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blocksdesign-package  Blocks design package

Description

The blocksdesign package provides functionality for the construction of block designs for general
linear model treatment designs.

Details

Block designs group experimental units into homogeneous blocks to provide maximum precision
of estimation of treatment effects within blocks. The most basic type of block design is a complete
randomized blocks design where each block contains one or more complete replicate sets of treat-
ments. Complete randomized blocks designs estimate all treatment effects fully within individual
blocks and are usually the best choice for small experiments. However, for large experiments, the
variability within complete blocks can be large and then it may be beneficial to sub-divide each
complete block into smaller, more homogeneous, incomplete blocks.

Block designs with a single level of nesting are widely used in practical research but sometimes
for very large experiments a single set of nested blocks may still be too large to give good control
of intra-block variability. In this situation, a second set of incomplete blocks can be nested within
the first set to reduce the intra-block variability still further. This process of recursive nesting can
be repeated as often as required until the bottom set of blocks is sufficiently small to give adequate
control of intra-block variability.

Sometimes it can be advantageous to use a double blocking system in which one set of blocks,
usually called row blocks, is crossed with a second set of blocks, usually called column blocks.
Double blocking systems are commonly used for the control of block effects in two dimensions
simultaneously.

Recursive nesting builds stucture into the block design at the design stage and an appropriate set of
block effects for the control of positional effects can be selected at the analusis stage by the use of
selection criteria such as the AIC statistic. See Burnham and Anderson (2002).

Funtionality

blocksdesign has two main functions:
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i) blocks: This is a simple recursive function for nested block designs for unstructured treatment
sets. The function generates designs for treatments with arbitrary levels of replication and with
arbitrary depth of nesting where each successive set of blocks is optimized within the levels of each
preceding set of blocks using conditional D-optimality. The input requires the number of blocks for
each level of nesting and the algorithm automatically finds block sizes that are as equal as possible
for each level of nesting. Special block designs including square and rectangular lattice designs
(see Cochran and Cox 1957) are constructed algebraically. The outputs from the blocks function
include a data frame showing the allocation of treatments to blocks for each plot of the design and
a table showing the achieved D- and A-efficiency factors for each set of nested blocks together with
A-efficiency upper bounds, where available. A plan showing the allocation of treatments to blocks
in the bottom level of the design is also included in the output.

1) design: This is a general purpose function for arbitrary linear treatment designs and arbitrary
linear block designs with qualitative factor levels. The function first finds a D-optimal or near
D-optimal treatment design and then finds a D-optimal or near D-optimal block design for that
treatment design. The blocks design algorithm builds the blocks design by sequentially adding
blocks factors where each block factor is optimized conditional on all previously added block
factors. The outputs include a data frame of the block and treatment factors for each plot and a
table showing the achieved D-efficiency factors for each set of nested or crossed blocks. Fractional
factorial efficiency factors based on the generalized variance of the complete factorial design are
also shown.

For more details see the "blocksdesign" vignette: vignette(package = "blocksdesign")

References
Bates D., Maechler M., Bolker B., Walker S. (2015). Fitting Linear Mixed-Effects Models Using
Ime4. Journal of Statistical Software, 67(1), 1-48. doi:10.18637/jss.v067.101.

Burnham, K. P., Anderson, D. R. (2002). Model Selection and Multimodel Inference: A Practical
Information-Theoretic Approach (2nd ed.), Springer-Verlag.

Cochran W. G. & Cox G. M. (1957) Experimental Designs 2nd Edition John Wiley & Sons.

A_bound Efficiency bounds

Description

Finds upper A-efficiency bounds for regular block designs.

Usage
A_bound(n, v, b)

Arguments
n the total number of plots in the design.
v the total number of treatments in the design.

the total number of blocks in the design.
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Details

Upper bounds for the A-efficiency factors of regular block designs (see Chapter 2.8 of John and
Williams 1995). Non-trivial A-efficiency upper bounds are calculated for regular block designs
with equal block sizes and equal replication. All other designs return NA.

References

John, J. A. and Williams, E. R. (1995). Cyclic and Computer Generated Designs. Chapman and
Hall, London.

Examples

# 50 plots, 10 treatments and 10 blocks for a design with 5 replicates and blocks of size 5
A_bound(n=50,v=10,b=10)

blocks Block designs for unstructured treatment sets

Description

Constructs randomized nested block designs for unstructured treatment sets.

