Package 'blin'

September 22, 2018
Title Bipartite Longitudinal Influence Network (BLIN) Estimation

Version 0.0.1

Description Estimate influence networks from longitudinal bipartite relational data, where the longitudinal relations are continuous. The outputs are estimates of weighted influence networks among each actor type in the data set. The generative model is the Bipartite Longitudinal Influence Network (BLIN) model, a linear autoregressive model for these type of data. The supporting paper is " Inferring Influence Networks from Longitudinal Bipartite Relational Data", which is in preparation by the same authors. The model may be estimated using maximum likelihood methods and Bayesian methods. For more detail on methods, see Marrs et. al. arXiv:1809.03439.

Depends R (>= 3.3.0)
Imports glmnet, stats, Matrix, MASS, abind, graphics, mvtnorm
VignetteBuilder knitr
Suggests knitr, knitcitations
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1
NeedsCompilation no
Author Frank W. Marrs [aut, cre],
Benjamin W. Campbell [aut],
Bailey K. Fosdick [aut],
Skyler J. Cranmer [aut],
Tobias B\{"o\}hmelt [aut]
Maintainer Frank W. Marrs frank.marrs@colostate.edu

Repository CRAN

Date/Publication 2018-09-21 22:30:10 UTC

R topics documented:

blin_mle 2
build_design 4
coef.blin 5
forum 5
generate_blin 6
model.matrix.blin 8
plot.blin 8
print.blin 9
print.summary.blin 9
summary.blin 10
vcov.blin 10
Index 11
blin_mle Estimate the BLIN model using maximum likelihood estimator

Description

This function estimates the bipartite logitudinal influence network (BLIN) model $Y_{t}=A^{T} \sum_{k=1}^{l a g} Y_{t-k}+$ $\sum_{k=1}^{l a g} Y_{t-k} B+X_{t} \beta+\tau E_{t}$ using maximum likelihood estimator.

Usage

blin_mle(Y, X = NULL, type = "full", lag = 1, rankA = NULL, rankB = rankA, maxit = 1000, tol = 1e-08, init = "I", sigma_init $=1$, verbose $=$ FALSE, calcses $=$ FALSE, randseed $=$ NA)

Arguments

$Y \quad$ Response 3-mode array.
X Optional 4-mode array of covariates, defaults to no covariates.
type Optional string specifying BLIN model type: full, reduced_rank, or sparse. Defaults to full.
lag Optional numeric specifying autoregressive lag in model, defaults to 1.
rankA Optional numeric rank of influence network matrix A for reduced rank model type, defaults to full rank.
rankB Optional numeric rank of influence network matrix B, defaults to rank of A.
maxit Optional numeric maximum number of iterations for full and reduced rank block coordinate descents, defaults to 1 e 3 .
tol Optional numeric convergence tolerance for full and reduced rank block coordinate descents, defaults to $1 \mathrm{e}-8$.

init	Optional string specifying initialization type for full and reduced rank block coordinate descents, defaults to "I", identity for A and B. Also allows "random" for random initialization of A and B.
sigma_init	Optional numeric standard deviation for random initialization of A and B in full and reduced rank block coordinate descents, defaults to 1.
verbose	Optional logical specifying whether progress should be printed out (TRUE) or not (FALSE). Defaults to FALSE.
calcses	Optional logical specifying whether standard errors should be calculated (TRUE) or not (FALSE). Defaults to FALSE. Only standard errors for the full BLIN model are implemented.
randseed	Optional numeric specifying seed for random ininitialization of A and B in full and reduced rank block coordinate descents, defaults to NA (no seed set).

Details

This function estimates the continuous BLIN model,

$$
Y_{t}=A^{T} Y_{t-1}+Y_{t-1} B+X_{t} \beta+\tau E_{t}
$$

, where $\left\{Y_{t}\right\}_{t}$ is a set of $S \times L$ matrices representing the bipartite relation data at each observation t. The set $\left\{X_{t}\right\}_{t}$ is a set of $S \times L \times p$ arrays describing the influence of the coefficient vector beta. Finally, each matrix E_{t} is assumed to consist of iid standard normal random variables. The matrices A and B are square matrices respesenting the influence networks among S senders and L receivers, respectively.

This function estimates the BLIN model using maximum likelihood (and related) methods. The "full" model places no restrications on the influence networks A and B, and estimates these matrices (along with β) by block coordinate descent. In addition, if calcses==TRUE, the standard errors for each coefficient will be estimated. Note that the standard error procedure may require large amounts of memory to build the BLIN design matrix; a warning is produced if the estimated size of the desgn is greater than 0.5 GB .
The "reduced rank" BLIN model assumes that the matrix A has decomposition $A=U V^{T}$, where each of U and V is an $S \times$ rankA matrix, and the matrix B has decomposition $B=W Z^{T}$, where each of W and Z is an $L \times$ rankB matrix. This model is also estimated using block coordinate descent.

