Package ‘bioRad’

May 11, 2020

Title Biological Analysis and Visualization of Weather Radar Data
Version 0.5.2

Description Extract, visualize and summarize aerial movements of birds and
insects from weather radar data. See <doi:10.1111/ecog.04028>
for a software paper describing package and methodologies.

License MIT + file LICENSE

URL https://github.com/adokter/bioRad,
https://adokter.github.io/bioRad

BugReports https://github.com/adokter/bioRad/issues

biocViews
Depends R (>=3.5.0)

Imports assertthat, curl, data.table, fields, ggmap, ggplot2,
graphics, lubridate, lutz, methods, raster, rgdal, rhdf5, sp,
stats, tidyr, utils, viridisLite, viridis, maptools

Suggests knitr, testthat
LazyData true
Encoding UTF-8
VignetteBuilder knitr
RoxygenNote 7.1.0
NeedsCompilation no

Author Adriaan M. Dokter [aut, cre] (<https://orcid.org/0000-0001-6573-066X>),
Peter Desmet [aut] (<https://orcid.org/0000-0002-8442-8025>),
Stijn Van Hoey [aut] (<https://orcid.org/0000-0001-6413-3185>),
Bart Kranstauber [ctb] (<https://orcid.org/0000-0001-8303-780X>),
Cecilia Nilsson [ctb] (<https://orcid.org/0000-0001-8957-4411>),
Jurriaan Spaaks [ctb],
Lourens Veen [ctb],
Liesbeth Verlinden [ctb] (<https://orcid.org/0000-0003-1744-9325>),
Hidde Leijnse [ctb] (<https://orcid.org/0000-0001-7835-4480>)

Maintainer Adriaan M. Dokter <amd427@cornell.edu>

https://github.com/adokter/bioRad
https://adokter.github.io/bioRad
https://github.com/adokter/bioRad/issues

2 R topics documented:

Repository CRAN
Date/Publication 2020-05-11 11:10:18 UTC

R topics documented:

apply_mistnet e 3
as.data.frame.vp L L L L 6
beam_distance 8
beam_height. 9
beam_profile 10
beam_profile_overlap 11
beam_range 13
beam_width 14
bind_into_vpts 15
CVD o e e e e e e e e e e 16
calculate_param L. e e e 17
calculate_vp 18
check_docker e 22
check_night 22
COMPOSIE_PPI -« v v v v e e e e e e e e e e e 24
convert_legacy 26
dbz_to_eta. e 27
download_basemap L 28
download_vpfiles e 29
doy_noy e 30
eta_to dbzo e 32
Xample_SCan e e e e e e e e e 32
example_Vp e 33
example_Vpts e e e 34
filter_VPLS o e e e e e e e 34
get_elevation_angles 36
get_odim_object_type e 37
GEL PATAIM . . . o v v v v e 37
get_quantity e 38
QL SCAM .« . v vt e e e e e e e e e e e e e e e e e e e 40
integrate_profile L. e 41
INtegrate_to_PpPl . . .« « v v v o e e e e e e e e e e 44
is.pvolfile L 48
is.vpfile . . . e e e 49
INAD .« . v v v e e e e e e e e e e e e e e e e e e e 49
nexrad_to_odim e 52
nyquist_velocity L e 53
plotppl 54
plotscan 55
PIOLVD . o o o e e e 57
plotvpl . . oL 58

PIOLVPES .« . . o o 60

apply_mistnet 3

PIrOJECt_aS_PPil . « v v v o v e e e e e e e e e e e e e e e 61
TCS v v v e e e e e e e e e e e e e e 64
TS o v i e 65
read_cajun 66
read_pvolfile L 66
read_vpfiles L e e e 68
1ead_VPLS e e e e 69
regularize_VpLS L L e 70
SCAN_LO_TASIET v v e e e e e e e e e e 71
scan_to_spatial L. 73
sd_vvp_threshold 74
sd_vvp_threshold<- 75
select_vpfiles oL e 76
SUMMATY.PATAM . « .« o o v v e v v e e e e e e e e e e e e e e e e e e e 77
SUMMATY.PPL -« « v v v v e e e e e e e e e e e e e e e e 78
sSumMmary.pvol e e e e e e e e 79
SUMMATY.SCAN .+« o v v v v v e 81
SUMMATY. VD © . v v v v v v e v e e e e e e e e e e e e e e e e e 82
SUMMATY.VPES .« ¢ v v v o v e 84
SUNMISE_SUNSEL . . . v v v v e e e e e e e e e e e e e e e 86
update_docker 87
voI2bird_vVersion e e e e 88
[PPL . . e 89
[VPtS . e 90
Index 91
apply_mistnet Apply MistNet segmentation to a polar volume
Description

Apply MistNet segmentation model to a polar volume file on disk, and load the resultant segmenta-
tion as a polar volume (pvol) object.

Usage

apply_mistnet(
file,
pvolfile_out,
verbose = FALSE,
mount = dirname(file),
load = TRUE,
mistnet_elevations = c(0.5, 1.5, 2.5, 3.5, 4.5)

4 apply_mistnet

Arguments

file character. File path for a radar polar volume.

pvolfile_out character. Filename for the polar volume to be stored, including the MistNet
segmentation results

verbose logical. When TRUE, pipe Docker stdout to R console. On Windows always
TRUE.

mount character. String with the mount point (a directory path) for the Docker con-
tainer.

load on completion load the data

mistnet_elevations
numeric vector of length 5. Elevation angles to feed to the MistNet segmentation
model, which expects exactly 5 elevation scans at 0.5, 1.5, 3.5, 3.5 and 4.5
degrees. Specifying different elevation angles may compromise segmentation
results.

Details

MistNet is a deep convolutional neural network that has been trained using labels derived from
S-band dual-polarization data across the US NEXRAD network.

It’s purpose is to screen out areas of precipitation in weather radar data, primarily legacy data for
which dual-polarization data are not available.

Because the network has been trained on S-band data, it may not perform as well on C-band.

MistNet requires three single-polarization parameters as input: reflectivity (DBZH), radial velocity
(VRADH), and spectrum width (WRADH), at 5 specific elevation angles (0.5, 1.5, 3.5, 3.5 and
4.5 degrees). Based on these data it can estimate a segmentation mask that identifies pixels with
weather that should be removed when interested only in biological data.

MistNet will calculate three class probabilities (from O to 1, with 1 corresponding to a 100% prob-
ability) as additional scan parameters to the polar volume:

""BACKGROUND'"' class probability that no signal was detected above the noise level of the radar
""WEATHER'' class probability that weather was detected

""BIOLOGY'" class probability that biological scatterers were detected

These class probabilities are only available for the 5 input elevations used as input for the MistNet

model. Based on all the class probabilities a final weather segmentation map calculated, stored as
scan parameter CELL, which is available for all elevation scans.

"CELL" Final weather segmentation, with values > 1 indicating pixels classified as weather, and
values equal to 1 indicating pixels that are located within 5 km distance of a weather pixels

A pixel is classified as weather if the class probability WEATHER > 0.45 or when the average class
probability for rain across all five MistNet elevation scans at that spatial location > 0.45.

MistNet may run more slowly on Windows than on Linux or Mac OSX.

See Lin et al. 2019 for details.

apply_mistnet 5

Value

If parameter load is TRUE an object of class pvol on success. If parameter 1oad is FALSE, TRUE
on success.

References
Please also cite this publication when using MistNet:

e Lin T-Y, Winner K, Bernstein G, Mittal A, Dokter AM, Horten KG, Nilsson C, Van Doren B,
Farnsworth A, La Sorte FA, Maji S, Sheldon D (2019) MistNet: Measuring historical bird mi-
gration in the US using archived weather radar data and convolutional neural networks. Meth-
ods in Ecology and Evolution 10: 1908— 1922. https://doi.org/10.1111/2041-210X.
13280

Examples

Not run:
download a NEXRAD file, save as KBGM_example
download.file(paste("https://noaa-nexrad-level2.s3.amazonaws.com/",
"2019/10/01/KBGM/KBGM20191001_000542_V06",
sep = ""
), "~/KBGM_example")

calculate MistNet segmentation:
mistnet_pvol <- apply_mistnet("~/KBGM_example")

print summary info for the segmented elevation scan at 0.5 degree,
verify new parameters BIOLOGY, WEATHER, BACKGROUND and CELL have been added:
my_scan <- get_scan(mistnet_pvol, 0.5)

project the scan as a ppi:
my_ppi <- project_as_ppi(my_scan, range_max = 100000)

plot the reflectivity parameter:
plot(my_ppi, param = "DBZH")

plot the MistNet class probability [0-1] for weather
plot(my_ppi, param = "WEATHER")

plot the MistNet class probability [0-1] for biology
plot(my_ppi, param = "BIOLOGY")

plot the final segmentation result, with values >1 indicating

areas classified as weather, and value 1 pixels that fall within an
additional 5 km fringe around weather areas.

plot(my_ppi, param = "CELL")

clean up:
file.remove("~/KBGM_example")

End(Not run)

https://doi.org/10.1111/2041-210X.13280
https://doi.org/10.1111/2041-210X.13280

6 as.data.frame.vp

as.data.frame.vp Convert a vertical profile (vp) or time series of vertical profiles (vpts)
to a data frame

Description

Converts a vertical profile (vp) or a time series of vertical profiles (vpts) to a data frame containing
all quantities per datetime and height. Has options to include latitude/longitude/antenna height
(parameter geo) and day/sunrise/sunset (parameter suntime).

Usage

S3 method for class 'vp'
as.data.frame(
X,
row.names = NULL,
optional = FALSE,

geo = TRUE,
suntime = TRUE,
lat = NULL,
lon = NULL,

elev = -0.268,

)

S3 method for class 'vpts'
as.data.frame(

X,

row.names = NULL,

optional = FALSE,

geo = TRUE,
suntime = TRUE,
lat = NULL,
lon = NULL,
elev = -0.268,
)
Arguments
X A vp or vpts object.
row.names NULL or a character vector giving the row names for the data frame. Missing
values are not allowed. See base: :as.data.frame().
optional Logical. If FALSE then the names of the variables in the data frame are checked

to ensure that they are syntactically valid variable names and are not duplicated.
See base::as.data.frame().

as.data.frame.vp

geo

suntime

lat

lon

elev

Details

Note that only the dens quantity is thresholded for radial velocity standard deviation by sd_vvp_threshold().

Logical. When TRUE, adds latitude (1at), longitude (lon) and antenna height of
the radar (height_antenna) to each row.

Logical. When TRUE, adds whether it is daytime (day) and the datetime of
sunrise and sunset to each row.

Numeric. Radar latitude in decimal degrees. When set, overrides the latitude
stored in x for sunrise()/sunset() calculations.

Numeric. Radar longitude in decimal degrees. When set, overrides the longitude
stored in x for sunrise()/sunset() calculations.

Numeric. Sun elevation in degrees, used for sunrise()/sunset() calculations.

Additional arguments to be passed to or from methods.

This is different from the default plot.vp(), plot.vpts() and get_quantity() functions, where
quantities eta, dbz, ff, u, v, w, dd are all thresholded by sd_vvp_threshold().

Value

A data.frame object, containing radar, datetime and height as rows and all profile quantities as

columns, complemented with some oft-used additional information (columns lat, 1on, height_antenna,

day, sunrise, sunset).

Examples

Load the example vertical profile

vp <- example_vp

Convert to a data.frame
vp_df <- as.data.frame(vp)

Print data.frame

vp_df

Load the example time series of vertical profiles
vpts <- example_vpts

Convert to a data.frame
vpts_df <- as.data.frame(vpts)

Print the first 5 rows of the data.frame

vpts_df[1:5,]

Do not add lat/lon/height_antenna information
vpts_df <- as.data.frame(vpts, geo = FALSE)

Do not add day/sunrise/sunset information
vpts_df <- as.data.frame(vpts, suntime = FALSE)

Override the latitude/longitude information stored in the object when

8 beam_distance

calculating sunrise/sunset information
vpts_df <- as.data.frame(vpts, lat = 50, lon = 4)

beam_distance Calculate radar beam distance

Description

Calculates the distance as measured over the earth’s surface (the down range) for a given beam
elevation and slant range.

Usage

beam_distance(range, elev, k = 4/3, lat = 35, re = 6378, rp = 6357)

Arguments
range numeric. Slant range in m, the length of the skywave path between target and
the radar antenna.
elev numeric. Beam elevation in degrees.
k Standard refraction coefficient.
lat Geodetic latitude of the radar in degrees.
re Earth equatorial radius in km.
rp Earth polar radius in km.
Details

depends on beam_height to calculate beam height.

Value

numeric. Beam distance (down range) in m.

Examples

down range of the 5 degree elevation beam at a slant range of 100 km:
beam_distance (100000, 5)

beam_height 9

beam_height Calculate radar beam height

Description
Calculates the height of a radar beam as a function of elevation and range, assuming the beam is
emitted at surface level.

Usage
beam_height(range, elev, k = 4/3, lat = 35, re = 6378, rp = 6357)

Arguments
range numeric. Slant range in m, the length of the skywave path between target and
the radar antenna.
elev numeric. Beam elevation in degrees.
k Standard refraction coefficient.
lat Geodetic latitude of the radar in degrees.
re Earth equatorial radius in km.
rp Earth polar radius in km.
Details

To account for refraction of the beam towards the earth’s surface, an effective earth’s radius of k *
(true radius) is assumed, with k = 4/3.

The earth’s radius is approximated as a point on a spheroid surface, with re the longer equatorial
radius, and rp the shorter polar radius. Typically uncertainties in refraction coefficient are relatively
large, making oblateness of the earth and the dependence of earth radius with latitude only a small
correction. Using default values assumes an average earth’s radius of 6371 km.

Value

numeric. Beam height in m.

Examples

beam height in meters at 10 km range for a 1 degree elevation beam:
beam_height (10000, 1)

beam height in meters at 10 km range for a 3 and 5 degree elevation beam:
beam_height (10000, c(3, 5))

define ranges from @ to 1000000 meter (100 km), in steps of 100 m:
range <- seq(@, 100000, 100)

plot the beam height of the 0.5 degree elevation beam:
plot(range, beam_height(range, 0.5), ylab = "beam height [m]"”, xlab = "range [m]")

10 beam_profile

beam_profile Calculate vertical radiation profile

Description

Calculate for a set of beam elevations elev the altitudinal normalized distribution of radiated energy
by those beams.

Usage

beam_profile(
height,
distance,
elev,
antenna = 0,
beam_angle = 1,

k = 4/3,
lat = 35,
re = 6378,
rp = 6357
)
Arguments
height numeric. Height in meter.
distance numeric. Distance from the radar as measured along sea level (down range) in
m.
elev numeric vector. Beam elevation(s) in degrees.
antenna numeric. Height of the center of the radar antenna in meters
beam_angle numeric. Beam opening angle in degrees, typically the angle between the half-
power (-3 dB) points of the main lobe
k Standard refraction coefficient.
lat Geodetic latitude of the radar in degrees.
re Earth equatorial radius in km.
rp Earth polar radius in km.
Details

Beam profile is calculated using beam_height and beam_width. Returns a beam profile as a function
of height relative to ground level.

Returns the normalized altitudinal pattern of radiated energy as a function of altitude at a given
distance from the radar, assuming the beams are emitted at antenna level.

beam_profile_overlap 11

Value

numeric vector. Normalized radiated energy at each of the specified heights.

Examples

plot the beam profile, for a 0.5 degree elevation beam at 50 km distance from the radar:
plot(beam_profile(height = 0:4000, 50000, 0.5), 0:4000,

xlab = "normalized radiated energy”,

ylab = "height [m]"”, main = "beam elevation: 0.5 deg, distance=50km”

)

plot the beam profile, for a 2 degree elevation beam at 50 km distance from the radar:
plot(beam_profile(height = 0:4000, 50000, 2), 0:4000,

xlab = "normalized radiated energy”,

ylab = "height [m]"”, main = "beam elevation: 2 deg, distance=50km"

)

plot the combined beam profile for a 0.5 and 2.0 degree elevation beam
at 50 km distance from the radar:
plot(beam_profile(height = 0:4000, 50000, c(0.5, 2)), 0:4000,

xlab = "normalized radiated energy”,

ylab = "height [m]"”, main = "beam elevations: 0.5,2 deg, distance=50km"
)

beam_profile_overlap Calculate overlap between a vertical profile ('vp’) of biological scat-
terers and the vertical radiation profile emitted by the radar

Description

Calculates the distribution overlap between a vertical profile ("'vp’) and the vertical radiation profile
of a set of emitted radar beams at various elevation angles as given by beam_profile.

