
Methods’ details for the bnclassify package
Bojan Mihaljevic, Concha Bielza, Pedro Larranaga

2020-03-12

Abstract

This vignette provides details on the underlying methods and documents implementation
specifics, especially where they differ from or are undocumented in the original paper. It
complements the “overview” vignette.

Contents

1 Introduction 1

2 Structure learning 1

2.1 Chow-Liu for one-dependence estimators . 1
2.2 TAN HC and TAN HC SP . 2

3 Parameter learning 2

3.1 Bayesian parameter estimation . 2
3.2 Exact model averaging for naive Bayes . 2
3.3 Weighting to Alleviate the Naive Bayes Independence Assumption 3
3.4 Attribute-weighted naive Bayes . 4

4 Prediction 4

1 Introduction

All notation and acronyms used here are introduced in vignette("overview", package="bnclassify").

See the remaining vignettes:

• vignette("overview", package="bnclassify") provides details on the implemented meth-
ods.

• ?bnclassify provides a a consise overview of the package, listing main functionalities and
functions.

• vignette("introduction", package="bnclassify") provides details on the implemented
methods.

2 Structure learning

2.1 Chow-Liu for one-dependence estimators

The CL-ODE algorithm by [Friedman et al., 1997] adapts the Chow-Liu [Chow and Liu, 1968]
algorithm in order to find the maximum likelihood TAN model in time quadratic in n. Since the same

1

method can be used to find ODE models which maximize decomposable penalized log-likelihood
scores, bnclassify uses it to maximize Akaike’s information criterion (AIC) [Akaike, 1974] and
BIC [Schwarz, 1978]. While maximizing likelihood will always render a TAN, i.e., a network with
n − 1 augmenting arcs, maximizing penalized log-likelihood may render a FAN, since the inclusion
of some arcs might degrade the penalized log-likelihood score.

Note that when data is incomplete bnclassify does not necessarily return the optimal (with respect
to penalized log-likelihood) ODE. Namely, that requires the computationally expensive calculation of
the sufficient statistics Nijk which maximize parameter likelihood; instead, bnclassify approximates
these statistics with the available case analysis heuristic (see Section 3).

2.2 TAN HC and TAN HC SP

TAN HC and TAN HC SP may evaluate equivalent structures at each step. Adding valid arcs
Xi → Xj and Xj → Xi results in identical structures because of tree structure of the features
subgraph. Namely, |Pa(X) \ C| ≤ 1 for each X and thus we can only add the arc Xi → Xj if
Pa(X) = {C}. Thus, adding an arc Xi → Xj introduces no v-structures into the network, and
both Xi → Xj and Xj → Xi only remove the independence between Xi and Xj . The two obtained
networks thus correspond to identical factorizations of the joint distribution.

To avoid scoring equivalent structures, at each step we selected the Xi → Xj such that Xi (that is,
its column name in the data set) is alphabetically before Xj . A preferable implementation would be
to select the arc randomly.

3 Parameter learning

3.1 Bayesian parameter estimation

bnclassify only handles discrete features. With fully observed data, it estimates the parameters with
maximum likelihood or Bayesian estimation, according to Equation 2 in the “overview” vignette,
with a single α for all local distributions. With incomplete data it uses available case analysis
[Pigott, 2001] and substitutes N·j· in Equation 2 in the “overview” vignette with Nij· =

∑ri

k=1 Nijk,
i.e., with the count of instances in which Pa(Xi) = j and Xi is observed:

θijk =
Nijk + α

Nij· + riα
.

3.2 Exact model averaging for naive Bayes

The MANB parameter estimation method corresponds to exact Bayesian model averaging over the
naive Bayes models obtained from all 2n subsets of the n features, yet it is computed in time linear
in n. The implementation in bnclassify follows the online appendix of Wei et al. [2011], extending it
to the cases where α 6= 1 in Equation~(3.1).

The estimate for a particular parameter θMANB
ijk is:

θMANB
ijk = θijkP (GC 6⊥⊥Xi

| D) + θikP (GC⊥⊥Xi
),

2

where P (GC 6⊥⊥Xi
| D) is the local posterior probability of an arc from C to Xi, whereas P (GC⊥⊥Xi

) =
1 − P (GC 6⊥⊥Xi

| D) is that of the absence of such an arc (which is equivalent to omitting Xi from
the model), while θijk and θik are the Bayesian parameter estimates obtained with Equation~(3.1)
given the corresponding structures (i.e., with and without the arc from C to Xi).

Using Bayes’ theorem,

P (GC 6⊥⊥Xi
| D) =

P (GC 6⊥⊥Xi
)P (D | GC 6⊥⊥Xi

)

P (GC 6⊥⊥Xi
)P (D | GC 6⊥⊥Xi

) + P (GC⊥⊥Xi
)P (D | GC⊥⊥Xi

)
.

Assuming a Dirichlet prior with hyperparameter α = 1 in Equation~3.1, Equation~(6) and
Equation~(7) in the online appendix of Wei et al. [2011] give formulas for P (D | GC 6⊥⊥Xi

) and
P (D | GC⊥⊥Xi

):

P (D | GC 6⊥⊥Xi
) =

rC
∏

j=1

(ri − 1)!

(Nij· + ri − 1)!

ri
∏

k=1

Nijk!,

P (D | GC⊥⊥Xi
) =

(ri − 1)!

