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Convenience functions for constructing, plotting and evaluating bivariate probability distri-
butions, including their probability mass/density functions and cumulative distribution func-
tions. Supports uniform (discrete and continuous), binomial, Poisson, categorical, normal,
bimodal and Dirichlet (trivariate) distributions, and kernel smoothing and empirical cumula-
tive distribution functions.

Introduction

This package contains convenience functions for constructing, plotting and evaluating bi-
variate probability distributions, including their probability mass/density functions and
cumulative distribution functions.

It supports the following parametric probability distributions:
e Discrete bivariate Uniform distributions (PMF and CDF).
e Bivariate Binomial distributions (PMF and CDF).
e Bivariate Poisson distributions (PMF and CDF).
e Bivariate Categorical distributions (PMF).
e Continuous bivariate Uniform distributions (PDF and CDF).
e Bivariate Normal distributions (PDF and CDF).
¢ Bivariate Bimodal distributions (PDF and CDF).
e Trivariate Dirichlet distributions (PDF).
And it supports the following nonparametric probability distributions:
e Bivariate Kernel density estimates (PDF).
e Bivariate Empirical cumulative distribution functions (CDF).

It’s debatable whether categorical distributions are parametric or not. In this package,
categorical distributions are constructed from (small) matrices of parameters, and hence
have been classified as parametric. However, they could be constructed from (large) vectors
of data (with many categories), which would make them more nonparametric-like.

Some of these distributions (color-coded in gold, or brown) are equivalent to the product of
their marginal distributions. Others (color-coded in blue) may be equivalent to the product
of their marginal distributions in some cases, but are not in generality.

(i.e. A bivariate normal distribution can be represented as the product of two univariate



Spurdle, A. bivariate 0.5.0 2

normal distributions if it has no correlation).

Note that there’s more than one way of formulating bivariate binomial, Poisson and bi-
modial distributions. I've used the simplest approaches that I could for the binomial and
bimodal distributions, with the Poisson distribution adapted from Karlis and Ntzoufras
(2003).

Also note that:

e The help files provide more information about specific functions.
This vignette is designed to give an overview, references, (some) theoretical back-
ground and better examples. Also, I hope that it makes the subject of multivariate
probability more intuitive and appealing.

e This package uses a system of self-referencing function objects.
This allows us to plot and evaluate functions, without specifying their parameters,
each time.

e This vignette contains non-visible R code to change the color theme.

e The functions for evaluating discrete probability distributions, coerce their arguments
to integers. If you try to evaluate discrete probability distributions with non-integer
arguments, you may get unexpected results.

Preliminary Code
(And Required Packages)

I will load (and attach) the intoo, barsurf, bivariate and MASS packages:

library (intoo)
library (barsurf)
library (bivariate)
library (MASS)

vV V V V

Note that the bivariate package imports the intoo, barsurf, mvtnorm and KernSmooth
packages. And the barsurf package imports the kubik and colorspace packages.

I will set the rendering style for viewing PDF documents, electronically:
> set.bs.options (rendering.style="e")

Refer to the barsurf package for information on how to customize plots, if required.

Discrete Bivariate Uniform Distributions

We can describe a bivariate uniform distribution as the product of two univariate uniform
distributions, so:

P(X =Y =y) = fxy(z,y;ax,ay,bx, by)
= fx(x;ax,bx)fy (y; ay, by) (here, x and y are ignored)

B 1 1
~lbx —ax +1] by —ay +1

Where ax and ay are integers giving the lower bounds of X and Y, and bx and by are
integers giving the upper bounds of X and Y.
(And assuming that x is in the interval [ax,bx] and y is in the interval [ay, by]).
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We can construct its probability mass function using the dubvpmf function, and its cumu-
lative distribution function using the dubvcdf function.

Both constructors take four arguments, the lower bounds of X and Y, and the upper
bounds of X and Y.