Usage

blocks(
treatments,
replicates,
blocks = NULL,
searches = NULL,

seed = NULL,
jumps = 1
)
Arguments
treatments the required number of treatments partitioned into equally replicated treatment
sets.
replicates the replication number for each partitioned treatment set.
blocks the number of nested blocks in each level of nesting from the top level down.
searches the maximum number of local optima searched for a design optimization.
seed an integer initializing the random number generator.

jumps the number of pairwise random treatment swaps used to escape a local maxima.



blocks 5

Details

Constructs randomized nested block designs for any arbitrary number of unstructured treatments
and any arbitrary feasible depth of nesting.

treatments is a set of numbers that partitions the total number of treatments into equi-replicate
treatment sets.

replicates is a set of treatment replication numbers that defines the replication number of each
equi-replicate treatments set.

blocks is a sequence of nested block levels in descending order of block sizes from largest to small-
est where each block level is the number of blocks nested within each preceding block (assuming a
single top-level super-block). The block sizes will automatically be as nearly equal as possible and
will never differ in size by more than a single plot for any particular level of nesting.

Unreplicated treatments are allowed and any simple nested block design can be augmented by any
number of unreplicated treatments using the treatments and replicates formulae. However, it
will usually be preferable to find an efficient block design for just the replicated treatment sets and
then to add the unreplicated treatments individually by hand.

Resolvable incomplete block designs for r replicates of p*p treatments arranged in blocks of size p
where r < p+2 for prime or prime power p or r < 4 for general p are square lattices and these designs
are constructed automatically from Latin squares or MOLS.

Resolvable incomplete block designs for r replicates of (p-1)*p treatments arranged in blocks of
size p-1 where r < p+1 for prime or prime power p are rectangular lattices and these designs are
constructed automatically by reducing an appropriate algebraic square lattice, see Cochran and Cox,
Experimental Designs, 2nd Edition, Page 417 (Shrikhande method).

Outputs:

* A data frame showing the allocation of treatments to blocks with successive nested strata ar-
ranged in standard block order.

* A table showing the replication number of each treatment in the design.

* A table showing the block levels and the achieved D-efficiency and A-efficiency factor for
each nested level together with A-efficiency upper bounds, where available.

* A plan showing the allocation of treatments to blocks in the bottom level of the design.

Value
Treatments A table showing the replication number of each treatment in the design.
Design Data frame giving the optimized block and treatment design in plot order.
Plan Data frame showing a plan view of the treatment design in the bottom level of

the design.

Blocks_model The D-efficiencies and the A-efficiencies of the blocks in each nested level of
the design together with A-efficiency upper-bounds, where available.

seed Numerical seed used for random number generator.
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searches Maximum number of searches used for each level.
jumps Number of random treatment swaps used to escape a local maxima.
References

Cochran, W.G., and G.M. Cox. 1957. Experimental Designs, 2nd ed., Wiley, New York.

Examples

## The number of searches in the following examples have been limited for fast execution.
## In practice, the number of searches may need to be increased for optimum results.
## Designs should be rebuilt several times to check that a near-optimum design has been found.

# 12 treatments with 4 replicates and 1 control treatment with 8 replicates
# the blocks automatically default to 4 complete randomized blocks each of size 14
blocks(treatments=1ist(12,1),replicates=1ist(4,8))

# 12 treatments x 4 replicates in 4 complete blocks with 4 sub-blocks of size 3
# rectangular lattice see Plan 10.10 Cochran and Cox 1957.
blocks(treatments=12,replicates=4,blocks=1ist(4,4))

# 3 treatments x 2 replicates + 2 treatments x 4 replicates in two complete randomized blocks
blocks(treatments=1ist(3,2),replicates=1ist(2,4),blocks=2,searches=10)

# 50 treatments x 4 replicates with 4 main blocks and 5 nested sub-blocks in each main block
blocks(treatments=50,replicates=4,blocks=1ist(4,5))

# as above but with 20 additional single replicate treatments, one single treatment per sub-block
blocks(treatments=1ist(50,20),replicates=1ist(4,1),blocks=1ist(4,5))

# 6 replicates of 6 treatments in 4 blocks of size 9 (non-binary block design)
blocks(treatments=6,replicates=6,blocks=4)

# 128 treatments x 2 replicates with two main blocks and 3 levels of nesting
blocks(128,2,1ist(2,2,2,2))

#' # 64 treatments x 4 replicates with 4 main blocks nested blocks of size 8 (lattice square)
blocks(64,4,1ist(4,8))

# 100 treatments x 4 replicates with 4 main blocks nested blocks of size 10 (lattice square)
blocks(100,4,1ist(4,10))

design General block and treatment designs.