Usage

beam_profile_overlap(
vp,
elev,
distance,
antenna,
zlim = c(@, 4000),
noise_floor = -Inf,
noise_floor_ref_range = 1,
steps = 500,
quantity = "dens”,
normalize =T,
beam_angle = 1,
k = 4/3,

lat,

re = 6378,

rp = 6357
)

Arguments

vp
elev

distance

antenna
zlim

noise_floor

beam_profile_overlap

a vertical profile of class vp
numeric vector. Beam elevation(s) in degrees.

the distance(s) from the radar along sea level (down range) for which to calculate
the overlap in m.

radar antenna height. If missing taken from vp
altitude range in meter, given as a numeric vector of length two.

The system noise floor in dBZ. The total system noise expressed as the reflec-
tivity factor it would represent at a distance noise_floor_ref_range from the
radar. NOT YET IMPLEMENTED

noise_floor_ref_range

steps

quantity

normalize

beam_angle

lat

re

rp

Details

the reference distance from the radar at which noise_floor is expressed. NOT
YET IMPLEMENTED

number of integration steps over altitude range zlim, defining altitude grid size
used for numeric integrations

profile quantity to use for the altitude distribution, one of ’dens’ or ’eta’.

Whether to normalize the radiation coverage pattern over the altitude range spec-
ified by zlim

numeric. Beam opening angle in degrees, typically the angle between the half-
power (-3 dB) points of the main lobe

Standard refraction coefficient.
radar latitude. If missing taken from vp
Earth equatorial radius in km.

Earth polar radius in km.

This function also calculates the overlap quantity in the output of integrate_to_ppi.

Overlap is calculated as the Bhattacharyya coefficient (i.e. distribution overlap) between the (nor-

malized) vertical profile vp and the (normalized) radiation coverage pattern as calculated by beam_profile.

The current implementation does not (yet) take into account the system noise floor when calculating

the overlap.

In the ODIM data model the attribute /how/NEZ or /how/NEZH specifies the system noise floor (the
Noise Equivalent Z or noise equivalent reflectivity factor. the H refers to the horizontal channel of
a dual-polarization radar). In addition, the attribute /how/LOG gives "security distance above mean
noise level (dB) threshold value". This is equivalent to the log receiver signal-to-noise ratio, i.e. the
dB above the noise floor for the signal processor to report a valid reflectivity value. We recommend

https://en.wikipedia.org/wiki/Bhattacharyya_distance

beam_range 13

using NEZH+LOG for noise_floor, as this is the effective noise floor of the system below which no
data will be reported by the radar signal processor.

Typical values are NEZH = -45 to -50 dBZ at 1 km from the radar. LOG is typically around 1 dB.

Need to evaluate beam by beam the returned signal relative to a uniform beam filling of at least
NEZH + LOG If returned signal is lower, the gate is below noise level.

Value

A data.frame with columns distance and overlap.

Examples

locate example volume file:
pvolfile <- system.file("extdata”, "volume.h5", package = "bioRad")

load the example polar volume file:
pvol <- read_pvolfile(pvolfile)

let us use this example vertical profile:
data(example_vp)
example_vp

calculate overlap between vertical profile of birds
and the vertical radiation profile emitted by the radar:
bpo <- beam_profile_overlap(example_vp, get_elevation_angles(pvol), seq(@, 100000, 1000))

plot the calculated overlap:
plot(bpo)

beam_range Calculate radar beam range

Description
Calculates the range (i.e. slant range) given a distance measured along the earth’s surface (i.e. down
range) and beam elevation.

Usage

beam_range(distance, elev, k = 4/3, lat = 35, re = 6378, rp = 6357)

Arguments
distance numeric. Distance from the radar as measured along sea level (down range) in
m.
elev numeric. Beam elevation in degrees.

k Standard refraction coefficient.

14
lat Geodetic latitude of the radar in degrees.
re Earth equatorial radius in km.
rp Earth polar radius in km.

Details

depends on beam_height to calculate beam height.

Value

numeric. Beam range (slant range) in m.

Examples

slant range of the 5 degree elevation beam at a down range of 100 km:
beam_range (100000, 5)

beam_width

beam_width Calculate radar beam width

Description

Calculates the width of a radar beam as a function of range and beam angle.

Usage

beam_width(range, beam_angle = 1)

Arguments
range numeric. Range (distance from the radar antenna) in m.
beam_angle numeric. Beam opening angle in degrees, typically the angle between the half-
power (-3 dB) points of the main lobe
Value

numeric. Beam width in m.

Examples

#' # beam width in meters at 10 km range:
beam_width(10000)

define ranges from @ to 1000000 meter (100 km), in steps of 100 m:
range <- seq(@, 100000, 100)

plot the beam width as a function of range:

plot(range, beam_width(range), ylab = "beam width [m]", xlab = "range [m]")

bind_into_vpts 15

bind_into_vpts Bind vertical profiles (vp) into time series (vpts)

Description

Binds vertical profiles (vp) into a vertical profile time series (vpts), sorted in time. Can also bind
multiple vpts of a single radar into one vpts.

Usage

bind_into_vpts(x, ...)

S3 method for class 'vp'
bind_into_vpts(...)

S3 method for class 'list'
bind_into_vpts(x, ...)

S3 method for class 'vpts'

bind_into_vpts(..., attributes_from = 1)
Arguments
X A vp, vpts or a vector of these.

A vp, vpts or a vector of these.

attributes_from
integer. Which vpts to copy attributes from (default: first).

Value

A vpts for a single radar or a list of vpts for multiple radars. Input vp are sorted in time in the
output vpts.

Methods (by class)

* vp: Bind multiple vp into a vpts. If vp for multiple radars are provided, a list is returned
containing a vpts for each radar.

» list: Bind multiple vp objects into a vpts. If data for multiple radars is provided, a list is
returned containing a vpts for each radar.

e vpts: Bind multiple vpts into a single vpts. Requires the input vpts to be from the same
radar.

16 c.vp

Examples

load example time series of vertical profiles:
data(example_vpts)

split the vpts into two separate time series, one containing profile 1-10,
and a second containing profile 11-20:

vptsl <- example_vpts[1:10]

vpts2 <- example_vpts[11:20]

use bind_into_vpts to bind the two together:
vptsland2 <- bind_into_vpts(vptsl, vpts2)

verify that the binded vpts now has 20 profiles, 10 from vptsl and 10 from
vpts2:
summary (vptsland2)

extract two profiles:
vpl <- example_vpts[1]
vpl
vp2 <- example_vpts[2]
vp2

bind the two profiles back into a vpts:
bind_into_vpts(vpl, vp2)

c.vp Concatenate vertical profiles (vp) into a list of vertical profiles

Description

Concatenates vertical profiles (vp) into a list of vertical profiles (c(vp,vp,vp)) and warns if they
are not from a single radar.

Usage
S3 method for class 'vp'
c(...)
Arguments
vp objects.
Value

A list of vp objects.

See Also

bind_into_vpts()

calculate_param 17

calculate_param Calculate a new scan parameter

Description

Calculates a new scan parameter from a combination of existing scan parameters. Useful for cal-
culating quantities that are defined in terms of other basic radar moments, like linear reflectivity
eta, depolarization ratio (Kilambi et al. 2018), or for applying clutter corrections (CCORH) to
uncorrected reflectivity moments (TH), as in TH+CCORH

Usage

calculate_param(x, ...)

S3 method for class 'pvol'
calculate_param(x, ...)

S3 method for class 'scan'

calculate_param(x, ...)
Arguments
X an object of class pvol or class scan

an expression defining the new scan parameter in terms of existing scan param-
eters

Value

an object of the same class as x, either class pvol or class scan

Methods (by class)

* pvol: Calculate a new scan parameter for all scans in a polar volume.

* scan: Calculate a new scan parameter for a scan

References

* Kilambi, A., Fabry, F., and Meunier, V., 2018. A simple and effective method for sep-
arating meteorological from nonmeteorological targets using dual-polarization data. Jour-
nal of Atmospheric and Oceanic Technology, 35, 1415-1424. https://doi.org/10.1175/
JTECH-D-17-0175.1

https://doi.org/10.1175/JTECH-D-17-0175.1
https://doi.org/10.1175/JTECH-D-17-0175.1

18 calculate_vp

Examples

locate example volume file:
pvolfile <- system.file("extdata”, "volume.h5", package = "bioRad")

load the file:
example_pvol <- read_pvolfile(pvolfile)

calculate linear reflectivity ETA from reflectivity factor DBZH:
radar_wavelength <- example_pvol$attributes$how$wavelength
example_pvol <- calculate_param(example_pvol,ETA=dbz_to_eta(DBZH,radar_wavelength))

add depolarization ratio (DR) as a scan parameter (see Kilambi 2018):
example_pvol <- calculate_param(example_pvol, DR = 10 * 1og1@((ZDR + 1 - 2 * ZDR*@.5 * RHOHV) /
(ZDR + 1 + 2 % ZDR*@.5 * RHOHV)))

calculate_param operates on both pvol and scan objects:
calculate_param(example_scan, DR = 10 * logl1@((ZDR + 1 - 2 x ZDR*@.5 x RHOHV) /
(ZDR + 1 + 2 * ZDR*@.5 * RHOHV)))

calculate_vp Calculate a vertical profile (vp) from a polar volume (pvol)

Description

Calculates a vertical profile of biological scatterers (vp) from a polar volume (pvol) using the algo-
rithm vol2bird (Dokter et al. 2011).

Usage

calculate_vp(
file,
vpfile = "",
pvolfile_out = "",
autoconf = FALSE,
verbose = FALSE,
mount = dirname(file[1]),
sd_vvp_threshold,

rcs = 11,
dual_pol = FALSE,
rho_hv = 0.95,
elev_min = 0,

elev_max = 90,
azim_min = 0,
azim_max = 360,
range_min = 5000,
range_max = 35000,
n_layer = 20L,
h_layer = 200,

https://github.com/adokter/vol2bird/

calculate_vp 19

dealias = TRUE,

nyquist_min = if (dealias) 5 else 25,
dbz_quantity = "DBZH",

mistnet = FALSE,

local_install,

pvolfile

Arguments

file string or a vector of strings with radar file(s) for a radar polar volume. Pro-
vide either a single file containing a polar volume, or multiple files with single
scans/sweeps. Data format should be either ODIM format, which is the imple-
mentation of the OPERA data information model in HDF5 format, or a format
supported by the RSL library, or Vaisala IRIS (IRIS RAW) format.

vpfile character. Filename for the vertical profile to be generated in ODIM HDF5
format (optional).

pvolfile_out character. Filename for the polar volume to be generated in ODIM HDFS5 format
(optional, e.g. for converting RSL formats to ODIM).

autoconf logical. When TRUE, default optimal configuration settings are selected auto-
matically, and other user settings are ignored.

verbose logical. When TRUE, pipe Docker stdout to R console. On Windows always
TRUE.

mount character. String with the mount point (a directory path) for the Docker con-
tainer.

sd_vvp_threshold
numeric. Lower threshold in radial velocity standard deviation (profile quantity
sd_vvp) in m/s. Biological signals with sd_vvp < sd_vvp_threshold are set
to zero. Defaults to 2 m/s for C-band radars and 1 m/s for S-band radars if not

specified.
rcs numeric. Radar cross section per bird in cm”2.
dual_pol logical. When TRUE use dual-pol mode, in which meteorological echoes are

filtered using the correlation coefficient rho_hv. When FALSE use single polar-
ization mode based only on reflectivity and radial velocity quantities.

rho_hv numeric. Lower threshold in correlation coefficient used to filter meteorological
scattering.

elev_min numeric. Minimum scan elevation in degrees.

elev_max numeric. Maximum scan elevation in degrees.

azim_min numeric. Minimum azimuth in degrees clockwise from north.

azim_max numeric. Maximum azimuth in degrees clockwise from north.

range_min numeric. Minimum range in m.

range_max numeric. Maximum range in m.

n_layer numeric. Number of altitude layers in the profile.

h_layer numeric. Width of altitude layers in meter.

https://github.com/adokter/vol2bird/blob/master/doc/OPERA2014_O4_ODIM_H5-v2.2.pdf
https://support.hdfgroup.org/HDF5/
http://trmm-fc.gsfc.nasa.gov/trmm_gv/software/rsl/

20 calculate_vp

dealias logical. Whether to dealias radial velocities; this should typically be done when
the scans in the polar volume have low Nyquist velocities (below 25 m/s).

nyquist_min numeric. Minimum Nyquist velocity of scans in m/s for scans to be included in
the analysis.

dbz_quantity character. One of the available reflectivity factor quantities in the ODIM radar
data format, e.g. DBZH, DBZV, TH, TV.

mistnet logical. Whether to use MistNet segmentation model.
local_install (optional) String with path to local vol2bird installation, see details.

pvolfile deprecated argument renamed to file.

Details

Requires a running Docker daemon (unless a local installation of vol2bird is specified with local_install).
Common arguments set by users are file, vpfile, autoconf and mount.

Turn on autoconf to automatically select the optimal parameters for a given radar file. The default
for C-band data is to apply rain-filtering in single polarization mode, as well as dual polarization
mode when available.

The default for S-band data is to apply precipitation filtering in dual-polarization mode.

Arguments that sometimes require non-default values are: rcs, sd_vvp_threshold, range_max,
dual_pol, dealias.

Other arguments are typically left at their defaults.

azim_min and azim_max only affects reflectivity-derived estimates in the profile (DBZH,eta,dens),
not radial-velocity derived estimates (u, v, w, ff, dd, sd_vvp), which are estimated on all azimuths
at all times. azim_min, azim_max may be set to exclude an angular sector with high ground clutter.

range_max may be extended up to 40,000 m for volumes with low elevations only, in order to
extend coverage to higher altitudes.

For altitude layers with a VVP-retrieved radial velocity standard deviation value below the threshold
sd_vvp_threshold, the bird density dens is set to zero (see vertical profile vp class). This threshold
might be dependent on radar processing settings. Results from validation campaigns so far indicate
that 2 m/s is the best choice for this parameter for most C-band weather radars, which is used as
the C-band default. For S-band, the default threshold is 1 m/s. The algorithm has been tested
and developed for altitude layers with h_layer = 200 m. Smaller widths are not recommended as
they may cause instabilities of the volume velocity profiling (VVP) and dealiasing routines, and
effectively lead to pseudo-replicated altitude data, since altitudinal patterns smaller than the beam
width cannot be resolved.

The default radar cross section (11 cm”2) corresponds to the average value found by Dokter et al.
in a calibration campaign of a full migration autumn season in western Europe at C-band. It’s value
may depend on radar wavelength. rcs will scale approximately M/ 2/2 with M the bird’s mass.

Using default values of range_min and range_max is recommended. Ranges closer than 5 km tend
to be contaminated by ground clutter, while range gates beyond 35 km become too wide to resolve
the default altitude layer width of 200 meter (see beam_width).

For dealiasing, the torus mapping method by Haase et al. is used.

At S-band (radar wavelength ~ 10 cm), currently only dual_pol=TRUE mode is recommended.

https://www.docker.com/

calculate_vp 21

On repeated calls of calculate_vp, the Docker container mount can be recycled from one call to
the next if subsequent calls share the same mount argument. Re-mounting a Docker container takes
time, therefore it is advised to choose a mountpoint that is a parent directory of all volume files to
be processed, such that calculate_vp calls are as fast as possible.

If you have installed the vol2bird algorithm locally (not possible on Windows) you can call vol2bird
through this local installation (bypassing the Docker container), which will be faster. Simply point
local_install to the path of your local vol2bird executable. Your local vol2bird executable will
be called through a bash login shell. LD_LIBRARY_PATH (Linux) or DYLD_LIBRARY_PATH
(Mac) should be correctly specified in your .bashrc or .bash_profile file and contain all the required
shared libraries by vol2bird. See vol2bird installation pages on Github for details.

