Package 'bivarRIpower'

February 19, 2015

R topics documented:

	bivarRIpower-package	
Index		5

bivarRIpower-package Sample size calculations for bivariate longitudinal data

Description

Provides function to carry out sample size calculations for correlations that occur between random intercepts, residuals, and observations in a bivariate longitudinal model. Maximum likelihood estimates are used for correlation variances. Sample size is calculated under one-sample z-test framework. Details of calculations are given in Comulada and Weiss (2010).

bivarRIpower-package

Details

bivarcalcn

Package:	bivarRIpower
Type:	Package
Version:	1.2
Date:	2010-12-02
License:	GPL (\>=2)
LazyLoad:	yes

Author(s)

W. Scott Comulada and Robert E. Weiss

Maintainer: W. Scott Comulada <scomulad@ucla.edu>

References

Comulada WS and Weiss RE. (2010). Power calculations for correlations between bivariate longitudinal data. Statistics in Medicine. 29(27): 2811-2824.

bivarcalcn

Function to calculate necessary sample size to achieve given power for correlation parameters in bivariate linear regression model

Description

Function carries out maximum likelihood sample size calculations for one of four types of correlations in a bivariate random-intercept (RI) linear regression model discussed in Comulada and Weiss (2010): 1) Correlations between RI; 2) residuals, 3) observations measured at the same time point (concurrent); and 4) observations measured at different time points (lagged). Standard deviations for variance parameters and correlations between RI and residuals are specified by the user. Correlations between concurrent and lagged observations are calculated. Sample size is calculated for specified correlation and power under a two-sided test with a .05 alpha level. Powers for remaining three non-specified correlations are also shown.

Usage

```
bivarcalcn(power, powerfor, timepts, d1, d2, p, p1, s1, s2, r, r1)
```

Arguments

power	Power to achieve (usually at least .80)
powerfor	Correlation to base sample size calculation on. Possible entries are 'RI', Ran- dom intercepts; 'RESIDUAL', Residuals; 'YYcon', Concurrent outcome obser- vations; or 'YYlag', Lagged outcome observations.
timepts	Number of time points

bivarcalcn

d1	Standard deviation (SD) for 1st random intercept
d2	SD for 2nd random intercept
р	Correlation between RI under null hypothesis
p1	Correlation between RI under alternative hypothesis
s1	SD for 1st residual
s2	SD for 2nd residual
r	Correlation between residual under null hypothesis
r1	Correlation between residual under alternative hypothesis

Value

Returns sample size (labled as 'clusters') and parameters specified for calculations

Author(s)

W. Scott Comulada and Robert E. Weiss

References

Comulada WS and Weiss RE. (2010). Power calculations for correlations between bivariate longitudinal data. Statistics in Medicine. 29(27): 2811-2824.

Examples

Example: Calculate necessary sample size to achieve 80 percent power at 5
percent alpha level for null and alternative hypotheses that correlation
between RI is 0 and .2, respectively, across 6 time points. Other
covariance parameter are set as follows: Correlation between residuals = 0;
Standard deviations: 1st RI = 1, 2nd RI = 2, 1st residual = .5,
2nd residual = .75
library(bivarRIpower)
bivarcalcn(power=.80,powerfor='RI',timepts=6,d1=1,d2=2,p=0,p1=.2,s1=.5,s2=.75,
r=0,r1=.1)

Index

*Topic **bivarRIpower** bivarRIpower-package, 1

bivarcalcn, 3
bivarRIpower (bivarRIpower-package), 1
bivarRIpower-package, 1