Description

Constructs general D-optimal designs for feasible linear treatment models with feasible combina-
tions of block factors.
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Usage

design(
treatments,
blocks = NULL,
treatments_model = NULL,
weighting = 0.5,
searches = NULL,

seed = NULL,
jumps = 1,
resample = FALSE
)
Arguments
treatments a single treatment factor or data frame for the candidate set of treatment fac-
tor combinations assuming any combination of qualitative or quantitative factor
levels.
blocks a single block factor or data frame for the required combinations of block factors

in the required order of fitting assuming quantitative block factor levels only.
treatments_model
a treatment model formula for the required treatment design.

weighting a weighting factor between 0 and 1 for weighting the 2-factor interaction effects
of factorial blocks.

searches the maximum number of local optima searched at each stage of an optimization.

seed an integer initializing the random number generator.

jumps the number of pairwise random treatment swaps used to escape a local maxima.

resample whether treatments are sampled with or without replacement from the candidate
set .

Details

treatments is a factor or data frame containing one or more qualitative or quantitative level treat-
ment factors defining the candidate treatment set. If the size of the candidate set is different from the
size of the block design, or if the treatments_model is structured, a D-optimum treatment design
of the required size is selected from the candiate set. Treatments can be selected either with or with-
out replacement depending on the resample parameter. If resample is TRUE, selected treatments
are replaced in the candidate set after selection, which allows for repeated sampling of the same
treatment combination. If resample is FALSE, selected treatments are deleted from the candidate
set, which means that no treatment can be repeated in the final design more often than it occurs in
the original candidate set.

blocks is a factor or data frame containing one or more qualitative level block factor where the
block factors are optimized by adding block factors sequentially from left to right. If the blocks are
fully nested or if the design has crossed blocks with negligible interaction effects, each added block
factor is optimized by swaps made within the levels of all previously added blocks. If, however, a
design has crossed blocks with non-negligible and estimable interaction effects, the algorithm has
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a weighting parameter w that weights the relative importance of the main factorial block effects
versus the 2-factor block interaction effects.

If w = 1, the block main effects and the block 2-factor interaction effects are given equal importance
whereas if w = 0, the additive main block effects only are optimized. If 0 < w < 1, the 2-factor block
interaction effects are weighted relative to the additive block effects with the importance of the
interaction effects assumed to increase as w increases from O to 1. The length of the blocks object
defines the total number of plots in the design.

treatments_model is either a single formula or a compound formula split by the | operator. The
left hand side of each |, assuming all preceding splitting operators | are replaced by +, is a partial
model formula. Partial model formulae define partial design matrices which are fitted and optimized
sequentially from left to right. Sequential model fitting provides improved flexibility for fitting
factors or variables of different status or importance (see examples below).

The treatment design criterion for each treatment model is the generalized variance of the informa-
tion matrix for that design and the design efficiency is the ratio of the generalized variance of the
full candidate treatment model relative to the generalized variance of the optimized design. The
efficiency will be less than or equal to 1 for factorial models but may exceed 1 for polynomial
models.

For more details see vignette(package = "blocksdesign”)

Value
Treatments The treatments included in the design and the replication of each individual
treatment taken in de-randomized standard order.
Design The design layout showing the randomized allocation of treatments to blocks

and plots.

Treatments_model
The fitted treatment model, the number of model parameters (DF) and the D-
efficiency of each sequentially fitted treatment model

Blocks_model The blocks sub-model design and the D- and A-efficiency factors of each suc-
cessively fitted sub-blocks model.

seed Numerical seed for random number generator.

searches Maximum number of searches in each stratum.

jumps Number of random treatment swaps to escape a local maxima.
References

Cochran W. G. & Cox G. M. (1957) Experimental Designs 2nd Edition John Wiley & Sons.

