
Package ‘blavaan’
August 3, 2020

Title Bayesian Latent Variable Analysis

Version 0.3-10

Description Fit a variety of Bayesian latent variable models, including confirmatory
factor analysis, structural equation models, and latent growth curve models.

License GPL (>= 3)

ByteCompile true

Depends R(>= 3.5.0), methods, lavaan(>= 0.6-5), Rcpp(>= 0.12.15)

Imports stats, utils, graphics, MCMCpack, coda, mnormt, nonnest2(>=
0.5-5), loo(>= 2.0), rstan(>= 2.19.2), rstantools(>= 1.5.0),
bayesplot, future.apply

LinkingTo StanHeaders (>= 2.18.1), rstan (>= 2.19.2), BH (>= 1.69.0),
Rcpp (>= 0.12.15), RcppEigen (>= 0.3.3.4.0)

Suggests runjags(>= 2.0.4-2), modeest(>= 2.3.3), rjags, semTools,
testthat(>= 2.0.0)

SystemRequirements GNU make

NeedsCompilation yes

Author Edgar Merkle [aut, cre] (<https://orcid.org/0000-0001-7158-0653>),
Yves Rosseel [aut],
Ben Goodrich [aut],
Mauricio Garnier-Villarreal [ctb]
(<https://orcid.org/0000-0002-2951-6647>, R/blav_compare.R,
R/ctr_bayes_fit.R),
Terrence D. Jorgensen [ctb] (<https://orcid.org/0000-0001-5111-6773>,
R/ctr_bayes_fit.R, R/ctr_ppmc.R),
Huub Hoofs [ctb] (R/ctr_bayes_fit.R),
Rens van de Schoot [ctb] (R/ctr_bayes_fit.R)

Maintainer Edgar Merkle <merklee@missouri.edu>

Repository CRAN

Date/Publication 2020-08-03 06:40:02 UTC

1

2 bcfa

R topics documented:
bcfa . 2
bgrowth . 4
blavaan . 7
blavCompare . 9
blavFitIndices . 10
blavInspect . 13
blav_internal . 15
bsem . 15
dpriors . 17
plot.blavaan . 19
ppmc . 20
standardizedPosterior . 23

Index 25

bcfa Fit Confirmatory Factor Analysis Models

Description

Fit a Confirmatory Factor Analysis (CFA) model.

Usage

bcfa(..., cp = "srs",
dp = NULL, n.chains = 3, burnin, sample,
adapt, mcmcfile = FALSE, mcmcextra = list(), inits = "prior",
convergence = "manual", target = "stan", save.lvs = FALSE,
wiggle = NULL, wiggle.sd = 0.1, jags.ic = FALSE, seed = NULL,
bcontrol = list())

Arguments

... Default lavaan arguments. See lavaan.

cp Handling of prior distributions on covariance parameters: possible values are
"srs" (default) or "fa". Option "fa" is only available for target="jags".

dp Default prior distributions on different types of parameters, typically the result
of a call to dpriors(). See the dpriors() help file for more information.

n.chains Number of desired MCMC chains.

burnin Number of burnin iterations, NOT including the adaptive iterations.

sample The total number of samples to take after burnin.

adapt The number of adaptive iterations to use at the start of the simulation.

mcmcfile If TRUE, the JAGS/Stan model will be written to file (in the lavExport directory).
Can also supply a character string, which serves as the name of the directory to
which files will be written.

bcfa 3

mcmcextra A list with potential names syntax and monitor. The syntax object is a text
string containing extra code to insert in the JAGS/Stan model syntax, and the
monitor object is a character vector containing extra JAGS/Stan parameters to
sample.

inits If it is a character string, the options are currently "simple", "Mplus", "prior"
(default), and "jags". In the first two cases, parameter values are set as though
they will be estimated via ML (see lavaan). The starting parameter value for
each chain is then perturbed from the original values through the addition of
uniform noise. If "prior" is used, the starting parameter values are obtained
based on the prior distributions (while also trying to ensure that the starting
values will not crash the model estimation). If "jags", no starting values are
specified and JAGS will choose values on its own. If start is a fitted object
of class lavaan, the estimated values of the corresponding parameters will be
extracted, then perturbed in the manner described above. If it is a model list, for
example the output of the paramaterEstimates() function, the values of the
est or start or ustart column (whichever is found first) will be extracted.

convergence Useful only for target="jags". If "auto", parameters are sampled until con-
vergence is achieved (via autorun.jags()). In this case, the arguments burnin
and sample are passed to autorun.jags() as startburnin and startsample,
respectively. Otherwise, parameters are sampled as specified by the user (or by
the run.jags defaults).

target Desired MCMC sampling, with "stan" (pre-compiled marginal approach) as
default. Other options include "jags", "stancond", and "stanclassic", which
sample latent variables and provide some greater functionality (because syntax
is written "on the fly"). But they are slower and less efficient.

save.lvs Should sampled latent variables (factor scores) be saved? Logical; defaults to
FALSE

wiggle Labels of equality-constrained parameters that should be "approximately" equal.
Can also be "intercepts", "loadings", "regressions", "means".

wiggle.sd The prior sd (of normal distribution) to be used in approximate equality con-
straints.

jags.ic Should DIC be computed the JAGS way, in addition to the BUGS way? Logical;
defaults to FALSE

seed A vector of length n.chains (for target "jags") or an integer (for target "stan")
containing random seeds for the MCMC run. If NULL, seeds will be chosen
randomly.

bcontrol A list containing additional parameters passed to run.jags (or autorun.jags)
or stan. See the manpage of those functions for an overview of the additional
parameters that can be set.

