Package ‘bioset’

November 13, 2018
Type Package

Title Convert a Matrix of Raw Values into Nice and Tidy Data
Version 0.2.3

Description Functions to help dealing with raw data from measurements, like
reading and transforming raw values organized in matrices, calculating and
converting concentrations and calculating precision of duplicates /
triplicates / It is compatible with and building on top of some
'tidyverse'-packages.

URL https://github.com/randomchars42/bioset

BugReports https://github.com/randomchars42/bioset/issues
License MIT + file LICENSE
Depends R (>=3.4.0)

Imports utils, stats, graphics, grDevices, tidyr (>= 0.7.1), dplyr (>=
0.7.4), rlang (>= 0.1.2), tibble (>= 1.3.4), magrittr (>= 1.5)

Suggests ggplot2 (>=2.2.1), testthat (>= 1.0.2), knitr (>= 1.17),
rmarkdown (>= 1.6)

Encoding UTF-8

LazyData true

RoxygenNote 6.0.1

VignetteBuilder knitr

NeedsCompilation no

Author Eike Christian Kiihn [aut, cre]

Maintainer Eike Christian Kiihn <eike.kuehn@pixelwoelkchen.de>
Repository CRAN

Date/Publication 2018-11-13 14:20:03 UTC

https://github.com/randomchars42/bioset
https://github.com/randomchars42/bioset/issues

2 bioset-package

R topics documented:
bioset-package 2
calc_factor CONC e e 3
calc_factor_prefix 4
CONVETL_CONC . v v v v v o e e e e e e e e e e e e e e e e s s e s 5
convert_prefix L. e e 7
models_linear e e 8
models_Inln e 9
sets_read e e 10
set_calc_concentrationst e e e e e e e e e e e e 13
set_calc_variability e 15
set_read e e e 16

Index 19

bioset-package Convert a matrix of raw values into nice and tidy data.
Description

bioset is intended to save you from commons tasks when dealing with raw data obtained e.g. from
a measuring device.

Details

When importing values with bioset start with set_read(). To get an example for a workflow refer
to the introductory vignette (vignette("introduction”, "bioset")).

Author(s)

Maintainer: Eike Christian Kiihn <eike.kuehn@pixelwoelkchen.de>

See Also

Useful links:

https://github.com/randomchars42/bioset

Report bugs at https://github.com/randomchars42/bioset/issues

https://github.com/randomchars42/bioset
https://github.com/randomchars42/bioset/issues

calc_factor_conc

calc_factor_conc Get a factor to convert concentrations.

Description

Calculate a factor to convert concentration "A" into concentration "B".

Usage

calc_factor_conc(from, to, molar_mass = 0, density_solute = 0,
density_solution = @)

Arguments
from A string containing the units of concentration A.
to A string containing the units of concentration B.
molar_mass The molar mass of the solute (g / mol).

density_solute The density of the solute (g/1).

density_solution
The density of the solution (g / 1), not the solvent!

Details

The following concentrations can be converted:
mass / volume: ".g/.1",".g/ .m*3", "% w/Vv"
molar / volume: ".M", ".mol / .1", ".mol / .m"3"

volume / volume: ".1/.1", ".1/ m"3", ".m"3/.m*3", ".m 3/ .1","%b v/v',"v/v
mass / mass: ".g/.g","wW/w", "o w/w"

Where "." symbolizes a metric prefix (see calc_factor_prefix()):

For g, I, mol and M: d (deci), ¢ (centi), m (milli), 4 (micro), n (nano), p (pico) and f (femto).
For g you might use k (kilo) as well.

For m”3 (cubic metres) you may only use: d (deci), ¢ (centi) and m (milli).

Note: % w / v is (incorrectly) taken as a short hand for 0.1 g/ 1.

Value

The factor to convert A into B.

