
Package ‘binGroup2’
April 7, 2020

Type Package

Title Identification and Estimation using Group Testing

Version 1.0.2

Date 2020-04-06

Maintainer Brianna Hitt <brianna.hitt@huskers.unl.edu>

Description Methods for the group testing identification problem: 1) Operating
characteristics (e.g., expected number of tests) for commonly used
hierarchical and array-based algorithms, and 2) Optimal testing
configurations for these same algorithms. Calculations for algorithms with
single-disease assays are described in Hitt et al. (2019)
<doi:10.1002/sim.8341> and with multiplex assays are described in Bilder
et al. (2019) <doi:10.1111/biom.12988> and Hou et al. (2020)
<doi:10.1093/biostatistics/kxy058>. Methods for the group testing
estimation problem: 1) Estimation and inference procedures for an overall
prevalence, and 2) Regression modeling for commonly used hierarchical and
array-based algorithms. Estimation and confidence interval methods are
described in Biggerstaff (2008) <doi:10.1198/108571108X379055> and
Hepworth & Biggerstaff (2017) <doi:10.1007/s13253-017-0297-2>.
Regression modeling is described in Xie (2001) <doi:10.1002/sim.817>.

Imports graphics, grDevices, partitions, rBeta2009, Rcpp (>= 1.0.0),
Rdpack, stats, utils

RdMacros Rdpack

LinkingTo Rcpp, RcppArmadillo

License GPL (>= 3)

Encoding UTF-8

LazyData true

RoxygenNote 7.1.0

NeedsCompilation yes

Author Brianna Hitt [aut, cre] (<https://orcid.org/0000-0002-0645-0067>),
Christopher Bilder [aut] (<https://orcid.org/0000-0002-2848-8576>),
Frank Schaarschmidt [aut] (<https://orcid.org/0000-0002-6599-3803>),
Brad Biggerstaff [aut] (<https://orcid.org/0000-0002-3105-3530>),

1

2 R topics documented:

Christopher McMahan [aut] (<https://orcid.org/0000-0001-5056-9615>),
Joshua Tebbs [aut] (<https://orcid.org/0000-0002-6762-7241>),
Boan Zhang [ctb],
Michael Black [ctb],
Peijie Hou [ctb],
Peng Chen [ctb]

Repository CRAN

Date/Publication 2020-04-07 16:00:06 UTC

R topics documented:

binGroup2 . 3
designEst . 8
designPower . 10
expectOrderBeta . 13
gtPower . 15
gtReg . 17
gtRegControl . 22
gtSim . 24
gtTest . 26
gtWidth . 28
halving . 30
hivsurv . 31
informativeArrayProb . 32
operatingCharacteristics1 . 34
operatingCharacteristics2 . 40
OTC1 . 48
OTC2 . 54
predict.gtReg . 60
print.designPower . 62
print.gtTest . 63
print.propCI . 63
print.propDiffCI . 64
print.summary.gtReg . 65
propCI . 66
propDiffCI . 70
Sterrett . 73
summary.gtReg . 75
summary.opChar . 77
summary.OTC . 79

Index 83

binGroup2 3

binGroup2 binGroup2: Identification and Estimation using Group Testing

Description

Methods for the group testing identification and estimation problems.

Details

Methods for identification of positive items in group testing designs: Operating characteristics (e.g.,
expected number of tests) are calculated for commonly used hierarchical and array-based algo-
rithms. Optimal testing configurations for an algorithm can be found as well. Please see Hitt et al.
(2019) for specific details.

Methods for estimation and inference for proportions in group testing designs: For estimating one
proportion or the difference of proportions, confidence interval methods are included that account
for different pool sizes. Functions for hypothesis testing of proportions, calculation of power, and
calculation of the expected width of confidence intervals are also included. Furthermore, regression
methods and simulation of group testing data are implemented for simple pooling, halving, and
array testing designs.

The binGroup2 package is based upon the binGroup package that was originally designed for
the group testing estimation problem. Over time, additional functions for estimation and for the
group testing identification problem were included. Due to the diverse styles resulting from these
additions, we have created binGroup2 as a way to unify functions in a coherent structure and incor-
porate additional functions for identification. The name “binGroup” originates from the assumption
in basic estimation for group testing that the number of positive groups has a binomial distribution.
While more advanced estimation methods no longer make this assumption, we continue with the
binGroup name for consistency.

Bilder (2019a,b) provide introductions to group testing. These papers and additional details about
group testing are available at http://chrisbilder.com/grouptesting.

This research was supported by the National Institutes of Health under grant R01 AI121351.

Identification: The binGroup2 package focuses on the group testing identification problem using
hierarchical and array-based group testing algorithms.
The OTC1 function implements a number of group testing algorithms, described in Hitt et al.
(2019), which calculate the operating characteristics and find the optimal testing configuration
over a range of possible initial group sizes and/or testing configurations (sets of subsequent group
sizes). The OTC2 function does the same with a multiplex assay that tests for two diseases.
The operatingCharacteristics1 (opChar1) and operatingCharacteristics2 (opChar2) func-
tions calculate operating characteristics for a specified testing configuration with assays that test
for one and two diseases, respectively.
These functions allow the sensitivity and specificity to differ across stages of testing. This means
that the accuracy of the diagnostic test can differ for stages in a hierarchical testing algorithm or
between row/column testing and individual testing in an array testing algorithm.

http://chrisbilder.com/grouptesting

4 binGroup2

Estimation: The binGroup2 package also provides functions for estimation and inference for
proportions in group testing designs.
The propCI function calculates the point estimate and confidence intervals for a single proportion
from group testing data. The propDiffCI function does the same for the difference of proportions.
A number of confidence interval methods are available for groups of equal or different sizes.
The gtWidth function calculates the expected width of confidence intervals in group testing. The
gtTest function calculates p-values for hypothesis tests of single proportions. The gtPower func-
tion calculates power to reject a hypothesis.
The designPower function iterates either the number of groups or group size in a one-parameter
group testing design until a pre-specified power level is achieved. The designEst function finds
the optimal group size corresponding to the minimal mean-squared error of the point estimator.
The gtReg function implements regression methods and the gtSim function simulates group test-
ing data for simple pooling, halving, and array testing designs.

Author(s)

Maintainer: Brianna Hitt <brianna.hitt@huskers.unl.edu> (ORCID)

Authors:

• Christopher Bilder (ORCID)

• Frank Schaarschmidt (ORCID)

• Brad Biggerstaff (ORCID)

• Christopher McMahan (ORCID)

• Joshua Tebbs (ORCID)

Other contributors:

• Boan Zhang [contributor]

• Michael Black [contributor]

• Peijie Hou [contributor]

• Peng Chen [contributor]

References

Altman, D., Bland, J. (1994). “Diagnostic tests 1: Sensitivity and specificity.” BMJ, 308, 1552.

Altman, D., Bland, J. (1994). “Diagnostic tests 2: Predictive values.” BMJ, 309, 102.

Biggerstaff, B. (2008). “Confidence intervals for the difference of proportions estimated from
pooled samples.” Journal of Agricultural, Biological, and Environmental Statistics, 13, 478–496.
doi: 10.1198/108571108X379055.

Bilder, C., Tebbs, J., Chen, P. (2010). “Informative retesting.” Journal of the American Statistical
Association, 105, 942–955. doi: 10.1198/jasa.2010.ap09231.

Bilder, C., Tebbs, J., McMahan, C. (2019). “Informative group testing for multiplex assays.” Bio-
metrics, 75, 278–288. doi: 10.1111/biom.12988.

Bilder, C. (2019a). “Group Testing for Estimation.” Wiley StatsRef: Statistics Reference Online.
doi: 10.1002/9781118445112.stat08231.

https://orcid.org/0000-0002-0645-0067
https://orcid.org/0000-0002-2848-8576
https://orcid.org/0000-0002-6599-3803
https://orcid.org/0000-0002-3105-3530
https://orcid.org/0000-0001-5056-9615
https://orcid.org/0000-0002-6762-7241
https://doi.org/10.1198/108571108X379055
https://doi.org/10.1198/jasa.2010.ap09231
https://doi.org/10.1111/biom.12988
https://doi.org/10.1002/9781118445112.stat08231

binGroup2 5

Bilder, C. (2019b). “Group Testing for Identification.” Wiley StatsRef: Statistics Reference Online.
doi: 10.1002/9781118445112.stat08227.

Black, M., Bilder, C., Tebbs, J. (2012). “Group testing in heterogeneous populations by using
halving algorithms.” Journal of the Royal Statistical Society. Series C: Applied Statistics, 61, 277–
290. doi: 10.1111/j.14679876.2011.01008.x.

Black, M., Bilder, C., Tebbs, J. (2015). “Optimal retesting configurations for hierarchical group test-
ing.” Journal of the Royal Statistical Society. Series C: Applied Statistics, 64, 693–710. doi: 10.1111/
rssc.12097.

Graff, L., Roeloffs, R. (1972). “Group testing in the presence of test error; an extension of the
Dorfman procedure.” Technometrics, 14, 113–122. doi: 10.1080/00401706.1972.10488888.

Hepworth, G. (1996). “Exact confidence intervals for proportions estimated by group testing.”
Biometrics, 52, 1134–1146.

Hepworth, G., Biggerstaff, B. (2017). “Bias correction in estimating proportions by pooled test-
ing.” Journal of Agricultural, Biological, and Environmental Statistics, 22, 602–614. doi: 10.1007/
s1325301702972.

Hitt, B., Bilder, C., Tebbs, J., McMahan, C. (2019). “The objective function controversy for group
testing: Much ado about nothing?” Statistics in Medicine, 38, 4912–4923. doi: 10.1002/sim.8341.

Hou, P., Tebbs, J., Wang, D., McMahan, C., Bilder, C. (2020). “Array testing with multiplex assays.”
To appear in Biostatistics.

Malinovsky, Y., Albert, P., Roy, A. (2016). “Reader reaction: A note on the evaluation of group
testing algorithms in the presence of misclassification.” Biometrics, 72, 299–302. doi: 10.1111/
biom.12385.

McMahan, C., Tebbs, J., Bilder, C. (2012a). “Informative Dorfman Screening.” Biometrics, 68,
287–296. doi: 10.1111/j.15410420.2011.01644.x.

McMahan, C., Tebbs, J., Bilder, C. (2012b). “Two-Dimensional Informative Array Testing.” Bio-
metrics, 68, 793–804. doi: 10.1111/j.15410420.2011.01726.x.

Schaarschmidt, F. (2007). “Experimental design for one-sided confidence intervals or hypothesis
tests in binomial group testing.” Communications in Biometry and Crop Science, 2, 32–40. ISSN
1896-0782.

Swallow, W. (1985). “Group testing for estimating infection rates and probabilities of disease trans-
mission.” Phytopathology, 75, 882–889. doi: 10.1094/Phyto75882.

Tebbs, J., Bilder, C. (2004). “Confidence interval procedures for the probability of disease transmis-
sion in multiple-vector-transfer designs.” Journal of Agricultural, Biological, and Environmental
Statistics, 9, 75–90. doi: 10.1198/1085711043127.

Vansteelandt, S., Goetghebeur, E., Verstraeten, T. (2000). “Regression models for disease preva-
lence with diagnostic tests on pools of serum samples.” Biometrics, 56, 1126–1133. doi: 10.1111/
j.0006341x.2000.01126.x.

Xie, M. (2001). “Regression analysis of group testing samples.” Statistics in Medicine, 20, 1957–
1969. doi: 10.1002/sim.817.

Examples

Estimated running time for all examples was calculated
using a computer with 16 GB of RAM and one core of

https://doi.org/10.1002/9781118445112.stat08227
https://doi.org/10.1111/j.1467-9876.2011.01008.x
https://doi.org/10.1111/rssc.12097
https://doi.org/10.1111/rssc.12097
https://doi.org/10.1080/00401706.1972.10488888
https://doi.org/10.1007/s13253-017-0297-2
https://doi.org/10.1007/s13253-017-0297-2
https://doi.org/10.1002/sim.8341
https://doi.org/10.1111/biom.12385
https://doi.org/10.1111/biom.12385
https://doi.org/10.1111/j.1541-0420.2011.01644.x
https://doi.org/10.1111/j.1541-0420.2011.01726.x
https://doi.org/10.1094/Phyto-75-882
https://doi.org/10.1198/1085711043127
https://doi.org/10.1111/j.0006-341x.2000.01126.x
https://doi.org/10.1111/j.0006-341x.2000.01126.x
https://doi.org/10.1002/sim.817

6 binGroup2

an Intel i7-6500U processor. Please take this into
account when interpreting the run times given.