Finally, the "sparse" BLIN model assumes that A and B matrices have many entries that are small or zero. The cv.glmnet (.) function from the glmnet package is used to estimate the entries in A, B, and beta. The object resuling from cv.glmnet (.) is returned in this case.
Notice that the diagonals of A and B are not identifiable. However, the sum of each diagonal entry in A and B, i.e. $a_{i i}+b_{j j}$, is identifiable. Thus, the diagonal sums are broken out as separate estimates under the name diagAB.

If calcses $=$ TRUE and type $=$ full, then standard errors will be returned. These standard errors are based on the assumption that each E_{t} consists of iid standard normal random variables. In this case, the full design matrix is built, which we call W here. Then, the variance-covariance matrix of the estimated coefficients is formed by $\hat{\tau}^{2}\left(W^{T} W\right)^{-1}$, where $\hat{\tau}^{2}$ is the usual unbiased estimator of the error variance.

Value

fit A blin object containing summary information.

See Also

```
generate_blin build_design
```


Examples

```
S <- 5
L <- 4
tmax <- 10
data <- generate_blin(S,L,tmax, lag=2, sparse=.8, seed=1)
fit <- blin_mle(data$Y, data$X, lag=2, calcses=TRUE)
summary(fit)
```

build_design

Build the BLIN design matrix

Description

Build the BLIN design matrix

Usage

build_design(Y, X = NULL, lag = 1, showWarnings = TRUE)

Arguments

Y	Response 3-mode array.
X	Optional 4-mode array of covariates, defaults to no covariates.
lag	Optional numeric specifying autoregressive lag in model, defaults to 1.
showWarnings	Optional logical whether matrix memory size should be evaluated and warning provided (see details), defaults to TRUE.

Details

This function takes an $S \times L \times T$ array Y that is a representation of a longitudinal bipartite relational data set. Optional input is an $S \times L \times T \times p$ array X of covariates that influence the evolution of the data set in equation over time. The function returns an $(S L(T-l a g)) \times\left(S^{2}+L^{2}+p\right)$ design matrix, of sparse class, upon which $Y[$, , lag:T] may be regressed. If showWarnings $=$ TRUE, and if the estimated size of the design matrix is greater than 1 GB , a warning is thrown.

Value

A sparse design matrix

See Also

```
generate_blin blin_mle
```


Examples

```
S <- 5
L <- 4
tmax <- 10
data <- generate_blin(S,L,tmax, lag=2, sparse=.8, seed=1)
dim(data$Y)
Xreg <- build_design(data$Y, data$X, lag=2)
dim(Xreg)
class(Xreg)
```

 coef.blin

Description

Coef S3 generic for class blin

Usage

\#\# S3 method for class 'blin'
coef(object, whichcoef $=$ NULL, ...)

Arguments

object blin object
whichcoef optional string (or NULL) indicating which coefficient to retrun, i.e. A, B, beta, or diagAB. If NULL, returns list of all coefficients.
$\ldots \quad$ ignored
forum Online forum dataset

Description

A data set containing online forum posts from students at the University of California at Irvine, from 2004 (see Opsahl 2013).

Format

A data set with a single array
forum $20 \times 20 \times 24$ numeric matrix of weights. NA at (i, j, t) indicates that user i did not post to forum j in week t.

Details

This data set contains online forum posts from students at the University of California at Irvine, from 2004 (see Opsahl 2013). The 20 most active users and the 20 forums to which these users posted the most are examined. The weights of the network are the number of characters posted to a given forum by a given user for each week. The 3-mode array forum contains the weights indexed by user, forum, and week, respectively. Data obtained June 8, 2018. See the link http: //opsahl.co.uk/tnet/datasets/OF_longitudinal_weightedchar.txt for raw data.

Source

http://opsahl.co.uk/tnet/datasets/OF_longitudinal_weightedchar.txt

References

Opsahl, T. (2013). "Triadic closure in two-mode networks: Redefining the global and local clustering coefficients." Social Networks, 35(2), 159-167. doi:10.1016/j.socnet.2011.07.001

Examples

```
data("forum")
```


Description

This function generates data from the bipartite logitudinal influence network (BLIN) model $Y_{t}=$ $A^{T} \sum_{k=1}^{l a g} Y_{t-k}+\sum_{k=1}^{l a g} Y_{t-k} B+X_{t} \beta+\tau E_{t}$.