Details

The bcfa function is a wrapper for the more general blavaan function, using the following default
lavaan arguments: int.ov.free = TRUE, int.lv.free = FALSE, auto.fix.first = TRUE (unless
std.lv = TRUE), auto.fix.single = TRUE, auto.var = TRUE, auto.cov.lv.x = TRUE, auto.th =
TRUE, auto.delta = TRUE, and auto.cov.y = TRUE.

4 bgrowth

Value

An object of class lavaan, for which several methods are available, including a summary method.

References

Yves Rosseel (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical
Software, 48(2), 1-36. URL http://www.jstatsoft.org/v48/i02/.

Edgar C. Merkle & Yves Rosseel (2018). blavaan: Bayesian Structural Equation Models via Param-
eter Expansion. Journal of Statistical Software, 85(4), 1-30. URL http://www.jstatsoft.org/v85/i04/.

See Also

blavaan

Examples

Not run:
The Holzinger and Swineford (1939) example
HS.model <- ' visual =~ x1 + x2 + x3

textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

fit <- bcfa(HS.model, data=HolzingerSwineford1939)
summary(fit)

End(Not run)

bgrowth Fit Growth Curve Models

Description

Fit a Growth Curve model.

Usage

bgrowth(..., cp = "srs", dp = NULL, n.chains = 3,
burnin, sample, adapt, mcmcfile = FALSE, mcmcextra = list(),
inits = "prior", convergence = "manual", target = "stan",
save.lvs = FALSE, wiggle = NULL, wiggle.sd = 0.1, jags.ic = FALSE,
seed = NULL, bcontrol = list())

bgrowth 5

Arguments

... Default lavaan arguments. See lavaan.

cp Handling of prior distributions on covariance parameters: possible values are
"srs" (default) or "fa". Option "fa" is only available for target="jags".

dp Default prior distributions on different types of parameters, typically the result
of a call to dpriors(). See the dpriors() help file for more information.

n.chains Number of desired MCMC chains.

burnin Number of burnin iterations, NOT including the adaptive iterations.

sample The total number of samples to take after burnin.

adapt The number of adaptive iterations to use at the start of the simulation.

mcmcfile If TRUE, the JAGS/Stan model will be written to file (in the lavExport directory).
Can also supply a character string, which serves as the name of the directory to
which files will be written.

mcmcextra A list with potential names syntax and monitor. The syntax object is a text
string containing extra code to insert in the JAGS/Stan model syntax, and the
monitor object is a character vector containing extra JAGS/Stan parameters to
sample.

inits If it is a character string, the options are currently "simple", "Mplus", "prior"
(default), and "jags". In the first two cases, parameter values are set as though
they will be estimated via ML (see lavaan). The starting parameter value for
each chain is then perturbed from the original values through the addition of
uniform noise. If "prior" is used, the starting parameter values are obtained
based on the prior distributions (while also trying to ensure that the starting
values will not crash the model estimation). If "jags", no starting values are
specified and JAGS will choose values on its own. If start is a fitted object
of class lavaan, the estimated values of the corresponding parameters will be
extracted, then perturbed in the manner described above. If it is a model list, for
example the output of the paramaterEstimates() function, the values of the
est or start or ustart column (whichever is found first) will be extracted.

convergence Useful only for target="jags". If "auto", parameters are sampled until con-
vergence is achieved (via autorun.jags()). In this case, the arguments burnin
and sample are passed to autorun.jags() as startburnin and startsample,
respectively. Otherwise, parameters are sampled as specified by the user (or by
the run.jags defaults).

target Desired MCMC sampling, with "stan" (pre-compiled marginal approach) as
default. Other options include "jags", "stancond", and "stanclassic", which
sample latent variables and provide some greater functionality (because syntax
is written "on the fly"). But they are slower and less efficient.

save.lvs Should sampled latent variables (factor scores) be saved? Logical; defaults to
FALSE

wiggle Labels of equality-constrained parameters that should be "approximately" equal.
Can also be "intercepts", "loadings", "regressions", "means".

wiggle.sd The prior sd (of normal distribution) to be used in approximate equality con-
straints.

6 bgrowth

jags.ic Should DIC be computed the JAGS way, in addition to the BUGS way? Logical;
defaults to FALSE

seed A vector of length n.chains (for target "jags") or an integer (for target "stan")
containing random seeds for the MCMC run. If NULL, seeds will be chosen
randomly.

bcontrol A list containing additional parameters passed to run.jags (or autorun.jags)
or stan. See the manpage of those functions for an overview of the additional
parameters that can be set.

Details

The bgrowth function is a wrapper for the more general blavaan function, using the following
default lavaan arguments: meanstructure = TRUE, int.ov.free = FALSE, int.lv.free = TRUE,
auto.fix.first = TRUE (unless std.lv = TRUE), auto.fix.single = TRUE, auto.var = TRUE, auto.cov.lv.x
= TRUE, auto.th = TRUE, auto.delta = TRUE, and auto.cov.y = TRUE.

Value

An object of class blavaan, for which several methods are available, including a summary method.

References

Yves Rosseel (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical
Software, 48(2), 1-36. URL http://www.jstatsoft.org/v48/i02/.

Edgar C. Merkle & Yves Rosseel (2018). blavaan: Bayesian Structural Equation Models via Param-
eter Expansion. Journal of Statistical Software, 85(4), 1-30. URL http://www.jstatsoft.org/v85/i04/.