1) Identification using hierarchical and array-based group testing
algorithms with an assay that tests for one disease.

1.1) Find the optimal testing configuration over a range of initial
group sizes, using informative three-stage hierarchical testing, where
p denotes the overall prevalence of disease;
Se denotes the sensitivity of the diagnostic test;
Sp denotes the specificity of the diagnostic test;
group.sz denotes the range of initial pool sizes for consideration; and
obj.fn specifies the objective functions for which to find results.

This example takes approximately 25 seconds to run.

set.seed(1002)
results1 <- OTC1(algorithm="ID3", p=0.01, Se=0.95, Sp=0.95,

group.sz=3:30, obj.fn=c("ET", "MAR"), alpha=2)
summary(results1)

1.2) Find the optimal testing configuration using non-informative
array testing without master pooling.
The sensitivity and specificity differ for row/column testing and
individual testing.

This example takes approximately 15 seconds to run.

results2 <- OTC1(algorithm="A2", p=0.05, Se=c(0.95, 0.99),
Sp=c(0.95, 0.98), group.sz=3:20, obj.fn=c("ET", "MAR"))

summary(results2)

1.3) Calculate the operating characteristics using informative
two-stage hierarchical (Dorfman) testing, implemented via the
pool-specific optimal Dorfman (PSOD) method described in
McMahan et al. (2012a).
Hierarchical testing configurations are specified by a matrix
in the hier.config argument. The rows of the matrix correspond
to the stages of the hierarchical testing algorithm, the columns
correspond to the individuals to be tested, and the cell values
correspond to the group number of each individual at each stage.
config.mat <- matrix(data=c(rep(1, 5), rep(2, 4), 3, 1:10),

nrow=2, ncol=10, byrow=TRUE)
set.seed(8791)
results3 <- opChar1(algorithm="ID2", p=0.02, Se=0.95, Sp=0.99,

hier.config=config.mat, alpha=0.5)
summary(results3)

1.4) Calculate the operating characteristics using non-informative
four-stage hierarchical testing.
config.mat <- matrix(data=c(rep(1, 15), rep(c(1, 2, 3), each=5),

rep(1, 3), rep(2, 2), rep(3, 3), rep(4, 2),
rep(5, 4), 6, 1:15),

binGroup2 7

nrow=4, ncol=15, byrow=TRUE)
results4 <- opChar1(algorithm="D4", p=0.008, Se=0.96, Sp=0.98,

hier.config=config.mat, a=c(1, 4, 6, 9, 11, 15))
summary(results4)

2) Identification using hierarchical and array-based group testing
algorithms with a multiplex assay that tests for two diseases.

2.1) Find the optimal testing configuration using non-informative
two-stage hierarchical testing, given
p.vec, a vector of overall joint probabilities of disease;
Se, a vector of sensitivity values for each disease; and
Sp, a vector of specificity values for each disease.
Se and Sp can also be specified as a matrix, where one value
is specified for each disease at each stage of testing.
results5 <- OTC2(algorithm="D2", p.vec=c(0.90, 0.04, 0.04, 0.02),

Se=c(0.99, 0.99), Sp=c(0.99, 0.99), group.sz=3:50)
summary(results5)

2.2) Calculate the operating characteristics for informative
five-stage hierarchical testing, given
alpha.vec, a vector of shape parameters for the Dirichlet distribution;
Se, a matrix of sensitivity values; and
Sp, a matrix of specificity values.
Se <- matrix(data=rep(0.95, 10), nrow=2, ncol=5, byrow=TRUE)
Sp <- matrix(data=rep(0.99, 10), nrow=2, ncol=5, byrow=TRUE)
config.mat <- matrix(data=c(rep(1, 24), rep(1, 18), rep(2, 6),

rep(1, 9), rep(2, 9), rep(3, 4), 4, 5,
rep(1, 6), rep(2, 3), rep(3, 5), rep(4, 4),
rep(5, 3), 6, rep(NA, 2), 1:21, rep(NA, 3)),

nrow=5, ncol=24, byrow=TRUE)
results6 <- opChar2(algorithm="ID5", alpha=c(18.25, 0.75, 0.75, 0.25),

Se=Se, Sp=Sp, hier.config=config.mat)
summary(results6)

3) Estimation of the overall disease prevalence and calculation
of confidence intervals.

3.1) Suppose 3 groups out of 24 test positively.
Each group has a size of 7.
propCI(x=3, m=7, n=24, ci.method="CP")
propCI(x=3, m=7, n=24, ci.method="Blaker")
propCI(x=3, m=7, n=24, ci.method="score")
propCI(x=3, m=7, n=24, ci.method="soc")

3.2) Consider the following situation:
0 out of 5 groups test positively with groups
of size 1 (individual testing),
0 out of 5 groups test positively with groups of size 5,
1 out of 5 groups test positively with groups of size 10,
2 out of 5 groups test positively with groups of size 50
propCI(x=c(0,0,1,2), m=c(1,5,10,50), n=c(5,5,5,5),

8 designEst

pt.method="Gart", ci.method="skew-score")

4) Estimate a group testing regression model.

4.1) Fit a group testing regression model with
simple pooling using the "hivsurv" dataset.
data(hivsurv)
fit1 <- gtReg(type="sp", formula = groupres ~ AGE + EDUC.,

data = hivsurv, groupn = gnum, sens = 0.9,
spec = 0.9, method = "Xie")

summary(fit1)

4.2) Simulate data for the halving protocol, and
fit a group testing regression model.
set.seed(46)
gt.data <- gtSim(type="halving", par=c(-6, 0.1),

gshape=17, gscale=1.4, size1=1000,
size2=5, sens=0.95, spec=0.95)

fit2 <- gtReg(type="halving", formula=gres~x,
data=gt.data, groupn=groupn, subg=subgroup,
retest=retest, sens=0.95, spec=0.95,
start=c(-6, 0.1), trace=TRUE)

summary(fit2)

This example takes approximately 20 seconds to run.
4.3) Simulate data in 5x6 array testing form, and
fit a group testing regression model.
set.seed(9128)
array.sim <- gtSim(type="array", par=c(-7, 0.1),

size1=c(5,6), size2=c(4,5), sens=0.95, spec=0.95)
set1 <- array.sim$dframe

fit3 <- gtReg(type="array",
formula=cbind(col.resp, row.resp)~x,
data=set1, coln=coln, rown=rown,
arrayn=arrayn, sens=0.95, spec=0.95,
tol=0.005, n.gibbs=2000, trace=TRUE)

summary(fit3)

designEst Optimal group size determination based on minimal MSE when esti-
mating an overall prevalence

Description

Find the group size s for a fixed number of groups n and an assumed true proportion p.tr, for which
the mean squared error (MSE) of the point estimator is minimal and bias is within a restriction.

designEst 9

Usage

designEst(n, smax, p.tr, biasrest = 0.05)

Arguments

n integer specifying the fixed number of groups.

smax integer specifying the maximum group size allowed in the planning of the de-
sign.

p.tr assumed true proportion of the "positive" trait in the population, specified as a
value between 0 and 1.

biasrest a value between 0 and 1 specifying the absolute bias maximally allowed.

Details

Swallow (1985) recommends the use of the upper bound of the expected range of the true proportion
p.tr for optimization of the design. For further details, see Swallow (1985). Note that the specified
number of groups must be less than n = 1020.

Value

A list containing:

sout the group size s for which the MSE of the estimator is minimal for the given n
and p.tr and for which the bias restriction biasrest is not violated. In the case
that the minimum MSE is achieved for a group size s >= smax, the value of
smax is returned.

varp the variance of the estimator.

mse the mean square error of the estimator.

bias the bias of the estimator.

exp the expected value of the estimator.

Author(s)

This function was originally written by Frank Schaarschmidt as the estDesign function for the
binGroup package.

References

Swallow, W. (1985). “Group testing for estimating infection rates and probabilities of disease trans-
mission.” Phytopathology, 75, 882–889. doi: 10.1094/Phyto75882.

See Also

designPower for choice of the group testing design according to the power in a hypothesis test.

Other estimation functions: designPower(), gtPower(), gtTest(), gtWidth(), propCI(), propDiffCI()

https://doi.org/10.1094/Phyto-75-882

10 designPower

Examples

Compare to Table 1 in Swallow (1985):
designEst(n=10, smax=100, p.tr=0.001)
designEst(n=10, smax=100, p.tr=0.01)
designEst(n=25, smax=100, p.tr=0.05)
designEst(n=40, smax=100, p.tr=0.25)
designEst(n=200, smax=100, p.tr=0.30)

designPower Number of groups or group size needed to achieve a power level in
one parameter group testing

Description

For a fixed number of groups (group size), determine the group size (number of groups) needed to
obtain a specified power level to reject a hypothesis for a proportion in one parameter group testing.

Usage

designPower(
n,
s,
fixed = "s",
delta,
p.hyp,
conf.level = 0.95,
power = 0.8,
alternative = "two.sided",
method = "CP",
biasrest = 0.05

)

Arguments

n integer specifying the maximum number of groups n allowed when fixed="s"
or the fixed number of groups when fixed="n". When fixed="s", a vector
of two integers giving the range of n which power shall be iterated over is also
allowed.

s integer specifying the fixed group size (number of units per group) when fixed="s"
or the maximum group size allowed in the planning of the design when fixed="n".

fixed character string specifying whether the number of groups "n" or the group size
"s" is to be held at a fixed value.

delta the absolute difference between the true proportion and the hypothesized pro-
portion which shall be detectable with the specified power.

p.hyp the proportion in the hypotheses, specified as a value between 0 and 1.

conf.level confidence level of the decision. The default confidence level is 0.95.

designPower 11

power level of power to be achieved, specified as a probability between 0 and 1.

alternative character string defining the alternative hypothesis, either "two.sided", "less",
or "greater".

method character string specifying the confidence interval method (see propCI) to be
used.

biasrest a value between 0 and 1, specifying the absolute bias maximally allowed for a
point estimate.

Details

The power of a hypothesis test performed by a confidence interval is defined as the probability that
a confidence interval excludes the thresholdparameter (p.hyp) of the hypothesis.

When fixed="s", this function increases the number of groups until a pre-specified level of power
is reached or the maximum number of groups n is reached. Since the power does not increase mono-
tonely with increasing n for single proportions but oscillates between local maxima and minima, the
simple iteration given here will generally result in selecting n for which the given confidence in-
terval method shows a local minimum of coverage if the null hypothesis is true. Bias decreases
monotonely with increasing the number of groups (if other parameters are fixed). The resulting
problems of choosing a number of groups which results in satisfactory power are solved in the
following manner:

In the case that the pre-specified power is reached within the given range of n, the smallest n is
returned for which at least this power is reached, as well as the actual power for this n.

In the case that the pre-specified power is not reached within the given value, that n is returned for
which maximum power is achieved, and the corresponding value of power.

In the case that the bias restriction is violated even for the largest n within the given range of n,
simply that n will be returned for which power was largest in the given range.

Especially for large n, the calculation time may become large (particularly for the Blaker interval).
Alternatively, the function gtPower might be used instead to calculate power and bias only for some
particular combinations of the input arguments.

When fixed="n", this function increases the size of groups until a pre-specified level of power is
reached. Since the power does not increase monotonely with increasing s for single proportions but
oscillates between local maxima and minima, the simple iteration given here will generally result
in selecting s for which the given confidence interval method shows a local minimum of coverage
if the null hypothesis is true. Since the positive bias of the estimator in group testing increases with
increasing group size, this function checks whether the bias is smaller than a pre-specified level
(bias.rest). If the bias violates this restriction for a given combination n, s, and delta, s will not
be further increased and the actual power of the last acceptable group size s is returned.

Value

A list containing:

nout the number of groups necessary to reach the power with the specified parame-
ters, when fixed="s" only.

sout the group size necessary to meet the conditions, when fixed="n" only.