See Also

Other conversion functions: calc_factor_prefix, convert_conc, convert_prefix

4 calc_factor_prefix

Examples
library("dplyr")

generate test data
data <- tibble(
sample = c("A”, "B", "C"),
conc = c(4.5, 2.3, 5.1), # concentration ing /1

)

fctr_ng_ml <- calc_factor_conc(from = "g/1", to = "ng/ml")

give molar mass in g / mol

fctr_mol_1 <- calc_factor_conc(from = "g/1", to = "M", molar_mass = 78.971)
give densities in g / 1

fctr_pc <- calc_factor_conc(from = "g/1", to = "%v/v", density_solute = 4810)

data %>%
mutate(
conc_ng_ml = conc * fctr_ng_ml,
conc_mol_1 = conc x fctr_mol_1,
conc_pc = conc * fctr_pc

)

throws an error

Not run:

will throw an error because molar_mass is missing
fctr_fail <- calc_factor_conc(from = "g/1", to = "mol/1")

End(Not run)

calc_factor_prefix Get a factor to convert metric prefixes.

Description

Get a factor to convert metric prefixes into one another.

Usage

calc_factor_prefix(from, to)

Arguments

from A string containing the prefixed unit A.

to A string containing the prefixed unit B.

convert_conc 5

Details

non

".mol", ".m”3" (cubic metres), where ".

Convert, e.g. "kg" to "ug". You can convert ".g", ".1", '
symbolizes a metric prefix:

For g, I and mol: d (deci), ¢ (centi), m (milli), u (micro), n (nano), p (pico) and f (femto).
For g you might use k (kilo) as well.

For m”3 (cubic metres) you may only use: d (deci), ¢ (centi) and m (milli).

Value

A factor for multiplication with the value.

See Also

Other conversion functions: calc_factor_conc, convert_conc, convert_prefix

Examples

calc_factor_prefix(from = "ng", to = "kg")
calc_factor_prefix(from = "dm*3", to = "cm*3")
calc_factor_prefix(from = "f1", to = "pl")
calc_factor_prefix(from = "pmol”, to = "nmol")

convert_conc Convert a value of the given concentration into another concentration.

Description

A convenience wrapper around calc_factor_conc().

Usage

convert_conc(x, from, to, molar_mass = @, density_solute = 0,
density_solution = @)

Arguments
X The value to convert.
from A string containing the units of concentration A.
to A string containing the units of concentration B.
molar_mass The molar mass of the solute (g / mol).

density_solute The density of the solute (g /1).
density_solution
The density of the solution (g / 1), not the solvent!

6 convert_conc

Details

The following concentrations can be converted:

mass / volume: ".g/ 1", ".g/ .m"3","% w/Vv"

molar / volume: ".M", ".mol / .1", ".mol / .m"3"

volume / volume: ".1/.1", ".1/ m"3", ".m"3/.m"3", ".m 3/ 1", "% v /Vv", "v/Vv"

mass / mass: ".g/.g","wW/w", " w/w"

Where "." symbolizes a metric prefix (see calc_factor_prefix()):

For g, 1, mol and M: d (deci), ¢ (centi), m (milli), p (micro), n (nano), p (pico) and f (femto).
For g you might use k (kilo) as well.

For m”3 (cubic metres) you may only use: d (deci), ¢ (centi) and m (milli).

Note: % w / v is (incorrectly) taken as a short hand for 0.1 g/ 1.

Value

The converted value.

See Also

Other conversion functions: calc_factor_conc, calc_factor_prefix, convert_prefix

Examples

library("dplyr")

generate test data
data <- tibble(
Sample = C(”A", IIBIV’ IVCII)’

conc = c(4.5, 2.3, 5.1), # concentration ing /1
)
data %>%
mutate(
conc_ng_ml = convert_conc(x = conc, from = "g/1", to = "ng/ml"),

give molar mass in g / mol
conc_mol_l1 = convert_conc(
x = conc, from = "g/1", to = "M", molar_mass = 78.971),
give densities ing /1
conc_pc = convert_conc(
x = conc, from = "g/1", to = "%v/v", density_solute = 4810)

)

throws an error

Not run:

will throw an error because molar_mass is missing
fail <- convert_conc(x = 5, from = "g/1", to = "mol/1")

End(Not run)

convert_prefix 7

convert_prefix Convert between metric prefixes.

Description

A convenience wrapper around calc_factor_prefix().

