
Package ‘bizdays’
June 25, 2018

Title Business Days Calculations and Utilities

Description Business days calculations based on a list of holidays and
nonworking weekdays. Quite useful for fixed income and derivatives pricing.

Version 1.0.6

Author Wilson Freitas <wilson.freitas@gmail.com>

Maintainer Wilson Freitas <wilson.freitas@gmail.com>

URL https://github.com/wilsonfreitas/R-bizdays

VignetteBuilder knitr

Suggests RQuantLib, timeDate, knitr, testthat, covr

Imports methods, utils, jsonlite

Collate 'R-bizdays-package.r' 'datasets.R' 'calendar.R'
'adjust.date.R' 'bizdays.options.R' 'bizseq.R' 'is.bizday.R'
'offset.R' 'bizdiff.R' 'bizdays.R' 'create-calendars.R'
'calendar-export.R' 'getdate.R'

Depends R (>= 2.15)

License MIT + file LICENSE

LazyData true

RoxygenNote 6.0.1

NeedsCompilation no

Repository CRAN

Date/Publication 2018-06-25 15:25:00 UTC

R topics documented:
bizdays-package . 2
adjust.date . 2
bizdays . 4
bizdays.options . 5
bizdayse . 6
bizdiff . 7

1

https://github.com/wilsonfreitas/R-bizdays

2 adjust.date

bizseq . 8
calendar-holidays-weekdays . 8
calendar-import-export . 9
calendar-register . 10
create.calendar . 11
getdate . 13
holidaysANBIMA . 14
is.bizday . 14
offset . 15
other-calendars . 16
ref . 19

Index 20

bizdays-package Business Days Calculations and Utilities

Description

In many countries the standard approach to price derivatives and fixed income instruments involves
the use of business days. In Brazil, for example, the great majority of financial instruments are
priced on business days counting rules. Given that the use of business days is somehow vital to
handle many tasks. That’s the reason why bizdays came up, to make these tasks easier. Excel’s
NETWORKDAYS is fairly at hand and once you have a list of holidays it is quite easy to put your
data into a spreadsheet and make things happen. bizdays brings that ease to R.

Although R’s users have similar feature in packages like RQuantLib and timeDate it doesn’t come
for free. Users have to do some stackoverflow in order to get this task accomplished. bizdays is a
tiny package dramatically focused on that simple task: support calculations involving business days
for a given list of holidays.

bizdays was designed to work with all common date types and ISO formatted character strings and
all methods have support for vectorized operations and handle the recycle rule.

Author(s)

Wilson Freitas

adjust.date Adjusts the given dates to the next/previous business day

Description

Rolls the given date to the next or previous business day, unless it is a business day.

adjust.date 3

Usage

adjust.next(dates, cal)

following(dates, cal)

adjust.none(dates, cal)

modified.following(dates, cal)

adjust.previous(dates, cal)

preceding(dates, cal)

modified.preceding(dates, cal)

Arguments

dates dates to be adjusted

cal an instance of Calendar

Details

adjust.next and following return the next business day if the given date is not a business day.
adjust.previous and preceding are similar, but return the previous business day. modified.following
rolls the given date to the next business day, unless it happens in the next month, in this case it re-
turns the previous business day. modified.preceding is similar to modified.following, but rolls
the given date to the previous business day.

Value

Date objects adjusted accordingly.

Date types accepted

The argument dates accepts Date objects and any object that returns a valid Date object when
passed through as.Date, which include all POSIX* classes and character objects with ISO for-
matted dates.

Examples

cal <- create.calendar("Brazil/ANBIMA", holidaysANBIMA, weekdays=c("saturday", "sunday"))
adjust.next("2013-01-01", "Brazil/ANBIMA")
following("2013-01-01", cal)
modified.following("2016-01-31", cal)
adjust.previous("2013-01-01", cal)
preceding("2013-01-01", cal)
modified.preceding("2016-01-01", cal)

4 bizdays

bizdays Computes business days between two dates.

Description

Returns the amount of business days between 2 dates taking into account the provided Calendar
(or bizdays.options$get("default.calendar")).