12 designPower

powerout the power for the specified parameters and the selected number of groups n when
fixed="s" or the selected group size s when fixed="n".

biasout the bias for the specified parameters and the selected number of groups n when
fixed="s" or the selected group size s when fixed="n".

power.reached a logical value indicating whether the specified level of power was reached.

bias.reached a logical value indicating whether the maximum allowed bias was reached.

nit the number of groups for each iteration.

sit the group size for each iteration.

powerit the power achieved for each iteration.

biasit the bias for each iteration.

maxit the iteration at which the maximum power was reached, or the total number of
iterations.

alternative the alternative hypothesis specified by the user.

p.hyp the hypothesized proportion specified by the user.

delta the absolute difference between the true proportion and the hypothesized pro-
portion specified by the user.

power the desired power specified by the user.

biasrest the maximum absolute bias specified by the user.

Author(s)

The nDesign and sDesign functions were originally written by Frank Schaarschmidt for the binGroup
package. Minor modifications were made for inclusion in the binGroup2 package.

References

Swallow, W. (1985). “Group testing for estimating infection rates and probabilities of disease trans-
mission.” Phytopathology, 75, 882–889. doi: 10.1094/Phyto75882.

See Also

gtPower for calculation of power and bias depending on n, s, delta, p.hyp, conf.level, and
method, and designEst to choose the group size s according to the minimal mse of the estimator,
as given in Swallow (1985).

Other estimation functions: designEst(), gtPower(), gtTest(), gtWidth(), propCI(), propDiffCI()

Examples

Assume the objective is to show that a proportion is
smaller than 0.005 (i.e. 0.5 percent) with a power
of 0.80 (i.e. 80 percent) if the unknown proportion
in the population is 0.003 (i.e. 0.3 percent);
thus, a delta of 0.002 shall be detected.
A 95% Clopper Pearson CI shall be used.
The maximum group size because of limited
sensitivity of the diagnostic test might be s=20 and we

https://doi.org/10.1094/Phyto-75-882

expectOrderBeta 13

can only afford to perform maximally 100 tests:
designPower(n=100, s=20, delta=0.002, p.hyp=0.005, fixed="s",

alternative="less", method="CP", power=0.8)

One might accept to detect delta=0.004,
i.e. reject H0: p>=0.005 with power 80 percent
when the true proportion is 0.001:
designPower(n=100, s=20, delta=0.004, p.hyp=0.005, fixed="s",

alternative="less", method="CP", power=0.8)

Power for a design with a fixed group size of s=1
(individual testing).
designPower(n=500, s=1, delta=0.05, p.hyp=0.10,

fixed="s", method="CP", power=0.80)

Assume that objective is to show that a proportion
is smaller than 0.005 (i.e. 0.5%) with a
power of 0.80 (i.e. 80%) if the unknown proportion
in the population is 0.003 (i.e. 0.3%); thus, a
delta = 0.002 shall be detected.
A 95% Clopper-Pearson CI shall be used.
The maximum number of groups might be 30, where the
overall sensitivity is not limited until group
size s=100.
designPower(s=100, n=30, delta=0.002, p.hyp=0.005, fixed="n",

alternative="less", method="CP", power=0.8)

One might accept to detect delta=0.004,
i.e. reject H0: p>=0.005 with power 80 percent
when the true proportion is 0.001:
designPower(s=100, n=30, delta=0.004, p.hyp=0.005, fixed="n",

alternative="less", method="CP", power=0.8)
designPower(s=100, n=30, delta=0.004, p.hyp=0.005, fixed="n",

alternative="less", method="score", power=0.8)

expectOrderBeta Determine a vector of probabilities for informative group testing al-
gorithms

Description

Find the expected value of order statistics from a beta distribution. This function is used to provide
a set of individual risk probabilities for informative group testing.

Usage

expectOrderBeta(p, alpha, grp.sz, ...)

14 expectOrderBeta

Arguments

p overall probability of disease that will be used to determine a vector of individual
risk probabilities. This is the expected value of a random variable with a beta
distribution, α

α+β .
alpha a shape parameter for the beta distribution that specifies the degree of hetero-

geneity for the determined probability vector.
grp.sz the number of total individuals for which to determine risk probabilities.
... arguments to be passed to the beta.dist function written by Michael Black for

Black et al. (2015).

Details

This function uses the beta.dist function from Black et al. (2015) to determine a vector of individ-
ual risk probabilities, ordered from least to greatest. Depending on the specified probability, α level,
and overall group size, simulation may be necessary in order to determine the probabilities. For this
reason, the user should set a seed in order to reproduce results. The number of simulations can
be specified by the user, with 10,000 as the default. The expectOrderBeta function augments the
beta.dist function by checking whether simulation is needed before attempting to determine the
probabilities. The expectOrderBeta function allows for the number of simulations to be passed on
to the beta.dist function as an additional argument. See Black et al. (2015) for additional details
on the original beta.dist function.

Value

A vector of individual risk probabilities.

Author(s)

Brianna D. Hitt

References

Black, M., Bilder, C., Tebbs, J. (2015). “Optimal retesting configurations for hierarchical group test-
ing.” Journal of the Royal Statistical Society. Series C: Applied Statistics, 64, 693–710. doi: 10.1111/
rssc.12097.

See Also

expectOrderBeta for generating a vector of individual risk probabilities and informativeArrayProb
for arranging a vector of individual risk probabilities in a matrix for informative array testing with-
out master pooling.

Examples

set.seed(8791)
expectOrderBeta(p=0.03, alpha=0.5, grp.sz=100)

set.seed(52613)
expectOrderBeta(p=0.005, alpha=2, grp.sz=40, num.sim=5000)

https://doi.org/10.1111/rssc.12097
https://doi.org/10.1111/rssc.12097

gtPower 15

gtPower Power to reject a hypothesis for one proportion in group testing

Description

This function calculates the power to reject a hypothesis in a group testing experiment, using con-
fidence intervals for the decision. This function also calculates the bias of the point estimator for a
given n, s, and true, unknown proportion.

Usage

gtPower(
n,
s,
delta,
p.hyp,
conf.level = 0.95,
method = "CP",
alternative = "two.sided"

)

Arguments

n integer specifying the number of groups. A vector of integers is also allowed.

s integer specifying the common group size. A vector of integers is also allowed.

delta the absolute difference between the true proportion and the hypothesized pro-
portion. A vector is also allowed.

p.hyp the proportion in the hypotheses, specified as a value between 0 and 1.

conf.level confidence level required for the decision on the hypotheses.

method character string specifying the confidence interval method (see propCI) to be
used.

alternative character string defining the alternative hypothesis, either "two.sided", "less",
or "greater".

Details

The power of a hypothesis test performed by a confidence interval is defined as the probability that
a confidence interval excludes the threshold parameter (p.hyp) of the null hypothesis, as described
in Schaarschmidt (2007). Due to discreteness, the power does not increase monotonely for an
increasing number of groups n or group size s, but exhibits local maxima and minima, depending
on n, s, p.hyp, and conf.level.

Additional to the power, the bias of the point estimator is calculated according to Swallow (1985).
If vectors are specified for n, s, and (or) delta, a matrix will be constructed and power and bias are
calculated for each line in this matrix.

16 gtPower

Value

A matrix containing the following columns:

ns a vector of the total sample size, n ∗ s.
n a vector of the number of groups.

s a vector of the group sizes.

delta a vector of the delta values.

power the power to reject the given null hypothesis.

bias the bias of the estimator for the specified n, s, and the true proportion.

Author(s)

This function was originally written as bgtPower by Frank Schaarschmidt for the binGroup pack-
age. Minor modifications have been made for inclusion of the function in the binGroup2 package.

References

Schaarschmidt, F. (2007). “Experimental design for one-sided confidence intervals or hypothesis
tests in binomial group testing.” Communications in Biometry and Crop Science, 2, 32–40. ISSN
1896-0782.

Swallow, W. (1985). “Group testing for estimating infection rates and probabilities of disease trans-
mission.” Phytopathology, 75, 882–889. doi: 10.1094/Phyto75882.

See Also

propCI for confidence intervals and gtTest for hypothesis tests for one proportion from a group
testing experiment.

Other estimation functions: designEst(), designPower(), gtTest(), gtWidth(), propCI(),
propDiffCI()

Examples

Calculate the power for the design
in the example given in Tebbs and Bilder(2004):
n=24 groups each containing 7 insects
if the true proportion of virus vectors
in the population is 0.04 (4 percent),
the power to reject H0: p>=0.1 using an
upper Clopper-Pearson ("CP") confidence interval
is calculated with the following call:
gtPower(n=24, s=7, delta=0.06, p.hyp=0.1,

conf.level=0.95, alternative="less", method="CP")

Explore development of power and bias for varying
n, s, delta. How much can we decrease the number of
groups (costly tests to be performed) by pooling the same
number of 320 individuals to groups of increasing size
without largely decreasing power?

https://doi.org/10.1094/Phyto-75-882

gtReg 17

gtPower(n=c(320,160,80,64,40,32,20,10,5),
s=c(1,2,4,5,8,10,16,32,64), delta=0.01, p.hyp=0.02)

What happens to the power for increasing differences
between the true proportion and the threshold proportion?
gtPower(n=50, s=10, delta=seq(from=0, to=0.01, by=0.001),

p.hyp=0.01, method="CP")

Calculate power with a group size of 1 (individual testing).
gtPower(n=100, s=1, delta=seq(from=0, to=0.01, by=0.001),

p.hyp=0.01, method="CP")

gtReg Fitting group testing regression models

Description

Fits the group testing regression model specified through a symbolic description of the linear predic-
tor and descriptions of the group testing setting. This function allows for fitting regression models
with simple pooling, halving, or array testing data.

Usage

gtReg(
type = "sp",
formula,
data,
groupn = NULL,
subg = NULL,
coln = NULL,
rown = NULL,
arrayn = NULL,
retest = NULL,
sens = 1,
spec = 1,
linkf = c("logit", "probit", "cloglog"),
method = c("Vansteelandt", "Xie"),
sens.ind = NULL,
spec.ind = NULL,
start = NULL,
control = gtRegControl(...),
...

)

Arguments

type "sp" for simple pooling, "halving" for halving protocol, or "array" for array
testing. See ’Details’ for descriptions of the group testing algorithms.

18 gtReg

formula an object of class "formula" (or one that can be coerced to that class); a symbolic
description of the model to be fitted. The details of model specification are under
’Details’.

data an optional data frame, list, or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which gtReg is called.

groupn a vector, list, or data frame of the group numbers that designates individuals
to groups (for use with simple pooling, type="sp", or the halving protocol,
type="halving").

subg a vector, list, or data frame of the group numbers that designates individuals to
subgroups (for use with the halving protocol, type="halving").

coln a vector, list, or data frame that specifies the column group number for each
sample (for use with array testing, type="array").

rown a vector, list, or data frame that specifies the row group number for each sample
(for use with array testing, type="array").

arrayn a vector, list, or data frame that specifies the array number for each sample (for
use with array testing, type="array").

retest a vector, list, or data frame of individual retest results. Default value is NULL for
no retests. See ’Details’ for details on how to specify retest.

sens sensitivity of the test. Default value is set to 1.

spec specificity of the test. Default value is set to 1.

linkf a character string specifying one of the three link functions for a binomial model:
"logit" (default), "probit", or "cloglog".

method the method to fit the regression model. Options include "Vansteelandt" (de-
fault) or "Xie". The "Vansteelandt" option finds estimates by directly max-
imizing the likelihood function based on the group responses, while the "Xie"
option uses the EM algorithm to maximize the likelihood function in terms of
the unobserved individual responses.

sens.ind sensitivity of the individual retests. If NULL, set to be equal to sens.

spec.ind specificity of the individual retests. If NULL, set to be equal to spec.

start starting values for the parameters in the linear predictor.

control a list of parameters for controlling the fitting process in method "Xie". These
parameters will be passed to the gtRegControl function for use.

... arguments to be passed to gtRegControl by default. See argument control.