See Also

blavaan

Examples

Not run:
linear growth model with a time-varying covariate
model.syntax <- '

intercept and slope with fixed coefficients
i =~ 1*t1 + 1*t2 + 1*t3 + 1*t4
s =~ 0*t1 + 1*t2 + 2*t3 + 3*t4

regressions
i ~ x1 + x2
s ~ x1 + x2

time-varying covariates
t1 ~ c1
t2 ~ c2
t3 ~ c3
t4 ~ c4

'

blavaan 7

fit <- bgrowth(model.syntax, data=Demo.growth)
summary(fit)

End(Not run)

blavaan Fit a Bayesian Latent Variable Model

Description

Fit a Bayesian latent variable model.

Usage

blavaan(..., cp = "srs",
dp = NULL, n.chains = 3, burnin, sample,
adapt, mcmcfile = FALSE, mcmcextra = list(), inits = "prior",
convergence = "manual", target = "stan", save.lvs = FALSE,

wiggle = NULL, wiggle.sd = 0.1, jags.ic = FALSE, seed = NULL, bcontrol = list())

Arguments

... Default lavaan arguments. See lavaan.

cp Handling of prior distributions on covariance parameters: possible values are
"srs" (default) or "fa". Option "fa" is only available for target="jags".

dp Default prior distributions on different types of parameters, typically the result
of a call to dpriors(). See the dpriors() help file for more information.

n.chains Number of desired MCMC chains.

burnin Number of burnin iterations, NOT including the adaptive iterations.

sample The total number of samples to take after burnin.

adapt The number of adaptive iterations to use at the start of the simulation.

mcmcfile If TRUE, the JAGS/Stan model and data will be written to files (in the lavExport
directory). Can also supply a character string, which serves as the name of the
directory to which files will be written.

mcmcextra A list with potential names syntax and monitor. The syntax object is a text
string containing extra code to insert in the JAGS/Stan model syntax, and the
monitor object is a character vector containing extra JAGS/Stan parameters to
sample.

inits If it is a character string, the options are currently "simple", "Mplus", "prior"
(default), or "jags". In the first two cases, parameter values are set as though
they will be estimated via ML (see lavaan). The starting parameter value for
each chain is then perturbed from the original values through the addition of
random uniform noise. If "prior" is used, the starting parameter values are
obtained based on the prior distributions (while also trying to ensure that the

8 blavaan

starting values will not crash the model estimation). If "jags", no starting values
are specified and JAGS will choose values on its own. If start is a fitted object
of class lavaan, the estimated values of the corresponding parameters will be
extracted, then perturbed in the manner described above. If it is a model list, for
example the output of the paramaterEstimates() function, the values of the
est or start or ustart column (whichever is found first) will be extracted.

convergence Useful only for target="jags". If "auto", parameters are sampled until con-
vergence is achieved (via autorun.jags()). In this case, the arguments burnin
and sample are passed to autorun.jags() as startburnin and startsample,
respectively. Otherwise, parameters are sampled as specified by the user (or by
the run.jags defaults).

target Desired MCMC sampling, with "stan" (pre-compiled marginal approach) as
default. Other options include "jags", "stancond", and "stanclassic", which
sample latent variables and provide some greater functionality (because syntax
is written "on the fly"). But they are slower and less efficient.

save.lvs Should sampled latent variables (factor scores) be saved? Logical; defaults to
FALSE

wiggle Labels of equality-constrained parameters that should be "approximately" equal.
Can also be "intercepts", "loadings", "regressions", "means".

wiggle.sd The prior sd (of normal distribution) to be used in approximate equality con-
straints.

jags.ic Should DIC be computed the JAGS way, in addition to the BUGS way? Logical;
defaults to FALSE

seed A vector of length n.chains (for target "jags") or an integer (for target "stan")
containing random seeds for the MCMC run. If NULL, seeds will be chosen
randomly.

bcontrol A list containing additional parameters passed to run.jags (or autorun.jags)
or stan. See the manpage of those functions for an overview of the additional
parameters that can be set.

Value

An object that inherits from class lavaan, for which several methods are available, including a
summary method.

References

Yves Rosseel (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical
Software, 48(2), 1-36. URL http://www.jstatsoft.org/v48/i02/.

Edgar C. Merkle & Yves Rosseel (2018). blavaan: Bayesian Structural Equation Models via Param-
eter Expansion. Journal of Statistical Software, 85(4), 1-30. URL http://www.jstatsoft.org/v85/i04/.

See Also

bcfa, bsem, bgrowth

blavCompare 9

Examples

Not run:
The Holzinger and Swineford (1939) example
HS.model <- ' visual =~ x1 + x2 + x3

textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

fit <- blavaan(HS.model, data=HolzingerSwineford1939,
auto.var=TRUE, auto.fix.first=TRUE,
auto.cov.lv.x=TRUE)

summary(fit)
coef(fit)

End(Not run)

blavCompare Bayesian model comparisons.

Description

Bayesian model comparisons, including WAIC, LOO, and Bayes factor approximation.

Usage

blavCompare(object1, object2, ...)

Arguments

object1 An object of class blavaan.

object2 A second object of class blavaan.

... Other arguments (unused for now).

Details

This function approximates the log-Bayes factor of two candidate models using the Laplace ap-
proximation to each model’s marginal log-likelihood.

Value

The log-Bayes factor approximation, along with each model’s approximate marginal log-likelihood.

References

Raftery, A. E. (1993). Bayesian model selection in structural equation models. In K. A. Bollen &
J. S. Long (Eds.), Testing structural equation models (pp. 163-180). Beverly Hills, CA: Sage.

10 blavFitIndices

Examples

Not run:
hsm1 <- ' visual =~ x1 + x2 + x3 + x4

textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

fit1 <- bcfa(hsm1, data=HolzingerSwineford1939)

hsm2 <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6 + x7
speed =~ x7 + x8 + x9 '

fit2 <- bcfa(hsm2, data=HolzingerSwineford1939)

blavCompare(fit1, fit2)

End(Not run)

blavFitIndices SEM Fit Indices for Bayesian SEM

Description

This function provides a posterior distribution of some χ2-based fit indices to assess the global fit
of a latent variable model.