Usage

convert_prefix(x, from, to)

Arguments
X The value to convert.
from A string containing the prefixed unit A.
to A string containing the prefixed unit B.
Details

non

Convert, e.g. "kg" to "ug". You can convert ".g", ".1", ".mol", ".m”3" (cubic metres), where ".
symbolizes a metric prefix:

For g, I and mol: d (deci), ¢ (centi), m (milli), u (micro), n (nano), p (pico) and f (femto).
For g you might use k (kilo) as well.

For m”"3 (cubic metres) you may only use: d (deci), ¢ (centi) and m (milli).

Value

The converted value.

See Also

Other conversion functions: calc_factor_conc, calc_factor_prefix, convert_conc

Examples
convert_prefix(x = 2, from = "ng", to = "kg")
convert_prefix(x = 2, from = "dm*3", to = "cm*3")
convert_prefix(x = 2, from = "f1", to = "pl")
convert_prefix(x = 2, from = "pmol”, to = "nmol")

8 models_linear

models_linear Linear model functions.

Description

Use these functions to calculate a linear model from data, plot the model and use it to calculate
x-values from the model data and y-values (inverse function).

Those function are intended to be used in set_calc_concentrations / sets_read to be applied to the
calibrators (fit_linear) and interpolate concentrations from the raw values (interpolate_linear).
Use plot_linear to visually inspect goodness of fit.

e fit_linear: Calculate a linear model from x and y.

* plot_linear: Draw the plot for the model that can be calculated with fit_linear. Uses
ggplot2::ggplot if available.

* interpolate_linear: Inverse fit_linear using model and calculate x values from y values.

Usage

fit_linear(x, y)
plot_linear(x, y)

interpolate_linear(y, model)

Arguments
X The x coordinates of the points.
y The y coordinates of the points.
model The line model.

Value

e fit_linear: The line model.
* plot_linear: The plot.

e interpolate_linear: The calculated x values.

See Also

set_calc_concentrations, sets_read, models_Inln

models_Inln 9

Examples

generate data

x <- c(1, 3, 4, 7

y_known <- ¢(3.5, 6.5, 8, 12.5) # x is known for these values
y_unknown <- c(5, 9.5, 11) # we will calculate x for those

model <- fit_linear(x = x, y = y_known)
model

plot_linear(x = x, y = y_known)

interpolate_linear(y = y_unknown, model)

rm(x, y_known, y_unknown, model)

models_lnln Model functions for data requiring In-In-transformation to fit a model.

Description

Use these functions to transform x and y using the natural logarithm and calculate a linear model,
plot the model and use it to calculate x-values from the model data and y-values (inverse function).

Those function are intended to be used in set_calc_concentrations / sets_read to be applied to the
calibrators (fit_lnln) and interpolate concentrations from the raw values (interpolate_lnln).
Use plot_lnln to visually inspect goodness of fit.

e fit_lnln: Apply In to x and y and calculate a linear model from x and y.

* plot_lnln: Draw the plot for the model that can be calculated with fit_lnln. Uses gg-
plot2::ggplot if available.

e interpolate_lnln: Inverse fit_lnln using model and calculate x values from y values.
Usage
fit_Inln(x, y)
plot_Inln(x, y)

interpolate_lnln(y, model)

Arguments
X The x coordinates of the points.
\% The y coordinates of the points.

model The line model.

10 sets_read

Value

e fit_lnln: The model.
* plot_1nln: The plot.

e interpolate_lnln: The calculated x values.

See Also

set_calc_concentrations, sets_read, models_linear

Examples

generate data

X <- ¢(2.718282, 20.085537, 54.598150, 1096.633158)

x is known for these values

y_known <- c(33.11545, 665.14163, 2980.95799, 268337.28652)
we will calculate x for those:

y_unknown <- c(148.4132, 13359.7268, 59874.1417)

model <- fit_lnln(x = x, y = y_known)
model

plot_lnln(x = x, y = y_known)

interpolate_lnln(y = y_unknown, model)

rm(x, y_known, y_unknown, model)

sets_read Read sets and calculate concentrations and variability.

Description

Basically a wrapper around set_read(), set_calc_concentrations() and set_calc_variability().
For a gentler introduction see examples and Vignette "Introduction”.

May write the processed data into two files: data_samples.csv, data_all.csv.