Usage

generate_blin(S, L, tmax, lag = 1, tau $=1$, sigmaY $=1$, muAB $=0$, sigmaAB $=1$, rankA $=S$, rankB $=L$, use_cov $=$ TRUE, seed $=N A$, sparse = NA)

Arguments

S	Dimension of A.
L	Dimension of B.
tmax	Number of observations of relational data.
lag	Autoregressive lag in model, defaults to 1.
tau	Optional error standard deviatiom, defaults to 1.
sigmaY	Optional standard deviation of entries in Y_{t}, defaults to 1. muAB
Optional mean of entries in decomposition of matrices $A=U V^{T}$ and $B=$ sigmaAB	Optional standard deviation of entries in decomposition matrices of $A=U V^{T}$ and $B=W Z^{T}$, defaults to 1.
rankA	Rank of influence network matrix A, defaults to full rank. rankB
Optional rank of influence network matrix B, defaults to full rank.	
use	Optional logical used to indicate whether to include $X_{t} \beta$ in the model (TRUE) or not (FALSE), defaults to TRUE.
seed	Optional numeric to set seed before generating, defaults to NA (no seed set). sparse
Optional degree of sparsity in A and B, i.e. sparsity=. 9 means 10% of the entries in A and B are set to zero at random. Defaults to NA (no entries set to zero).	

Details

This function generates a continuous bipartite longitudinal relational data set from the BLIN model, $Y_{t}=A^{T} \sum_{k=1}^{l a g} Y_{t-k}+\sum_{k=1}^{l a g} Y_{t-k} B+X_{t} \beta+\tau E_{t}$, where $\left\{Y_{t}\right\}_{t}$ is a set of $S \times L$ matrices representing the bipartite relational data at each observation t. The set $\left\{X_{t}\right\}_{t}$ is a set of $S \times L \times p$ arrays describing the influence of the coefficient vector beta. Finally, each matrix E_{t} consists of iid standard normal random variables.

The matrices A and B are square matrices respesenting the influence networks among S senders and L receivers, respectively. The matrix A has decomposition $A=U V^{T}$, where each of U and V is an $S \times \operatorname{rank} A$ matrix of iid standard normal random variables with mean muAB and standard deviation sigmaAB. Similarly, the matrix B has decomposition $B=W Z^{T}$, where each of W and Z is an $L \times \operatorname{rank} B$ matrix of iid standard normal random variables with standard deviation sigmaAB and mean muAB for W and mean -muAB for Z. Lastly, the covariate array X_{t} has 3 covariates: the first is an intercept, the second consists of iid Bernoulli random variables, and the third consists of iid standard normal random variables. All coefficients are $\beta_{i}=0$ for $i=1,2,3$.

Value

fit An blin object containing summary information.

See Also

blin_mle

Examples

S <- 5
L <- 4
tmax <- 10
data <- generate_blin(S,L,tmax, lag=2, sparse=.8)
names(data)
dim(data\$X)
data\$A
model.matrix.blin model.matrix S3 generic for class blin

Description

model.matrix S3 generic for class blin

Usage

```
## S3 method for class 'blin'
model.matrix(object, ...)
```


Arguments

object	blin object
\ldots	ignored

Description

Plot S3 generic for class blin

Usage

\#\# S3 method for class 'blin'
plot(x, ...)

Arguments

x
blin object
\ldots ignored

```
print.blin Print S3 generic for class blin
```


Description

Print S3 generic for class blin

Usage

\#\# S3 method for class 'blin' print(x, hn = 10, ...)

Arguments

x	blin object
hn	optional numeric length of each coefficient printed
\ldots	ignored

Description

Print S3 generic for class summary.blin

Usage

\#\# S3 method for class 'summary.blin'
print(x, hn = 10, ...)

Arguments

x
summary.blin object
hn optional numeric length of each coefficient printed
... ignored

```
    summary.blin Summary S3 generic for class blin
```


Description

Summary S3 generic for class blin

Usage

\#\# S3 method for class 'blin'
summary (object, whichcoef = NULL, ...)

Arguments

$$
\begin{array}{ll}
\text { object } & \text { blin object } \\
\text { whichcoef } & \begin{array}{l}
\text { optional string (or NULL) indicating which coefficient to retrun, i.e. A, B, beta, } \\
\text { or diagAB. If NULL, returns list of all coefficients. }
\end{array} \\
\ldots & \text { ignored }
\end{array}
$$

vcov.blin vcovS3 generic for class blin

Description

vcov S3 generic for class blin

Usage

\#\# S3 method for class 'blin'
vcov(object, ...)

Arguments

object blin object
... ignored

Index

*Topic datasets

forum, 5
*Topic external
blin_mle, 2
build_design, 4
generate_blin, 6
blin_mle, 2, 5, 7
build_design, 4, 4
coef.blin, 5
forum, 5
generate_blin, 4, 5, 6
model.matrix.blin, 8
plot.blin, 8
print.blin, 9
print.summary.blin, 9
summary.blin, 10
vcov.blin, 10