Usage

blavFitIndices(object, thin = 1L, pD = c("loo","waic","dic"),
rescale = c("devM","ppmc","mcmc"),
fit.measures = "all", baseline.model = NULL)

S4 method for signature 'blavFitIndices'
S4 method for signature 'blavFitIndices'
summary(object, central.tendency = c("mean","median","mode"),

hpd = TRUE, prob = .90)

Arguments

object An object of class blavaan.

thin Optional integer indicating how much to thin each chain. Default is 1L, indi-
cating not to thin the chains.

pD character indicating from which information criterion returned by fitMeasures(object)
to use the estimated number of parameters. The default is from the leave-one-out
information criterion (LOO-IC), which is most highly recommended by Vehtari
et al. (2017).

blavFitIndices 11

rescale character indicating the method used to calculate fit indices. If rescale =
"devM" (default), the Bayesian analog of the χ2 statistic (the deviance evaluated
at the posterior mean of the model parameters) is approximated by rescaling the
deviance at each iteration by subtracting the estimated number of parameters. If
rescale = "PPMC", the deviance at each iteration is rescaled by subtracting the
deviance of data simulated from the posterior predictive distribution (as in pos-
terior predictive model checking; see Hoofs et al., 2017). If rescale = "MCMC",
the fit measures are simply calculated using fitMeasures at each iteration of the
Markov chain(s), based on the model-implied moments at that iteration (NOT
advised when the model includes informative priors, in which case the model’s
estimated pD will deviate from the number of parameters used to calculate df in
fitMeasures).

fit.measures If "all", all fit measures available will be returned. If only a single or a few
fit measures are specified by name, only those are computed and returned. If
rescale = "devM" or "PPMC", the currently available indices are "BRMSEA",
"BGammaHat", "adjBGammaHat", "BMc", "BCFI", "BTLI", or "BNFI". If rescale
= "MCMC", the user may request any indices returned by fitMeasures for objects
of class lavaan.

baseline.model If not NULL, an object of class blavaan, representing a user-specified baseline
model. If a baseline.model is provided, incremental fit indices (BCFI, BTLI,
or BNFI) can be requested in fit.measures. Ignored if rescale = "MCMC".

central.tendency

character indicating which statistics should be used to characterize the loca-
tion of the posterior distribution. By default, all 3 statistics are returned. The
posterior mean is labeled EAP for expected a posteriori estimate, and the mode
is labeled MAP for modal a posteriori estimate.

hpd logical indicating whether to calculate the highest posterior density (HPD)
credible interval for each fit index.

prob The "confidence" level of the credible interval(s).

Value

An S4 object of class blavFitIndices consisting of 2 slots:

@details A list containing the choices made by the user (or defaults; e.g., which values
of pD and rescale were set), as well as the posterior distribution of the χ2

(deviance) statistic (rescaled, if rescale = "devM" or "PPMC").

@indices A list containing the posterior distribution of each requested fit.measure.

The summary() method returns a data.frame containing one row for each requested fit.measure,
and columns containing the specified measure(s) of central.tendency, the posterior SD, and (if
requested) the HPD credible-interval limits.

Author(s)

Mauricio Garnier-Villareal (Marquette University; <mauricio.garniervillarreal@marquette.edu>)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

12 blavFitIndices

References

rescale = "PPMC" based on:

Hoofs, H., van de Schoot, R., Jansen, N. W., & Kant, I. (2017). Evaluating model fit in Bayesian
confirmatory factor analysis with large samples: Simulation study introducing the BRMSEA. Edu-
cational and Psychological Measurement. doi:10.1177/0013164417709314

rescale = "devM" based on:

Garnier-Villarreal, M., & Jorgensen, T. D. (in press). Adapting fit indices for Bayesian SEM:
Comparison to maximum likelihood. Psychological Methods. doi:10.1037/met0000224 (See also
https://osf.io/afkcw/)

Other references:

Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-
out cross-validation and WAIC. Statistics and Computing, 27(5), 1413–1432. doi:10.1007/s11222-
016-9696-4

Examples

Not run:
HS.model <- ' visual =~ x1 + x2 + x3

textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

fit target model
fit1 <- bcfa(HS.model, data = HolzingerSwineford1939, cp = "fa",

n.chains = 2, burnin = 1000, sample = 1000)

fit null model to calculate CFI, TLI, and NFI
null.model <- c(paste0("x", 1:9, " ~~ x", 1:9), paste0("x", 1:9, " ~ 1"))
fit0 <- bcfa(null.model, data = HolzingerSwineford1939, cp = "fa",

n.chains = 2, burnin = 1000, sample = 1000)

calculate posterior distributions of fit indices

The default method mimics fit indices derived from ML estimation
ML <- blavFitIndices(fit1, baseline.model = fit0)
ML
summary(ML)

other options:

- use Hoofs et al.'s (2017) PPMC-based method
- use the estimated number of parameters from WAIC instead of LOO-IC
PPMC <- blavFitIndices(fit1, baseline.model = fit0,

pD = "waic", rescale = "PPMC")
issues a warning about using rescale="PPMC" with N < 1000 (see Hoofs et al.)