Details

With simple pooling and halving, a typical predictor has the form groupresp ~ covariates
where groupresp is the (numeric) group response vector. With array testing, individual samples
are placed in a matrix-like grid where samples are pooled within each row and within each column.
This leads to two kinds of group responses: row and column group responses. Thus, a typical
predictor has the form cbind(col.resp, row.resp) ~ covariates, where col.resp is the
(numeric) column group response vector and row.resp is the (numeric) row group response vector.

gtReg 19

For all methods, covariates is a series of terms which specifies a linear predictor for individual
responses. Note that it is actually the unobserved individual responses, not the observed group
responses, which are modeled by the covariates. When denoting group responses (groupresp,
col.resp, and row.resp), a 0 denotes a negative response and a 1 denotes a positive response,
where the probability of an individual positive response is being modeled directly.

A terms specification of the form first + second indicates all the terms in first together with all
the terms in second with duplicates removed. A specification of the form first:second indicates
the set of terms obtained by taking the interactions of all terms in first with all terms in second.
The specification first*second indicates the cross of first and second. This is the same as
first + second + first:second. The terms in the formula will be re-ordered so that main
effects come first, followed by the interactions, all second-order, all third-order, and so on; to avoid
this, pass a terms object as the formula.

For simple pooling (type="sp"), the functions gtreg.fit, EM, and EM.ret, where the first corre-
sponds to Vansteelandt’s method described in Vansteelandt et al. (2000) and the last two correspond
to Xie’s method described in Xie (2001), are called to carry out the model fitting. The gtreg.fit
function uses the optim function with default method "Nelder-Mead" to maximize the likelihood
function of the observed group responses. If this optimization method produces a Hessian matrix
of all zero elements, the "SANN" method in optim is employed to find the coefficients and Hessian
matrix. For the "SANN" method, the number of iterations in optim is set to be 10000. For the
background on the use of optim, see help(optim).

The EM and EM.ret functions apply Xie’s EM algorithm to the likelihood function written in terms
of the unobserved individual responses; the functions use glm.fit to update the parameter esti-
mates within each M step. The EM function is used when there are no retests and EM.ret is used
when individual retests are available. Thus, within the retest argument, individual observations
in observed positive groups are 0 (negative) or 1 (positive); the remaining individual observations
are NAs, meaning that no retest is performed for them. Retests cannot be used with Vansteelandt’s
method; a warning message will be given in this case, and the individual retests will be ignored
in the model fitting. There could be slight differences in the estimates between Vansteelandt’s and
Xie’s methods (when retests are not available) due to different convergence criteria.

With simple pooling (i.e., Dorfman testing, two-stage hierarchical testing), each individual appears
in exactly one pool. When only the group responses are observed, the null degrees of freedom
are the number of groups minus 1 and the residual degrees of freedom are the number of groups
minus the number of parameters. When individual retests are observed too, it is an open research
question for what the degrees of freedom and the deviance for the null model should be; therefore,
the degrees of freedom and null.deviance will not be displayed.

Under the halving protocol, the EM.halving function applies Xie’s EM algorithm to the likelihood
function written in terms of the unobserved individual responses; the functions use glm.fit to
update the parameter estimates within each M step. In the halving protocol, if the initial group tests
positive, it is split into two subgroups. The two subgroups are subsequently tested and if either
subgroup tests positive, the third and final step is to test all individuals within the subgroup. Thus,
within subg, subgroup responses in observed positive groups are 0 (negative) or 1 (positive); the
remaining subgroup responses are NAs, meaning that no tests are performed for them. The individual
retests are similarly coded.

With array testing (also known as matrix pooling), the EM.mp function applies Xie’s EM algorithm
to the likelihood function written in terms of the unobserved individual responses. In each E step,
the Gibbs sampling technique is used to estimate the conditional probabilities. Because of the large
number of Gibbs samples needed to achieve convergence, the model fitting process could be quite

20 gtReg

slow, especially when multiple positive rows and columns are observed. In this case, we can either
increase the Gibbs sample size to help achieve convergence or loosen the convergence criteria by
increasing tol at the expense of perhaps poorer estimates. If follow-up retests are performed, the
retest results going into the model will help achieve convergence faster with the same Gibbs sample
size and convergence criteria. In each M step, we use glm.fit to update the parameter estimates.

For simple pooling, retest provides individual retest results for Dorfman’s retesting procedure.
Under the halving protocol, retest provides individual retest results within a subgroup that tests
positive. The retest argument provides individual retest results, where a 0 denotes negative and
1 denotes positive status. A NA denotes that no retest is performed for that individual. The default
value is NULL for no retests.

For simple pooling, control provides parameters for controlling the fitting process in the "Xie"
method only.

gtReg returns an object of class "gtReg". The function summary (i.e., summary.gtReg is used to
obtain or print a summary of the results. The group testing function predict (i.e., predict.gtReg)
is used to make predictions on "gtReg" objects.

Value

An object of class "gtReg", a list which may include:

coefficients a named vector of coefficients.

hessian estimated Hessian matrix of the negative log-likelihood function. This serves as
an estimate of the information matrix.

residuals the response residuals. This is the difference of the observed group responses
and the fitted group responses. Not included for array testing.

fitted.values the fitted mean values of group responses. Not included for array testing.

deviance the deviance between the fitted model and the saturated model. Not included for
array testing.

aic Akaike’s Information Criterion. This is minus twice the maximized log-likelihood
plus twice the number of coefficients. Not included for array testing.

null.deviance the deviance for the null model, comparable with deviance. The null model
will include only the intercept, if there is one in the model. Provided for simple
pooling, type="sp", only.

counts the number of iterations in optim (Vansteelandt’s method) or the number of
iterations in the EM algorithm (Xie’s method, halving, and array testing).

Gibbs.sample.size

the number of Gibbs samples generated in each E step. Provided for array test-
ing, type="array", only.

df.residual the residual degrees of freedom. Provided for simple pooling, type="sp", only.

df.null the residual degrees of freedom for the null model. Provided for simple pooling,
type="sp", only.

z the vector of group responses. Not included for array testing.

call the matched call.

formula the formula supplied.

gtReg 21

terms the terms object used.

method the method ("Vansteelandt" or "Xie") used to fit the model. For the halving
protocol, the "Xie" method is used. Not included for array testing.

link the link function used in the model.

Author(s)

The majority of this function was originally written as gtreg.sp, gtreg.halving, and gtreg.mp
by Boan Zhang for the binGroup package. Minor modifications have been made for inclusion of
the functions in the binGroup2 package.

References

Vansteelandt, S., Goetghebeur, E., Verstraeten, T. (2000). “Regression models for disease preva-
lence with diagnostic tests on pools of serum samples.” Biometrics, 56, 1126–1133. doi: 10.1111/
j.0006341x.2000.01126.x.

Xie, M. (2001). “Regression analysis of group testing samples.” Statistics in Medicine, 20, 1957–
1969. doi: 10.1002/sim.817.

See Also

gtSim for simulation of data in the group testing form to be used by gtReg, summary.gtReg and
predict.gtReg for gtreg methods.

Examples

Estimated running time for all examples was calculated
using a computer with 16 GB of RAM and one core of
an Intel i7-6500U processor. Please take this into
account when interpreting the run times given.

data(hivsurv)
fit1 <- gtReg(type="sp", formula = groupres ~ AGE + EDUC.,

data = hivsurv, groupn = gnum, sens = 0.9,
spec = 0.9, method = "Xie")

fit1

set.seed(46)
gt.data <- gtSim(type="sp", par=c(-12, 0.2),

size1=700, size2=5)
fit2 <- gtReg(type="sp", formula=gres~x, data=gt.data,

groupn=groupn)
fit2

set.seed(21)
gt.data <- gtSim(type="sp", par=c(-12, 0.2),

size1=700, size2=6, sens=0.95, spec=0.95,
sens.ind=0.98, spec.ind=0.98)

fit3 <- gtReg(type="sp", formula=gres~x, data=gt.data,
groupn=groupn, retest=retest, method="Xie",

https://doi.org/10.1111/j.0006-341x.2000.01126.x
https://doi.org/10.1111/j.0006-341x.2000.01126.x
https://doi.org/10.1002/sim.817

22 gtRegControl

sens=0.95, spec=0.95, sens.ind=0.98,
spec.ind=0.98, trace=TRUE)

summary(fit3)

set.seed(46)
gt.data <- gtSim(type="halving", par=c(-6, 0.1), gshape=17,

gscale=1.4, size1=5000, size2=5,
sens=0.95, spec=0.95)

fit4 <- gtReg(type="halving", formula=gres~x,
data=gt.data, groupn=groupn, subg=subgroup,
retest=retest, sens=0.95, spec=0.95,
start=c(-6, 0.1), trace=TRUE)

summary(fit4)

This example takes approximately 15 seconds to run.
5x6 and 4x5 array
set.seed(9128)
sa1a <- gtSim(type="array", par=c(-7, 0.1), size1=c(5,4),

size2=c(6,5), sens=0.95, spec=0.95)
sa1 <- sa1a$dframe

fit5 <- gtReg(type="array",
formula=cbind(col.resp, row.resp)~x,
data=sa1, coln=coln, rown=rown,
arrayn=arrayn, sens=0.95, spec=0.95,
tol=0.005, n.gibbs=2000, trace=TRUE)

fit5
summary(fit5)

The example below shows how long this fitting process
may take. It takes approximately 1.5 minutes to achieve
convergence.
set.seed(9012)
sa2a <- gtSim(type="array", par=c(-7, 0.1),

size1=rep(10, 4), size2=rep(10, 4),
sens=0.95, spec=0.95)

sa2 <- sa2a$dframe

fit6 <- gtReg(type="array",
formula=cbind(col.resp, row.resp)~x,
data=sa2, coln=coln, rown=rown,
arrayn=arrayn, retest=retest,
sens=0.95, spec=0.95,
start=c(-7, 0.1), tol=0.005)

fit6
summary(fit6)

gtRegControl Auxiliary for controlling group testing regression

gtRegControl 23

Description

Auxiliary function to control fitting parameters of the EM algorithm used internally in gtReg for
simple pooling (type="sp") with method="Xie" or for array testing (type="array").

Usage

gtRegControl(
tol = 1e-04,
n.gibbs = 1000,
n.burnin = 20,
maxit = 500,
trace = FALSE,
time = TRUE

)

Arguments

tol convergence criterion

n.gibbs the Gibbs sample size to be used in each E step of the EM algorithm, for array
testing. The default is 1000.

n.burnin the number of samples in the burn-in period, for array testing. The default is 20.

maxit maximum number of iterations in the EM algorithm.

trace a logical value indicating whether the output should be printed for each iteration.
The default is FALSE.

time a logical value indicating whether the length of time for the model fitting should
be printed. The default is TRUE.

Value

A list with components named as the input arguments.

Author(s)

This function was originally written as the gt.control function for the binGroup package. Minor
modifications have been made for inclusion in the binGroup2 package.

Examples

The default settings:
gtRegControl()

24 gtSim

gtSim Simulation function for group testing data

Description

Simulates data in group testing form ready to be fit by gtReg.

Usage

gtSim(
type = "sp",
x = NULL,
gshape = 20,
gscale = 2,
par,
linkf = c("logit", "probit", "cloglog"),
size1,
size2,
sens = 1,
spec = 1,
sens.ind = NULL,
spec.ind = NULL

)

Arguments

type "sp" for simple pooling, "halving" for halving protocol, and "array" for array
testing (also known as matrix pooling).

x a matrix of user-submitted covariates with which to simulate the data. Default
is NULL, in which case a gamma distribution is used to generate the covariates
automatically.

gshape shape parameter for the gamma distribution. The value must be non-negative.
Default value is set to 20.

gscale scale parameter for the gamma distribution. The value must be strictly positive.
Default value is set to 2.

par the true coefficients in the linear predictor.

linkf a character string specifying one of the three link functions to be used: "logit"
(default), "probit", or "cloglog".

size1 sample size of the simulated data (for use with "sp" and "halving" methods) or
a vector that specifies the number of rows in each matrix (for use with "array"
method). If only one matrix is simulated, this value is a scalar.

size2 group size in pooling individual samples (for use with "sp" and "halving"
methods) or a vector that specifies the number of columns in each matrix (for
use with "array" method). If only one matrix is simulated, this value is a scalar.

sens sensitivity of the group tests. Default value is set to 1.

gtSim 25

spec specificity of the group tests. Default value is set to 1.

sens.ind sensitivity of the individual retests. If NULL, set to be equal to sens.

spec.ind specificity of the individual retests. If NULL, set to be equal to spec.