Value

A vertical profile object of class vp. When defined, output files vpfile and pvolfile_out are
saved to disk.

References

Dokter et al. (2011) is the main reference for the profiling algorithm (vol2bird) underlying this
function. When using the mistnet option, please also cite Lin et al. 2019. When de-aliasing data,
please also cite Haase et al. 2004.

* Adriaan M. Dokter, Felix Liechti, Herbert Stark, Laurent Delobbe, Pierre Tabary, Iwan Holle-
man, 2011. Bird migration flight altitudes studied by a network of operational weather radars,
Journal of the Royal Society Interface 8 (54), pp. 30-43. https://doi.org/10.1098/rsif.
2010.0116

* Haase, G. and Landelius, T., 2004. Dealiasing of Doppler radar velocities using a torus
mapping. Journal of Atmospheric and Oceanic Technology, 21(10), pp.1566-1573. https:
//doi.org/10.1175/1520-0426(2004)021<1566:DODRVU>2.0.CO0;2

* Tsung-Yu Lin, Kevin Winner, Garrett Bernstein, Abhay Mittal, Adriaan M. Dokter Kyle G.
Horton, Cecilia Nilsson, Benjamin M. Van Doren, Andrew Farnsworth Frank A. La Sorte,
Subhransu Maji, Daniel Sheldon, 2019. MistNet: Measuring historical bird migration in the
US using archived weather radar data and convolutional neural networks Methods in Ecology
and Evolution 10 (11), pp. 1908-22. https://doi.org/10.1111/2041-210X.13280

Examples

locate example polar volume file:
pvolfile <- system.file("”extdata”, "volume.h5", package = "bioRad")

copy to a home directory with read/write permissions:
file.copy(pvolfile, "~/volume.h5")

calculate the profile:

Not run:

profile <- calculate_vp("~/volume.h5")
print some summary info:

profile

convert profile to a data.frame:

https://doi.org/10.1098/rsif.2010.0116
https://doi.org/10.1098/rsif.2010.0116
https://doi.org/10.1175/1520-0426(2004)021<1566:DODRVU>2.0.CO;2
https://doi.org/10.1175/1520-0426(2004)021<1566:DODRVU>2.0.CO;2
https://doi.org/10.1111/2041-210X.13280

22 check_night

as.data.frame(profile)
End(Not run)

clean up:
file.remove("~/volume.h5")

check_docker Check if Docker is running

Description

Checks that Docker daemon is running correctly on the local system, and that vol2bird Docker
image is available.

Usage

check_docker(verbose = TRUE)

Arguments

verbose logical. When TRUE messages are printed to R console.

Value

0 upon success, otherwise an error code: 1 if Docker vol2bird image not available, 2 if Docker
daemon not running, 3 if Docker daemon not found.

Examples

Not run:
check if Docker is running and vol2bird image is available:
check_docker ()

End(Not run)

check_night Check if it is night at a given time and place

Description

Checks if it is night (TRUE/FALSE) for a combination of latitude, longitude, date and sun elevation.
When used on a bioRad object (pvol, vp, vpts, vpi) this information is extracted from the bioRad
object directly.

https://www.docker.com/

check_night

Usage

check_night(x,

23

., elev = -0.268, offset = 0)

Default S3 method:
check_night(x, lon, lat, ..., tz = "UTC", elev = -0.268, offset = @)

S3 method for class 'vp'

check_night(x,

., elev = -0.268, offset = @)

S3 method for class 'list'

check_night(x,

S3 method for class 'vpts'

check_night(x,

S3 method for class 'vpi'

check_night(x,

S3 method for class 'pvol'

check_night(x,

Arguments

X

elev

offset

lon
lat
tz

Details

., elev = -0.268, offset = 0)
., elev = -0.268, offset = @)
., elev = -0.268, offset = 0)
., elev = -0.268, offset = @)

pvol, vp, vpts, vpi, or a date inheriting from class POSIXct or a string inter-
pretable by as.POSIXct.

optional lat,Jon arguments.

numeric. Sun elevation in degrees defining night time. May also be a numeric
vector of length two, with first element giving sunset elevation, and second ele-
ment sunrise elevation.

numeric. Time duration in seconds by which to shift the start and end of night
time. May also be a numeric vector of length two, with first element added to
moment of sunset and second element added to moment of sunrise.

numeric. Longitude in decimal degrees.
numeric. Latitude in decimal degrees.
character. Time zone. Ignored when date already has an associated time zone

The angular diameter of the sun is about 0.536 degrees, therefore the moment of sunrise/sunset
corresponds to half that elevation at -0.268 degrees.

check_night() evaluates to FALSE when the sun has a higher elevation than parameter elev, oth-

erwise TRUE.

Approximate astronomical formula are used, therefore the day/night transition may be off by a few

minutes.

offset can be used to shift the moment of sunset and sunrise by a temporal offset, for example,
offset=c(600,-900) will assume nighttime starts 600 seconds after sunset (as defined by elev)
and stops 900 seconds before sunrise.

24 composite_ppi

Value

TRUE when night, FALSE when day, NA if unknown (either datetime or geographic location missing).
For vpts a vector of TRUE/FALSE values is returned.

Examples

check if it is night at UTC midnight in the Netherlands on January Tst:
check_night("2016-01-01 00:00", 5, 53)

check on bioRad objects directly:
check_night (example_vp)

check_night(example_vpts)

select nighttime profiles that are between 3 hours after sunset
and 2 hours before sunrise:

index <- check_night(example_vpts, offset=c(3,-2)*3600)
example_vpts[index]

composite_ppi Create a composite of multiple plan position indicators (ppi)

Description

Combines multiple plan position indicators (ppi) into a single ppi. Can be used to make a compos-
ite of ppi’s from multiple radars.

Usage

composite_ppi(
X,
param = "DBZH",
nx = 100,
ny = 100,
xlim,
ylim,
res,
crs,
raster NA,
method = "max”,
idp = 2,
idw_max_distance = NA

composite_ppi 25

Arguments

X A list of ppi objects.

param Scan parameter to composite.

nx number of raster pixels in the x (longitude) dimension

ny number of raster pixels in the y (latitude) dimension

x1lim x (longitude) range

ylim y (latitude) range

res numeric vector of length 1 or 2 to set the resolution of the raster (see res). If this
argument is used, arguments nx and ny are ignored. Unit is identical to x1im
and ylim.

crs character or object of class CRS. PROJ.4 type description of a Coordinate Ref-
erence System (map projection). When *NA’ (default), an azimuthal equidistant
projection with origin at the radar location is used. To use a WSG84 (lat,lon)
projection, use crs="+proj=longlat +datum=WGS84"

raster (optional) RasterLayer with a CRS. When specified this raster topology is used
for the output, and nx, ny, res arguments are ignored.

method string. Compositing method, one of "mean", "min", "max" or "idw"

idp numeric. inverse distance weighting power

idw_max_distance
numeric. Maximum distance from the radar to consider in inverse distance
weighting. Measuruments beyond this distance will have a weighting factor
of zero.

Details

This function composites multiple ppi objects into a ppi object that combines all data.
Either multiple ppi’s of different scan elevation of the same radar may be combined, or ppi’s of
different radars can be composited.

Argument method determines how values of different ppi’s at the same geographic location are
combined.

"mean” Compute the average value

n

max"” Compute the maximum value. If ppi’s are of the same radar and the same polar volume, this
computes a max product, showing the maximum detected signal at that geographic location.

min” Compute the minimum value

"idw" This option is useful primarily when compositing ppi’s of multiple radars. Performs an
inverse distance weighting, where values are weighted according to 1/(distance from the
radar)*idp

The coordinates system of the returned ppi is a WGS84 (lat,lon) datum.

This function is a prototype and under active development

Value

A ppi.

26 convert_legacy

Examples

locate example volume file:
pvolfile <- system.file("”extdata”, "volume.h5", package = "bioRad")

load the file:
example_pvol <- read_pvolfile(pvolfile)

calculate a ppi for each elevation scan
my_ppis <- lapply(example_pvol$scans, project_as_ppi)

overlay the ppi's, calculating the maximum value observed
across the available scans at each geographic location
my_composite <- composite_ppi(my_ppis, method="max")

Not run:
download basemap

bm <- download_basemap(my_composite)

plot the calculated max product on the basemap
map (my_composite, bm)

End(Not run)

convert_legacy Convert legacy bioRad objects to current version

Description
Convert legacy bioRad objects (vp, vpts) that have become obsolete and make them compatible
with the current bioRad version.

Usage

convert_legacy(x)

S3 method for class 'vp'
convert_legacy(x)

S3 method for class 'vpts'
convert_legacy(x)

Arguments

X A vp or vpts object.

Value

An updated object of the same class as the input.

dbz_to_eta

Examples

Convert a vp object
vp <- example_vp
vp <- convert_legacy(vp)

Convert a vpts object
vpts <- example_vpts
vpts <- convert_legacy(vpts)

27

dbz_to_eta Convert reflectivity factor to reflectivity

Description

Convert reflectivity factor to reflectivity

Usage

dbz_to_eta(dbz, wavelength, K = 0.93)

Arguments

dbz reflectivity factor in dBZ

wavelength radar wavelength in cm

K norm of the complex refractive index of water
Value

reflectivity in cm”~2/km”3

Examples

calculate eta for a 7 dBZ reflectivity factor at C-band:
dbz_to_eta(7, 5)

calculate eta for a 7 dBZ reflectivity factor at S-band:
dbz_to_eta(7, 10)

calculate animal density for a 5 dBZ reflectivity
factor at C-band and S-band, assuming a

11 cm*2 radar cross section per animal:
dbz_to_eta(7, 5) / 11 # C-band

dbz_to_eta(7, 10) / 11 # S-band

28 download_basemap

download_basemap Download a basemap for map (ppi)

Description

Downloads a Stamen Maps or Google Maps base layer map using get_map.

Usage
download_basemap(
X ’
verbose = TRUE,
zoom,
alpha = 1,
source = "stamen”,
maptype = "terrain”,
)
Arguments
X An object of class ppi.
verbose Logical, whether to print information to console.
zoom Zoom level (optional), see get_map. An integer from 3 (continent) to 21 (build-
ing). By default the zoom level matching the ppi extent is selected automatically.
alpha Transparency of the basemap (0-1).
source String identifying which map service should be used: "stamen" or "google".
maptype Type of basemap to plot. For Stamen Maps: "terrain", "terrain-background",
"terrain-labels", "terrain-lines", "toner", "toner-2010", "toner-2011", "toner-background",
"toner-hybrid", "toner-labels", "toner-lines", "toner-lite", "watercolor". For Google
Maps: "terrain", "satellite", "roadmap", "hybrid"
Arguments to pass to get_map function.
Details

To use Google Maps as source, you will have to register with Google, enable billing and provide
an API key to ggmap. See the ggmap README for details.

To use maptype, install the development version of ggmap (>3.0.0) with devtools: :install_github("dkahle/ggmap”).

Examples

load an example scan:
data(example_scan)

print summary info for the scan:
example_scan

https://github.com/dkahle/ggmap#attention

download_vpfiles 29

make ppi for the scan

ppi <- project_as_ppi(example_scan)

Not run:

grab a basemap that matches the extent of the ppi:
basemap <- download_basemap(ppi)

map the reflectivity quantity of the ppi onto the basemap:
map(ppi, map = basemap, param = "DBZH")

increase the transparancy of the basemap:
basemap <- download_basemap(ppi, alpha = 0.3)
map(ppi, map = basemap, param = "DBZH")

download a different type of basemap, e.g. a gray-scale image:
see get_map() in ggmap library for full documentation of options

basemap <- download_basemap(ppi, maptype = "toner-lite")

map the radial velocities onto the line image:
map(ppi, map = basemap, param = "VRADH")

End(Not run)

download_vpfiles Download vertical profile (vp) files from the ENRAM data repository

Description

Download and unzip a selection of vertical profile (vp) files from the ENRAM data repository,
where these are stored as monthly zips per radar.

Usage
download_vpfiles(
date_min,
date_max,
radars,
directory = ".",
overwrite = FALSE
)
Arguments
date_min character. YYYY-MM-DD start date of file selection. Days will be ignored.
date_max character. YYYY-MM-DD end date of file selection. Days will be ignored.
radars character (vector). 5-letter country/radar code(s) (e.g. "bejab") of radars to in-

clude in file selection.

http://enram.github.io/data-repository/

30 doy_noy

directory character. Path to local directory where files should be downloaded and un-
zipped.
overwrite logical. TRUE for re-downloading and overwriting previously downloaded files

of the same names.

See Also

select_vpfiles

Examples

Download data from radars "bejab"” and "bewid"”, even if previously
downloaded (overwrite = TRUE). Will successfully download 2016-10 files,
but show 404 error for 2016-11 files (as these are not available).
Not run:
dir.create("~/bioRad_tmp_files")
download_vpfiles(
date_min = "2016-10-01",
date_max = "2016-11-30",
radar = c("bejab”, "bewid"),

directory = "~/bioRad_tmp_files”,
overwrite = TRUE

)

clean up:

unlink("~/bioRad_tmp_files"”, recursive = T)

End(Not run)

doy_noy look up day of year (doy) or night of year (noy)

Description

Look up the day of year (doy) or night of year (noy) for datetimes and various bioRad objects.

Usage
doy(x, ..., method = "fast")
noy(x, ..., method = "fast")

Default S3 method:
doy(x, lon, lat, ..., method = "fast")

Default S3 method:
noy(x, lon, lat, ..., method = "fast")

S3 method for class 'vp'

doy_noy 31

doy(x, ..., method = "fast")

S3 method for class 'vp'
noy(x, ..., method = "fast")

S3 method for class 'vpts'
doy(x, ..., method = "fast")

S3 method for class 'vpts'
noy(x, ..., method = "fast")

S3 method for class 'vpi'
doy(x, ..., method = "fast")

S3 method for class 'vpi'
noy(x, ..., method = "fast")

S3 method for class 'pvol'
doy(x, ..., method = "fast")

S3 method for class 'pvol'

noy(x, ..., method = "fast")
Arguments
X pvol, vp, vpts, vpi, or a date inheriting from class POSIXct or a string inter-
pretable by as.POSIXct.
e optional lat,Jon arguments.
method method by which to do the time zone lookup. Either "fast” (default) or "accurate”,
see tz_lookup_coords.
lon numeric. Longitude in decimal degrees.
lat numeric. Latitude in decimal degrees.
Details

First night of the year is the night with datetime Jan 01 00:00:00 in the local time zone, i.e. sunset
on Jan 1 occurs on the second night of the year, and New Years Eve on Dec 31 occurs on the first
night of the new year.

Examples

night of year of a profile (vp object):
noy (example_vp)

day of year of a profile (vp object):
noy (example_vp)

night of year of a vertial profile time series (vpts object):
noy(example_vpts)

32

example_scan

eta_to_dbz Convert reflectivity to reflectivity factor

Description

Convert reflectivity to reflectivity factor

Usage

eta_to_dbz(eta, wavelength, K = 0.93)

Arguments

eta reflectivity in cm”2/km”"3

wavelength radar wavelength in cm

K norm of the complex refractive index of water
Value

reflectivity factor in dBZ

Examples

reflectivity factor (dBZ) at C-band for a reflectivity eta=10000 cm*2/km*3:

eta_to_dbz (10000, 5)

reflectivity factor (dBZ) at S-band for a reflectivity eta=10000 cm*2/km*3:

eta_to_dbz (10000, 10)

expected reflectivity factor (dBZ) for an

animal density of 1000 individuals/km*3

and a radar cross section of 11 cm”2 per individual:
at C-band and S-band:

eta_to_dbz (1000 * 11, 5) # C-band

eta_to_dbz(1000 * 11, 10) # S-band

example_scan Scan (scan) example

Description

Example object of class scan with name example_scan.

Usage

example_scan

example_vp 33

Format

An object of class scan of dimension 5 x 480 x 360.