- specify only the desired measures of central tendency
- specify a different "confidence" level for the credible intervals
summary(PPMC, central.tendency = c("mean","mode"), prob = .95)

https://osf.io/afkcw/

blavInspect 13

Access the posterior distributions for further investigation
head(distML <- data.frame(ML@indices))

For example, diagnostic plots using the bayesplot package:

distinguish chains
nChains <- blavInspect(fit1, "n.chains")
distML$Chain <- rep(1:nChains, each = nrow(distML) / nChains)

library(bayesplot)
mcmc_pairs(distML, pars = c("BRMSEA","BMc","BGammaHat","BCFI","BTLI"),

diag_fun = "hist")
Indices are highly correlated across iterations in both chains

Compare to PPMC method
distPPMC <- data.frame(PPMC@indices)
distPPMC$Chain <- rep(1:nChains, each = nrow(distPPMC) / nChains)
mcmc_pairs(distPPMC, pars = c("BRMSEA","BMc","BGammaHat","BCFI","BTLI"),

diag_fun = "dens")
nonlinear relation between BRMSEA, related to the floor effect of BRMSEA
that Hoofs et al. found for larger (12-indicator) models

End(Not run)

blavInspect Inspect or Extract Information from a fitted blavaan object

Description

The blavInspect() and blavTech() functions can be used to inspect/extract information that
is stored inside (or can be computed from) a fitted blavaan object. This is similar to lavaan’s
lavInspect() function.

Usage

blavInspect(blavobject, what, ...)

blavTech(blavobject, what, ...)

Arguments

blavobject An object of class blavaan.

what Character. What needs to be inspected/extracted? See Details for Bayes-specific
options, and see lavaan’s lavInspect() for additional options. Note: the what
argument is not case-sensitive (everything is converted to lower case.)

... Default lavaan arguments supplied to lavInspect(); see lavaan.

14 blavInspect

Details

Below is a list of Bayesian-specific values for the what argument; additional values can be found in
the lavInspect() documentation.

"start": A list of starting values for each chain, unless inits="jags" is used during model esti-
mation. Aliases: "starting.values", "inits".

"psrf": Each parameter’s Gelman-Rubin PSRF (potential scale reduction factor) for convergence
assessment.

"ac.10": Each parameter’s estimated lag-10 autocorrelation.

"neff": Each parameters effective sample size, taking into account autocorrelation.

"mcmc": An object of class mcmc containing the individual parameter draws from the MCMC run.
Aliases: "draws", "samples".

"mcobj": The underlying run.jags or stan object that resulted from the MCMC run.

"n.chains": The number of chains sampled.

"cp": The approach used for estimating covariance parameters ("srs" or "fa").

"dp": Default prior distributions used for each type of model parameter.

"postmode": Estimated posterior mode of each free parameter.

"postmean": Estimated posterior mean of each free parameter.

"postmedian": Estimated posterior median of each free parameter.

"lvs": An object of class mcmc containing latent variable (factor score) draws.

"lvmeans": A matrix of mean factor scores (rows are observations, columns are variables).

"hpd": HPD interval of each free parameter. In this case, an additional argument level can be
supplied to specify a number in (0,1) reflecting the percentage of the interval.

See Also

lavInspect, bcfa, bsem, bgrowth

Examples

Not run:
The Holzinger and Swineford (1939) example
HS.model <- ' visual =~ x1 + x2 + x3

textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

fit <- bcfa(HS.model, data=HolzingerSwineford1939,
jagcontrol=list(method="rjparallel"))

extract information
blavInspect(fit, "psrf")
blavInspect(fit, "hpd", level=.9)

End(Not run)

blav_internal 15

blav_internal blavaan internal functions

Description

Internal functions related to Bayesian model estimation. Not to be called by the user.

bsem Fit Structural Equation Models

Description

Fit a Structural Equation Model (SEM).

Usage

bsem(..., cp = "srs",
dp = NULL, n.chains = 3, burnin, sample,
adapt, mcmcfile = FALSE, mcmcextra = list(), inits = "prior",
convergence = "manual", target = "stan", save.lvs = FALSE,
wiggle = NULL, wiggle.sd = 0.1, jags.ic = FALSE, seed = NULL,
bcontrol = list())

Arguments

... Default lavaan arguments. See lavaan.

cp Handling of prior distributions on covariance parameters: possible values are
"srs" (default) or "fa". Option "fa" is only available for target="jags".

dp Default prior distributions on different types of parameters, typically the result
of a call to dpriors(). See the dpriors() help file for more information.

n.chains Number of desired MCMC chains.

burnin Number of burnin iterations, NOT including the adaptive iterations.

sample The total number of samples to take after burnin.

adapt The number of adaptive iterations to use at the start of the simulation.

mcmcfile If TRUE, the JAGS/Stan model will be written to file (in the lavExport directory).
Can also supply a character string, which serves as the name of the directory to
which files will be written.

mcmcextra A list with potential names syntax and monitor. The syntax object is a text
string containing extra code to insert in the JAGS/Stan model syntax, and the
monitor object is a character vector containing extra JAGS/Stan parameters to
sample.