Here’s an example, where both X and Y, can take values between one and six:

> f <- dubvpmf (1, 1, 6, 6)
> F <- dubvcdf (1, 1, 6, 6)

And we can plot the functions:

> plot (f, TRUE)

<

> plot (F, TRUE)

F 3

Reiterating, this package uses a system of self-referencing function objects, which allows
us to plot and evaluate functions, without specifying their parameters, each time.
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In both cases, we can evaluate the functions for x and y:
> f (2, 4)
[1] 0.02777778
>F (2, 4)
[1] 0.2222222

The same applies to all the other probability distributions in this package, except for kernel
density estimates.

Note that we can compute these values from univariate distributions:
(Again, assuming that @ and y are within the supported region).

> d.unif.pmf.eval <- function (x, a, b) #x ignored
1/ (b-a+1)
> d.unif.cdf.eval <- function (x, a, b) #x used

x-a+1)/ (b-a+1)
> d.unif.pmf.eval (2, 1, 6) * d.unif.pmf.eval (4, 1, 6)
[1] 0.02777778
> d.unif.cdf.eval (2, 1, 6) * d.unif.cdf.eval (4, 1, 6)
[1] 0.2222222

This only applies to the probability distributions color-coded in gold.

Bivariate Binomial Distributions

One way to define a bivariate binomial distribution is to say that we have n trials. In each
trial there are two independent events, each with a particular probability of success. Like
flipping two coins, n times.

Like the bivariate uniform distribution, we can describe a bivariate binomial distribution
as the product of two univariate binomial distributions, with the same n parameter, so:

P(X = I,Y = y) = fX,Y(xvaPvaYan)
= fx(z;px,n) fy (y;py,n)

= ()] | (D)t a -

Where px is the probability of the first success and py is the probability of the second
success.

We can construct its probability mass function using the bnbvpmf function, and its cumu-
lative distribution function using the bnbvcdf function.

It takes three arguments, the probability of the first success, the probability of the second
success and the number of trials.

Here’s an example where the probability of the first success is 0.5, the probability of the
second success is 0.25, and there’s ten trials:

> f <- bnbvpmf (0.5, 0.25, 10)
> F <- bnbvcdf (0.5, 0.25, 10)
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And again we can plot the functions:

> plot (f, TRUE)

<

> plot (F, TRUE)

i

Note that I've put the probabilities (“p”) first, however, it’s customary for the number of
trials (“n”) to go first.

If n is omitted, it defaults to one, giving a bivariate Bernoulli distribution.
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Bivariate Poisson Distributions

Based on Karlis and Ntzoufras (2003), we can define the bivariate Poisson probability mass
function as:

]P)(X = an = y) = fX,Y(x)y;)‘h)‘Q)/\?))

" k
- e—(>\1+>\2+/\3)ﬁ)‘_g TN (Y A3
x! y' & k k ’ /\1)\2
Where:

A1, A9 and Aq are positive real numbers.
k is an integer in the sequence 0 to min(z,y).

And where:

E(X) =var(X) =X + A3
E(Y)=var(Y) = Ay + A3
cov(X,Y) = X3

Note that that E(X) and E(Y) need to be greater than cov(X,Y).

Contrary to the two previous probability distributions, this probability distribution is not
the product of two marginal distributions.

We can construct its probability mass function using the pbvpmf or pbvpmf.2 functions,
and its cumulative distribution function using the pbvecdf or pbvcdf.2 functions.

All functions take three arguments, the first versions (with no suffix) take the three A
parameters, and the second versions (with a suffix) take the expected value of X, the
expected value of Y and the covariance between X and Y.

Here’s an example where the expected value of both X and Y is eight, and the covariance
is two:

> f <- pbvpmf.2 (8, 8, 2)
> F <- pbvcdf.2 (8, 8, 2)

And plots, in 2D and 3D:

> plot (f)
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> plot (f, TRUE)

<

> plot (F)
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> plot (F, TRUE)
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It takes a single argument, a matrix of probabilities (or frequencies), preferably with row

and column names.
Note that increasing rows correspond to increasing x values and increasing columns corre-

We can construct a probability mass function for a categorical distribution, using the
spond to increasing y values.

cbvpmf function.