Details

Generates group testing data in simple pooling form (type="sp"), for the halving protocol (type="halving"),
or in array testing form (type="array"). The covariates are either specified by the x argument or
they are generated from a gamma distribution with the given gshape and gscale parameters. The
individual probabilities are calculated from the covariates, the coefficients given in par, and the link
function specified through linkf. The true binary individual responses are then simulated from the
individual probabilities.

The true group responses are found from the individual responses within the groups (i.e., if at least
one response is positive, the group is positive; otherwise, the group response is negative). Finally,
the observed group responses are simulated using the ginve sens and spec. Individual retests are
simulated from sens.ind and spec.ind for samples in observed positive groups. Note that with a
given group size (specified by size2 with method="sp" or method="halving"), the last group may
have fewer individuals.

The true binary individual responses are then simulated from the individual probabilities. The
group, subgroup, and individual retests are simulated using the given sens and spec under the halv-
ing protocol.

The true binary individual responses are then simulated from the individual probabilites. The in-
dividuals are organized into (by column) one or more matrices specified by n.row and n.col, and
the true group responses are found (i.e., if at least one response is positive, the group is positive;
otherwise, the group response is negative). The observed row and column group responses are then
simulated using the given sens and spec values. Individual retests are simulated from sens.ind and
spec.ind for individuals that lie on the intersection of an observed positive row and and observed
positive column. In the case where no column (row) tests positive in a matrix, all the individuals
in any observed positive rows (columns) will be assigned a simulated retest result. If no column or
row is observed positive, NULL is returned.

Value

For simple pooling (type="sp") and the halving protocol (type="array"), a data frame or for array
testing (type="array"), a list, which may include the following:

gres the group response, for simple pooling and the halving protocol only.

col.resp the column group response, for array testing only.

row.resp the row group response, for array testing only.

x the covariate.

groupn the group number, for simple pooling and the halving protocol only.

arrayn the array number, for array testing only.

coln the column group number, for array testing only.

rown the row group number, for array testing only.

26 gtTest

ind the true individual responses. For simple pooling and the halving protocol, these
are included in the data frame of results. For array testing, these are included in
the list of results, with individual responses presented in matrices.

retest the results of individual retests.

subgroup the subgroup number, for the halving protocol.

prob the individual probabilities, for array testing only.

Author(s)

This function is a combination of sim.gt, sim.halving, and sim.mp written by Boan Zhang for
the binGroup package. Minor modifications have been made for inclusion of the functions in the
binGroup2 package.

See Also

gtReg to fit simulated group testing data.

Examples

set.seed(46)
gt.data <- gtSim(type="sp", par=c(-12, 0.2),

size1=700, size2=5)

x1 <- sort(runif(100, 0, 30))
x2 <- rgamma(100, shape=17, scale=1.5)
gt.data <- gtSim(type="sp", x=cbind(x1, x2),

par=c(-14, 0.2, 0.3), size2=4,
sens=0.98, spec=0.98)

set.seed(46)
gt.data <- gtSim(type="halving", par=c(-6, 0.1),

gshape=17, gscale=1.4, size1=5000,
size2=5, sens=0.95, spec=0.95)

5x6 and 4x5 matrix
set.seed(9128)
sa1a <- gtSim(type="array", par=c(-7, 0.1),

size1=c(5, 4), size2=c(6, 5),
sens=0.95, spec=0.95)

sa1a$dframe

gtTest Hypothesis test for one proportion in group testing

Description

Calculates p-values for hypothesis tests of single proportions estimated from group testing experi-
ments against a threshold proportion in the hypotheses. Available methods include the exact test,
score test, and Wald test.

gtTest 27

Usage

gtTest(n, y, s, p.hyp, alternative = "two.sided", method = "exact")

Arguments

n integer specifying the number of groups.

y integer specifying the number of positive groups.

s integer specifying the common size of groups.

p.hyp the hypothetical threshold proportion against which to test, specified as a number
between 0 and 1.

alternative character string defining the alternative hypothesis, either "two.sided", "less",
or "greater".

method character string defining the test method to be used. Options include "exact" for
an exact test corresponding to the Clopper-Pearson confidence interval, "score"
for a score test corresponding to the Wilson confidence interval, and "Wald" for
a Wald test corresponding to the Wald confidence interval. The Wald method is
not recommended. The "exact" method uses binom.test{stats}.

Details

This function assumes equal group sizes, no testing error (i.e., 100 percent sensitivity and speci-
ficity) to test the groups, and individual units randomly assigned to the groups with identical true
probability of success.

Value

A list containing:

p.value the p-value of the test

estimate the estimated proportion

p.hyp the threshold proportion provided by the user.

alternative the alternative provided by the user.

method the test method provided by the user.

Author(s)

This function was originally written as bgtTest by Frank Schaarschmidt for the binGroup package.
Minor modifications have been made for inclusion of the function in the binGroup2 package.

See Also

propCI for confidence intervals in group testing and binom.test(stats) for the exact test and
corresponding confidence interval.

Other estimation functions: designEst(), designPower(), gtPower(), gtWidth(), propCI(),
propDiffCI()

28 gtWidth

Examples

Consider the following the experiment: Tests are
performed on n=10 groups, each group has a size
of s=100 individuals. The aim is to show that
less than 0.5 percent (\eqn{p < 0.005}) of the units
in the population show a detrimental trait (positive test).
y=1 positive test and 9 negative tests are observed.
gtTest(n=10, y=1, s=100, p.hyp=0.005, alternative="less",

method="exact")

The exact test corresponds to the
limits of the Clopper-Pearson confidence interval
in the example of Tebbs & Bilder (2004):
gtTest(n=24, y=3, s=7, alternative="two.sided",

method="exact", p.hyp=0.0543)

gtTest(n=24, y=3, s=7, alternative="two.sided",
method="exact", p.hyp=0.0038)

Hypothesis test with a group size of 1.
gtTest(n=24, y=3, s=1, alternative="two.sided",

method="exact", p.hyp=0.1)

Further methods:
gtTest(n=24, y=3, s=7, alternative="two.sided",

method="score", p.hyp=0.0516)

gtTest(n=24, y=3, s=7, alternative="two.sided",
method="Wald", p.hyp=0.0401)

gtWidth Expected width of confidence intervals in group testing

Description

Calculation of the expected value of the width of confidence intervals for one proportion in group
testing. Calculations are available for the confidence interval methods in propCI.

Usage

gtWidth(n, s, p, conf.level = 0.95, alternative = "two.sided", method = "CP")

Arguments

n integer specifying the number of groups. A vector of integers is also allowed.

s integer specifying the common size of groups. A vector of integers is also al-
lowed.

p the assumed true proportion of individuals showing the trait to be estimated. A
vector is also allowed.

gtWidth 29

conf.level the required confidence level of the interval.

alternative character string specifying the alternative hypothesis, either "two.sided", "less",
or "greater".

method character string specifying the confidence interval method. Available options
include those in propCI.

Details

The two-sided (method="two.sided") option calculates the expected width between the lower and
upper bound of a two-sided conf.level ∗ 100 percent confidence interval. See Tebbs & Bilder
(2004) for expression. The one-sided (method="less" or method="greater") options calculate
the expected distance between the one-sided limit and the assumed true proportion p for a one-
sided conf.level ∗ 100 percent confidence interval.

Value

A matrix containing the columns:

ns the resulting total number of units, n ∗ s.
n the number of groups.

s the group size.

p the assumed true proportion.

expCIWidth the expected value of the confidence interval width as defined under the argu-
ment alternative.

Author(s)

This function was originally written as bgtWidth by Frank Schaarschmidt for the binGroup pack-
age. Minor modifications have been made for inclusion of the function in the binGroup2 package.

References

Tebbs, J., Bilder, C. (2004). “Confidence interval procedures for the probability of disease transmis-
sion in multiple-vector-transfer designs.” Journal of Agricultural, Biological, and Environmental
Statistics, 9, 75–90. doi: 10.1198/1085711043127.

See Also

propCI for confidence intervals in group testing.

Other estimation functions: designEst(), designPower(), gtPower(), gtTest(), propCI(),
propDiffCI()

Examples

Examine different group sizes to determine
the shortest expected width.
gtWidth(n=20, s=seq(from=1, to=200, by=10),

p=0.01, alternative="less", method="CP")

https://doi.org/10.1198/1085711043127

30 halving

Calculate the expected width of the confidence
interval with a group size of 1 (individual testing).
gtWidth(n=20, s=1, p=0.005, alternative="less", method="CP")

halving Probability mass function for halving

Description

Calculate the probability mass function for the number of tests from using the halving algorithm.

Usage

halving(p, sp = 1, se = 1, stages = 2, order.p = TRUE)

Arguments

p a vector of individual risk probabilities.

sp the specificity of the diagnostic test.

se the sensitivity of the diagnostic test.

stages the number of stages for the halving algorithm.

order.p logical; if TRUE, the vector of individual risk probabilities will be sorted.

Details

Halving algorithms involve successively splitting a positive testing group into two equal-sized
halves (or as close to equal as possible) until all individuals have been identified as positive or
negative. S-stage halving begins by testing the whole group of I individuals. Positive groups are
split in half until the final stage of the algorithm, which consists of individual testing. For example,
consider an initial group of size I=16 individuals. Three-stage halving (3H) begins by testing the
whole group of 16 individuals. If this group tests positive, the second stage involves splitting into
two groups of size 8. If either of these groups test positive, a third stage involves testing each indi-
vidual rather than halving again. Four-stage halving (4H) would continue with halving into groups
of size 4 before individual testing. Five-stage halving (5H) would continue with halving into groups
of size 2 before individual testing. 3H requires more than 2 individuals, 4H requires more than 4
individuals, and 5H requires more than 8 individuals.

This function calculates the probability mass function, expected testing expenditure, and variance
of the testing expenditure for halving algorithms with 3 to 5 stages.

Value

A list containing:

pmf the probability mass function for the halving algorithm.

et the expected testing expenditure for the halving algorithm.

vt the variance of the testing expenditure for the halving algorithm.

hivsurv 31

Author(s)

This function was originally written by Michael Black for Black et al. (2012). The function was
obtained from http://chrisbilder.com/grouptesting. Minor modifications have been made
for inclusion of the function in the binGroup2 package.

References

Black, M., Bilder, C., Tebbs, J. (2012). “Group testing in heterogeneous populations by using
halving algorithms.” Journal of the Royal Statistical Society. Series C: Applied Statistics, 61, 277–
290. doi: 10.1111/j.14679876.2011.01008.x.

See Also

expectOrderBeta for generating a vector of individual risk probabilities for informative group
testing.

Other operating characteristic functions: Sterrett(), operatingCharacteristics1(), operatingCharacteristics2()

Examples

Equivalent to Dorfman testing (two-stage hierarchical)
halving(p=rep(0.01, 10), sp=1, se=1, stages=2,

order.p=TRUE)

Halving over three stages; each individual has a
different probability of being positive
set.seed(12895)
p.vec <- expectOrderBeta(p=0.05, alpha=2, grp.sz=20)
halving(p=p.vec, sp=0.95, se=0.95, stages=3,

order.p=TRUE)

hivsurv Data from an HIV surveillance project

Description

The hivsurv data set comes from an HIV surveillance project discussed in Verstraeten et al. (1998)
and Vansteelandt et al. (2000). The purpose of the study was to estimate the HIV prevalence among
pregnant Kenyan women in four rural locations of the country, using both individual and group
testing responses. Blood tests were administered to each participating woman, and 4 covariates were
obtained on each woman. Because the original group responses are unavailable, individuals are
artificially put into groups of 5 here to form group responses. Only the 428 complete observations
are given.

Usage

data(hivsurv)

http://chrisbilder.com/grouptesting
https://doi.org/10.1111/j.1467-9876.2011.01008.x

32 informativeArrayProb

Format

A data frame with 428 observations on the following 8 variables.

DATE the date when each sample was collected.

PAR. parity (number of children).

AGE age (in years).