16 bsem

inits If it is a character string, the options are currently "simple", "Mplus", "prior"
(default), and "jags". In the first two cases, parameter values are set as though
they will be estimated via ML (see lavaan). The starting parameter value for
each chain is then perturbed from the original values through the addition of
uniform noise. If "prior" is used, the starting parameter values are obtained
based on the prior distributions (while also trying to ensure that the starting
values will not crash the model estimation). If "jags", no starting values are
specified and JAGS will choose values on its own. If start is a fitted object
of class lavaan, the estimated values of the corresponding parameters will be
extracted, then perturbed in the manner described above. If it is a model list, for
example the output of the paramaterEstimates() function, the values of the
est or start or ustart column (whichever is found first) will be extracted.

convergence Useful only for target="jags". If "auto", parameters are sampled until con-
vergence is achieved (via autorun.jags()). In this case, the arguments burnin
and sample are passed to autorun.jags() as startburnin and startsample,
respectively. Otherwise, parameters are sampled as specified by the user (or by
the run.jags defaults).

target Desired MCMC sampling, with "stan" (pre-compiled marginal approach) as
default. Other options include "jags", "stancond", and "stanclassic", which
sample latent variables and provide some greater functionality (because syntax
is written "on the fly"). But they are slower and less efficient.

save.lvs Should sampled latent variables (factor scores) be saved? Logical; defaults to
FALSE

wiggle Labels of equality-constrained parameters that should be "approximately" equal.
Can also be "intercepts", "loadings", "regressions", "means".

wiggle.sd The prior sd (of normal distribution) to be used in approximate equality con-
straints.

jags.ic Should DIC be computed the JAGS way, in addition to the BUGS way? Logical;
defaults to FALSE

seed A vector of length n.chains (for target "jags") or an integer (for target "stan")
containing random seeds for the MCMC run. If NULL, seeds will be chosen
randomly.

bcontrol A list containing additional parameters passed to run.jags (or autorun.jags)
or stan. See the manpage of those functions for an overview of the additional
parameters that can be set.

Details

The bsem function is a wrapper for the more general blavaan function, using the following default
lavaan arguments: int.ov.free = TRUE, int.lv.free = FALSE, auto.fix.first = TRUE (unless
std.lv = TRUE), auto.fix.single = TRUE, auto.var = TRUE, auto.cov.lv.x = TRUE, auto.th =
TRUE, auto.delta = TRUE, and auto.cov.y = TRUE.

Value

An object of class lavaan, for which several methods are available, including a summary method.

dpriors 17

References

Yves Rosseel (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical
Software, 48(2), 1-36. URL http://www.jstatsoft.org/v48/i02/.

Edgar C. Merkle & Yves Rosseel (2018). blavaan: Bayesian Structural Equation Models via Param-
eter Expansion. Journal of Statistical Software, 85(4), 1-30. URL http://www.jstatsoft.org/v85/i04/.

See Also

blavaan

Examples

Not run:
The industrialization and Political Democracy Example
Bollen (1989), page 332
model <- '

latent variable definitions
ind60 =~ x1 + x2 + x3
dem60 =~ y1 + a*y2 + b*y3 + c*y4
dem65 =~ y5 + a*y6 + b*y7 + c*y8

regressions
dem60 ~ ind60
dem65 ~ ind60 + dem60

residual correlations
y1 ~~ y5
y2 ~~ y4 + y6
y3 ~~ y7
y4 ~~ y8
y6 ~~ y8

'

unique priors for mv intercepts; parallel chains
fit <- bsem(model, data=PoliticalDemocracy,

dp=dpriors(nu="normal(5,10)"))
summary(fit)

End(Not run)

dpriors Specify default prior distributions

Description

Specify "default" prior distributions for classes of model parameters.

Usage

dpriors(..., target = "stan")

18 dpriors

Arguments

... Parameter names paired with desired priors (see example below).

target Are the priors for jags, stan (default), or stanclassic?

Details

The prior distributions always use JAGS/Stan syntax and parameterizations. For example, the nor-
mal distribution in JAGS is parameterized via the precision, whereas the normal distribution in Stan
is parameterized via the standard deviation.

User-specified prior distributions for specific parameters (using the prior() operator within the
model syntax) always override prior distributions set using dpriors().

The parameter names are:

• nu: Observed variable intercept parameters.

• alpha: Latent variable intercept parameters.

• lambda: Loading parameters.

• beta: Regression parameters.

• itheta: Observed variable precision parameters.

• ipsi: Latent variable precision parameters.

• rho: Correlation parameters (associated with covariance parameters).

• ibpsi: Inverse covariance matrix of blocks of latent variables (used for target="jags").

• tau: Threshold parameters (ordinal data only).

• delta: Delta parameters (ordinal data only).

Value

A character vector containing the prior distribution for each type of parameter.

References

Edgar C. Merkle & Yves Rosseel (2018). blavaan: Bayesian Structural Equation Models via Param-
eter Expansion. Journal of Statistical Software, 85(4), 1-30. URL http://www.jstatsoft.org/v85/i04/.

See Also

bcfa, bsem, bgrowth

Examples

dpriors(nu = "normal(0,10)", lambda = "normal(0,1)", rho = "beta(3,3)")

plot.blavaan 19

plot.blavaan blavaan traceplots and more

Description

Convenience functions to create plots of blavaan objects, via the bayesplot package.

Usage

S3 method for class 'blavaan'
plot(x, pars = NULL, plot.type = "trace", showplot = TRUE, ...)

Arguments

x An object of class blavaan.

pars Parameter numbers to plot, where the numbers correspond to the order of param-
eters as reported by coef() (also as shown in the ’free’ column of the parTable).
If no numbers are provided, all free parameters will be plotted.

plot.type The type of plot desired. This should be the name of a MCMC function, without
the mcmc_ prefix.

showplot Should the plot be sent to the graphic device? Defaults to TRUE.

... Other arguments sent to the bayesplot function.

Details

In previous versions of blavaan, the plotting functionality was handled separately for JAGS and for
Stan (using plot functionality in packages runjags and rstan, respectively). For uniformity, all plot-
ting functionality is now handled by bayesplot. If users desire additional functionality that is not im-
mediately available, they can extract the matrix of MCMC draws via as.matrix(blavInspect(x,'mcmc')).

Value

An invisible ggplot object that, if desired, can be further customized.