Usage
sets_read(sets, cal_names, cal_values, exclude_cals = list(),
additional_vars = c("name"”), additional_sep = "_", sep = ",",
dec = ".", path = ".", file_name = "set_#NUM#.csv",

model_func = fit_linear, plot_func = plot_linear,
interpolate_func = interpolate_linear, write_data = TRUE,
use_written_data = FALSE)

sets_read 11

Arguments
sets The number of sets (e.g. 3** attempts to readset_l.csv,set_2.csv,set_3.csv), seefile_name’.
cal_names A vector of strings containing the names of the samples used as calibrators.
cal_values A numeric vector with the known concentrations of those samples (must be in

the same order).

exclude_cals A list of calibrators to exclude, e.g.: list(set1 = c("CAL1")).
additional_vars
Vector of strings containing the names for the additional columns.

additional_sep String/RegExp that separates additional vars, e.g.: "ID_blue_cold" with additional_sep = "_"
will be separated into three columns containing "ID"”, "blue” and "cold”. If
the separated data would exceed the columns in additional_vars the last col-
umn will contain a string with separator (e.g.: "blue_cold"). If data is missing
NA is inserted.

sep Separator used in the csv-file, either "," or ";" (see utils: :read.csv()).

dec The character used for decimal points (see utils::read.csv()). "AUTO" will
result in "." if sepis "," and "," for ";".

path The path to the file (no trailing "/" or "\" !).

file_name Name of the file from which to read the data. May contain "#NUM#" as a
placeholder if you have multiple files.

model_func A function generating a model to fit the calibrators, e.g. fit_linear(), fit_1nln().

plot_func Function used to display the fitted line.

interpolate_func
A function used to interpolate the concentrations of the other samples, based on
the model, e.g. interpolate_linear(), interpolate_lnln().

write_data Write the calculated data into data_all.csv and data_samples.csv?

use_written_data
Try to read data_all.csv and data_read.csv instead of raw data. Useful if
you have to re-run the script, but the raw data does not change.

Value

A list:
e $all: here you will find all the data , including calibrators, duplicates, ... (saved in data_all.csv
ifwrite_data = TRUE)

» $samples: only one row per distinct sample here - no calibrators, no duplicates -> most often
you will work with this data (saved in data_samples.csvifwrite_data = TRUE)

e $setl: alist

— $plot: a plot showing you the function used to calculate the concentrations for this set.
The points represent the calibrators.

— $model: the model as returned by model_func

* ($set2 - $setN): the same information for every set you have

12 sets_read

See Also

Other set functions: set_calc_concentrations, set_calc_variability, set_read

Examples

files "set_1.csv” and "set_2.csv” containing raw values and the
corresponding lables (consisting of ID and point in time like
"ID_TIME")
read.csv(
file = system.file("extdata”, "set_1.csv", package = "bioset"),
header = FALSE,
colClasses = "character”
)
read.csv(
file = system.file("extdata”, "set_2.csv”, package = "bioset”),
header = FALSE,
colClasses = "character”

the known concentration of the calibrators contained in these plates
cals <- c(10, 20, 30, 40) # ng / ml
names(cals) <- c("CAL1", "CAL2", "CAL3", "CAL4")

read both files into a tibble

columns "ID" and "time" separated by
and calculate concentrations using the calibrators
result <- sets_read(

non

sets = 2, # expect 2 plates
path = system.file("extdata”, package = "bioset"),
additional_vars = c("ID", "time"), # expect the labels to contain ID and

point in time
separated by

non non

additional_sep =

cal_names = names(cals), # that's what they're called in the files
cal_values = cals, # the concentration has to be known
write_data = FALSE # do not store the results in csv-files

)

inspect results (all values contained in the two original files)

result$all

(all values except CAL1-4)

result$samples

inspect goodness of fit
for plate 1
resultset_1plot
resultset_1model

for plate 2
resultset_2plot
resultset_2model

set_calc_concentrations 13

set_calc_concentrations
Calculate concentrations for the set using contained calibrators.

Description

If the data set is generated, for example by reading extinction rates or relative light units from a plate,
these raw values can be converted to concentrations using data fields with known concentrations
(calibrators).