Examples

Reload example_scan from package (e.g. in case it was altered)
data(example_scan)

Get summary info
example_scan

example_scan was created with

Not run:

pvolfile <- system.file("”extdata”, "volume.h5", package = "bioRad")
pvol <- read_pvolfile(pvolfile)

example_scan <- pvol$scans[[1]]

save(example_scan, file = "data/example_scan.rda")

End(Not run)

example_vp Vertical profile (vp) example

Description

Example object of class vp with name example_vp.

Usage

example_vp

Format

An object of class vp with 25 rows and 16 columns.

Examples

Reload example_vp from package (e.g. in case it was altered)
data(example_vp)

Get summary info
example_vp

example_vp was created with

Not run:

vpfile <- system.file("extdata”, "profile.h5", package = "bioRad")
example_vp <- read_vpfiles(vpfile)

save(example_vp, file = "data/example_vp.rda")

End(Not run)

34 filter_vpts
example_vpts Time series of vertical profiles (vpts) example
Description
Example object of class vpts with name example_vpts.
Usage
example_vpts
Format
An object of class vpts of dimension 1934 x 25 x 15.
Examples
Reload example_vpts from package (e.g. in case it was altered)
data(example_vpts)
Get summary info
example_vpts
example_vpts was created with
Not run:
vptsfile <- system.file("extdata”, "vpts.txt.zip"”, package = "bioRad")
unzip(vptsfile, exdir = (dirname(vptsfile)), junkpaths = TRUE)
vptsfile <- substr(vptsfile, 1, nchar(vptsfile) - 4)
example_vpts <- read_vpts(vptsfile, radar = "KBGM", wavelength = "S")
rcs(example_vpts) <- 11
sd_vvp_threshold(example_vpts) <- 2
example_vpts$attributes$where$lat <- 42.2
example_vpts$attributes$where$lon <- -75.98
save(example_vpts, file = "data/example_vpts.rda”, compress = "xz")
End(Not run)
filter_vpts Time and night/day selection in a time series of vertical profiles

('vpts’)

Description

Time and night/day selection in a time series of vertical profiles ("vpts’)

Usage

filter_vpts(x, min, max, nearest, night, elev = -0.268, offset = 0)

filter_vpts

Arguments

X
min
max

nearest

night

elev

offset

Details

35

A vpts object.

Minimum datetime to be included. POSIXct value or character string con-
vertable to POSIXct.

Maximum datetime to be included. POSIXct value or character string con-
vertable to POSIXct.

If specified, min and max are ignored and the profile nearest to the specified
datetime is returned that matches the day/night selection criteria. POSIXct value
or character string convertable to POSIXct.

When TRUE select only night time profiles, when FALSE select only day time
profiles, as classified by check_night.

numeric. Sun elevation in degrees defining night time. May also be a numeric
vector of length two, with first element giving sunset elevation, and second ele-
ment sunrise elevation.

numeric. Time duration in seconds by which to shift the start and end of night
time. May also be a numeric vector of length two, with first element added
to moment of sunset and second element added to moment of sunrise. See
check_night for details.

Returns profiles for which min <= timestamp profile < max. Selection for night and day occurs by

check_night.

Value

An object of class *vpts’, or an object of class ’vp’ if argument nearest is specified.

Examples

load example vertical profile time series:
data(example_vpts)

example_vpts

select profiles later than 02-Sep-2016
filter_vpts(example_vpts, min = "2016-09-02")

select the profile nearest to 2016-09-01 ©03:00 UTC:
filter_vpts(example_vpts, nearest = "2016-09-01 03:00")

select profiles between than 1 and 3 UTC on 02-Sep-2016:
filter_vpts(example_vpts, min = "2016-09-02 01:00", max = "2016-09-02 03:00")

select day time profiles (day time periods from sunrise to sunset)
filter_vpts(example_vpts, night=FALSE)

select night time profiles, with nights starting starting and ending at civil twilight
(when the sun is 6 degrees below the horizon):

36 get_elevation_angles

filter_vpts(example_vpts, night=TRUE, elev = -6)

select night time profiles from 3 hours after sunset to 2 hours before sunrise
filter_vpts(example_vpts, night=TRUE, offset=c(3,-2)*3600)

get_elevation_angles Get elevation angles of a polar volume (pvol), scan (scan) or param-
eter (param)

Description
Gives the elevation angles of all scans within a polar volume (pvol) or the elevation angle of a
single scan (scan) or scan parameter (param) in degrees.

Usage

get_elevation_angles(x)

S3 method for class 'pvol'
get_elevation_angles(x)

S3 method for class 'scan'
get_elevation_angles(x)

S3 method for class 'param'
get_elevation_angles(x)
Arguments

X A pvol, scan or param object.

Value

The elevation angle(s) in degrees.

Examples

Locate and read the polar volume example file
pvolfile <- system.file("extdata”, "volume.h5", package = "bioRad")
example_pvol <- read_pvolfile(pvolfile)

Get the elevations angles of the scans in the pvol
get_elevation_angles(example_pvol)

Extract the first scan
scan <- example_pvol$scans[[1]]

Get the elevation angle of that scan
get_elevation_angles(scan)

get_odim_object_type 37

get_odim_object_type Check the data object contained in a ODIM HDFS file

Description

Checks which data object is contained in ODIM HDFS5 file

Usage

get_odim_object_type(file)

Arguments

file A string containing a file name.

Details

See ODIM specification Table 2 for a full list of existing ODIM file object types.

Value

character string PVOL for polar volume, VP for vertical profile.

Examples

locate a polar volume file:
pvolfile <- system.file("”extdata”, "volume.h5", package = "bioRad")

check the data type:
get_odim_object_type(pvolfile) # > "PVOL"

get_param Get a parameter (param) from a scan (scan)

Description

Returns the selected parameter (param) from a scan (scan).

Usage

get_param(x, param)

Arguments
X A scan object.
param Character. A scan parameter, such as DBZH or VRADH. See summary .param() for

commonly available parameters.

https://github.com/adokter/vol2bird/blob/master/doc/OPERA2014_O4_ODIM_H5-v2.2.pdf

38

Value

A param object.

See Also

summary . param()

Examples

Load the example scan
scan <- example_scan

Get summary info (including parameters)

scan

Extact the VRADH scan parameter
param <- get_param(scan, "VRADH")

Get summary info for this parameter
param

get_quantity

get_quantity Get a quantity from a vertical profile (vp) or time series of vertical

profiles (vpts)

Description

Returns values for the selected quantity from a vertical profile (vp), list, or time series of vertical
profiles (vpts). Values are organized per height bin. Values for eta are set to @, dbz to -Inf and
ff, u, v, w, dd to NaN when the sd_vvp for that height bin is below the sd_vvp_threshold().

Usage

get_quantity(x, quantity)

S3 method for class 'vp'
get_quantity(x, quantity = "dens")

S3 method for class 'list'
get_quantity(x, quantity = "dens")

S3 method for class 'vpts'
get_quantity(x, quantity = "dens")

get_quantity

Arguments

39

X A vp, list of vp or vpts object.

quantity Character. A (case sensitive) profile quantity, one of:

Value

height: Height bin (lower bound) in m above sea level.

u: Speed component west to east in m/s.

v: Speed component north to south in m/s.

w: Vertical speed (unreliable!) in m/s.

ff: Horizontal speed in m/s.

dd: Direction in degrees clockwise from north.

sd_vvp: VVP radial velocity standard deviation in m/s.

gap: Angular data gap detected in T/F.

dbz: Animal reflectivity factor in dBZ.

eta: Animal reflectivity in cm”2/km”3.

dens: Animal density in animals/km”3.

DBZH: Total reflectivity factor (bio + meteo scattering) in dBZ.

n: Number of data points used for the ground speed estimates (quantities u,
v, w, ff, dd).

n_all: Number of data points used for the radial velocity standard devia-
tion estimate (quantity sd_vvp).

n_dbz: Number of data points used for reflectivity-based estimates (quan-
tities dbz, eta, dens).

n_dbz_all: Number of data points used for the total reflectivity estimate
(quantity DBZH).

attributes: List of the vertical profile’s what, where and how attributes.

For a vp object: a named (height bin) vector with values for the selected quantity.

For a 1ist object: a list of named (height bin) vectors with values for the selected quantity.

For a vpts object: a (height bin * datetime) matrix with values for the selected quantity.

See Also

e summary.vp()

* sd_vvp_threshold()<- for setting the sd_vvp threshold of an object.

Examples

Load the example vertical profile

vp <- example_vp

Extract the quantity animal density (dens)
get_quantity(vp, "dens"”)

Load the example time series of vertical profiles

40

vpts <- example_vpts

Extract the quantity horizontal speed (ff) and show the first two datetimes

get_quantity(vpts, "ff")[,1:2]

get_scan

get_scan Get a scan (scan) from a polar volume (pvol)

Description

Returns the scan (scan) from a polar volume (pvol) with elevation angle closest to elev.

Usage

get_scan(x, elev)

Arguments

X A pvol object.

elev Numeric. Elevation angle.
Value

A scan object.

See Also

e summary.scan()

e get_elevation_angles()

Examples

Locate and read the polar volume example file
pvolfile <- system.file("”extdata”, "volume.h5", package

pvol <- read_pvolfile(pvolfile)

Get elevation angles
get_elevation_angles(pvol)

Extract the scan closest to 3 degrees elevation (= 2.5)

scan <- get_scan(pvol, 3)

Get summary info
scan

integrate_profile

41

integrate_profile Vertically integrate profiles (vp or vpts) to an integrated profile (vpi)

Description

Performs a vertical integration of density, reflectivity and migration traffic rate, and a vertical aver-

aging of ground speed and direction weighted by density.

Usage

integrate_profile(x, alt_min, alt_max, alpha = NA, interval_max = Inf)

S3 method for class 'vp'
integrate_profile(

X,

alt_min = 0,
alt_max = Inf,
alpha = NA,
interval_max = Inf

)

S3 method for class 'list'
integrate_profile(

X,

alt_min = 0,

alt_max = Inf,

alpha = NA,

interval_max = Inf

)

S3 method for class 'vpts'
integrate_profile(

X,

alt_min = 0,

alt_max = Inf,

alpha = NA,
interval_max = Inf
)
Arguments
X A vp or vpts object.
alt_min Minimum altitude in m.
alt_max Maximum altitude in m.

alpha Migratory direction in clockwise degrees from north.

42

integrate_profile

interval_max Maximum time interval belonging to a single profile in seconds. Traffic rates
are set to zero at times t for which no profiles can be found within the period
t-interval_max/2 to t+interval_max/2. Ignored for single profiles of class

vp.

Details

Available quantities: The function generates a specially classed data frame with the following
quantities:
datetime POSIXct date of each profile in UTC

vid Vertically Integrated Density in individuals/km”2. vid is a surface density, whereas dens in
vp objects is a volume density.

vir Vertically Integrated Reflectivity in cm”2/km”2

mtr Migration Traffic Rate in individuals/km/h

rtr Reflectivity Traffic Rate in cm”2/km/h

mt Migration Traffic in individuals/km, cuamulated from the start of the time series up to datetime
rt Reflectivity Traffic in cm”2/km, cumulated from the start of the time series up to datetime
ff Horizontal ground speed in m/s

dd Horizontal ground speed direction in degrees

u Ground speed component west to east in m/s

v Ground speed component north to south in m/s

height Mean flight height (height weighted by eta) in m above sea level

Vertically integrated density and reflectivity are related according to vid = vir/res(x), with rcs

the assumed radar cross section per individual. Similarly, migration traffic rate and reflectivity
traffic rate are related according to mir = rtr/rcs(x)

Ground speed (ff) and ground speed components (u,v): The height-averaged ground speed is
defined as:

ff= Zdensiffi/Zdensi

with the sum running over all altitude layers between alt_min and alt_max, dens; the bird
density, f f; the ground speed at altitude layer i.

the height-averaged u component (west to east) is defined as:
U= Z dens;u;/ Z dens,;

the height-averaged v component (south to north) is defined as:

v = Z dens;v;/ Z dens;

Note that ff; = \ﬂuf + v?), but the same does not hold for the height-integrated speeds, i.e.
ffl= \ﬂuQ + v?) as soon as the ground speed directions vary with altitude.

integrate_profile 43

Migration traffic rate (mtr) and reflectivity traffic rate (rtr): Migration traffic rate (mtr) for
an altitude layer is a flux measure, defined as the number of targets crossing a unit of transect per
hour.

Column mtr of the output dataframe gives migration traffic rates in individuals/km/hour.

The transect direction is set by the angle alpha. When alpha=NA, the transect runs perpendicular
to the measured migratory direction. mtr then equals the number of crossing targets per km
transect per hour, for a transect kept perpendicular to the measured migratory movement at all
times and altitudes. In this case mtr is always a positive quantity, defined as:

mtr = 3.6 Z dens; f fi Ah

with the sum running over all altitude layers between alt_min and alt_max, dens; the bird
density, ff; the ground speed at altitude layer i, and Ah the altitude layer width. The factor
3.6 refers to a unit conversion of speeds f f; from m/s to km/h.

If alpha is given a numeric value, the transect is taken perpendicular to the direction alpha, and
the number of crossing targets per hour per km transect is calculated as:

mitr = 3.6 Z dens; f fi cos((dd; — alpha)pi/180)Ah

7

with dd; the migratory direction at altitude i.

Note that this equation evaluates to the previous equation when alpha equals dd;. Also note we
can rewrite this equation using trigonemetry as:

mitr = 3.6 Z dens;(u; sin(alphapi/180) + v; cos(alphapi/180))Ah

K2

with u; and v; the u and v ground speed components at altitude i.

In this definition mtr is a traditional flux into a direction of interest. Targets moving into the direc-
tion alpha contribute positively to mtr, while targets moving in the opposite direction contribute
negatively to mtr. Therefore mtr can be both positive or negative, depending on the definition of
alpha.

Note that mtr for a given value of alpha can also be calculated from the vertically integrated
density vid and the height-integrated velocity components u and v as follows:

mitr = 3.6(usin(alphapi/180) + v cos(alphapi/180))vid

Formula for reflectivity traffic rate rtr are found by replacing dens with eta and vid with vir
in the formula for mtr. Reflectivity traffic rate gives the cross-sectional area passing the radar
per km transect perpendicular to the migratory direction per hour. mtr values are conditional on
settings of rcs, while rtr values are not.

Migration traffic (mt) and reflectivity traffic (rt): Migration traffic is calculated by time-
integration of migration traffic rates. Migration traffic gives the number of individuals that have
passed per km perpendicular to the migratory direction at the position of the radar for the full
period of the time series within the specified altitude band.

Reflectivity traffic is calculated by time-integration of reflectivity traffic rates. Reflectivity traffic
gives the total cross-sectional area that has passed per km perpendicular to the migratory direction
at the position of the radar for the full period of the time series within the specified altitude band.

44 integrate_to_ppi

mt values are conditional on settings of rcs, while rt values are not.

Columnns mt and rt in the output dataframe provides migration traffic as a numeric value equal to
migration traffic and reflectivity traffic from the start of the time series up till the moment of the
time stamp of the respective row.

Value

an object of class vpi, a data frame with vertically integrated profile quantities

Methods (by class)

* vp: Vertically integrate a vertical profile.
» list: Vertically integrate a list of vertical profiles.

* vpts: Vertically integrate a time series of vertical profiles.