Usage

bizdays(from, to, cal)

Arguments

from the initial dates

to the final dates

cal the calendar’s name

Value

integer objects representing the amount of business days.

Date types accepted

The arguments from and to accept Date objects and any object that returns a valid Date object
when passed through as.Date, which include all POSIX* classes and character objects with ISO
formatted dates.

Recycle rule

These arguments handle the recycle rule so vectors of dates can be provided and once those vectors
differs in length the recycle rule is applied.

Date adjustment

from and to are adjusted when nonworking dates are provided. Since bizdays function returns
the amount of business days between 2 dates, it must start and end in business days. The default
behavior, that is defined in Calendar’s instantiation with adjust.from and adjust.to, reproduces
the Excel’s NETWORKDAYS. A common and useful setting is adjust.to=adjust.next which
moves expiring maturities to the next business day, once it is not.

bizdays.options 5

Examples

create.calendar("Brazil/ANBIMA", holidaysANBIMA, weekdays=c("saturday", "sunday"))
bizdays("2013-01-02", "2013-01-31", "Brazil/ANBIMA")

Once you have a default calendar set, cal does not need to be provided
bizdays.options$set(default.calendar="Brazil/ANBIMA")
bizdays("2013-01-02", "2013-01-31")

dates <- bizseq("2013-01-01", "2013-01-10")
bizdays(dates, "2014-01-31")

bizdays.options bizdays’ options

Description

bizdays.options defines option parameters used internally in bizdays.

Usage

bizdays.options

Format

A list object with methods get and set attached to.

Details

Parameters are stored in bizdays.options using get and set

bizdays.options$set(option.key=value)
bizdays.options$get("option.key")

bizdays supports the following parameter:

• default.calendar: the default calendar to be used with the functions: bizdays, bizdayse,
adjust.next, adjust.previous, is.bizday, bizseq, offset.

Examples

create.calendar(name="actual")
bizdays.options$set(default.calendar="actual")
bizdays("2013-07-12", "2013-07-22")

6 bizdayse

bizdayse Business days and current days equivalence

Description

bizdayse stands for business days equivalent, it returns the amount of business days equivalent to
a given number of current days.

Usage

bizdayse(dates, curd, cal)

Arguments

dates the reference dates

curd the amount of current days

cal the calendar’s name

Details

Let us suppose I have a reference date dates and I offset that date by curd current days. bizdayse
returns the business days between the reference date and the new date offset by curd current days.

This is equivalent to

refdate <- Sys.Date()
curd <- 10
newdate <- refdate + 10 # offset refdate by 10 days
this is equals to bizdayse(refdate, 10)
bizdays(refdate, newdate)

Value

An integer representing an amount of business days.

Date types accepted

The argument dates accepts Date objects and any object that returns a valid Date object when
passed through as.Date, which include all POSIX* classes and character objects with ISO for-
matted dates.

Recycle rule

These arguments handle the recycle rule so a vector of dates and a vector of numbers can be provided
and once those vectors differs in length the recycle rule is applied.

bizdiff 7

Examples

create.calendar("Brazil/ANBIMA", holidaysANBIMA, weekdays=c("saturday", "sunday"))
bizdayse("2013-01-02", 3, "Brazil/ANBIMA")

bizdiff Compute the amount of business days between dates

Description

Returns the number of business days between dates in a given vector of dates.

Usage

bizdiff(dates, cal)

Arguments

dates a vector containing the dates to be differenced

cal the calendar’s name

Value

A ‘numeric‘ vector of length ‘n-1‘ (where ‘n‘ is the input vector length), containing the business
days computed between pairs of dates.

Date types accepted

The arguments from and to accept Date objects and any object that returns a valid Date object
when passed through as.Date, which include all POSIX* classes and character objects with ISO
formatted dates.

Examples

dates <- c("2017-05-10", "2017-05-12", "2017-05-17")
bizdiff(dates, "Brazil/ANBIMA")

8 calendar-holidays-weekdays

bizseq Create a sequence of business days

Description

Returns a sequence of dates with business days only.

Usage

bizseq(from, to, cal)

Arguments

from the initial date

to the final date (must be greater than from)

cal the calendar’s name

Value

A vector of Date objects that are business days according to the provided Calendar.