Bivariate Categorical Distributions

Here’s a example using a matrix of random frequencies:

> h <- sample (1:24)

> h <- matrix (h, 6, 4)

> rownames (h) <- LETTERS [1:6]

> colnames (h) <- letters [1:4]

>

A 418 19 20
B 72223 8

C

5 913

1

D 216 15 21
E 11 10 12 3

F 14 6 17 24

> f <- cbvpmf (h)
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And plots in 2D and 3D:

> plot (f)
o
o
>
o
©

> plot (f, TRUE,
arrows=FALSE)

Evaluation can use either integers or strings, and returns probabilities:
> f (2, 4)
[1] 0.02666667
> £ ("B", "d")

[1] 0.02666667
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Continuous Bivariate Uniform Distributions

Continuous bivariate uniform distributions are similar to discrete bivariate uniform distri-
butions. However, we have a probability density function rather than a probability mass
function.

We can construct its probability density function using the cubvpdf function, and its
cumulative distribution function using the cubvcdf function.

Both take four arguments, the lower bounds of X and Y, and the upper bounds of X and
Y.

Here’s an example, where both X and Y, can take values between zero and two:

> f <- cubvpdf (0, 0, 2, 2)
> F <- cubvcdf (0, 0, 2, 2)

And plots of the functions:

> plot (f, TRUE)
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> plot (F, TRUE)

Note that the density is 0.25 over the supported region, however, its vertical positioning
may (incorrectly) suggest a higher value.

Bivariate Normal Distributions

This package uses the mvtnorm package to evaluate bivariate normal distributions.
Please refer to that package for technical details.

We can construct a probability density function for the bivariate normal distribution using
the nbvpdf or nbvpdf.2 functions, and its cumulative distribution function using the nbvcdf
or nbvcdf.2 functions.

All functions take five parameters. The first functions (with no suffix) take the means of
X and Y, the standard deviations of X and Y, and their correlation. The second functions
(with the suffix) take the means of X and Y, the variances of X and Y, and their covariance.

Here’s an example with zero means, standard deviations of one, and no correlation:
(Essentially, a bivariate generalization of the “standard normal distribution”).

> f <- nbvpdf (0, 0, 1, 1, 0)
> F <- nbvedf (0, 0, 1, 1, 0)
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And plots in 2D and 3D:

> plot (f)

> plot (f, TRUE)

bivariate 0.5.0

;7’1‘ 0% ‘\‘\\
LXK

12



Spurdle, A. bivariate 0.5.0 13

> plot (F)

> plot (F, TRUE)
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Note that there’s an appendix later that compares normal distributions with different
correlation parameters.

Bivariate Bimodal Distributions

It’s possible to construct a bivariate bimodal probability density function by taking two
bivariate normal probability density functions, then adding their densities together, and
then dividing by two.

We can construct such a probability density function using the bmbvpdf or bmbvpdf.2
functions, and its cumulative distribution function using bmbvcdf or bmbvcdf.2 functions.
All functions take eight arguments, and follow the same principles as the normal distri-
butions, discussed in the previous section. The first four arguments are the means and
standard deviations (or variances) of the first component distribution. The last four ar-
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guments are the means and standard deviations (or variances) of the second component
distribution.

Here’s a an example, where the component means of X are 3.5 and 6.5, the component
means of Y are zero, and all standard deviations are one:

> f <- bmbvpdf (

3.5, 0, 1, 1, #first component distribution

6.5, 0, 1, 1) #second component distribution
> F <- bmbvcdf (

3.5, 0, 1, 1, #first component distribution

6.5, 0, 1, 1) #second component distribution

And plots in 2D and 3D:

> plot (f)
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> plot (f, TRUE,
arrows = c¢ (FALSE, TRUE), xat = ¢ (3.5, 6.5) )

> plot (F)
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> plot (F, TRUE,
arrows = c¢ (FALSE, TRUE), xat = ¢ (3.5, 6.5) )

Note that this method (of adding normal distributions) is similar kernel smoothing, dis-
cussed later.

Trivariate Dirichlet Distributions

Dirichlet distributions with three variables are similar to other probability distributions
with two variables.
(Because it’s possible to compute the third variable from the first two variables).

We can construct their probability density function using the dtvpdf function.
It takes three o parameters.

