11, 11, 22

fastSVD, 12, 19
ff, 2, 4–6, 12, 14, 17, 20
ffmatrixmult, 13

genBootIndeces, 9, 15
genQ, 16, 18
getMomentsAndMomentCI, 16, 19

mclapply, 2, 5

os, 18

qrSVD, 9, 12, 18, 18

reindexMatricesByK, 6, 19
reindexVectorsByK, 6, 21

simEEG, 10, 11, 22
svd, 18, 19
system.time, 9

24

	As2Vs
	bootPCA
	bootSVD
	bootSVD_LD
	EEG_leadingV
	EEG_mu
	EEG_score_var
	fastSVD
	ffmatrixmult
	genBootIndeces
	genQ
	getMomentsAndMomentCI
	os
	qrSVD
	reindexMatricesByK
	reindexVectorsByK
	simEEG
	Index