Examples

MTR for a single vertical profile
integrate_profile(example_vp)

MTRs for a list of vertical profiles
integrate_profile(c(example_vp, example_vp))

MTRs for a time series of vertical profiles

load example data:

data(example_vpts)

example_vpts

print migration traffic rates

vpi <- integrate_profile(example_vpts)

plot migration traffic rates for the full air column
plot(example_vpts)

plot migration traffic rates for altitudes > 1 km above sea level
plot(integrate_profile(example_vpts, alt_min = 1000))
plot the (cumulative) migration traffic
plot(integrate_profile(example_vpts), quantity = "mt")

integrate_to_ppi Calculate a plan position indicator (ppi) of vertically integrated den-
sity adjusted for range effects

Description

This function estimates a spatial image (PPI object) of vertically integrated density (VID) based
on all elevation scans of the radar, while accounting for the changing overlap between the radar
beams as a function of range. The resulting PPI is a vertical integration over the layer of biological
scatterers based on all available elevation scans, corrected for range effects due to partial beam
overlap with the layer of biological echoes (overshooting) at larger distances from the radar. The
methodology is described in detail in Kranstauber et al. (2020).

integrate_to_ppi 45

Usage

integrate_to_ppi(
pvol,
vp,
nx = 100,
ny = 100,
xlim,
ylim,
zlim = c(0, 4000),
res,
quantity = "eta",
param = "DBZH",
raster = NA,

n

lat,
lon,
antenna,
beam_angle = 1,
crs,
param_ppi = c("VIR", "VID", "R", "overlap"”, "eta_sum”, "eta_sum_expected"),
k = 4/3,
re = 6378,
rp = 6357
)
Arguments
pvol a polar volume of class pvol
vp a vertical profile of class vp
nx number of raster pixels in the x (longitude) dimension
ny number of raster pixels in the y (latitude) dimension
x1lim x (longitude) range
ylim y (latitude) range
zlim altitude range in meter, given as a numeric vector of length two.
res numeric vector of length 1 or 2 to set the resolution of the raster (see res). If this
argument is used, arguments nx and ny are ignored. Unit is identical to x1im
and ylim.
quantity profile quantity on which to base range corrections, "eta’ or ’dens’.
param reflectivity factor scan parameter on which to base range corrections. Typically

the same parameter from which animal densities are estimated for object vp.
One of 'DBZH’DBZV’DBZ’)TH’)TV’.

raster (optional) RasterLayer with a CRS. When specified this raster topology is used
for the output, and nx, ny, res arguments are ignored.

lat Geodetic latitude of the radar in degrees. If missing taken from pvol.

lon Geodetic latitude of the radar in degrees. If missing taken from pvol.

46 integrate_to_ppi

antenna radar antenna height. If missing taken from vp

beam_angle numeric. Beam opening angle in degrees, typically the angle between the half-
power (-3 dB) points of the main lobe

crs character or object of class CRS. PROJ.4 type description of a Coordinate Ref-
erence System (map projection). When 'NA’ (default), an azimuthal equidistant
projection with origin at the radar location is used. To use a WSG84 (lat,lon)
projection, use crs="+proj=longlat +datum=WGS84"

param_ppi one or multiple of VIR’, *VID’, 'R’, *overlap’, "eta_sum’, ’eta_sum_expected’
k Standard refraction coefficient.
re Earth equatorial radius in km.
rp Earth polar radius in km.
Details

The function requires

* apolar volume, containing one or multiple scans (pvol)
* avertical profile (of birds) calculated for that same polar volume (vp)
* a grid defined on the earth’s surface, on which we will calculate the range corrected image
(defined by raster, or a combination of nx,ny,res arguments).
The pixel locations on the ground are easily translated into a corresponding azimuth and range of
the various scans (see function beam_range).
For each scan within the polar volume, the function calculates:
1. the vertical radiation profile for each ground surface pixel for that particular scan, using
beam_profile.

2. the reflectivity expected for each ground surface pixel (fegpectea), given the vertical profile (of
biological scatterers) and the part of the profile radiated by the beam. This 7)cypecteq is sSimply
the average of (linear) eta in the profile, weighted by the vertical radiation profile.

3. the observed eta at each pixel Nopserved, Which is converted form DBZH using function dbz_to_eta,
with DBZH the reflectivity factor measured at the pixel’s distance from the radar.

For each pixel on the ground, we thus retrieve a set of Negpecteqd and a set of Nopserved. From those
we can calculate a spatial adjustment factor R as:

R= Z nobserved/ Z Nexpected

, with the sum running over scans.
To arrive at the final PPI image, the function calculates
* the vertically integrated density (vid) and vertically integrated reflectivity (vir) for the profile,
using the function integrate_profile.

* the spatial range-corrected PPI for VID, defined as the adjustment factor image (R), multiplied
by the vid calculated for the profile

integrate_to_ppi 47

* the spatial range-corrected PPI for VIR, defined as the adjustment factor R, multiplied by the
vir calculated for the profile.

If one of 1at or lon is missing, the extent of the PPI is taken equal to the extent of the data in the
first scan of the polar volume.

As an additional parameter, overlap between vertical profile and vertical radiation profile is calcu-
lated using beam_profile and stored as quantity overlap.

scans at 90 degree beam elevation (birdbath scans) are ignored.

Value

An object of class "ppi’.

References

» Kranstauber B, Bouten W, Leijnse H, Wijers B, Verlinden L, Shamoun-Baranes J, Dokter AM
(2020) High-Resolution Spatial Distribution of Bird Movements Estimated from a Weather
Radar Network. Remote Sensing 12 (4), 635. https://doi.org/10.3390/rs12040635

* Buler JJ & Diehl RH (2009) Quantifying bird density during migratory stopover using weather
surveillance radar. IEEE Transactions on Geoscience and Remote Sensing 47: 2741-2751.
https://doi.org/10.1109/TGRS.2009.2014463

Examples

locate example polar volume file:
pvolfile <- system.file("”extdata”, "volume.h5", package = "bioRad")

load polar volume
example_pvol <- read_pvolfile(pvolfile)

load the corresponding vertical profile for this polar volume
data(example_vp)

calculate the range-corrected ppi on a 50x50 pixel raster
my_ppi <- integrate_to_ppi(example_pvol, example_vp, nx = 50, ny = 50)

plot the vertically integrated reflectivity (VIR) using a 0-2000 cm*2/km*2 color scale:
plot(my_ppi, zlim = c(@, 2000))

Not run:
calculate the range-corrected ppi on finer 2000m x 2000m pixel raster:
my_ppi <- integrate_to_ppi(example_pvol, example_vp, res = 2000)

plot the vertically integrated density (VID) using a ©-200 birds/km*2 color scale:
plot(my_ppi, param = "VID", zlim = c(@, 200))

to overlay ppi objects on a background map, first
download a basemap, and map the ppi:

bm <- download_basemap(my_ppi)

map (my_ppi, bm)

https://doi.org/10.3390/rs12040635
https://doi.org/10.1109/TGRS.2009.2014463

48 is.pvolfile

the ppi can also be projected on a user-defined raster, as follows:
first define the raster:
template_raster <- raster::raster(raster::extent(12, 13, 56, 57), crs = sp::CRS("+proj=longlat”))

project the ppi on the defined raster:
my_ppi <- integrate_to_ppi(example_pvol, example_vp, raster = template_raster)

extract the raster data from the ppi object:
raster::brick(my_ppi$data)

calculate the range-corrected ppi on an even finer 500m x 500m pixel raster,
cropping the area up to 50000 meter from the radar.
my_ppi <- integrate_to_ppi(example_pvol, example_vp,
res = 500,
xlim = c(-50000, 50000), ylim = c(-50000, 50000)
)
plot(my_ppi, param = "VID", zlim = c(@, 200))

End(Not run)

is.pvolfile Check if a local file is a polar volume (pvol)

Description

Check whether a file is a polar volume in ODIM HDFS5 format that can be read with package bioRad

Usage

is.pvolfile(file, filename = NULL)

Arguments
file A string containing a file name.
filename Deprecated argument, use file instead.
Details

The function checks whether a HDFS file provided as input is a polar volume in ODIM HDF5
format. The function currently evaluates to FALSE for NEXRAD and IRIS RAW polar volume
files.

Value

TRUE when file is a polar volume in readable format, otherwise FALSE

is.vpfile 49

Examples

locate example file:
pvolfile <- system.file("extdata”, "volume.h5", package = "bioRad")

check that the file is an ODIM HDF5 polar volume:
is.pvolfile(pvolfile) # > TRUE

is.vpfile Check if a local file is a vertical profile (vp)

Description

Checker whether a file is a vertical profile that can be read with package bioRad

Usage

is.vpfile(file, filename = NULL)

Arguments
file A string containing a filename
filename Deprecated argument, use file instead.
Value

TRUE when filename is a vertical profile, otherwise FALSE

Examples

profile <- system.file("extdata"”, "profile.h5", package = "bioRad")
is.vpfile(profile) # > TRUE

map Map a plan position indicator (ppi)

Description

Plot a ppi on a Stamen Maps, OpenStreetMap, Google Maps or Naver Map base layer map using
ggmap.

50

Usage

map(x, ...)

map

S3 method for class 'ppi'

map (
X’
map,
param,

alpha = 0.7,

xlim,
ylim,

zlim = c(-20, 20),

ratio,

radar_size = 3,

radar_color = "red",
n_color = 1000,
radar.size = 3,

radar.color = "red",

n.color = 1000,

palette = NA,
)

Arguments
X An object of class ppi.
Arguments passed to low level ggmap function.

map The basemap to use, result of a call to download_basemap.
param The scan parameter to plot.
alpha Transparency of the data, value between 0 and 1.
x1lim Range of x values to plot (degrees longitude), as atomic vector of length 2.
ylim Range of y values to plot (degrees latitude), as an atomic vector of length 2.
zlim The range of values to plot.
ratio Aspect ratio between x and y scale, by default 1/cos(latituderadar x pi/180).
radar_size Size of the symbol indicating the radar position.

radar_color
n_color
radar.size
radar.color
n.color

palette

Color of the symbol indicating the radar position.
The number of colors (>=1) to be in the palette.
Deprecated argument, use radar_size instead.
Deprecated argument, use radar_color instead.
Deprecated argument, use n_color instead.

(Optional) character vector of hexidecimal color values defining the plot color
scale, e.g. output from viridis

map 51

Details

Available scan parameters for mapping can by printed to screen by summary (x). Commonly avail-
able parameters are:

"DBZH", ""DBZ" (Logged) reflectivity factor (dBZ)

"TH", "T" (Logged) uncorrected reflectivity factor (dBZ)

""VRADH'', "VRAD" Radial velocity (m/s). Radial velocities towards the radar are negative, while
radial velocities away from the radar are positive

""RHOHV'' Correlation coefficient (unitless) Correlation between vertically polarized and horizon-
tally polarized reflectivity factor

""PHIDP'" Differential phase (degrees)
""ZDR" (Logged) differential reflectivity (dB)

The scan parameters are named according to the OPERA data information model (ODIM), see
Table 16 in the ODIM specification.

Value

A ggmap object (a classed raster object with a bounding box attribute).

Methods (by class)

e ppi: plot a’ppi’ object on a map

Examples

load an example scan:

data(example_scan)

make ppi's for all scan parameters in the scan

ppi <- project_as_ppi(example_scan)

Not run:

grab a basemap that matches the extent of the ppi:

using a gray-scale basemap:

basemap <- download_basemap(ppi, maptype = "toner-lite”)

map the radial velocity scan parameter onto the basemap:
map(ppi, map = basemap, param = "VRADH")

extend the plotting range of velocities, from -50 to 50 m/s:
map(ppi, map = basemap, param = "VRADH", zlim = c(-50, 50))

map the reflectivity on a terrain basemap:
basemap <- download_basemap(ppi, maptype = "terrain")
map(ppi, map = basemap, param = "DBZH")

change the color palette, e.g. Viridis colors:
map(ppi, map = basemap, param = "DBZH", palette = viridis::viridis(100), zlim=c(-10,10))

give the data more transparency:
map(ppi, map = basemap, param = "DBZH", alpha = 0.3)

https://github.com/adokter/vol2bird/blob/master/doc/OPERA2014_O4_ODIM_H5-v2.2.pdf

52 nexrad_to_odim

change the appearance of the symbol indicating the radar location:
map(ppi, map = basemap, radar_size = 5, radar_color = "blue")

crop the map:
map(ppi, map = basemap, xlim = c(12.4, 13.2), ylim = c(56, 56.5))

End(Not run)

nexrad_to_odim Convert a NEXRAD polar volume file to an ODIM polar volume file

Description

Convert a NEXRAD polar volume file to an ODIM polar volume file

Usage

nexrad_to_odim(
pvolfile_nexrad,
pvolfile_odim,
verbose = FALSE,
mount = dirname(pvolfile_nexrad)

Arguments

pvolfile_nexrad
Polar volume input file in RSL format.

pvolfile_odim Filename for the polar volume in ODIM HDFS5 format to be generated.

verbose logical. When TRUE, pipe Docker stdout to R console. On Windows always
TRUE.
mount character. String with the mount point (a directory path) for the Docker con-
tainer.
Value

TRUE on success

Examples

Not run:
download a NEXRAD file, save as KBGM_example
download.file(paste("https://noaa-nexrad-level2.s3.amazonaws.com/",
"2019/10/01/KBGM/KBGM20191001_000542_V06",
sep = ""
), "~/KBGM_example")

nyquist_velocity 53

convert to ODIM format
nexrad_to_odim("~/KBGM_example”, "~/KBGM_example.h5")

verify that we have generated a polar volume in ODIM HDF5 format
get_odim_object_type("~/KBGM_example.h5")

clean up
file.remove("~/KBGM_example", "~/KBGM_example.h5")

End(Not run)

nyquist_velocity Nyquist velocity for a given pulse repetition frequency (PRF)

Description

Calculates the Nyquist velocity given a radar’s pulse repetition frequency (PRF) and wavelength.
When specifying two PRFs, the extended Nyquist velocity is given for a radar using the dual-PRF
technique.

Usage

nyquist_velocity(wavelength, prfil, prf2)

Arguments
wavelength radar wavelength in cm
prfi radar pulse repetition frequency in Hz
prf2 alternate radar pulse repetition frequency in Hz (for a radar opering in dual-PRF
mode)
Value
Nyquist velocity in m/s.
Examples

at C-band (5.3 cm wavelength) and a PRF of 2000 Hz
nyquist_velocity(5.3, 2000)

extended Nyquist velocity in a dual-PRF scheme
using 2000 Hz and 1500 Hz PRFs:
nyquist_velocity(5.3, 2000, 1500)

54 plot.ppi

plot.ppi Plot a plan position indicator (ppi)

Description

Plot a plan position indicator (PPI) generated with ppi using ggplot

Usage
S3 method for class 'ppi'
plot(
X ’
param,
xlim,
ylim,
zlim = c(-20, 20),
ratio = 1,
na.value = "transparent”,
)
Arguments
X An object of class ppi.
param The scan parameter to plot, see details below.
x1lim Range of x values to plot.
ylim Range of y values to plot.
zlim The range of parameter values to plot.
ratio Aspect ratio between x and y scale.
na.value ggplot argument setting the plot color of NA values
Arguments passed to low level ggplot function.
Details

Auvailable scan paramaters for plotting can by printed to screen by summary(x). Commonly avail-
able parameters are:

""DBZH", '""DBZ" (Logged) reflectivity factor (dBZ)

"TH", "T" (Logged) uncorrected reflectivity factor (dBZ)

""WRADH'', "VRAD" Radial velocity (m/s). Radial velocities towards the radar are negative, while
radial velocities away from the radar are positive

""RHOHV'"" Correlation coefficient (unitless). Correlation between vertically polarized and horizon-
tally polarized reflectivity factor

""PHIDP'" Differential phase (degrees)

plot.scan 55

"ZDR" (Logged) differential reflectivity (dB)

The scan parameters are named according to the OPERA data information model (ODIM), see
Table 16 in the ODIM specification.

Examples

load an example scan:
data(example_scan)

print to screen the available scan parameters:
summary (example_scan)

make ppi for the scan
ppi <- project_as_ppi(example_scan)

plot the first scan parameter, which in this case is "VRADH":
plot(ppi)

plot the reflectivity parameter:
plot(ppi, param = "DBZH")

change the range of reflectivities to plot, from -10 to 10 dBZ:
plot(ppi, param = "DBZH", zlim = c(-10, 10))

change the scale name and colour scheme, using viridis colors:
plot(ppi, param = "DBZH", zlim = c(-10, 10)) + viridis::scale_fill_viridis(name = "dBZ")

plot.scan Plot a scan (scan) in polar coordinates

Description

Plots a scan in polar coordinates. For plots in Cartesian coordinates, see ppi

Usage

S3 method for class 'scan'
plot(

X,

param,

xlim = c(@, 1e+05),

ylim = c(@, 360),

zlim = c(-20, 20),

na.value = "transparent”,

https://github.com/adokter/vol2bird/blob/master/doc/OPERA2014_O4_ODIM_H5-v2.2.pdf

56 plot.scan

Arguments

X An object of class scan.

param The scan parameter to plot, see details below.

x1lim Range of x (range, distance from radar) values to plot.

ylim Range of y (azimuth) values to plot.

zlim The range of parameter values to plot.

na.value ggplot argument setting the plot color of NA values

Arguments passed to low level ggplot function.