Here’s an example with o parameters of two, four and six:

> f <- dtvpdf (2, 4, 6)
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And plots in 2D and 3D:

> plot (f)

> plot (f, TRUE)
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Or using the log density:

> plot (f, TRUE, log=TRUE)

Note that Dirichlet distributes can take a large variety of shapes.

I’'ve provided some more examples in an appendix later.

Bivariate Kernel Density Estimates

This package uses the KernSmooth package to produce bivariate kernel density estimates.
Please refer to that package for technical details.

We can construct a probably distribution representing bivariate kernel density estimates
using the kbvpdf function.
It takes four arguments, two equal length vectors of data, and two bandwidth parameters.

I’'ve adapted this example from KernSmooth:
(Which has a bandwidth parameter of 0.7 for duration, and 7 for waiting).

> data ("geyser")
> attach (geyser)

> fh <- kbvpdf (duration, waiting, 0.7, 7)
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Again, once we have constructed our object we can plot it:

> plot (fh,
xlab="duration", ylab="waiting")

o
o
—
2 8
g
S
o
o
o
<
1 2 3 4 5 6
duration

> plot (fh, TRUE,
xlab="duration", ylab="waiting")

waiting duration

> detach (geyser)

Unlike other probability distributions in this package, you can’t evaluate the function, fh.

Note that the probhat package provides more tools for kernel smoothing.
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Bivariate Empirical Cumulative Distribution Functions

Like bivariate kernel density estimates, bivariate ECDFs are computed from vectors of
data.

The resulting probability distribution is a step function, however in general, they represent
the distribution of continuous random variables.

We can construct it using the ebvedf function.
It takes two arguments, two equal length vectors of observations.

Here’s an example, using some random data:
(Which should have low correlation).

> x <- rnorm (20)
> y <= rnorm (20)

> Fh <- ebvcdf (x, y)

And plots in 2D and 3D:

> plot (Fh,
xyrel="£f")
o
o
<
N
o
o
—
-
>

-0.390 0.340

-1.100

-2.000 -0.480 0.390 1.400

X
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> plot (Fh, TRUE)

Spurdle, A.
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range of observed values. However, if the number of observations is larger than forty, the

function is plotted as a (discrete) step function, with an extrapolated region outside the
function is plotted as a (continuous) surface, evaluated over a regularly spaced grid.

Note that by default, if the number of observations is less than or equal to forty, the
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Appendix A:
Comparing Normal Distributions

We can compare different normal distributions using different correlation or covariance
parameters.

First, let’s consider the bivariate distribution from the earlier section with zero correlation:

> f1 <- nbvpdf (0, 0, 1, 1, 0)
> f1 %$% matrix.variances

(SR
= O =

X
Y

> plot (f1, all=TRUE, n=20)

o

N

o LAREN
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N

o

7
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Second, let’s consider bivariate distributions with positive correlation:
(Note that if both the standard deviations are one, then the correlation will equal the
covariance).

> f2 <- nbvpdf (0, 0, 1, 1, 0.75)
> f2 %$% matrix.variances

X Y
X 1.00 0.75
Y 0.75 1.00
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> plot (f2, all=TRUE, n=20)

-1 0 1 2 3 -3 -1 0 1 2 3

-3

Third, let’s consider bivariate distributions with negative correlation:

> £3 <- nbvpdf (0, 0, 1, 1, -0.75)
> £3 %$% matrix.variances

X Y
X 1.00 -0.75
Y -0.75 1.00
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> plot (£3, all=TRUE, n=20)

N <

-3 -1 0 1 2 3

-1 0 1 2 3

-3

™
N
—
o
—
I
™
! y
-3 -1 0 1 2 3 \

Note that currently, the all=TRUE option requires the PMF or PDF rather than the CDF.
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Appendix B:
Comparing Dirichlet Distributions

a=(1,1,1)

> plot (dtvpdf (1, 1, 1), TRUE)

a=(2,22)

> plot (dtvpdf (2, 2, 2), TRUE)
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a = (0.5,0.5,0.5)

> plot (dtvpdf (0.5, 0.5, 0.5), TRUE)

27