MA.ST. marital status (1: single; 2: married (polygamous); 3: married (monogamous); 4: divorced;
5: widow).

EDUC. highest attained education level (1: no schooling; 2: primary school; 3: secondary school;
4: higher).

HIV individual response of HIV diagnosis (0: negative; 1: positive).

gnum the group number that designates individuals into groups.

groupres the group response calculated from artificially formed groups.

Source

Vansteelandt, S., Goetghebeur, E., Verstraeten, T. (2000). “Regression models for disease preva-
lence with diagnostic tests on pools of serum samples.” Biometrics, 56, 1126–1133. doi: 10.1111/
j.0006341x.2000.01126.x.

Verstraeten, T., Farah, B., Duchateau, L., Matu, R. (1998). “Pooling sera to reduce the cost of HIV
surveillance: a feasibility study in a rural Kenyan district.” Tropical Medicine \& International
Health, 3, 747–750. doi: 10.1046/j.13653156.1998.00293.x.

Examples

data(hivsurv)

str(hivsurv)

informativeArrayProb Arrange a matrix of probabilities for informative array testing

Description

Arrange a vector of individual risk probabilities in a matrix for informative array testing without
master pooling.

Usage

informativeArrayProb(prob.vec, nr, nc, method = "sd")

https://doi.org/10.1111/j.0006-341x.2000.01126.x
https://doi.org/10.1111/j.0006-341x.2000.01126.x
https://doi.org/10.1046/j.1365-3156.1998.00293.x

informativeArrayProb 33

Arguments

prob.vec vector of individual risk probabilities, of length nr*nc.

nr number of rows in the array.

nc number of columns in the array.

method character string defining the method to be used for matrix arrangement. Op-
tions include spiral ("sd") and gradient ("gd") arrangement. See McMahan et al.
(2012) for additional details.

Value

A matrix of probabilities arranged according to the specified method.

Author(s)

This function was originally written by Christopher McMahan for McMahan et al. (2012). The
function was obtained from http://chrisbilder.com/grouptesting.

References

McMahan, C., Tebbs, J., Bilder, C. (2012b). “Two-Dimensional Informative Array Testing.” Bio-
metrics, 68, 793–804. doi: 10.1111/j.15410420.2011.01726.x.

See Also

expectOrderBeta for generating a vector of individual risk probabilities.

Examples

Use the gradient arrangement method to create a matrix
of individual risk probabilities for a 10x10 array.
Depending on the specified probability, alpha level,
and overall group size, simulation may be necessary
in order to generate the vector of individual
probabilities. This is done using the expectOrderBeta()
function and requires the user to set a seed in order
to reproduce results.
set.seed(1107)
p.vec1 <- expectOrderBeta(p=0.05, alpha=2, grp.sz=100)
informativeArrayProb(prob.vec=p.vec1, nr=10, nc=10,

method="gd")

Use the spiral arrangement method to create a matrix
of individual risk probabilities for a 5x5 array.
set.seed(8791)
p.vec2 <- expectOrderBeta(p=0.02, alpha=0.5, grp.sz=25)
informativeArrayProb(prob.vec=p.vec2, nr=5, nc=5,

method="sd")

http://chrisbilder.com/grouptesting
https://doi.org/10.1111/j.1541-0420.2011.01726.x

34 operatingCharacteristics1

operatingCharacteristics1

Calculate operating characteristics for group testing algorithms that
use a single-disease assay

Description

Calculate operating characteristics, such as the expected number of tests, for a specified testing
configuration using non-informative and informative hierarchical and array-based group testing al-
gorithms. Single-disease assays are used at each stage of the algorithms.

Usage

operatingCharacteristics1(
algorithm,
p = NULL,
probabilities = NULL,
Se = 0.99,
Sp = 0.99,
hier.config = NULL,
rowcol.sz = NULL,
alpha = 2,
a = NULL,
print.time = TRUE,
...

)

opChar1(
algorithm,
p = NULL,
probabilities = NULL,
Se = 0.99,
Sp = 0.99,
hier.config = NULL,
rowcol.sz = NULL,
alpha = 2,
a = NULL,
print.time = TRUE,
...

)

Arguments

algorithm character string defining the group testing algorithm to be used. Non-informative
testing options include two-stage hierarchical ("D2"), three-stage hierarchical
("D3"), four-stage hierarchical ("D4"), square array testing without master pool-
ing ("A2"), and square array testing with master pooling ("A2M"). Informative

operatingCharacteristics1 35

testing options include two-stage hierarchical ("ID2"), three-stage hierarchical
("ID3"), four-stage hierarchical ("ID4"), and square array testing without master
pooling ("IA2").

p overall probability of disease that will be used to generate a vector/matrix of
individual probabilities. For non-informative algorithms, a homogeneous set of
probabilities will be used. For informative algorithms, the expectOrderBeta
function will be used to generate a heterogeneous set of probabilities. Further
details are given under ’Details’. Either p or probabilities should be speci-
fied, but not both.

probabilities a vector of individual probabilities, which is homogeneous for non-informative
testing algorithms and heterogeneous for informative testing algorithms. Either
p or probabilities should be specified, but not both.

Se a vector of sensitivity values, where one value is given for each stage of test-
ing (in order). If a single value is provided, sensitivity values are assumed to
be equal to this value for all stages of testing. Further details are given under
’Details’.

Sp a vector of specificity values, where one value is given for each stage of test-
ing (in order). If a single value is provided, specificity values are assumed to
be equal to this value for all stages of testing. Further details are given under
’Details’.

hier.config a matrix specifying the configuration for a hierarchical testing algorithm. The
rows correspond to the stages of testing, the columns correspond to each individ-
ual to be tested, and the cell values specify the group number of each individual
at each stage. Further details are given under ’Details’. For array testing algo-
rithms, this argument will be ignored.

rowcol.sz the row/column size for array testing algorithms. For hierarchical testing algo-
rithms, this argument will be ignored.

alpha a shape parameter for the beta distribution that specifies the degree of hetero-
geneity for the generated probability vector (for informative testing only).

a a vector containing indices indicating which individuals to calculate individual
accuracy measures for. If NULL, individual accuracy measures will be displayed
for all individuals in the algorithm.

print.time a logical value indicating whether the length of time for calculations should be
printed. The default is TRUE.

... arguments to be passed to the expectOrderBeta function, which generates a
vector of probabilities for informative testing algorithms. Further details are
given under ’Details’.

Details

This function computes the operating characteristics for group testing algorithms with an assay that
tests for one disease, as described in Hitt et al. (2019).

Available algorithms include two-, three-, and four-stage hierarchical testing and array testing with
and without master pooling. Both non-informative and informative group testing settings are al-
lowed for each algorithm, except informative array testing with master pooling is unavailable be-

36 operatingCharacteristics1

cause this method has not appeared in the group testing literature. Operating characteristics calcu-
lated are expected number of tests, pooling sensitivity, pooling specificity, pooling positive predic-
tive value, and pooling negative predictive value for each individual.

For informative algorithms where the p argument is specified, the expected value of order statistics
from a beta distribution are found. These values are used to represent disease risk probabilities for
each individual to be tested. The beta distribution has two parameters: a mean parameter p (overall
disease prevalence) and a shape parameter alpha (heterogeneity level). Depending on the specified
p, alpha, and overall group size, simulation may be necessary to generate the vector of individual
probabilities. This is done using expectOrderBeta and requires the user to set a seed to reproduce
results.

Informative two-stage hierarchical (Dorfman) testing is implemented via the pool-specific optimal
Dorfman (PSOD) method described in McMahan et al. (2012a), where the greedy algorithm pro-
posed for PSOD is replaced by considering all possible testing configurations. Informative array
testing is implemented via the gradient method (the most efficient array design), where higher-risk
individuals are grouped in the left-most columns of the array. For additional details on the gradient
arrangement method for informative array testing, see McMahan et al. (2012b).

The sensitivity/specificity values are allowed to vary across stages of testing. For hierarchical test-
ing, a different sensitivity/specificity value may be used for each stage of testing. For array testing, a
different sensitivity/specificity value may be used for master pool testing (if included), row/column
testing, and individual testing. The values must be specified in order of the testing performed.
For example, values are specified as (stage 1, stage 2, stage 3) for three-stage hierarchical testing or
(master pool testing, row/column testing, individual testing) for array testing with master pooling. A
single sensitivity/specificity value may be specified instead. In this situation, sensitivity/specificity
values for all stages are assumed to be equal.

The matrix specified by hier.config defines the hierarchical group testing algorithm for I indi-
viduals. The rows of the matrix correspond to the stages s = 1, ..., S in the testing algorithm, and
the columns correspond to individuals i = 1, ...I . The cell values within the matrix represent the
group number of individual i at stage s. For three-stage, four-stage, and non-informative two-stage
hierarchical testing, the first row of the matrix consists of all ones. This indicates that all individuals
in the algorithm are tested together in a single group in the first stage of testing. For informative
two-stage hierarchical testing, the initial group (block) is not tested. Thus, the first row of the matrix
consists of the group numbers for each individual in the first stage of testing. For all hierarchical
algorithms, the final row of the matrix denotes individual testing. Individuals who are not tested in a
particular stage are represented by "NA" (e.g., an individual tested in a group of size 1 in the second
stage of testing would not be tested again in a third stage of testing). It is important to note that
this matrix represents the testing that could be performed if each group tests positively at each stage
prior to the last. For more details on this matrix (called a group membership matrix), see Bilder et
al. (2019).

For array testing without master pooling, the rowcol.sz specified represents the row/column size
for initial (stage 1) testing. For array testing with master pooling, the rowcol.sz specified repre-
sents the row/column size for stage 2 testing. This is because the master pool size is the overall
array size, given by the square of the row/column size.

The displayed overall pooling sensitivity, pooling specificity, pooling positive predictive value, and
pooling negative predictive value are weighted averages of the corresponding individual accuracy
measures for all individuals within the initial group (or block) for a hierarchical algorithm, or within
the entire array for an array-based algorithm. Expressions for these averages are provided in the

operatingCharacteristics1 37

Supplementary Material for Hitt et al. (2019). These expressions are based on accuracy definitions
given by Altman and Bland (1994a, 1994b).

The operatingCharacteristics1 function accepts additional arguments, namely num.sim, to be
passed to the expectOrderBeta function, which generates a vector of probabilities for informative
group testing algorithms. The num.sim argument specifies the number of simulations from the beta
distribution when simulation is used. By default, 10,000 simulations are used.

Value

A list containing:

algorithm the group testing algorithm used for calculations.

prob the probability of disease or the vector of individual probabilities, as specified
by the user.

alpha level of heterogeneity for the generated probability vector (for informative test-
ing only).

Se the vector of sensitivity values for each stage of testing.

Sp the vector of specificity values for each stage of testing.

Config a list specifying elements of the specified testing configuration, which may in-
clude:

Stage1 group size for the first stage of hierarchical testing, if applicable.
Stage2 group sizes for the second stage of hierarchical testing, if applicable.
Stage3 group sizes for the third stage of hierarchical testing, if applicable.
Block.sz the block size/initial group size for informative Dorfman testing, which

is not tested.
pool.szs group sizes for the first stage of testing for informative Dorfman test-

ing.
Array.dim the row/column size for array testing.
Array.sz the overall array size for array testing (the square of the row/column

size).

p.vec the sorted vector of individual probabilities, if applicable.

p.mat the sorted matrix of individual probabilities in gradient arrangement, if applica-
ble. Further details are given under ’Details’.

ET the expected testing expenditure to decode all individuals in the algorithm; this
includes all individuals in all groups for hierarchical algorithms or in the entire
array for array testing.

value the value of the expected number of tests per individual.

Accuracy a list containing:

Individual a matrix of accuracy measures for each individual specified in a.
The rows correspond to each unique set of accuracy measures in the algo-
rithm. Individuals with the same set of accuracy measures are displayed
together in a single row of the matrix. The columns correspond to the pool-
ing sensitivity, pooling specificity, pooling positive predictive value, pool-
ing negative predictive value, and the indices for the individuals in each row
of the matrix.

38 operatingCharacteristics1

Overall a matrix of overall accuracy measures for the algorithm. The columns
correspond to the pooling sensitivity, pooling specificity, pooling positive
predictive value, and pooling negative predictive value for the overall algo-
rithm. Further details are given under ’Details’.