Examples

## For optimum results, the number of searches may need to be increased.

## 4 replicates of 12 treatments with 16 nested blocks of size 3
## rectangular lattice see Plan 10.10 Cochran and Cox 1957.
blocks = data.frame(Main = gl(4,12), Sub = gl(16,3))
design(treatments = gl1(12,1,48), blocks)
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## 3 replicates of 15 treatments in 3 main blocks with 3 nested blocks and one control treatment
blocks=data.frame( Main = gl(3,18,54),Sub = g1(9,6,54))
treatments=factor(rep(c(1:15,rep("control”,3)),3),levels = c(1:15,"control”) )
Z=design(treatments,blocks)

incid=table(interaction(Z$Design$Main,Z$Design$Sub,lex.order = TRUE),Z$Design$treatments)

Z # print design

incid # print incidences of treatments in blocks

crossprod(incid) # print pairwise concurrences within blocks

## 4 x 12 design for 4 replicates of 12 treatments with 3 plots in each intersection block
## The optimal design is Trojan with known A-efficiency = 22/31 for the intersection blocks
blocks = data.frame(Rows = gl(4,12), Cols = gl(4,3,48))

Z=design(treatments =gl(12,1,48),blocks)
incid=table(interaction(Z$Design$Rows,Z$Design$Cols,lex.order = TRUE),Z$Design$treatments)
Z # print design

incid # print incidences of treatments in blocks

crossprod(incid) # print pairwise concurrences within blocks

## as above but showing 3 sub-columns nested within each main column

blocks = data.frame(Rows = gl(4,12), Cols = gl(4,3,48), subCols = gl1(12,1,48))
Z=design(treatments = gl(12,1,48),blocks, searches=200)

Z # print design

## 4 x 13 Row-and-column design for 4 replicates of 13 treatments

## Youden design Plan 13.5 Cochran and Cox (1957).

blocks = data.frame(Rows = gl(4,13), Cols = gl(13,1,52))

Z=design(treatments = gl(13,1,52),blocks,searches = 700)
incid=table(Z$Design$Cols,Z$Design$treatments)

Z # print design

crossprod(incid) # print pairwise concurrences of treatments within column blocks (BIB's)
tcrossprod(incid) # print pairwise concurrences of column blocks within treatments (Dual design)

## 48 treatments in 2 replicate blocks with 2 nested rows in each replicate and 3 main columns
## (Reps/Rows) x Cols

blocks = data.frame(Reps = gl(2,48), Rows = gl(4,24,96), Cols = gl1(3,8,96))
design(treatments=gl(48,1,96),blocks,searches=5)

## 48 treatments in 2 replicate blocks with 2 main columns

## The default weighting gives non-estimable Reps:Cols effects due to inherent aliasing
## Increased weighting gives estimable Reps:Cols effects but non-orthogonal main effects
blocks = data.frame(Reps = gl(2,48), Cols = gl(2,24,96))
design(treatments=gl(48,1,96),blocks,searches=5)
design(treatments=gl(48,1,96),blocks,searches=5,weighting=.9)

## Factorial treatment designs defined by a single factorial treatment model

## Main effects of five 2-level factors in a half-fraction in 2/2/2 nested blocks design
## (may require 100's of repeats to find a fully orthogonal solution - a VERY long wait!)
treatments = expand.grid(F1 =gl(2,1), F2 =gl(2,1),F3 =gl(2,1), F4=gl(2,1), F5=gl(2,1))
blocks = data.frame(bl = gl(2,8),b2 = gl(4,4),b3 = g1(8,2))

model=" ~ F1 + F2 + F3 + F4 + F5"

repeat {z = design(treatments,blocks, treatments_model=model, searches=50)

if ( isTRUE(all.equal(z$Blocks_model[3,3],1) ) ) break }

print(z)
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# Second-order model for five qualitative 2-level factors in 4 randomized blocks
treatments = expand.grid(F1 =gl(2,1), F2=¢gl(2,1),F3 =gl(2,1), F4=¢gl(2,1), F5=gl1(2,1))
blocks = data.frame(blocks = gl(4,8))

model = " ~ (F1 + F2 + F3 + F4 + F5)2"
design(treatments,blocks,treatments_model=model,searches = 10)