Date types accepted

The arguments from and to accept Date objects and any object that returns a valid Date object
when passed through as.Date, which include all POSIX* classes and character objects with ISO
formatted dates.

Examples

create.calendar("Brazil/ANBIMA", holidaysANBIMA, weekdays=c("saturday", "sunday"))
bizseq("2013-01-02", "2013-01-31", "Brazil/ANBIMA")

calendar-holidays-weekdays

Calendar’s holidays and weekdays

Description

Returns calendar’s list of holidays and weekdays

calendar-import-export 9

Usage

holidays(cal)

Default S3 method:
holidays(cal)

S3 method for class 'Calendar'
holidays(cal)

S3 method for class 'character'
holidays(cal)

Default S3 method:
weekdays(x, ...)

S3 method for class 'Calendar'
weekdays(x, ...)

S3 method for class 'character'
weekdays(x, ...)

Arguments

cal character with calendar name or the calendar object

x character with calendar name or the calendar object

... unused argument (this exists to keep compliance with weekdays generic)

Examples

holidays("actual")
weekdays("actual")
empty calls return the default calendar attributes
holidays()
weekdays()

calendar-import-export

Import and export calendars

Description

The calendars can be specified in JSON files and these functions helps with importing and exporting
calendars to text files.

10 calendar-register

Usage

save_calendar(cal, con)

load_calendar(con)

Arguments

cal the calendar’s name

con a connection object or a character string.

Details

save_calendar exports a calendar to a JSON file and load_calendar imports.

In load_calenadar, the con argument can be a connection object or a character string specifying
either the file or the JSON text.

JSON calendar’s specification

Here’s an example of a calendar’s specification.

{
"name": "Brazil/ANBIMA",
"weekdays": ["saturday", "sunday"],
"holidays": ["2001-01-01", "2001-02-26", "2001-02-27", "2001-04-13"],
"adjust.from": "following",
"adjust.to": "preceding"
"financial": true,
}

Examples

con <- tempfile(fileext = ".json")
save_calendar("actual", con)
load_calendar(con)

calendar-register Calendars register

Description

Every calendar created with create.calendar is stored in the calendar register. The idea behind
this register is allowing calendars to be accessed by its names.

create.calendar 11

Usage

calendars()

remove.calendars(cals)

has.calendars(cals)

Arguments

cals character vector of calendars names

Details

calendars returns the object which represents the calendars register. Since the register inherits
from environment, the calendars are retrieved with the [[operator. But the register object has its
own print generic which helps listing all registered calendars.

remove.calendars remove calendars from the register.

Examples

ACTUAL calendar
cal <- create.calendar("Actual")
cal <- calendars()[["Actual"]]
remove.calendars("Actual")
lists registered calendars
calendars()
has.calendars(c("actual", "weekends"))

create.calendar Creates calendars

Description

create.calendar creates calendars and stores them in the calendar register.

Usage

create.calendar(name, holidays = integer(0), weekdays = NULL,
start.date = NULL, end.date = NULL, adjust.from = adjust.none,
adjust.to = adjust.none, financial = TRUE)

Arguments

name calendar’s name. This is used to retrieve calendars from register.

holidays a vector of Dates which contains the holidays

12 create.calendar

weekdays a character vector which defines the weekdays to be used as non-working days
(defaults to NULL which represents an actual calendar). It accepts: sunday,
monday, thuesday, wednesday, thursday, friday, saturday. Defining the
weekend as nonworking days is weekdays=c("saturday", "sunday").

start.date the date which the calendar starts

end.date the date which the calendar ends

adjust.from is a function to be used with the bizdays’s from argument. That function adjusts
the argument if it is a nonworking day according to calendar.

adjust.to is a function to be used with the bizdays’s to argument. See also adjust.from.

financial is a logical argument that defaults to TRUE. This argument defines the calendar
as a financial or a non financial calendar. Financial calendars don’t consider the
ending business day when counting working days in bizdays. bizdays calls
for non financial calendars are greater than financial calendars calls by one day.