Note

This function returns the pooling positive and negative predictive values for all individuals even
though these measures are diagnostic specific; e.g., the pooling positive predictive value should
only be considered for those individuals who have tested positive.

Additionally, only stage dependent sensitivity and specificity values are allowed within the program
(no group within stage dependent values are allowed). See Bilder et al. (2019) for additional
information.

Author(s)

Brianna D. Hitt

References

Altman, D., Bland, J. (1994). “Diagnostic tests 1: Sensitivity and specificity.” BMJ, 308, 1552.

Altman, D., Bland, J. (1994). “Diagnostic tests 2: Predictive values.” BMJ, 309, 102.

Bilder, C., Tebbs, J., McMahan, C. (2019). “Informative group testing for multiplex assays.” Bio-
metrics, 75, 278–288. doi: 10.1111/biom.12988.

Hitt, B., Bilder, C., Tebbs, J., McMahan, C. (2019). “The objective function controversy for group
testing: Much ado about nothing?” Statistics in Medicine, 38, 4912–4923. doi: 10.1002/sim.8341.

McMahan, C., Tebbs, J., Bilder, C. (2012a). “Informative Dorfman Screening.” Biometrics, 68,
287–296. doi: 10.1111/j.15410420.2011.01644.x.

McMahan, C., Tebbs, J., Bilder, C. (2012b). “Two-Dimensional Informative Array Testing.” Bio-
metrics, 68, 793–804. doi: 10.1111/j.15410420.2011.01726.x.

See Also

Other operating characteristic functions: Sterrett(), halving(), operatingCharacteristics2()

Examples

Calculate the operating characteristics for non-informative
two-stage hierarchical (Dorfman) testing.
config.mat <- matrix(data = c(rep(1, 10), 1:10),

nrow = 2, ncol = 10, byrow = TRUE)
opChar1(algorithm="D2", p=0.05, Se=0.99, Sp=0.99,

hier.config=config.mat)
opChar1(algorithm="D2", p=0.05, Se=0.99, Sp=0.99,

hier.config=config.mat, a=c(1,4), print.time=FALSE)

Calculate the operating characteristics for informative
two-stage hierarchical (Dorfman) testing.
A vector of individual probabilities is generated using

https://doi.org/10.1111/biom.12988
https://doi.org/10.1002/sim.8341
https://doi.org/10.1111/j.1541-0420.2011.01644.x
https://doi.org/10.1111/j.1541-0420.2011.01726.x

operatingCharacteristics1 39

the expected value of order statistics from a beta
distribution with p = 0.01 and a heterogeneity level
of alpha = 0.5.
config.mat <- matrix(data = c(rep(1:3, each = 10), 1:30),

nrow = 2, ncol = 30, byrow = TRUE)
set.seed(52613)
opChar1(algorithm="ID2", p=0.01, Se=0.95, Sp=0.95,

hier.config=config.mat, alpha=0.5, num.sim=10000)
Equivalent code using a heterogeneous vector of
probabilities
set.seed(52613)
probs <- expectOrderBeta(p=0.01, alpha=0.5, grp.sz=30)
opChar1(algorithm="ID2", probabilities=probs, Se=0.95, Sp=0.95,

hier.config=config.mat)

Calculate the operating characteristics for
non-informative three-stage hierarchical testing.
config.mat <- matrix(data = c(rep(1, 18), rep(1:3, each = 5),

rep(4, 3), 1:18),
nrow = 3, ncol = 18, byrow = TRUE)

opChar1(algorithm="D3", p=0.001, Se=0.95, Sp=0.95,
hier.config=config.mat)

opChar1(algorithm="D3", p=0.001, Se=c(0.95, 0.95, 0.99),
Sp=c(0.96, 0.96, 0.98), hier.config=config.mat)

Calculate the operating characteristics for
informative three-stage hierarchical testing,
given a heterogeneous vector of probabilities.
config.mat <- matrix(data = c(rep(1, 6), rep(1:2, each = 3),

1:6), nrow = 3, ncol = 6,
byrow = TRUE)

set.seed(52613)
opChar1(algorithm="ID3",

probabilities=c(0.012, 0.014, 0.011, 0.012, 0.010, 0.015),
Se=0.99, Sp=0.99, hier.config=config.mat,
alpha=0.5, num.sim=5000)

Calculate the operating characteristics for
non-informative four-stage hierarchical testing.
config.mat <- matrix(data = c(rep(1, 12), rep(1, 8),

rep(2, 2), 3, 4, rep(1, 5),
rep(2, 3), 3, 4, rep(NA, 2),
1:8, rep(NA, 4)), nrow = 4,

ncol = 12, byrow = TRUE)
opChar1(algorithm="D4", p=0.041, Se=0.99, Sp=0.90,

hier.config=config.mat)

Calculate the operating characteristics for
informative four-stage hierarchical testing.
A vector of individual probabilities is generated using
the expected value of order statistics from a beta
distribution with p = 0.041 and a heterogeneity level
of alpha = 0.5.

40 operatingCharacteristics2

config.mat <- matrix(data = c(rep(1, 12), rep(1, 8),
rep(2, 2), 3, 4, rep(1, 5),
rep(2, 3), 3, 4, rep(NA, 2),
1:8, rep(NA, 4)), nrow = 4,

ncol = 12, byrow = TRUE)
set.seed(5678)
opChar1(algorithm="ID4", p=0.041, Se=0.99, Sp=0.90,

hier.config=config.mat, alpha=0.5)

Calculate the operating characteristics for
non-informative array testing without master pooling.
opChar1(algorithm="A2", p=0.005, Se=c(0.95, 0.99),

Sp=c(0.95, 0.99), rowcol.sz=8, a=1)

Calculate the operating characteristics for
informative array testing without master pooling.
A vector of individual probabilities is generated using
the expected value of order statistics from a beta
distribution with p = 0.03 and a heterogeneity level
of alpha = 2.
set.seed(1002)
opChar1(algorithm="IA2", p=0.03, Se=0.95, Sp=0.95,

rowcol.sz=8, alpha=2, a=1:10)

Calculate the operating characteristics for
non-informative array testing with master pooling.
opChar1(algorithm="A2M", p=0.02, Se=c(0.95,0.95,0.99),

Sp=c(0.98,0.98,0.99), rowcol.sz=5)

operatingCharacteristics2

Calculate operating characteristics for group testing algorithms that
use a multiplex assay for two diseases

Description

Calculate operating characteristics, such as the expected number of tests, for a specified testing
configuration using non-informative and informative hierarchical and array-based group testing al-
gorithms. Multiplex assays for two diseases are used at each stage of the algorithms.

Usage

operatingCharacteristics2(
algorithm,
p.vec = NULL,
probabilities = NULL,
alpha = NULL,
Se,
Sp,

operatingCharacteristics2 41

hier.config = NULL,
rowcol.sz = NULL,
ordering = matrix(data = c(0, 1, 0, 1, 0, 0, 1, 1), nrow = 4, ncol = 2),
a = NULL,
print.time = TRUE,
...

)

opChar2(
algorithm,
p.vec = NULL,
probabilities = NULL,
alpha = NULL,
Se,
Sp,
hier.config = NULL,
rowcol.sz = NULL,
ordering = matrix(data = c(0, 1, 0, 1, 0, 0, 1, 1), nrow = 4, ncol = 2),
a = NULL,
print.time = TRUE,
...

)

Arguments

algorithm character string defining the group testing algorithm to be used. Non-informative
testing options include two-stage hierarchical ("D2"), three-stage hierarchical
("D3"), four-stage hierarchical ("D4"), five-stage hierarchical ("D5"), square array
testing without master pooling ("A2"), and square array testing with master pool-
ing ("A2M"). Informative testing options include two-stage hierarchical ("ID2"),
three-stage hierarchical ("ID3"), four-stage hierarchical ("ID4"), and five-stage
hierarchical ("ID5") testing.

p.vec vector of overall joint probabilities. The joint probabilities are assumed to be
equal for all individuals in the algorithm (non-informative testing only). There
are four joint probabilities to consider: p00, the probability that an individual
tests negative for both diseases; p10, the probability that an individual tests posi-
tive only for the first disease; p01, the probability that an individual tests positive
only for the second disease; and p11, the probability that an individual tests posi-
tive for both diseases. The joint probabilities must sum to 1. Only one of p.vec,
probabilities, or alpha should be specified.

probabilities matrix of joint probabilities for each individual, where rows correspond to the
four joint probabilities and columns correspond to each individual in the algo-
rithm. Only one of p.vec, probabilities, or alpha should be specified.

alpha a vector containing positive shape parameters of the Dirichlet distribution (for
informative testing only). The vector will be used to generate a heterogeneous
matrix of joint probabilities for each individual. The vector must have length 4.
Further details are given under ’Details’. Only one of p.vec, probabilities,
or alpha should be specified.

42 operatingCharacteristics2

Se matrix of sensitivity values, where one value is given for each disease (or infec-
tion) at each stage of testing. The rows of the matrix correspond to each disease
k = 1, ...,K, and the columns of the matrix correspond to each stage of testing
s = 1, ..., S. If a vector of K values is provided, the sensitivity values associ-
ated with disease k are assumed to be equal to the kth value in the vector for all
stages of testing. Further details are given under ’Details’.

Sp a matrix of specificity values, where one value is given for each disease (or
infection) at each stage of testing. The rows of the matrix correspond to each
disease k = 1, ...,K, and the columns of the matrix correspond to each stage of
testing s = 1, ..., S. If a vector of K values is provided, the specificity values
associated with disease k are assumed to be equal to the kth value in the vector
for all stages of testing. Further details are given under ’Details’.

hier.config a matrix specifying the configuration for a hierarchical testing algorithm. The
rows correspond to the stages of testing, the columns correspond to each individ-
ual to be tested, and the cell values specify the group number of each individual
at each stage. Further details are given under ’Details’. For array testing algo-
rithms, this argument will be ignored.

rowcol.sz the row/column size for array testing algorithms. For hierarchical testing algo-
rithms, this argument will be ignored.

ordering a matrix detailing the ordering for the binary responses of the diseases. The
columns of the matrix correspond to each disease and the rows of the matrix
correspond to each of the 4 sets of binary responses for two diseases. This
ordering is used with the joint probabilities. The default ordering is (p_00, p_10,
p_01, p_11).

a a vector containing indices indicating which individuals to calculate individual
accuracy measures for. If NULL, individual accuracy measures will be displayed
for all individuals in the algorithm.

print.time a logical value indicating whether the length of time for calculations should be
printed. The default is TRUE.

... additional arguments to be passed to functions for hierarchical testing with mul-
tiplex assays for two diseases.

Details

This function computes the operating characteristics for standard group testing algorithms with a
multiplex assay that tests for two diseases. Calculations for hierarchical group testing algorithms
are performed as described in Bilder et al. (2019) and calculations for array-based group testing
algorithms are performed as described in Hou et al. (2019).

Available algorithms include two-, three-, four-, and five-stage hierarchical testing and array testing
with and without master pooling. Both non-informative and informative group testing settings are
allowed for hierarchical algorithms. Only non-informative group testing settings are allowed for
array testing algorithms. Operating characteristics calculated are expected number of tests, pooling
sensitivity, pooling specificity, pooling positive predictive value, and pooling negative predictive
value for each individual.

For informative algorithms where the alpha argument is specified, a heterogeneous matrix of joint
probabilities for each individual is generated using the Dirichlet distribution. This is done using

operatingCharacteristics2 43

rBeta2009::rdirichlet and requires the user to set a seed to reproduce results. See Bilder et al.
(2019) for additional details on the use of the Dirichlet distribution for this purpose.

The sensitivity/specificity values are allowed to vary across stages of testing. For hierarchical test-
ing, a different sensitivity/specificity value may be used for each stage of testing. For array testing, a
different sensitivity/specificity value may be used for master pool testing (if included), row/column
testing, and individual testing. The values must be specified in the order of the testing performed.
For example, values are specified as (stage 1, stage 2, stage 3) for three-stage hierarchical testing or
(master pool testing, row/column testing, individual testing) for array testing with master pooling.
A vector of K sensitivity/specificity values may be specified, and sensitivity/specificity values for
all stages of testing are assumed to be equal. The first value in the vector will be used at each stage
of testing for the first disease, and the second value in the vector will be used at each stage of testing
for the second disease.