Details

Available scan parameters for plotting can by printed to screen by summary(x). Commonly avail-
able parameters are:

""DBZH", ""DBZ" (Logged) reflectivity factor (dBZ)

"TH", "T" (Logged) uncorrected reflectivity factor (dBZ)

""VRADH", ""VRAD" Radial velocity (m/s). Radial velocities towards the radar are negative, while
radial velocities away from the radar are positive

""RHOHV'' Correlation coefficient (unitless). Correlation between vertically polarized and horizon-
tally polarized reflectivity factor

""PHIDP" Differential phase (degrees)
"ZDR" (Logged) differential reflectivity (dB)

The scan parameters are named according to the OPERA data information model (ODIM), see
Table 16 in the ODIM specification.

Examples

load an example scan:
data(example_scan)

print to screen the available scan parameters
summary (example_scan)

make ppi for the scan

plot the reflectivity param:

plot(example_scan, param = "DBZH")

Not run:

change the range of reflectivities to plot, from -1@ to 10 dBZ:
plot(example_scan, param = "DBZH", zlim = c(-10, 10))

change the scale name and colour scheme, using viridis colors:
plot(example_scan, param = "DBZH", z1lim = c(-10, 10)) + viridis::scale_fill_viridis(name = "dBZ")

End(Not run)

https://github.com/adokter/vol2bird/blob/master/doc/OPERA2014_O4_ODIM_H5-v2.2.pdf

plot.vp

57

plot.vp

Plot a vertical profile (vp)

Description

Plot a vertical profile (vp)

Usage

S3 method for class 'vp'

plot(
X’

quantity = "dens”,
xlab = expression(”volume density [#/km"*3 *x "]"),
ylab = "height [km]",

line_col = "red”,

line_lwd = 1,

line.col = "red”,

line.lwd = 1,
)

Arguments
X A vp class object.
quantity Character string with the quantity to plot. See vp for list of available quantities.
 Aerial density related:’dens’, ’eta’, *dbz’, ’DBZH’ for density, reflectivity,
reflectivity factor and total reflectivity factor, respectively.
* Ground speed related:’ff’,’dd’, for ground speed and direction, respec-
tively.
xlab A title for the x axis.
ylab A title for the y axis.
line_col Color of the plotted curve.
line_lwd Line width of the plotted curve.
line.col Deprecated argument, use line_col instead.
line.lwd Deprecated argument, use line_lwd instead.
Additional arguments to be passed to the low level plot plotting function.
Examples

load example vp object:

data(example_vp)

plot the animal density:
plot(example_vp, quantity = "dens")

58 plot.vpi

change the line color:
plot(example_vp, line_col = "blue")

plot the ground speed:
plot(example_vp, quantity = "ff")

plot the reflectivity factor of
all scatterers (including precipitation):
plot(example_vp, quantity = "DBZH")

plot.vpi Plot an integrated profile (vpi)

Description

Plot an object of class vpi.

Usage
S3 method for class 'vpi'
plot(
X,
quantity = "mtr",
xlab = "time",
ylab = "migration traffic rate [#/km/h]",
main = "MTR",
night_shade = TRUE,
elev = -0.268,
lat = NULL,
lon = NULL,
ylim = NULL,

nightshade = TRUE,

)
Arguments

X 1 class object inheriting from class vpi, typically a call to integrate_profile.

quantity Character string with the quantity to plot, one of ’vid’ (vertically integrated
density), *vir’ (vertically integrated reflectivity), 'mtr’ (migration traffic rate),
‘rtr’ (reflectivity traffic rate), 'mt’ ((cumulative) migration traffic), ’rt’ ((cumu-
lative) reflectivity traffic), *ff’ (height-averaged speed) 'dd’ (height-averaged
direction) 'u’ (height-averaged u-component of speed), v’ (height-averaged v-
component of speed).

xlab A title for the x-axis.

ylab A title for the y-axis.

plot.vpi 59

main A title for the plot.

night_shade Logical, whether to plot night time shading.

elev Numeric, sun elevation to use for day/night transition, see sunrise.

lat (optional) Latitude in decimal degrees. Overrides the lat attribute of x.
lon (optional) Longitude in decimal degrees. Overrides the lon attribute of x.
ylim y-axis plot range, numeric atomic vector of length 2.

nightshade Deprecated argument, use night_shade instead.

Additional arguments to be passed to the low level plot plotting function.

Details

The integrated profiles can be visualized in various related quantities, as specified by argument
quantity:

"'vid" Vertically Integrated Density, i.e. the aerial surface density of individuals. This quantity is
dependent on the assumed radar cross section per individual (RCS)

'vir' Vertically Integrated Reflectivity. This quantity is independent of the value of individual’s
radar cross section

"mtr'" Migration Traffic Rate. This quantity is dependent on the assumed radar cross section (RCS)

"rtr" Reflectivity Traffic Rate. This quantity is independent on the assumed radar cross section
(RCS)

"'mt'"" Migration Traffic. This quantity is dependent on the assumed radar cross section (RCS)
"rt" Reflectivity Traffic. This quantity is independent on the assumed radar cross section (RCS)
ff Horizontal ground speed in m/s

dd Horizontal ground speed direction in degrees

u Ground speed component west to east in m/s

v Ground speed component north to south in m/s

height Mean flight height (height weighted by reflectivity eta) in m above sea level

The height-averaged speed quantities (ff,dd,u,v) and height are weighted averages by reflectivity
eta.

Examples

vertically integrate a vpts object:

vpi <- integrate_profile(example_vpts)

plot the migration traffic rates

plot(vpi)

plot the vertically integrated densities, without night shading:
plot(vpi, quantity = "vid", night_shade = FALSE)

60

plot.vpts

plot.vpts

Plot a time series of vertical profiles (vpts)

Description

Plot a time series of vertical profiles of class vpts.

S3 method for class 'vpts'

’

"height [m]”,

= 1o,

Usage
plot(

X,
xlab = "time"
ylab =
quantity = "dens”,
log = TRUE,
barbs = TRUE,
barbs_height
barbs_time =

20,

barbs_dens_min = 5,

zlim,

legend_ticks,
legend. ticks,
main,

barbs.h = 10,
barbs.t = 20,
barbs.dens =

Arguments

X
x1lab
ylab
quantity

log

barbs
barbs_height
barbs_time

barbs_dens_min

zlim

5,

A vp class object inheriting from class vpts.
A title for the x-axis.
A title for the y-axis.

Character string with the quantity to plot, one of *dens’,’eta’,’dbz’,’DBZH’ for
density, reflectivity, reflectivity factor and total reflectivity factor, respectively.

Logical, whether to display quantity data on a logarithmic scale.
Logical, whether to overlay speed barbs.

Integer, number of barbs to plot in altitudinal dimension.

Integer, number of barbs to plot in temporal dimension.

Numeric, lower threshold in aerial density of individuals for plotting speed barbs
in individuals/km”3.

Optional numerical atomic vector of length 2, specifying the range of quantity
values to plot.

project_as_ppi 61

legend_ticks Numeric atomic vector specifying the ticks on the color bar.

legend.ticks Deprecated argument, use legend_ticks instead.

main A title for the plot.

barbs.h Deprecated argument, use barbs_height instead.
barbs.t Deprecated argument, use barbs_time instead.
barbs.dens Deprecated argument, use barbs_dens_min instead.

Additional arguments to be passed to the low level image plotting function.

Details

Profile can be visualized in three related quantities, as specified by argument quantity:

""dens'"' the aerial density of individuals. This quantity is dependent on the assumed radar cross
section (RCS) in the x$attributes$how$rcs_bird attribute

"

eta" reflectivity. This quantity is independent of the value of the rcs_bird attribute

"dbz" reflectivity factor. This quantity is independent of the value of the rcs_bird attribute, and
corresponds to the dBZ scale commonly used in weather radar meteorology. Bioscatter by
birds tends to occur at much higher reflectivity factors at S-band than at C-band

""DBZH" total reflectivity factor. This quantity equals the reflectivity factor of all scatterers (biolog-
ical and meteorological scattering combined)

In the speed barbs, each half flag represents 2.5 m/s, each full flag 5 m/s, each pennant (triangle) 25
m/s

Examples

locate example file:

ts <- example_vpts

plot density of individuals for the first 500 time steps, in the altitude
layer 0-3000 m.

plot(ts[1:500], ylim = c(@, 3000))

plot total reflectivity factor (rain, birds, insects together):
plot(ts[1:500], ylim = c(@, 3000), quantity = "DBZH")

project_as_ppi Project a scan (scan) or parameter (param) to a plan position indica-
tor (ppi)

Description

Make a plan position indicator (ppi)

62

Usage

project_as_ppi(

)

S3 method for class 'param'

X,

grid_size = 500,
range_max = 50000,
project = TRUE,
ylim = NULL,

xlim = NULL,
raster = NA,

k = 4/3,

re = 6378,

rp = 6357

project_as_ppi(

)

X,

grid_size = 500,
range_max = 50000,
project = TRUE,
ylim = NULL,

xlim = NULL,
raster = NA,

k = 4/3,

re = 6378,

rp = 6357

S3 method for class
project_as_ppi(

X,

grid_size = 500,
range_max = 50000,
project = TRUE,
ylim = NULL,

xlim = NULL,
raster = NA,

k = 4/3,

re = 6378,

rp = 6357

Arguments

X

grid_size

range_max

An object of class param or scan.

'scan'

Cartesian grid size in m.

Maximum range in m.

project_as_ppi

project_as_ppi 63

project Whether to vertically project onto earth’s surface.
ylim The range of latitudes to include.
x1lim The range of longitudes to include.
raster (optional) RasterLayer with a CRS. When specified this raster topology is used
for the output, and grid_size, range_max, x1im, ylim are ignored.
k Standard refraction coefficient.
re Earth equatorial radius in km.
rp Earth polar radius in km.
Details

The returned PPI is in Azimuthal Equidistant Projection.

Value

An object of class "ppi’.

Methods (by class)

* param: Project as ppi for a single scan parameter.

* scan: Project multiple ppi’s for all scan parameters in a scan

Examples

load a polar scan example object:
data(example_scan)
example_scan

plot the scan:
plot(example_scan)

make PPIs for all scan parameters in the scan:
ppi <- project_as_ppi(example_scan)

print summary info for the ppi:
ppi

plot the ppi:
plot(ppi)

extract the DBZH scan parameter of the volume to a new
object 'param':
param <- get_param(example_scan, "VRADH")

make a ppi for the new 'param' object:
ppi <- project_as_ppi(param)

print summary info for this ppi:
ppi

64 rcs

plot the ppi:
plot(ppi)

rcs Get radar cross section

Description

Returns the currently assumed radar cross section of an object in cm”2.

Usage
rcs(x)

S3 method for class 'vp'
rcs(x)

S3 method for class 'list'
rcs(x)

S3 method for class 'vpts'
rcs(x)

S3 method for class 'vpi'
rcs(x)
Arguments

X A vp, list of vp, vpts or vpi object.

Value

The radar cross section in cm”2.

See Also

* rcs()<- for setting the radar cross section of an object.
e sd_vvp_threshold()

Examples

Get the radar cross section for a vp
vp <- example_vp
rcs(vp)

Get the radar cross section for a vpts
vpts <- example_vpts

res<- 65

rcs(vpts)

Get the radar cross section for a vpi
vpi <- integrate_profile(example_vpts)
rcs(vpi)

rcs<- Set radar cross section

Description
Sets the assumed radar cross section of an object in cm”2. This function also updates the migration
densities in x$data$dens to eta/rcs when above sd_vvp_threshold and 0 if below.

Usage

rcs(x) <- value

S3 replacement method for class 'vp
rcs(x) <- value

S3 replacement method for class 'list'
rcs(x) <- value

S3 replacement method for class 'vpts'
rcs(x) <- value

S3 replacement method for class 'vpi
rcs(x) <- value

Arguments

X A vp, list of vp, vpts or vpi object.

value Numeric. The radar cross section value to assign in cm”\2.
See Also

* rcs() for getting the radar cross section of an object.
* sd_vvp_threshold()<-

Examples

Set the radar cross section for a vp
vp <- example_vp
rcs(vp) <= 11

Set the radar cross section for a vpts
vpts <- example_vpts

66 read_pvolfile

rcs(vpts) <- 11

Set the radar cross section for a vpi
vpi <- integrate_profile(example_vpts)
rcs(vpi) <- 11

read_cajun Read a vertical profile (vp) from UMASS Cajun text file

Description

Read a vertical profile (vp) from UMASS Cajun text file

Usage
read_cajun(file, rcs = 11, wavelength = "S")
Arguments
file A text file containing the standard output (stdout) generated by UMASS Cajun
pipeline
rcs numeric. Radar cross section per bird in cm”2.
wavelength Radar wavelength in cm, or one of ’C’ or ’S’ for C-band and S-band radar,
respectively, in which case C-band wavelength is assumed to be 5.3 cm and
S-band wavelength 10.6 cm
Value

An object inheriting from class vp, see vp for details.

read_pvolfile Read a polar volume (pvol) from file

Description

Read a polar volume (pvol) from file

read_pvolfile 67

Usage

read_pvolfile(
file,
param = c("DBZH", "DBZ", "VRADH", "VRAD", "TH", "T", "RHOHV", "ZDR", "PHIDP", "CELL",
"BIOLOGY", "WEATHER", "BACKGROUND"),
sort = TRUE,

height,

elev_min = 0,
elev_max = 90,
verbose = TRUE,

mount = dirname(file)

)
Arguments
file A string containing the path to a polar volume file
param An atomic vector of character strings, containing the names of scan parameters
to read. To read all scan parameters use “all’.
sort A logical value, when TRUE sort scans ascending by elevation.
lat Latitude in decimal degrees of the radar position. If not specified, value stored
in file is used. If specified, value stored in file is overwritten.
lon Longitude in decimal degrees of the radar position. If not specified, value stored
in file is used. If specified, value stored in file is overwritten.
height Height of the center of the antenna in meters above sea level. If not specified,
value stored in file is used. If specified, value stored in file is overwritten.
elev_min Minimum scan elevation to read in degrees.
elev_max Maximum scan elevation to read in degrees.
verbose A logical value, whether to print messages (TRUE) to console.
mount A character string with the mount point (a directory path) for the Docker con-
tainer.
Details

Scan parameters are named according to the OPERA data information model (ODIM), see Table 16
in the ODIM specification. Commonly available parameters are:

""DBZH", '""DBZ" (Logged) reflectivity factor (dBZ)

"TH", "T" (Logged) uncorrected reflectivity factor (dBZ)

""WRADH'', "'"VRAD" Radial velocity (m/s). Radial velocities towards the radar are negative, while
radial velocities away from the radar are positive

""RHOHV'' Correlation coefficient (unitless). Correlation between vertically polarized and horizon-
tally polarized reflectivity factor

"PHIDP" Differential phase (degrees)
""ZDR" (Logged) differential reflectivity (dB)

https://github.com/adokter/vol2bird/blob/master/doc/OPERA2014_O4_ODIM_H5-v2.2.pdf

68 read_vpfiles

Value

An object of class pvol, which is a list containing polar scans, i.e. objects of class scan

Examples

locate example volume file:
pvolfile <- system.file("”extdata”, "volume.h5", package = "bioRad")

print the local path of the volume file:
pvolfile

load the file:
example_pvol <- read_pvolfile(pvolfile)

print summary info for the loaded polar volume:
example_pvol

print summary info for the scans in the polar volume:
example_pvol$scans

copy the first scan to a new object 'scan'
scan <- example_pvol$scans[[1]]

print summary info for the new object:
scan

read_vpfiles Read a vertical profile (vp) or a list of vertical profiles (vp) from files

Description

Read a vertical profile (vp) or a list of vertical profiles (vp) from files

Usage

read_vpfiles(files)

Arguments
files A character vector containing the file names of vertical profiles in ODIM HDF5
format generated by calculate_vp.
Value

A single vp object or a list of vp objects.

read_vpts 69

Examples

locate example profile file:
vpfile <- system.file("extdata”, "profile.h5", package = "bioRad")

print the local path of the profile file:
vpfile

load the file:
read_vpfiles(vpfile)

load multiple files at once:
Not run:
read_vpfiles(c("my/path/profilel.h5", "my/path/profile2.h5", ...))