Details

The arguments start.date and end.date can be set but once they aren’t and holidays is set,
start.date is defined to min(holidays) and end.date to max(holidays). If holidays isn’t set
start.date is set to '1970-01-01' and end.date to '2071-01-01'.

weekdays is controversial but it is only a sequence of nonworking weekdays. In the great majority
of situations it refers to the weekend but it is also possible defining it differently. weekdays ac-
cepts a character sequence with lower case weekdays (sunday, monday, thuesday, wednesday,
thursday, friday, saturday). This argument defaults to NULL because the default intended behav-
ior for create.calendar returns an actual calendar, so calling create.calendar(name="xxx")
returns a actual calendar named xxx. (for more calendars see Day Count Convention) To define the
weekend as the nonworking weekdays one could simply use weekdays=c("saturday", "sunday").

The arguments adjust.from and adjust.to are used to adjust bizdays’ arguments from and
to, respectively. These arguments need to be adjusted when nonworking days are provided. The
default behavior, setting adjust.from=adjust.previous and adjust.to=adjust.next, works
like Excel’s function NETWORKDAYS, since that is fairly used by a great number of practitioners.

Calendars register

Every named calendar is stored in a register so that it can be retrieved by its name (in calendars).
bizdays’ methods also accept the calendar’s name on their cal argument. Given that, naming cal-
endars is strongly recommended.

See Also

calendars, bizdays

Examples

ANBIMA's calendar (from Brazil)
cal <- create.calendar("Brazil/ANBIMA", holidays=holidaysANBIMA, weekdays=c("saturday", "sunday"))

ACTUAL calendar
cal <- create.calendar("Actual")

http://en.wikipedia.org/wiki/Day_count_convention

getdate 13

named calendars can be accessed by its name
create.calendar(name="Actual")
bizdays('2016-01-01', '2016-03-14', 'Actual')

getdate Obtaining dates using other dates (or month or year) as reference

Description

Imagine you have one date and want the first or last day of this date’s month. For example, you have
the date 2018-02-01 and want the last day of its month. You have to check whether or not its year
is a leap year, and this sounds a tough task. getdate helps with returning specific dates according
to a reference than can be another date, a month or an year.

Usage

getdate(expr, ref, cal = bizdays.options$get("default.calendar"))

Arguments

expr a character string specifying the date to be returned (see Details)

ref a ref object (see Details)

cal the calendar’s name
expr represents the day has to be returned, here it follows a few examples:

• "second day"

• "10th bizday"

• "3rd wed"

• "last bizday"

• "first fri"

expr is a character string with two terms: "<position> <day>"

• positions: first or 1st, second or 2nd, third or 3rd, last and XXth
(examples 6th or 11th)

• days: day, bizday, or weekdays (sun, mon, tue, wed, thu, fri, sat)

getdate returns dates according to a reference that can be a month or an year.
This reference is build with the ref object. The ref object specifies a month or
an year based on a date or the month and year can be directly specified.

See Also

ref

14 is.bizday

Examples

getdate("first day", ref("2018-01-01", ym = "month"), "actual")
getdate("10th wed", ref(2018), "actual")
getdate("last bizday", ref(2010:2018), "Brazil/ANBIMA")
dts <- seq(as.Date("2018-01-01"), as.Date("2018-12-01"), "month")
getdate("first bizday", ref(dts, ym = "month"), "Brazil/ANBIMA")

holidaysANBIMA ANBIMA’s holidays list

Description

A dataset containing the list of holidays delivered by ANBIMA (www.anbima.com.br).

Format

a vector with Date objects that represent holidays

is.bizday Checks if the given dates are business days.

Description

Returns TRUE if the given date is a business day and FALSE otherwise.

Usage

is.bizday(dates, cal)

Arguments

dates dates to be checked

cal the calendar’s name

Value

logical objects informing that given dates are or are not business days.

Date types accepted

The argument dates accepts Date objects and any object that returns a valid Date object when
passed through as.Date, which include all POSIX* classes and character objects with ISO for-
matted dates.

offset 15

Examples

create.calendar("Brazil/ANBIMA", holidaysANBIMA, weekdays=c("saturday", "sunday"))
is.bizday("2013-01-02", "Brazil/ANBIMA")

Once you have a default calendar set, cal does not need to be provided
bizdays.options$set(default.calendar="Brazil/ANBIMA")

dates <- seq(as.Date("2013-01-01"), as.Date("2013-01-05"), by="day")
is.bizday(dates)

offset Offsets the given dates by n business days

Description

Returns the given dates offset by the given amount of n business days.