# Main effects of five 2-level factors in a half-fraction of a 4 x 4 row-and column design.
treatments = expand.grid(F1 =gl(2,1), F2=¢gl(2,1),F3 =gl(2,1), F4=¢gl(2,1), F5=gl1(2,1))
blocks = data.frame(rows = gl(4,4), cols = gl(4,1,16))
model = "~ F1 + F2 + F3 + F4 + F5"

repeat {z = design(treatments,blocks,treatments_model=model, searches=50)

if ( isTRUE(all.equal(z$Blocks_model[2,3],1) ) ) break }

print(z)

# Quadratic regression for three 3-level numeric factor assuming a 10/27 fraction
treatments = expand.grid(A = 1:3, B =1:3, C = 1:3)
blocks=data.frame(main=gl(1,10))

model = " ~ (A + B + C)*2 + I(A*2) + I(B*2) + I(C*2)"
design(treatments,blocks,treatments_model=model, searches=10)

# Quadratic regression for three 3-level numeric factor crossed with a qualitative 2-level factor

treatments = expand.grid(F = factor(1:2), A =1:3, B =1:3, C = 1:3)
blocks=data.frame(main=gl(1,18))

model =" ~F+A+B+C+F:A+F:B+F:C+ A:B+ A:C+ B:C+ I(A*2) + I(B*2) + I(C*2)"
design(treatments,blocks, treatments_model=model, searches=5)

# 1st-order model for 1/3rd fraction of four qualitative 3-level factors in 3 blocks
treatments = expand.grid(F1 = gl1(3,1), F2 = gl(3,1), F3 = gl(3,1), F4 = gl(3,1))
blocks = data.frame(main = gl(3,9))

model = " ~ F1 + F2 + F3 + F4"

design(treatments,blocks, treatments_model=model, searches=25)

# 2nd-order model for a 1/3rd fraction of five qualitative 3-level factors in 3 blocks
# (may require many repeats to find a fully orthogonal solution)

treatments = expand.grid(F1 =gl(3,1), F2 =¢gl1(3,1),F3 =gl(3,1), F4=¢gl(3,1), F5=g1(3,1))
blocks=data.frame(main=gl(3,27))
model = " ~ (F1 + F2 + F3 + F4 + F5)*2"

repeat {z = design(treatments,blocks,treatments_model=model, searches=50)

if ( isTRUE(all.equal(z$Blocks_model[1,3]1,1) ) ) break}

print(z)

# 2nd-order model for two qualitative and two quantitative level factors in 2 blocks of size 18
treatments = expand.grid(F1 = factor(1:2), F2 = factor(1:3), V1 = 1:3, V2 = 1:4)

blocks = data.frame(main = gl(2,18))

model = " ~ (F1 + F2 + V1 + V2)*2 + I(V1*2) + I(V2*2)"

design(treatments,blocks, treatments_model=model, searches=5)

# Plackett and Burman design for eleven 2-level factors in 12 runs

GF = expand.grid(F1 = factor(1:2,labels=c("a","b")), F2 = factor(1:2,labels=c("a","b")),
F3 = factor(1:2,labels=c("a","b")), F4 = factor(1:2,labels=c("a","b")),
F5 = factor(1:2,labels=c("a","b")), F6 = factor(1:2,labels=c("a","b")),
F7 = factor(1:2,labels=c("a","b")), F8 = factor(1:2,labels=c("a","b")),
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F9 = factor(1:2,labels=c("a","b")), F10= factor(1:2,labels=c("a","b")),
F11= factor(1:2,labels=c("a","b")) )
blocks=data.frame(main=gl(1,12))
model = "~ F1 + F2 + F3 + F4 + F5 + F6 + F7 + F8 + F9 + F10 + F11"
D=design(GF,blocks, treatments_model=model, searches=25)
round(crossprod(scale(data.matrix(D$Design)[,-11)),6)

## Factorial treatment designs defined by sequentially fitted factorial treatment models

## 4 varieties by 3 levels of N by 3 levels of K assuming degree-2 treatment

## interaction effects and two blocks of 12 plots

## the single stage model gives an unequal split for the replication of the four varieties
## which may be undesirable whereas the two stage model forces an equal split of 6 plots
## per variety. The single stage model appears slightly more efficient but