Usage

set_calc_concentrations(data, cal_names, cal_values, col_names = name,
col_values = value, col_target = conc, col_real = real,
col_recov = recovery, model_func = fit_linear,
interpolate_func = interpolate_linear)

Arguments
data A tibble containing the data.
cal_names A vector of strings containing the names of the samples used as calibrators.
cal_values A numeric vector with the known concentrations of those samples (must be in
the same order).
col_names The name of the column where the cal_names can be found.
col_values The name of the column holding the raw values.
col_target The name of the column to created for the calculated concentration.
col_real The name of the column to create for the known concentrations.
col_recov The name of the column to create for the recovery of the calibrators.
model_func A function generating a model to fit the calibrators, e.g. fit_linear(), fit_1nln().

interpolate_func
A function used to interpolate the concentrations of the other samples, based on
the model, e.g. interpolate_linear(), interpolate_lnln().
Details
If the data set contains samples with known concentrations (calibrators) those can be used to inter-
polate the concentrations of the other samples.
Value

A tibble containing all original and additional columns.

See Also

Other set functions: set_calc_variability, set_read, sets_read

14 set_calc_concentrations

Examples

generate data
library("tibble")

data <- tibble(
name = C(IICAL1II, “CALZ", IICAL3II’ IIAN, ”BII’ HCII)’
value = c(1, 5, 10, 2, 4, 6)

data

the known concentration of the calibrators
cals <- c(1, 5, 10)
names(cals) <- c("CAL1", "CAL2", "CAL3")

set_calc_concentrations(
data = data,
cal_names = names(cals),
cal_values = cals

to set column names use notation like in dplyr / tidyverse
set the name of the column holding the final concentration to "my_protein”
set_calc_concentrations(

data = data,

cal_names = names(cals),

cal_values = cals,

col_target = my_protein

Not run:

notice that col_target is given a string
this will fail

set_calc_concentrations(

data = data,

cal_names = names(cals),
cal_values = cals,
col_target = "my_protein”

End(Not run)

simulate data which has to be transformed to get a good fit
cals <- exp(cals)
data$value <- exp(datas$value)

use ln-transformation on values and known concentrations prior to
fitting a model

data <- set_calc_concentrations(
data = data,
cal_names = names(cals),

set_calc_variability 15

cal_values = cals,
model_func = fit_lnln,
interpolate_func = interpolate_lnln

)

data

inspect goodnes of fit
plot_lnln(data$real, data$value)

rm(cals, data)

set_calc_variability Calculate parameters of variability for a given set of values.

Description

Calculate mean, standard deviation and coefficient of variation for groups of values.

Usage
set_calc_variability(data, ids, ...)
Arguments
data A tibble containing the data.
ids The column holding the names used to group the values.
The name(s) of the columns used to calculate the variability.
Details

Dealing with measured values, the measurement of sample "A" is often done in duplicates / trip-
licates / This function groups all samples with the same name and calculates mean, standard
deviation and coefficient of variation (= sd / mean).

Value
A tibble containing all original and additional columns (NAMEA_mean, NAMEA_n, NAMEA _sd,
NAMEA_cv, (NAMEB_mean, ...)).

See Also

Other set functions: set_calc_concentrations, set_read, sets_read

16 set_read

Examples

generate data
library("tibble")

data <- tibble(
names = c("A", "B", "C", "A", "B", "C"),
value = c(19, 59, 22, 18, 63, 28),
conc = ¢(1.9, 5.9, 2.2, 1.8, 6.3, 2.8)

)

data

set_calc_variability(

data = data,
ids = names,
value,
conc

)

to set column names use notation like in dplyr / tidyverse
Not run:

notice how strings are given as column names
set_calc_variability(

data = data,
ids = "names”,
"value",
"conc”

)

End(Not run)

rm(cals)
set_read Read a data set from a data-sheet and turn it into a multi-column tib-
ble.
Description

Read a matrix of values from a csv sheet and sort them into a tibble. You can name the values and
encode several additional properties into the name, which be split into several columns. Please refer
to the vignette (browseVignettes("roxygen2")) and examples below for in-depth explanation
and the whys and hows.