Examples

Not run:
HS.model <- ' visual =~ x1 + x2 + x3

textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

fit <- bcfa(HS.model, data=HolzingerSwineford1939)

trace plots of free loadings
plot(fit, pars = 1:6)

End(Not run)

20 ppmc

ppmc Posterior Predictive Model Checks

Description

This function allows users to conduct a posterior predictive model check to assess the global or
local fit of a latent variable model using any discrepancy function that can be applied to a lavaan
model.

Usage

ppmc(object, thin = 1, fit.measures = c("srmr","chisq"), discFUN = NULL)

S4 method for signature 'blavPPMC'
summary(object, discFUN, dist = c("obs","sim"),

central.tendency = c("mean","median","mode"),
hpd = TRUE, prob = .95, to.data.frame = FALSE, diag = TRUE,
sort.by = NULL, decreasing = FALSE)

S3 method for class 'blavPPMC'
plot(x, ..., discFUN, element, central.tendency = "",

hpd = TRUE, prob = .95, nd = 3)

S3 method for class 'blavPPMC'
hist(x, ..., discFUN, element, hpd = TRUE, prob = .95,

printLegend = TRUE, legendArgs = list(x = "topleft"),
densityArgs = list(), nd = 3)

S3 method for class 'blavPPMC'
pairs(x, discFUN, horInd = 1:DIM, verInd = 1:DIM,

printLegend = FALSE, ...)

Arguments

object,x An object of class blavaan.
thin Optional integer indicating how much to thin each chain. Default is 1L, indi-

cating not to thin the chains in object.
fit.measures character vector indicating the names of global discrepancy measures returned

by fitMeasures. Ignored unless discFUN is NULL, but users may include fitMeasures
in the list of discrepancy functions in discFUN. If the first measure is either
"logl" or "chisq", only the χ2 fit statistic’s posterior (predictive) distributions
will be returned.

discFUN function, or a list of functions, that can be called on an object of class
lavaan. Each function must return an object whose mode is numeric, but may
be a vector, matrix, or multidimensional array. In the summary and plot
methods, discFUN is a character indicating which discrepancy function to
summarize.

ppmc 21

element numeric or character indicating the index (in each dimension of the discFUN
output, if multiple) to plot.

horInd,verInd Similar to element, but a numeric or character vector indicating the indices
of a matrix to plot in a scatterplot matrix. If horInd==verInd, histograms will
be plotted in the upper triangle.

dist character indicating whether to summarize the distribution of discFUN on ei-
ther the observed or simulated data.

central.tendency

character indicating which statistics should be used to characterize the location
of the posterior (predictive) distribution. By default, all 3 statistics are returned
for the summary method, but none for the plot method. The posterior mean is
labeled EAP for expected a posteriori estimate, and the mode is labeled MAP for
modal a posteriori estimate.

hpd logical indicating whether to calculate the highest posterior density (HPD)
credible interval for discFUN.

prob The "confidence" level of the credible interval(s).

nd The number of digits to print in the scatterplot.

to.data.frame logical indicating whether the summary of a 2-dimensional matrix returned
by discFUN should have its unique elements stored in rows of a data.frame
that can be sorted for convenience of identifying large discrepancies.

diag Passed to lower.tri if to.data.frame=TRUE.

sort.by character. If summary returns a data.frame, it can be sorted by this column
name using order.

decreasing Passed to order if !is.null(sort.by).

... Additional graphical parameters to be passed to plot.default.

printLegend logical. If TRUE (default), a legend will be printed with the histogram

legendArgs list of arguments passed to the legend function. The default argument is a list
placing the legend at the top-left of the figure.

densityArgs list of arguments passed to the density function, used to obtain densities for
the hist method.

Value

An S4 object of class blavPPMC consisting of 5 list slots:

@discFUN The user-supplied discFUN, or the call to fitMeasures that returns fit.measures.

@dims The dimensions of the object returned by each discFUN.

@PPP The posterior predictive p value for each discFUN element.

@obsDist The posterior distribution of realize values of discFUN applied to observed data.

@simDist The posterior predictive distribution of values of discFUN applied to data simu-
lated from the posterior samples.

22 ppmc

The summary() method returns a numeric vector if discFUN returns a scalar, a data.frame with
one discrepancy function per row if discFUN returns a numeric vector, and a list with one sum-
mary statistic per element if discFUN returns a matrix or multidimensional array.

The plot and pairs methods invisibly return NULL, printing a plot (or scatterplot matrix) to the
current device.

The hist method invisibly returns a list or arguments that can be passed to the function for which
the list element is named. Users can edit the arguments in the list to customize their histograms.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Levy, R. (2011). Bayesian data–model fit assessment for structural equation modeling. Structural
Equation Modeling, 18(4), 663–685. doi:10.1080/10705511.2011.607723

Examples

Not run:
HS.model <- ' visual =~ x1 + x2 + x3

textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

fit single-group model
fit <- bcfa(HS.model, data = HolzingerSwineford1939, cp = "fa",

target = "jags", bcontrol = list(method = "rjparallel"),
n.chains = 2, burnin = 1000, sample = 500)

fit multigroup model
fitg <- bcfa(HS.model, data = HolzingerSwineford1939, cp = "fa",

target = "jags", bcontrol = list(method = "rjparallel"),
n.chains = 2, burnin = 1000, sample = 500, group = "school")

Use fit.measures as a shortcut for global fitMeasures only
- Note that indices calculated from the "df" are only appropriate under
noninformative priors, such that pD approximates the number of estimated
parameters counted under ML estimation; incremental fit indices
introduce further complications)