End(Not run)

read_vpts Read a time series of vertical profiles (vpts) from file

Description

Read a time series of vertical profiles (vpts) from file

Usage

read_vpts(file, radar, lat, lon, height, wavelength = "C")

Arguments
file A text file containing the standard output (stdout) generated by vol2bird (or the
package function calculate_vp).
radar A string containing a radar identifier.
lat numeric. Latitude of the radar in decimal degrees.
lon numeric. Longitude of the radar in decimal degrees.
height numeric. Height above sea level of the radar antenna in meters.
wavelength Radar wavelength in cm, or one of ’C’ or ’S’ for C-band and S-band radar,
respectively, in which case C-band wavelength is assumed to be 5.3 cm and
S-band wavelength 10.6 cm
Value

An object inheriting from class vpts, see vpts for details.

70

Examples

regularize_vpts

locate example file:

vptsfile <- system.file("extdata”, "example_vpts.txt"”, package = "bioRad")
load time series:

ts <- read_vpts(vptsfile, radar = "KBGM", wavelength = "S")

ts

regularize_vpts

Regularize a time series of vertical profiles (vpts) on a regular time
grid

Description

Projects objects of class vpts on a regular time grid

Usage

regularize_vpts(

ts,

interval = "auto”,

date_min,
date_max,
units = "secs
fill = FALSE,

n
’

verbose = TRUE,

keep_datetime

Arguments

ts

interval

date_min

date_max

units

fill

verbose

keep_datetime

= FALSE

An object inheriting from class vpts, see vpts for details.

Time interval grid to project on. When ’auto’ the median interval in the time
series is used.

Start time of the projected time series, as a POSIXct object. Taken from ts when
‘auto’.

End time of the projected time series, as a POSIXct object. Taken from ts when
auto’.

Optional units of interval, one of ’secs’, 'mins’, "hours’,’days’, weeks’. De-
faults to 'mins’.

Logical, whether to fill missing timesteps with the values of the closest neigh-
boring profile.

Logical, when TRUE prints text to console.

Logical, when TRUE keep original radar acquisition timestamps.

scan_to_raster

Details

71

Irregular time series of profiles are typically aligned on a regular time grid with the expected time
interval at which a radar provides data. Empty profiles with only missing data values will be inserted

at time stamps of the regular time grid that have no matching profile in the irregular time series.

In plots of regular time series (see plot.vpts) temporal gaps of missing profiles (e.g. due to radar
down time) become visible. In irregular time series data points in the plot are carried through until

the time series continues, and temporal data gaps are filled up visually.

Value

An object of class vpts with regular time steps.

Examples

start form example vpts object:

data(example_vpts)
ts <- example_vpts

regularize the time series on a 5 minute interval grid
tsRegular <- regularize_vpts(ts, interval = 300)

scan_to_raster

convert apolar scan into a raster

Description

convert an object of class ’scan’ into a raster of class *RasterBrick’

Usage
scan_to_raster(

scan,
nx = 100,
ny = 100,
xlim,
ylim,
res = NA,
param,
raster =
lat,
lon,
crs = NA,
k = 4/3,
re = 6378,
rp = 6357

72 scan_to_raster

Arguments

scan a scan (sweep) of class scan

nx number of raster pixels in the x (longitude) dimension

ny number of raster pixels in the y (latitude) dimension

x1lim x (longitude) range

ylim y (latitude) range

res numeric vector of length 1 or 2 to set the resolution of the raster (see res). If this
argument is used, arguments nx and ny are ignored. Unit is identical to x1im
and ylim.

param scan parameters to include. If NA include all scan parameters. Reducing the
number of scan parameters speeds up evaluation.

raster (optional) RasterLayer with a CRS. When specified this raster topology is used
for the output, and nx, ny, res arguments are ignored.

lat Geodetic latitude of the radar in degrees. If missing taken from scan.

lon Geodetic longitude of the radar in degrees. If missing taken from scan.

crs character or object of class CRS. PROJ.4 type description of a Coordinate Ref-
erence System (map projection). When "NA’ (default), an azimuthal equidistant
projection with origin at the radar location is used. To use a WSG84 (lat,lon)
projection, use crs="+proj=longlat +datum=WGS84"

k Standard refraction coefficient.

re Earth equatorial radius in km.

rp Earth polar radius in km.

Details

uses scan_to_spatial to georeference the scan’s pixels. If multiple scan pixels fall within the same
raster pixel, the last added pixel is given (see rasterize for details).

Value

a RasterBrick

Examples

default projects full extent on 100x10@ pixel raster:
scan_to_raster(example_scan)

crop the scan and project at a resolution of 0.1 degree:
scan_to_raster(example_scan, ylim = c(55, 57), xlim = c(12, 13), res = .1)

using a template raster
template_raster <- raster::raster(raster::extent(12, 13, 56, 58), crs = sp::CRS("+proj=longlat”))
scan_to_raster(example_scan, raster = template_raster)

scan_to_spatial 73

scan_to_spatial convert a polar scan into a spatial object.

Description

Georeferences the pixels of a scan into a SpatialPointsDataFrame object.

Usage

scan_to_spatial(scan, lat, lon, k = 4/3, re = 6378, rp = 6357)

Arguments
scan a scan (sweep) of class scan
lat Geodetic latitude of the radar in degrees. If missing taken from scan.
lon Geodetic longitude of the radar in degrees. If missing taken from scan.
k Standard refraction coefficient.
re Earth equatorial radius in km.
rp Earth polar radius in km.

Details

Beam altitude accounts for the curvature of the earth, using beam_height. Distance from the radar
over the earth’s surface is calculated using beam_distance.

Value

a SpatialPointsDataFrame

Examples

load example scan:
data(example_scan)

convert to a SpatialPointsDataFrame:
scan_to_spatial (example_scan)

74 sd_vvp_threshold

sd_vvp_threshold Get threshold of the radial velocity standard deviation

Description
Returns the current threshold of the radial velocity standard deviation (sd_vvp) of an object in m/s,
retrieved by velocity volume processing (VVP).

Usage

sd_vvp_threshold(x)

S3 method for class 'vp'
sd_vvp_threshold(x)

S3 method for class 'list'
sd_vvp_threshold(x)

S3 method for class 'vpts'
sd_vvp_threshold(x)
Arguments

X A vp, list of vp or vpts object.

Value

The sd_vvp threshold in m/s.

See Also

e sd_vvp_threshold()<- for setting the sd_vvp threshold of an object.

e rcs()

Examples

Get the sd_vvp threshold for a vp
vp <- example_vp
sd_vvp_threshold(vp)

Get the sd_vvp threshold for a vpts
vpts <- example_vpts
sd_vvp_threshold(vpts)

sd_vvp_threshold<- 75

sd_vvp_threshold<- Set threshold of the radial velocity standard deviation

Description

Sets the threshold of radial velocity standard deviation (sd_vvp) of an object in m/s. Altitude
layers with sd_vvp below this threshold are assumed to have an aerial density of zero individu-
als. This function also updates the migration densities in x$data$dens to eta/rcs when above
sd_vvp_threshold and 0 if below.

Usage

sd_vvp_threshold(x) <- value

S3 replacement method for class 'vp'
sd_vvp_threshold(x) <- value

S3 replacement method for class 'list'
sd_vvp_threshold(x) <- value

S3 replacement method for class 'vpts'
sd_vvp_threshold(x) <- value

Arguments

X A vp, list of vp or vpts object.

value Numeric. The sd_vvp threshold value to assign in m/s.
See Also

e sd_vvp_threshold() for getting the sd_vvp threshold of an object.

* res()<-

Examples

Set the sd_vvp threshold for a vp
vp <- example_vp
sd_vvp_threshold(vp) <- 2

Set the sd_vvp threshold for a vpts
vpts <- example_vpts
sd_vvp_threshold(vpts) <- 2

76 select_vpfiles

select_vpfiles Select vertical profile (vp) files from computer

Description

Create a list of vertical profile (vp) files from a local directory that match a specific date and radar
range. Files are selected based on their file name (not directory structure), which should be of
format radar_vp_yyyymmddx*. %, such as bewid_vp_20171123T1900Z_0x5.h5.

Usage

select_vpfiles(
date_min = NULL,
date_max = NULL,
radars = NULL,

directory = "."
)
Arguments
date_min character. YYYY-MM-DD start date of file selection.
date_max character. YYYY-MM-DD end date of file selection.
radars character (vector). 5S-letter country/radar code(s) (e.g. bejab) of radars to in-
clude in file selection.
directory character. Path to local directory where files should be looked for.
Value

Character vector of file paths that comply to the given date and radar range.

See Also

download_vpfiles

Examples

select_vpfiles(
date_min = "2016-10-03",
date_max = "2016-10-05",
radars = "bejab",
directory = "my_data”

summary.param 77

summary.param Inspect a parameter (param)

Description

R base functions for inspecting a parameter (param) object.

Usage

S3 method for class 'param'
summary (object, ...)

is.param(x)

Arguments
object A param object.
Additional arguments affecting the summary produced.
X A param object.
Details

A parameter is a quantity/variable measured by the radar during a scan (or sweep). These are
organized along radar range (bins) and azimuth (rays). Scan parameters are named according to the
OPERA data information model (ODIM), see Table 16 in the ODIM specification.

Commonly available parameters are:

* DBZH, DBZ: (Logged) reflectivity factor in dBZ.
* TH, T: (Logged) uncorrected reflectivity factor in dBZ.

* VRADH, VRAD: Radial velocity in m/s. Radial velocities towards the radar are negative, while
radial velocities away from the radar are positive.

* RHOHV: Correlation coefficient (unitless). Correlation between the vertically and horizontally
polarized reflectivity factor.

* PHIDP: Differential phase in degrees.
* ZDR: (Logged) differential reflectivity in dB.

Value

For is.param(): TRUE for an object of class param, otherwise FALSE.

See Also

get_param()

https://github.com/adokter/vol2bird/blob/master/doc/OPERA2014_O4_ODIM_H5-v2.2.pdf

78 summary.ppi

Examples

Extract the DBZH scan parameter from the example scan
param <- get_param(example_scan, "DBZH")

Verify that it is an object of class param
is.param(param)

Get summary info for this parameter
param # Same as summary(param) or print(param)

summary . ppi Inspect a plan position indicator (ppi)

Description

R base functions for inspecting a plan position indicator (ppi) object.

Usage
S3 method for class 'ppi'
summary (object, ...)
is.ppi(x)

S3 method for class 'ppi'

dim(x)
Arguments
object A ppi object.
Additional arguments affecting the summary produced.
X A ppi object.
Details

A plan position indicator is a projection of radar data onto the earth’s surface, generated from a
single scan (scan) with project_as_ppi(), a polar volume (pvol) with integrate_to_ppi() or
multiple plan position indicators (ppi) with composite_ppi(). A plan position indicator (ppi)
object is a list containing:

e radar: Radar identifier.

* datetime: Nominal time of the volume to which the scan belongs in UTC.

* data: A sp::SpatialGridDataFrame containing the georeferenced data. See summary.param()
for commonly available parameters, such as DBZH.

 geo: List of the scan’s geographic properties (see the geo element in summary. scan()), with
two additional properties:

summary.pvol 79

— bbox: Bounding box for the plan position indicator in decimal degrees.
— merged: Logical. Flag to indicate if a plan position indicator is a composite of multiple
scans. TRUE if generated with integrate_to_ppi() or composite_ppi().

Value

For is.ppi(): TRUE for an object of class ppi, otherwise FALSE.

For dim.ppi(): number of parameters (param), x and y pixels in a plan position indicator (ppi).

See Also

* project_as_ppi()

e integrate_to_ppi()
* plot.ppi()

* map()

e composite_ppi()

* [ppiQ)

Examples

Project the example scan as a ppi
ppi <- project_as_ppi(example_scan)

Verify that it is an object of class ppi
is.ppi(ppi)

Get summary info
ppi # Same as summary(ppi) or print(ppi)

Get dimensions
dim(ppi)

summary.pvol Inspect a polar volume (pvol)

Description

R base functions for inspecting a polar volume (pvol) object.

Usage
S3 method for class 'pvol'
summary (object, ...)
is.pvol(x)

S3 method for class 'pvol'
dim(x)

80 summary.pvol

Arguments
object A pvol object.
Additional arguments affecting the summary produced.
X A pvol object.
Details

A polar volume consists of a number of scans (or sweeps) made by the radar at different elevation
angles. A polar volume (pvol) object is a list containing:

* radar: Radar identifier.

* datetime: Nominal time of the volume in UTC.

* scans: List of scans (scan) at different elevation angles.

e attributes: List of the volume’s what, where and how attributes.

* geo: List of the volume’s geographic properties:

— lat: Latitude of the radar in decimal degrees.
— lon: Longitude of the radar in decimal degrees.
— height: Height of the radar antenna in meters above sea level.

Value

For is.pvol(): TRUE for an object of class pvol, otherwise FALSE.

For dim.pvol(): number of scans (scan) in a polar volume (pvol).

See Also
e read_pvolfile()

* get_elevation_angles()

e get_scan()

Examples

Locate and read the polar volume example file
pvolfile <- system.file("”extdata”, "volume.h5", package = "bioRad")
pvol <- read_pvolfile(pvolfile)

Verify that it is an object of class pvol
is.pvol(pvol)

Get summary info
pvol # Same as summary(pvol) or print(pvol)

Get dimensions
dim(pvol)

Get summary info for the scans in the polar volume
pvol$scans

summary.scan 81

summary.scan Inspect a scan (scan)

Description

R base functions for inspecting a scan (scan) object.

Usage
S3 method for class 'scan'
summary(object, ...)
is.scan(x)

S3 method for class 'scan'

dim(x)
Arguments
object A scan object.
Additional arguments affecting the summary produced.
X A scan object.
Details

A scan (or sweep) is made by the radar at a certain elevation angle. The resulting parameter data
(param) are organized along radar range (bins) and azimuth (rays). A scan (scan) object is a list
containing:
* radar: Radar identifier.
* datetime: Nominal time of the volume to which the scan belongs in UTC.
* params: List of scan parameters (param).
e attributes: List of the scan’s what, where and how attributes.
 geo: List of the scan’s geographic properties:
— lat: Latitude of the radar in decimal degrees.
— lon: Longitude of the radar in decimal degrees.
— height: Height of the radar antenna in meters above sea level.
— elange: Elevation angle of the radar beam for that scan in degrees.
— rscale: Range bin size for that scan in m (e.g. 500 m * 480 bins equals 240 km range).

— ascale: Azimuth bin size for that scan in degrees (e.g. 1 degree * 360 rays equals full
circle).

Value

For is.scan(): TRUE for an object of class scan, otherwise FALSE.

For dim.scan(): number of parameters (param), bins and rays in a scan (scan).

82

See Also
e get_scan()
* example_scan
e plot.scan()
e get_param()

Examples

Load the example scan
scan <- example_scan

Verify that it is an object of class scan
is.scan(scan)

Get summary info
scan # Same as summary(scan) or print(scan)

Get dimensions
dim(scan)

Get summary info for the parameters in the scan
scan$params

summary.vp

summary.vp Inspect a vertical profile (vp)

Description

R base functions for inspecting a vertical profile of biological targets (vp) object.

Usage
S3 method for class 'vp'
summary (object, ...)
is.vp(x)

S3 method for class 'vp'
dim(x)

Arguments

object A vp object.

Additional arguments affecting the summary produced.