(Ni + ri − 1)!

ri
∏

k=1

Ni·k!,

where Ni·k =
∑rC

j=1 Nijk. Noting that the above are special cases of Equation~(8) in Dash and
Cooper [2002], we can generalize this for any hyperparameter α > 0 as follows:

P (D | GC 6⊥⊥Xi
) =

rC
∏

j=1

Γ(riα)

Γ(Nij + riα)

ri
∏

k=1

Γ(Nijk + α)

Γ(α)
,

and

P (D | GC 6⊥⊥Xi
) =

Γ(riα)

Γ(Ni + riα)

ri
∏

k=1

Γ(Nik + α)

Γ(α)
.

Following Wei et al. [2011], bnclassify asumes that the local prior probability of an arc from the
class to a feature Xi, P (GC 6⊥⊥Xi

), is given by the user. The prior of a naive Bayes structure G, with
arcs from the class to a out of n, features and no arcs to the remaining n − a features is, then,

P (G) = P (GC 6⊥⊥Xi
)a(1 − P (GC 6⊥⊥Xi

))(n−a). (1)

Note that bnclassify computes the above in logarithmic space to reduce numerical errors.

3.3 Weighting to Alleviate the Naive Bayes Independence Assumption

The WANBIA [Zaidi et al., 2013] method updates naive Bayes’ parameters with a single exponent
‘weight’ per feature. The weights are computed by optimizing either the conditional log-likelihood or
the mean root squared error of the predictions. bnclassify implements the conditional log-likelihood

3

optimization as described in the original paper, namely optimizing it with the L-BFGS [Zhu et al.,
1997] algorithm, with its gradient g given by

gi =
N

∑

j=1

(

log P (Xi = x
(j)
i | c(j)) −

∑

c∈C

P (c | x; w) log P (Xi = x
(j)
i | c)

)

, (2)

where the probabilities are those estimated with maximum likelihood, i.e., without taking weights
into account, whereas P (c | x; w) takes weights into account. This corresponds to discriminative
learning of parameters, as a discriminative, rather than generative, objective function is optimized.

If Xi is unobserved for some instance j, that is, x
(j)
i = NA, then we replace P (Xi = x

(j)
i | c(j)) and

P (Xi = x
(j)
i | c) with 1 in Equation 2 (as a leaf in the Bayesian network, an unobserved Xi does

not affect conditional log-likelihood).

3.4 Attribute-weighted naive Bayes

The AWNB parameter estimation method is intended for the naive Bayes but in bnclassify it can
be applied to any model. It exponentiates the conditional probability of a predictor,

P (X, C) ∝ P (C)
n

∏

i=1

P (Xi | Pa(Xi))
wi ,

reducing or maintaining its effect on the class posterior, since wi ∈ [0, 1] (note that a weight wi = 0
omits Xi from the model, rendering it independent from the class.). This is equivalent to updating
parameters of θijk given by Equation~(3.1) as

θAW NB
ijk =

θ
wi

ijk
∑ri

k=1 θ
wi

ijk

,

and plugging those estimates into Equation 1 in the “overview” vignette. Weights wi are computed
as

wi =
1

M

M
∑

t=1

1√
dti

,

where M is the number of bootstrap [Efron, 1979] subsamples from D and dti is the minimum
testing depth of Xi in an unpruned classification tree learned from the t-th subsample (dti = 0 if Xi

is omitted from t-th tree).

4 Prediction

bnclassify implements prediction for augmented naive Bayes models with complete data. This
amounts to multiplying the corresponding entries in the local distributions and is done in logarithmic
space, applying the log-sum-exp trick before normalizing, in order to reduce the chance of underflow.

4

With incomplete data this cannot be done and therefore bnclassify uses the gRain package [Højsgaard,
2012] to perform exact inference. Such inference is time-consuming and, therefore, wrapper algorithms
can be very slow when applied on incomplete data sets.

References

Hirotugu Akaike. A new look at the statistical model identification. IEEE Transactions on Automatic
Control, 19(6):716–723, 1974.

CK Chow and CN Liu. Approximating discrete probability distributions with dependence trees.
IEEE Transactions on Information Theory, 14(3):462–467, 1968.

Denver Dash and Gregory F Cooper. Exact model averaging with naive Bayesian classifiers. In 19th
International Conference on Machine Learning (ICML-2002), pages 91–98, 2002.

Bradley Efron. Bootstrap methods: Another look at the jackknife. The Annals of Statistics, 7(1):
1–26, 1979.

N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers. Machine Learning, 29:
131–163, 1997.

Søren Højsgaard. Graphical independence networks with the gRain package for R. Journal of
Statistical Software, 46(10):1–26, 2012.

Therese D Pigott. A review of methods for missing data. Educational research and evaluation, 7(4):
353–383, 2001.

Gideon Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461–464, 1978.

Wei Wei, Shyam Visweswaran, and Gregory F Cooper. The application of naive Bayes model
averaging to predict Alzheimer’s disease from genome-wide data. Journal of the American Medical
Informatics Association, 18(4):370–375, 2011.

Nayyar A Zaidi, Jesus Cerquides, Mark J Carman, and Geoffrey I Webb. Alleviating naive Bayes
attribute independence assumption by attribute weighting. Journal of Machine Learning Research,
14:1947–1988, 2013.

Ciyou Zhu, Richard H Byrd, Peihuang Lu, and Jorge Nocedal. Algorithm 778: L-BFGS-B: Fortran
subroutines for large-scale bound-constrained optimization. ACM Transactions on Mathematical
Software (TOMS), 23(4):550–560, 1997.

5

	Introduction
	Structure learning
	Chow-Liu for one-dependence estimators
	TAN HC and TAN HC SP

	Parameter learning
	Bayesian parameter estimation
	Exact model averaging for naive Bayes
	Weighting to Alleviate the Naive Bayes Independence Assumption
	Attribute-weighted naive Bayes

	Prediction