Usage

non

set_read(file_name = "set_#NUM#.csv", path = ".", num = 1, sep = ",",
dec = ".", cols = @, rows = 0, additional_vars = vector(),
additional_sep = "[*[:alnum:]11+")

set_read 17

Arguments

file_name Name of the file from which to read the data. May contain "#NUM#" as a
placeholder if you have multiple files.

path The path to the file (no trailing "/" or "\" !).

num Number of the set to read, inserted for "#NUM#".

sep Separator used in the csv-file, either "," or ";" (see utils: :read.csv()).

dec The character used for decimal points (see utils: :read.csv()). "AUTO" will
resultin "." if sepis "," and "," for ";".

cols Number of columns in the input matrix (@ means auto-detect).

rows Number of rows containing values (not names / additional data) in the input

matrix (@ means auto-detect).
additional_vars
Vector of strings containing the names for the additional columns.

additional_sep String/RegExp that separates additional vars, e.g.: "ID_blue_cold"” with additional_sep = "_"
will be separated into three columns containing "ID", "blue” and "cold". If
the separated data would exceed the columns in additional_vars the last col-
umn will contain a string with separator (e.g.: "blue_cold"). If data is missing
NA is inserted.

Value

A tibble containing (at minimum) set, position, sample_id, name and value.

See Also

Other set functions: set_calc_concentrations, set_calc_variability, sets_read

Examples

a file containing only values

read.csv(
file = system.file("extdata”, "values.csv”, package = "bioset”),
header = FALSE,
colClasses = "character

)

I

read into a tibble
set_read(

file_name = "values_names.csv",

path = system.file("extdata”, package = "bioset"),
)

file containing names

read.csv(
file = system.file("extdata”, "values_names.csv"”, package = "bioset"”),
header = FALSE,
colClasses = "character”

18

read a file containing labels and store those in column "name”
set_read(
file_name = "values_names.csv”,
path = system.file("extdata”, package = "bioset"),
additional_vars = c("name”)

)
file with names and properties
read.csv(
file = system.file(
"extdata”, "values_names_properties.csv”, package = "bioset"),
header = FALSE,
colClasses = "character”
)

read a file containing labels and properties and store those in columns
"name” and "time"

splits names by every character that's not A-Z, a-z, 0-9

to change that behaviour use additional_sep

set_read(
file_name = "values_names_properties.csv”,
path = system.file("extdata"”, package = "bioset"),
additional_vars = c("name”, "time")
)
read file "set_1.csv” containing labels
set_read(
num = 1,
path = system.file("extdata”, package = "bioset"),
additional_vars = c("name”, "time")
)
read file "set_2.csv” containing labels
set_read(
num = 2,
path = system.file("extdata”, package = "bioset"),
additional_vars = c("name”, "time")
)
read file "plate_2.csv" containing labels
set_read(
num = 2,

file_name = "plate_#NUM#.csv",
path = system.file("extdata”, package = "bioset"),
additional_vars = c("name”, "time")

)

set_read

Index

bioset, 2
bioset (bioset-package), 2
bioset-package, 2

calc_factor_conc, 3, 5-7
calc_factor_conc(), 5
calc_factor_prefix, 3, 4, 6,
calc_factor_prefix(), 3, 6,
convert_conc, 3,5,5,7
convert_prefix, 3,5, 6,7

7
7

fit_linear (models_linear), 8
fit_linear(), 11,13

fit_1lnln (models_1nln), 9
fit_lnln(), 11,13

ggplot2::ggplot, 8, 9

interpolate_linear (models_linear), 8
interpolate_linear(), 11, 13
interpolate_lnln (models_1nln), 9
interpolate_lnln(), /1, 13

models_linear, 8, 10
models_1nln, 8,9

plot_linear (models_linear), 8
plot_Inln (models_1lnln), 9

set_calc_concentrations, 8-10, 12, 13, 15,
17
set_calc_concentrations(), 10
set_calc_variability, 12, 13, 15,17
set_calc_variability(), 10
set_read, 12, 13, 15, 16
set_read(), 2, 10
sets_read, 8-10, 10, 13, 15,17

utils::read.csv(), 11,17

	bioset-package
	calc_factor_conc
	calc_factor_prefix
	convert_conc
	convert_prefix
	models_linear
	models_lnln
	sets_read
	set_calc_concentrations
	set_calc_variability
	set_read
	Index