## in this example global D-optimality does not give the most suitable design structure.
treatments = expand.grid(Variety = factor(1:4), N =1:3, K = 1:3)
blocks=data.frame(main=gl(2,12))

treatments_model = " ~ (Variety + N + K)*2 + I(N*2) + I(K*2)"
design(treatments,blocks, treatments_model=treatments_model, searches=10)
treatments_model = " ~ Variety | (Variety + N + K)*2 + I(N*2) + I(K*2)"

design(treatments,blocks,treatments_model=treatments_model, searches=10)

durban Durban example data design

Description

Actual layout used by DURBAN, M., HACKETT, C., MCNICOL, J., NEWTON, A., THOMAS,
W., & CURRIE, 1. (2003). The practical use of semi-parametric models in field trials, Journal of
Agric Biological and Envir Stats, 8, 48-66.

Usage

data(durban)

Format

An object of class data. frame with 544 rows and 5 columns.
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HCF Finds hcf of any set of positive integers

Description
Finds the highest common factor (hcf) of a set of integer numbers greater than zero (Euclidean
algorithm).

Usage
HCF(...)

Arguments

any set of positive integers, in any order, for which the hcf is required.

Details

Finds the hcf of any set of positive integers which can be in any order.

Value

hcf

References

Euclidean algorithm, see:https://mathworld.wolfram.com/EuclideanAlgorithm.html

Examples

# hcf of vectors of integers
HCF (56,77,616)
HCF(3,56,77,616)

isPrime Prime number test

Description

Tests if a given number is prime and returns TRUE or FALSE

Usage

isPrime(v)


https://mathworld.wolfram.com/EuclideanAlgorithm.html

isPrimePower 13

Arguments

v the number to be tested for primality

Details

Tests for the primality of any positive integer using the fact that all primes except 2 and 3 can be
expressed as 6k-1 or 6k+1 for integer k.

Value

logical TRUE or FALSE

Examples

isPrime(731563)
isPrime(7315631)
isPrime(31%%x2)

isPrimePower Finds a prime power solution for N, if available.

Description

Tests if a given number N is a prime power and returns either the base prime p and power q or p =
Oand q=0.

Usage

isPrimePower (N)

Arguments

N the number to be tested for primality

Details

Finds the smallest integral solution for s = N**(1/i), which gives the smallest s such that s**i = N.
Then, if s is a prime, the number N is a prime power with p=s and q =1.

Value

Returns the base prime p and the power q if N is a prime power; otherwise returns p =0 and q = 0.

Examples

isPrimePower (10000)
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MOLS Prime power MOLS from finite fields

Description

Constructs sets of mutually orthogonal Latin squares (MOLS) of dimension p**q where p is prime.
The number of squares r can be any number less than p**q and the exponent q can be any value
from 1 up to a maximum dependent on the choice of p. The permitted values of p and q are:

prime p maximum q

2 12
3 7
5 5
7 4
11131719 3
2329313741434753596167717379 838997 2
101 103 107 etc. 1
Usage
MOLS(p, g, r = 1)
Arguments
p is any odd prime greater than one
q is any suitable integer power (see description for available powers)
r is any number of squares up to a maximum of p**q - 1
Details

Generates MOLS by cyclic permuation of a basic Latin square LO constructed from a vector of
ordered elements X of a prime-power finite field of size p**q and a unit vector 1 of length p**q
(see Chapter 1 of Raghavarao 1971).

L0 = crossprod(X,t(1)) + crosssprod(1,t(X))

The primitive polynomials for the MOLS generated by this package were extracted from the Table
of Primitive Polynomials given in the Supplement to Hansen and Mullen (1992).

The output is a single data frame for a p * xqxp * *q square classified by rows and columns with a
separate column for the allocation of treatments to each individual square.

Value

Data frame of factor levels for rows, columns and treatmnent sets
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References

Hansen, T. & Mullen, G. L. (1992) Primitive polynomials over finite fields, Mathematics of Com-
putation, 59, 639-643 and Supplement.

Raghavarao D. (1971) Constructions and Combinatorial Problems in Design of Experiments, Dover
Publications, Inc. Section 1.3

Examples

MOLS(2,3) # Single Latin square of size 8 x 8
MOLS(2,3,7) # Seven MOLS of size 8 x 8
MOLS(3,2,4) # Four MOLS of size 9 x 9
MOLS(3,3,4) # Four MOLS of size 27 x 27
MOLS(23,2,2) # Two MOLS of size 529 x 529
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