AFIs <- ppmc(fit, thin = 10, fit.measures = c("srmr","chisq","rmsea","cfi"))
summary(AFIs) # summarize the whole vector in a data.frame
hist(AFIs, element = "rmsea") # only plot one discrepancy function at a time
plot(AFIs, element = "srmr")

define a list of custom discrepancy functions
- (global) fit measures
- (local) standardized residuals

discFUN <- list(global = function(fit) {
fitMeasures(fit, fit.measures = c("cfi","rmsea","srmr","chisq"))

standardizedPosterior 23

},
std.cov.resid = function(fit) lavResiduals(fit, zstat = FALSE,

summary = FALSE)$cov,
std.mean.resid = function(fit) lavResiduals(fit, zstat = FALSE,

summary = FALSE)$mean)
out1g <- ppmc(fit, discFUN = discFUN)

summarize first discrepancy by default (fit indices)
summary(out1g)
some model-implied correlations look systematically over/underestimated
summary(out1g, discFUN = "std.cov.resid", central.tendency = "EAP")
hist(out1g, discFUN = "std.cov.resid", element = c(1, 7))
plot(out1g, discFUN = "std.cov.resid", element = c("x1","x7"))
For ease of investigation, optionally export summary as a data.frame,
sorted by size of average residual
summary(out1g, discFUN = "std.cov.resid", central.tendency = "EAP",

to.data.frame = TRUE, sort.by = "EAP")
or sorted by size of PPP
summary(out1g, discFUN = "std.cov.resid", central.tendency = "EAP",

to.data.frame = TRUE, sort.by = "PPP_sim_LessThan_obs")

define a list of custom discrepancy functions for multiple groups
(return each group's numeric output using a different function)

disc2g <- list(global = function(fit) {
fitMeasures(fit, fit.measures = c("cfi","rmsea","mfi","srmr","chisq"))

},
cor.resid1 = function(fit) lavResiduals(fit, zstat = FALSE,

type = "cor.bollen",
summary = FALSE)[[1]]$cov,

cor.resid2 = function(fit) lavResiduals(fit, zstat = FALSE,
type = "cor.bollen",
summary = FALSE)[[2]]$cov)

out2g <- ppmc(fitg, discFUN = disc2g, thin = 2)
some residuals look like a bigger problem in one group than another
pairs(out2g, discFUN = "cor.resid1", horInd = 1:3, verInd = 7:9) # group 1
pairs(out2g, discFUN = "cor.resid2", horInd = 1:3, verInd = 7:9) # group 2

print all to file: must be a LARGE picture. First group 1 ...
png("cor.resid1.png", width = 1600, height = 1200)
pairs(out2g, discFUN = "cor.resid1")
dev.off()
... then group 2
png("cor.resid2.png", width = 1600, height = 1200)
pairs(out2g, discFUN = "cor.resid2")
dev.off()

End(Not run)

standardizedPosterior Standardized Posterior

24 standardizedPosterior

Description

Standardized posterior distribution of a latent variable model.

Usage

standardizedPosterior(object, ...)

Arguments

object An object of class blavaan.

... Additional arguments passed to lavaan’s standardizedSolution()

Value

A matrix containing standardized posterior draws, where rows are draws and columns are parame-
ters.

Note

The only allowed standardizedSolution() arguments are type, cov.std, remove.eq, remove.ineq,
and remove.def. Other arguments are not immediately suited to posterior distributions.

Examples

Not run:
model <- '

latent variable definitions
ind60 =~ x1 + x2 + x3
dem60 =~ y1 + a*y2 + b*y3 + c*y4
dem65 =~ y5 + a*y6 + b*y7 + c*y8

regressions
dem60 ~ ind60
dem65 ~ ind60 + dem60

residual correlations
y1 ~~ y5
y2 ~~ y4 + y6
y3 ~~ y7
y4 ~~ y8
y6 ~~ y8

'

fit <- bsem(model, data=PoliticalDemocracy,
dp=dpriors(nu="dnorm(5,1e-2)"),
bcontrol=list(method="rjparallel"))

standardizedPosterior(fit)

End(Not run)

Index

bcfa, 2, 8, 14, 18
BF (blavCompare), 9
bgrowth, 4, 8, 14, 18
blav_internal, 15
blav_model_test (blav_internal), 15
blavaan, 3, 4, 6, 7, 10, 11, 16, 17, 20, 24
blavaan-class (blavaan), 7
blavCompare, 9
blavFitIndices, 10
blavFitIndices-class (blavFitIndices),

10
blavInspect, 13
blavPPMC-class (ppmc), 20
blavTech (blavInspect), 13
bsem, 8, 14, 15, 18

coeffun (blav_internal), 15

density, 21
dpriors, 17

fitMeasures, 11, 20, 21

hist.blavPPMC (ppmc), 20

labelfun (blav_internal), 15
lavaan, 2–8, 11, 13, 15, 16, 20
lavInspect, 14
legend, 21
lower.tri, 21

MCMC, 19
mode, 20

order, 21

pairs.blavPPMC (ppmc), 20
par, 21
plot.blavaan, 19
plot.blavPPMC (ppmc), 20
plot.default, 21

ppmc, 20

set_inits (blav_internal), 15
set_phantoms (blav_internal), 15
set_priors (blav_internal), 15
show,blavFitIndices-method

(blavFitIndices), 10
show,blavPPMC-method (ppmc), 20
standardizedPosterior, 23
standardizedposterior

(standardizedPosterior), 23
summary,blavFitIndices-method

(blavFitIndices), 10
summary,blavPPMC-method (ppmc), 20

25

	bcfa
	bgrowth
	blavaan
	blavCompare
	blavFitIndices
	blavInspect
	blav_internal
	bsem
	dpriors
	plot.blavaan
	ppmc
	standardizedPosterior
	Index