Usage

offset(dates, n, cal)

add.bizdays(dates, n, cal)

Arguments

dates dates to be offset

n the amount of business days to offset

cal the calendar’s name

Details

The argument n accepts a sequence of integers and if its length differs from dates’ length, the
recycle rule is applied to fulfill the gap.

Value

Date objects offset by the amount of days defined.

Date types accepted

The argument dates accepts Date objects and any object that returns a valid Date object when
passed through as.Date, which include all POSIX* classes and character objects with ISO for-
matted dates.

16 other-calendars

Recycle rule

These arguments handle the recycle rule so a vector of dates and a vector of numbers can be provided
and once those vectors differs in length the recycle rule is applied.

Examples

create.calendar("Brazil/ANBIMA", holidaysANBIMA, weekdays=c("saturday", "sunday"),
adjust.from=adjust.next, adjust.to=adjust.previous)

offset("2013-01-02", 5, "Brazil/ANBIMA")

Once you have a default calendar set, cal does not need to be provided
bizdays.options$set(default.calendar="Brazil/ANBIMA")

dates <- seq(as.Date("2013-01-01"), as.Date("2013-01-05"), by="day")
is.bizday(dates)
offset(dates, 1)

other-calendars Calendars from other packages

Description

The packages RQuantLib and timeDate (Rmetrics) have functions to compute business days be-
tween 2 dates according to a predefined calendar. bizdays creates calendars based on these func-
tions.

Usage

load_quantlib_calendars(ql_calendars = NULL, from, to)

load_rmetrics_calendars(year)

Arguments

ql_calendars (QuantLib only) A character vector with the names of QuantLib’s calendars.
This parameter defaults to NULL, which loads all calendars.

from (QuantLib only) the start date
to (QuantLib only) the end date
year (timeDate Rmetrics only) a vector with years to create the calendars.

Details

To load QuantLib’s calendars use load_quantlib_calendars defining which calendar has to be
loaded by its name and the range of dates the calendar has to handle. All QuantLib calendars have
the QuantLib prefix.

To load Rmetrics’ calendars use load_rmetrics_calendars defining the years the calendar has to
handle. All Rmetrics calendars have the Rmetrics prefix.

other-calendars 17

List of calendars

QuantLib Calendars:

• QuantLib/Argentina

• QuantLib/Australia

• QuantLib/Brazil

• QuantLib/Canada

• QuantLib/Canada/Settlement

• QuantLib/Canada/TSX

• QuantLib/China

• QuantLib/CzechRepublic

• QuantLib/Denmark

• QuantLib/Finland

• QuantLib/Germany

• QuantLib/Germany/FrankfurtStockExchange

• QuantLib/Germany/Settlement

• QuantLib/Germany/Xetra

• QuantLib/Germany/Eurex

• QuantLib/HongKong

• QuantLib/Hungary

• QuantLib/Iceland

• QuantLib/India

• QuantLib/Indonesia

• QuantLib/Italy

• QuantLib/Italy/Settlement

• QuantLib/Italy/Exchange

• QuantLib/Japan

• QuantLib/Mexico

• QuantLib/NewZealand

• QuantLib/Norway

• QuantLib/Poland

• QuantLib/Russia

• QuantLib/SaudiArabia

• QuantLib/Singapore

• QuantLib/Slovakia

• QuantLib/SouthAfrica

• QuantLib/SouthKorea

• QuantLib/SouthKorea/KRX

18 other-calendars

• QuantLib/Sweden

• QuantLib/Switzerland

• QuantLib/Taiwan

• QuantLib/Turkey

• QuantLib/Ukraine

• QuantLib/UnitedKingdom

• QuantLib/UnitedKingdom/Settlement

• QuantLib/UnitedKingdom/Exchange

• QuantLib/UnitedKingdom/Metals

• QuantLib/UnitedStates

• QuantLib/UnitedStates/Settlement

• QuantLib/UnitedStates/NYSE

• QuantLib/UnitedStates/GovernmentBond

• QuantLib/UnitedStates/NERC

Rmetrics Calendars:

• Calendar Rmetrics/LONDON

• Calendar Rmetrics/NERC

• Calendar Rmetrics/NYSE

• Calendar Rmetrics/TSX

• Calendar Rmetrics/ZURICH

Examples

if (require("RQuantLib")) {
loading Argentina calendar
load_quantlib_calendars('Argentina', from='2016-01-01', to='2016-12-31')
bizdays('2016-01-01', '2016-03-14', 'QuantLib/Argentina')
loading 2 calendars
load_quantlib_calendars(c('UnitedStates/NYSE', 'UnitedKingdom/Settlement'),

from='2016-01-01', to='2016-12-31')
bizdays('2016-01-01', '2016-03-14', 'QuantLib/UnitedStates/NYSE')
loading all QuantLib's 49 calendars
load_quantlib_calendars(from='2016-01-01', to='2016-12-31')
bizdays('2016-01-01', '2016-03-14', 'QuantLib/Brazil')

}

if (require("timeDate")) {
loading all Rmetrics calendar
load_rmetrics_calendars(2016)
bizdays('2016-01-01', '2016-03-14', 'Rmetrics/NERC')
bizdays('2016-01-01', '2016-03-14', 'Rmetrics/NYSE')

}

ref 19

ref Creates date references to be used in getdate

Description

Date references are specifically months or years to be used in getdate. Months and years can be
specified directly or can be base on a given date. getdate returns a date that is in the reference
passed.

Usage

ref(x, ...)

S3 method for class 'Date'
ref(x, ym = c("month", "year"), ...)

S3 method for class 'character'
ref(x, ...)

S3 method for class 'numeric'
ref(x, ...)

Arguments

x a Date vector, a character vector (specifying dates, months or years) or a nu-
meric vector (specifying years)

... additional arguments
If a date (character or Date) is passed to ref it has to specified whether the
reference is to the month or the year of the given date. This is set in the argument
ym that accepts month (default) or year.

ym a character string with the values month or year (see Details)

Examples

ref(as.Date("2018-01-01"), "month") # refers to 2018-01
ref("2018-01-01", "month") # refers to 2018-01
ref("2018-01-01", "year") # refers to 2018

ref(c("2018-01", "2018-02")) # refers to 2018-01 and 2018-02
ref("2018") # refers to 2018
ref(2010:2018) # refers to all years from 2010 to 2018

Index

∗Topic datasets
bizdays.options, 5
holidaysANBIMA, 14

add.bizdays (offset), 15
adjust.date, 2
adjust.next (adjust.date), 2
adjust.none (adjust.date), 2
adjust.previous (adjust.date), 2

bizdays, 4, 12
bizdays-package, 2
bizdays.options, 5
bizdayse, 6
bizdiff, 7
bizseq, 8

calendar-holidays-weekdays, 8
calendar-import-export, 9
calendar-register, 10
calendars, 12
calendars (calendar-register), 10
create.calendar, 11

following (adjust.date), 2

getdate, 13

has.calendars (calendar-register), 10
holidays (calendar-holidays-weekdays), 8
holidaysANBIMA, 14

is.bizday, 14

load_calendar (calendar-import-export),
9

load_quantlib_calendars
(other-calendars), 16

load_rmetrics_calendars
(other-calendars), 16

modified.following (adjust.date), 2

modified.preceding (adjust.date), 2

offset, 15
other-calendars, 16

preceding (adjust.date), 2

ref, 13, 19
remove.calendars (calendar-register), 10

save_calendar (calendar-import-export),
9

weekdays.Calendar
(calendar-holidays-weekdays), 8

weekdays.character
(calendar-holidays-weekdays), 8

weekdays.default
(calendar-holidays-weekdays), 8

20

	bizdays-package
	adjust.date
	bizdays
	bizdays.options
	bizdayse
	bizdiff
	bizseq
	calendar-holidays-weekdays
	calendar-import-export
	calendar-register
	create.calendar
	getdate
	holidaysANBIMA
	is.bizday
	offset
	other-calendars
	ref
	Index