X A vp object.

summary.vp

Details

83

A vertical profile of biological targets contains a collection of quantities, organized in different
(typically equally spaced) altitude layers (height bins) above the earth’s surface. A vertical profile
(vp) object is a list containing:

e radar: Radar identifier.

* datetime: Nominal time of the volume to which the scan belongs in UTC.

» data: A data.frame with the profile’s quantities organized per height bin. Use get_quantity()
to access these:

height: Height bin (lower bound) in m above sea level.

u: Speed component west to east in m/s.

v: Speed component north to south in m/s.

w: Vertical speed (unreliable!) in m/s.

ff: Horizontal speed in m/s.

dd: Direction in degrees clockwise from north.

sd_vvp: VVP radial velocity standard deviation in m/s.

gap: Angular data gap detected in T/F.

dbz: Animal reflectivity factor in dBZ.

eta: Animal reflectivity in cm”2/km”3.

dens: Animal density in animals/km”3.

DBZH: Total reflectivity factor (bio + meteo scattering) in dBZ.
n: Number of data points used for the ground speed estimates (quantities u, v, w, ff, dd).

n_all: Number of data points used for the radial velocity standard deviation estimate
(quantity sd_vvp).

n_dbz: Number of data points used for reflectivity-based estimates (quantities dbz, eta,
dens).

n_dbz_all: Number of data points used for the total reflectivity estimate (quantity DBZH).

* attributes: List of the vertical profile’s what, where and how attributes.

Value

For is.vp(): TRUE for an object of class vp, otherwise FALSE.

For dim.vp(): number of heights and quantities in a vertical profile (vp).

Conventions

* NA: Maps to nodata in the ODIM convention: value to denote areas void of data (never radi-
ated).

* NaN: Maps to undetect in the ODIM convention: denote areas below the measurement detec-
tion threshold (radiated but nothing detected). The value is also used when there are too few
datapoints to calculate a quantity.

* 0: Maps to @ in the ODIM convention: denote areas where the quantity has a measured value
of zero (radiated and value zero detected or inferred).

84 summary.vpts

It depends on a radar’s detection threshold or signal to noise ratio whether it safe to assume an
undetect is equivalent to zero. When dealing with close range data only (within 35 km), it is
typically safe to assume aerial densities (dens) and reflectivities (eta) are in fact zero in case of
undetects.

See Also

* calculate_vp()

* read_vpfiles()

e example_vp

e get_quantity()

e plot.vp()

* as.data.frame.vp()

e bind_into_vpts()

Examples

Load the example vertical profile
vp <- example_vp

Verify that it is an object of class vp
is.vp(vp)

Get summary info
vp # Same as summary(vp) or print(vp)

Get dimensions
dim(vp)

summary.vpts Inspect a time series of vertical profiles (vpts)

Description

R base functions for inspecting a time series of vertical profiles (vp) object.

Usage
S3 method for class 'vpts'
summary (object, ...)
is.vpts(x)

S3 method for class 'vpts'
dim(x)

summary.vpts 85

Arguments
object A vpts object.
Additional arguments affecting the summary produced.
X A vpts object.
Details

A time series of vertical profiles contains time-ordered vertical profiles (vp) of a single radar. This
time series can be regular (vp are equally spaced in time) or irregular (time steps between vp are
of unequal length), indicated in the field regular. Irregular time series can be projected onto a
regular time grid with regularize_vpts(). A time series of vertical profile (vp) object is a list
containing:

Value

radar: Radar identifier.

datetime: Nominal times of the profiles (named dates in biorad < 0.4.0) in UTC.
height: Lowest height of the height bins in the profiles in m above sea level.
daterange: Minimum and maximum nominal time of the profiles in UTC.

timesteps: Time differences between the profiles. Element i gives the difference between
profile i and i+1.

data: A list of quantities, each containing a datetime by height matrix with the values.
Use get_quantity() to access these and see summary.vp() for a description of available
quantities.

attributes: List of the vertical profile’s what, where, and how attributes, copied from the
first profile.

regular: Logical indicating whether the time series is regular or not.

For is.vpts(): TRUE for an object of class vpts, otherwise FALSE.

For dim.vpts(): number of datetimes, heights and quantities in a time series of vertical profiles
(vpts).

See Also

bind_into_vpts()
read_vpts()
filter_vpts()
regularize_vpts()
example_vpts
get_quantity()
plot.vp()
as.data.frame.vpts()
Lvpts()

86 sunrise_sunset

Examples

Load the example time series of vertical profiles
vpts <- example_vpts

Verify that it is an object of class vpts
is.vpts(vpts)

Get summary info
vpts # Same as summary(vpts) or print(vpts)

Get dimensions
dim(vpts)

sunrise_sunset Calculate sunrise or sunset for a time and place

Description

Calculate sunrise or sunset for a time and place

Usage

sunrise(date, lon, lat, elev = -0.268, tz = "UTC", force_tz = FALSE)

sunset(date, lon, lat, elev = -0.268, tz = "UTC", force_tz = FALSE)

Arguments
date Date inheriting from class POSIXt or a string interpretable by as.Date.
lon Longitude in decimal degrees.
lat Latitude in decimal degrees.
elev Sun elevation in degrees.
tz output time zone. Ignored if date has an associated time zone already
force_tz whether to convert output to timezone tz. Default FALSE.

Details

The day for which sunrise and sunset are calcuated is given by the input date. Sunrise and sunset
are calculated relative to the moment of solar noon for that date, i.e. the first sunrise before the
moment of solar noon, and the first sunset after the moment of solar noon. Therefore, depending on
the timezone provided, it is possible that the nearest sunrise prior to solar noon occurs a day earlier
than the input date. Similarly, sunset may occur a day later than the input date. See examples for
details.

The angular diameter of the sun is about 0.536 degrees, therefore the moment of sunrise/sunset
corresponds to half that elevation at -0.268 degrees.

This is a convenience function mapping to crepuscule.

update_docker 87

Approximate astronomical formula are used, therefore the moment of sunrise / sunset may be off
by a few minutes

If force_tz is TRUE, the output is converted to the timezone set by tz

Value

The moment of sunrise or sunset for the date set by dateand time zone as specified (by date and
tz) or in UTC if not specified.

Examples

sunrise in the Netherlands
sunrise(”2016-01-01", 5, 53)

sunset in the Netherlands
sunset("2016-01-01", 5, 53)

civil twilight in Ithaca, NY
sunrise("2016-01-01", -76.5, 42.4, elev = -6)

next sunset in South Dakota, USA
sunset("2016-11-15", -98, 45)

Beware that some days have two sunsets, or

two sunrises! E.g. on 5 Oct (local timezone) at
this location sunset is actually on the 6 Oct
in UTC time zone, i.e. the next day
sunset("2016-10-5", -98, 45)

One day later, sunset is again on 6 Oct:
sunset(”2016-10-6", -98, 45)

working in local time zones typically avoids such ambiguities:
sunset(lubridate::as_datetime("2016-06-05",tz="America/Chicago”), -98, 45)
sunset(lubridate::as_datetime("2016-06-06",tz="America/Chicago”), -98, 45)

use force_tz to force output to a specific time zone, by default UTC:
sunset(lubridate::as_datetime("2016-06-05",tz="America/Chicago"), -98, 45, force_tz=TRUE)
sunset(lubridate::as_datetime("2016-06-06",tz="America/Chicago”), -98, 45, force_tz=TRUE)

Also beware of jumps in sunrise and sunset date with longitude:
sunrise(”2016-11-01", 100, 45)
sunrise(”2016-11-01", 102, 45)

update_docker Update Docker image from Docker hub

Description

Pulls and installs the latest Docker image used by bioRad from Docker hub

88 vol2bird_version

Usage

update_docker(mistnet = FALSE)

Arguments
mistnet logical. When True, installs MistNet segmentation model, downloading an ad-
ditional 1GB Docker image (see apply_mistnet for details).
Details

This command pulls the latest vol2bird Docker image from Docker hub. Run this command to
ensure all Docker functionality (e.g. the calculate_vp function) runs at the latest available version.

To install the MistNet segmentation model into bioRad, run update_docker (mistnet = TRUE)

Value

the POSIXct creation date of the installed Docker image

Examples

Not run:
update the vol2bird docker image:
update_docker()

End(Not run)

vol2bird_version Check version of the vol2bird algorithm used by bioRad

Description
Checks that Docker daemon is running correctly on the local system and returns the version of the
installed vol2bird algorithm in the Docker container.

Usage

vol2bird_version(local_install)

Arguments
local_install (optional) String with path to local vol2bird installation, see calculate_vp for
details.
Details

when argument local_install is specified with a path to a local executable of vol2bird, the func-
tion will return the version of this local installation.

https://hub.docker.com/r/adokter/vol2bird/
https://hub.docker.com
https://www.docker.com/

[.ppi 89

Value
an object of class numeric_version, NA if docker system command not available, NaN if Docker
daemon not running, NULL if adokter/vol2bird docker image not available

Examples

Not run:
check installed vol2bird version:
vol2bird_version()

End(Not run)

[.ppi Subset a plan position indicator (ppi)

Description

Select parameters (param) or derived quantities by index from a plan position indicator (ppi).

Usage
S3 method for class 'ppi'
x[i]
Arguments
X A ppi object.
Integer. Index/indices specifying which parameters (param) or derived quanti-
ties to extract.
Value

A ppi object containing a subset of parameters (param).

Examples

Project the example scan as a ppi
ppi <- project_as_ppi(example_scan)

This ppi contains 5 parameters (VRADH DBZH ZDR RHOHV PHIDP)
ppi

Subset ppi to one containing only the first parameter (VRADH)
ppil1]

Subset ppi to one containing the first three parameters (VRADH, DBZH, ZDR)
ppil1:3]

Subset ppi to one without the first 2 parameters (ZDR RHOHV PHIDP)
ppil-1:-2]

90 [.vpts

[.vpts Subset a time series of vertical profiles (vpts)

Description

Select a vertical profile (vp) or a time series of vertical profiles (vpts) by index from a vpts.

Usage
S3 method for class 'vpts'
x[i]

Arguments

X A vpts object.

i Integer. Index/indices specifying which range of vertical profiles to extract.

Value
A vpts object containing a subset of vertical profiles (vp) or a vp object when subsetting a single
vertical profile (vp).

Examples

Load the example time series of vertical profiles
vpts <- example_vpts

This vpts contains 1934 profiles (i.e. datetimes)
dim(vpts)

Subset vpts to extract 10th profile
vpts[10] # A vp object

Subset vpts to extract the 20th to 100th profile
vpts[20:100] # A vpts object with 81 profiles

Subset vpts to remove the first 10 profiles
vpts[-1:-10] # A vpts object with 10 less profiles

Index

+Topic datasets
example_scan, 32
example_vp, 33
example_vpts, 34

[.ppi, 89

[.vpts, 90

Lppi(), 79

[vpts(), 85

apply_mistnet, 3, 88

as.data.frame.vp, 6
as.data.frame.vp(), 84
as.data.frame.vpts (as.data.frame.vp), 6
as.data.frame.vpts(), 85

as.Date, 86

as.P0OSIXct, 23, 31

base::as.data.frame(), 6
beam_distance, 8, 73
beam_height, 8,9, 10, 14, 73
beam_profile, 10, 11, 12, 46, 47
beam_profile_overlap, 11
beam_range, 13, 46
beam_width, 70, 14, 20
bind_into_vpts, 15
bind_into_vpts(), 16, 84, 85

c.vp, 16
calculate_param, 17
calculate_vp, 18, 68, 88
calculate_vp(), 84
check_docker, 22
check_night, 22, 35
composite_ppi, 24
composite_ppi(), 78, 79
convert_legacy, 26
crepuscule, 86

dbz_to_eta, 27, 46
dim.ppi (summary.ppi), 78

91

dim.ppi(), 79

dim.pvol (summary.pvol), 79
dim.pvol(), 80

dim.scan (summary.scan), 81
dim.scan(), 81

dim.vp (summary.vp), 82
dim.vp(), 83

dim.vpts (summary.vpts), 84
dim.vpts(), 85
download_basemap, 28, 50
download_vpfiles, 29

doy (doy_noy), 30
doy_noy, 30

eta_to_dbz, 32
example_scan, 32, 82
example_vp, 33, 84
example_vpts, 34, 85

filter_vpts, 34
filter_vpts(), 85

get_elevation_angles, 36
get_elevation_angles(), 40, 80
get_map, 28
get_odim_object_type, 37
get_param, 37
get_param(), 77, 82
get_quantity, 38
get_quantity(), 7, 83-85
get_scan, 40
get_scan(), 80, 82
ggmap, 49, 50
ggplot, 54, 56

image, 61
integrate_profile, 41, 46, 58
integrate_to_ppi, 12, 44
integrate_to_ppi(), 78, 79
is.param (summary.param), 77

92

is.param(), 77

is.ppi (summary.ppi), 78
is.ppi(), 79

is.pvol (summary.pvol), 79
is.pvol(), 80
is.pvolfile, 48

is.scan (summary.scan), 81
is.scan(), 81

is.vp (summary.vp), 82
is.vp(Q), 83

is.vpfile, 49

is.vpts (summary.vpts), 84
is.vpts(), 85

map, 49
map(), 79

nexrad_to_odim, 52
noy (doy_noy), 30
numeric_version, 89
nyquist_velocity, 53

plot, 57, 59
plot.ppi, 54
plot.ppi(), 79
plot.scan, 55
plot.scan(), 82
plot.vp, 57
plot.vp(), 7, 84, 85
plot.vpi, 58
plot.vpts, 60, 71
plot.vpts(),7

ppi, 25,47, 54, 55, 63
project_as_ppi, 61
project_as_ppi(), 78, 79
pvol, 68

rasterize, 72

rcs, 42—44, 64
rcs(), 65, 74
rcs<-, 65

read_cajun, 66
read_pvolfile, 66
read_pvolfile(), 80
read_vpfiles, 68
read_vpfiles(), 84
read_vpts, 69
read_vpts(), 85
regularize_vpts, 70

regularize_vpts(), 85
res, 25,45, 72

scan, 32

scan_to_raster, 71
scan_to_spatial, 72,73
sd_vvp_threshold, 74
sd_vvp_threshold(), 7, 38, 64, 75
sd_vvp_threshold<-, 75
select_vpfiles, 76
sp::SpatialGridDataFrame, 78
summary . param, 77
summary.param(), 37, 38, 78
summary.ppi, 78
summary.pvol, 79
summary.scan, 81
summary.scan(), 40, 78
summary.vp, 82
summary.vp(), 39, 85
summary.vpts, 84
sunrise, 59

sunrise (sunrise_sunset), 86
sunrise(), 7
sunrise_sunset, 86

sunset (sunrise_sunset), 86
sunset(), 7

tz_lookup_coords, 31
update_docker, 87
viridis, 50
vol2bird_version, 88

vp, 20, 21, 33, 35, 57, 66
vpts, 15, 34, 35, 69, 70

INDEX

	apply_mistnet
	as.data.frame.vp
	beam_distance
	beam_height
	beam_profile
	beam_profile_overlap
	beam_range
	beam_width
	bind_into_vpts
	c.vp
	calculate_param
	calculate_vp
	check_docker
	check_night
	composite_ppi
	convert_legacy
	dbz_to_eta
	download_basemap
	download_vpfiles
	doy_noy
	eta_to_dbz
	example_scan
	example_vp
	example_vpts
	filter_vpts
	get_elevation_angles
	get_odim_object_type
	get_param
	get_quantity
	get_scan
	integrate_profile
	integrate_to_ppi
	is.pvolfile
	is.vpfile
	map
	nexrad_to_odim
	nyquist_velocity
	plot.ppi
	plot.scan
	plot.vp
	plot.vpi
	plot.vpts
	project_as_ppi
	rcs
	rcs<-
	read_cajun
	read_pvolfile
	read_vpfiles
	read_vpts
	regularize_vpts
	scan_to_raster
	scan_to_spatial
	sd_vvp_threshold
	sd_vvp_threshold<-
	select_vpfiles
	summary.param
	summary.ppi
	summary.pvol
	summary.scan
	summary.vp
	summary.vpts
	sunrise_sunset
	update_docker
	vol2bird_version
	[.ppi
	[.vpts
	Index