The matrix specified by hier.config defines the hierarchical group testing algorithm for I indi-
viduals. The rows of the matrix correspond to the stages s = 1, ..., S in the testing algorithm, and
the columns correspond to individuals i = 1, ...I . The cell values within the matrix represent the
group number of individual i at stage s. For three-stage, four-stage, five-stage, and non-informative
two-stage hierarchical testing, the first row of the matrix consists of all ones. This indicates that all
individuals in the algorithm are tested together in a single group in the first stage of testing. For
informative two-stage hierarchical testing, the initial group (block) is not tested. Thus, the first row
of the matrix consists of the group numbers for each individual in the first stage of testing. For all
hierarchical algorithms, the final row of the matrix denotes individual testing. Individuals who are
not tested in a particular stage are represented by "NA" (e.g., an individual tested in a group of size
1 in the second stage of testing would not be tested again in a third stage of testing). It is important
to note that this matrix represents the testing that could be performed if each group tests positively
at each stage prior to the last. For more details on this matrix (called a group membership matrix),
see Bilder et al. (2019).

For array testing without master pooling, the rowcol.sz specified represents the row/column size
for initial (stage 1) testing. For array testing with master pooling, the rowcol.sz specified repre-
sents the row/column size for stage 2 testing. This is because the master pool size is the overall
array size, given by the square of the row/column size.

The displayed overall pooling sensitivity, pooling specificity, pooling positive predictive value, and
pooling negative predictive value are weighted averages of the corresponding individual accuracy
measures for all individuals within the initial group (or block) for a hierarchical algorithm, or within
the entire array for an array-based algorithm. Expressions for these averages are provided in the
Supplementary Material for Hitt et al. (2019). These expressions are based on accuracy definitions
given by Altman and Bland (1994a, 1994b).

Value

A list containing:

algorithm the group testing algorithm used for calculations.

prob.vec the vector of joint probabilities provided by the user, if applicable (for non-
informative algorithms only).

joint.p the matrix of joint probabilities for each individual provided by the user, if ap-
plicable.

44 operatingCharacteristics2

alpha.vec the alpha vector provided by the user, if applicable (for informative algorithms
only).

Se the matrix of sensitivity values for each disease at each stage of testing.

Sp the matrix of specificity values for each disease at each stage of testing.

Config a list specifying elements of the specified testing configuration, which may in-
clude:

Stage1 group size for the first stage of hierarchical testing, if applicable.
Stage2 group sizes for the second stage of hierarchical testing, if applicable.
Stage3 group sizes for the third stage of hierarchical testing, if applicable.
Stage4 group sizes for the fourth stage of hierarchical testing, if applicable.
Block.sz the block size/initial group size for informative Dorfman testing, which

is not tested.
pool.szs group sizes for the first stage of testing for informative Dorfman test-

ing.
Array.dim the row/column size for array testing.
Array.sz the overall array size for array testing (the square of the row/column

size).

p.mat the matrix of joint probabilities for each individual in the algorithm. Each row
corresponds to one of the four joint probabilities. Each column corresponds to
an individual in the testing algorithm.

ET the expected testing expenditure for the OTC.

value the value of the expected number of tests per individual.

Accuracy a list containing:

Disease 1 Individual a matrix of accuracy measures, pertaining to the first dis-
ease, for each individual specified in a. The rows correspond to each unique
set of accuracy measures in the algorithm. Individuals with the same set of
accuracy measures are displayed together in a single row of the matrix. The
columns correspond to the pooling sensitivity, pooling specificity, pooling
positive predictive value, pooling negative predictive value, and the indices
for the individuals in each row of the matrix. Individual accuracy measures
are not displayed for array testing algorithms.

Disease 2 Individual a matrix of accuracy measures, pertaining to the second
disease, for each individual specified in a. The rows correspond to each
unique set of accuracy measures in the algorithm. Individuals with the same
set of accuracy measures are displayed together in a single row of the ma-
trix. The columns correspond to the pooling sensitivity, pooling specificity,
pooling positive predictive value, pooling negative predictive value, and the
indices for the individuals in each row of the matrix. Individual accuracy
measures are not displayed for array testing algorithms.

Overall a matrix of overall accuracy measures for the algorithm. The rows cor-
respond to each disease. The columns correspond to the pooling sensitivity,
pooling specificity, pooling positive predictive value, and pooling negative
predictive value for the overall algorithm. Further details are given under
’Details’.

operatingCharacteristics2 45

Note

This function returns the pooling positive and negative predictive values for all individuals even
though these measures are diagnostic specific; e.g., the pooling positive predictive value should
only be considered for those individuals who have tested positive.

Additionally, only stage dependent sensitivity and specificity values are allowed within the program
(no group within stage dependent values are allowed). See Bilder et al. (2019) for additional
information.

Author(s)

This function was written by Brianna D. Hitt. It calls ET.all.stages.new and PSePSpAllStages,
which were originally written by Christopher Bilder for Bilder et al. (2019), and ARRAY, which
was originally written by Peijie Hou for Hou et al. (2020). The functions ET.all.stages.new,
PSePSpAllStages, and ARRAY were obtained from http://chrisbilder.com/grouptesting. Mi-
nor modifications were made to the functions for inclusion in the binGroup2 package.

References

Altman, D., Bland, J. (1994). “Diagnostic tests 1: Sensitivity and specificity.” BMJ, 308, 1552.

Altman, D., Bland, J. (1994). “Diagnostic tests 2: Predictive values.” BMJ, 309, 102.

Bilder, C., Tebbs, J., McMahan, C. (2019). “Informative group testing for multiplex assays.” Bio-
metrics, 75, 278–288. doi: 10.1111/biom.12988.

Hitt, B., Bilder, C., Tebbs, J., McMahan, C. (2019). “The objective function controversy for group
testing: Much ado about nothing?” Statistics in Medicine, 38, 4912–4923. doi: 10.1002/sim.8341.

Hou, P., Tebbs, J., Wang, D., McMahan, C., Bilder, C. (2020). “Array testing with multiplex assays.”
To appear in Biostatistics.

McMahan, C., Tebbs, J., Bilder, C. (2012a). “Informative Dorfman Screening.” Biometrics, 68,
287–296. doi: 10.1111/j.15410420.2011.01644.x.

See Also

Other operating characteristic functions: Sterrett(), halving(), operatingCharacteristics1()

Other multiplex testing functions: OTC2()

Examples

Calculate the operating characteristics for
non-informative two-stage hierarchical
(Dorfman) testing.
config.mat <- matrix(data = c(rep(1, 24), 1:24),

nrow = 2, ncol = 24, byrow = TRUE)
Se <- matrix(data=c(0.95, 0.95, 0.95, 0.95),

nrow=2, ncol=2,
dimnames=list(Infection=1:2, Stage=1:2))

Sp <- matrix(data=c(0.99, 0.99, 0.99, 0.99),
nrow=2, ncol=2,
dimnames=list(Infection=1:2, Stage=1:2))

opChar2(algorithm="D2", p.vec=c(0.90, 0.04, 0.04, 0.02),

http://chrisbilder.com/grouptesting
https://doi.org/10.1111/biom.12988
https://doi.org/10.1002/sim.8341
https://doi.org/10.1111/j.1541-0420.2011.01644.x

46 operatingCharacteristics2

Se=Se, Sp=Sp, hier.config=config.mat)
opChar2(algorithm="D2", p.vec=c(0.90, 0.04, 0.04, 0.02),

Se=Se, Sp=Sp, hier.config=config.mat, a=c(1, 13, 24),
print.time = FALSE)

Calculate the operating characteristics for informative
two-stage hierarchical (Dorfman) testing.
A matrix of joint probabilities for each individual is
generated using the Dirichlet distribution.
config.mat <- matrix(data = c(rep(1, 5), rep(2, 4), 3, 1:9, NA),

nrow = 2, ncol = 10, byrow = TRUE)
Se <- matrix(data=c(0.95, 0.95, 0.99, 0.99),

nrow=2, ncol=2,
dimnames=list(Infection=1:2, Stage=1:2))

Sp <- matrix(data=c(0.96, 0.96, 0.98, 0.98),
nrow=2, ncol=2,
dimnames=list(Infection=1:2, Stage=1:2))

set.seed(8791)
opChar2(algorithm="ID2", alpha=c(18.25, 0.75, 0.75, 0.25),

Se=Se, Sp=Sp, hier.config=config.mat)
Equivalent code using a heterogeneous matrix of joint
probabilities for each individual
set.seed(8791)
p.unordered <- t(rBeta2009::rdirichlet(n = 10,

shape = c(18.25, 0.75, 0.75, 0.25)))
p.ordered <- p.unordered[, order(1 - p.unordered[1,])]
opChar2(algorithm="ID2", probabilities=p.ordered,

Se=Se, Sp=Sp, hier.config=config.mat)

Calculate the operating characteristics for
non-informative three-stage hierarchical testing.
config.mat <- matrix(data = c(rep(1, 10), rep(1, 5),

rep(2, 4), 3, 1:9, NA),
nrow = 3, ncol = 10, byrow = TRUE)

Se <- matrix(data=rep(0.95, 6), nrow=2, ncol=3,
dimnames=list(Infection=1:2, Stage=1:3))

Sp <- matrix(data=rep(0.99, 6), nrow=2, ncol=3,
dimnames=list(Infection=1:2, Stage=1:3))

opChar2(algorithm="D3", p.vec=c(0.95, 0.02, 0.02, 0.01),
Se=Se, Sp=Sp, hier.config=config.mat)

opChar2(algorithm="D3", p.vec=c(0.95, 0.02, 0.02, 0.01),
Se=Se, Sp=Sp, hier.config=config.mat, a=c(1, 6, 10))

Calculate the operating characteristics for informative
three-stage hierarchical testing.
A matrix of joint probabilities for each individual is
generated using the Dirichlet distribution.
config.mat <- matrix(data = c(rep(1, 15),

rep(c(1, 2, 3), each = 5), 1:15),
nrow = 3, ncol = 15, byrow = TRUE)

Se <- matrix(data=rep(0.95, 6), nrow=2, ncol=3,
dimnames=list(Infection=1:2, Stage=1:3))

Sp <- matrix(data=rep(0.99, 6), nrow=2, ncol=3,

operatingCharacteristics2 47

dimnames=list(Infection=1:2, Stage=1:3))
opChar2(algorithm="ID3", alpha=c(18.25, 0.75, 0.75, 0.25),

Se=Se, Sp=Sp, hier.config=config.mat)

Calculate the operating characteristics for
non-informative four-stage hierarchical testing.
config.mat <- matrix(data = c(rep(1, 12), rep(1, 6), rep(2, 6),

rep(1, 4), rep(2, 2), rep(3, 3),
rep(4, 3), 1:12),

nrow = 4, ncol = 12, byrow = TRUE)
Se <- matrix(data=rep(0.95, 8), nrow=2, ncol=4,

dimnames=list(Infection=1:2, Stage=1:4))
Sp <- matrix(data=rep(0.99, 8), nrow=2, ncol=4,

dimnames=list(Infection=1:2, Stage=1:4))
opChar2(algorithm="D4", p.vec=c(0.92, 0.05, 0.02, 0.01),

Se=Se, Sp=Sp, hier.config=config.mat)

Calculate the operating characteristics for informative
five-stage hierarchical testing.
A matrix of joint probabilities for each individual is
generated using the Dirichlet distribution.
config.mat <- matrix(data = c(rep(1, 20), rep(1, 10), rep(2, 10),

rep(c(1, 2, 3, 4), each = 5),
rep(1, 3), rep(2, 2), rep(3, 3),
rep(4, 2), rep(5, 3), rep(6, 2),
rep(7, 3), rep(8, 2), 1:20),

nrow = 5, ncol = 20, byrow = TRUE)
Se <- matrix(data=rep(0.95, 10), nrow=2, ncol=5,

dimnames=list(Infection=1:2, Stage=1:5))
Sp <- matrix(data=rep(0.99, 10), nrow=2, ncol=5,

dimnames=list(Infection=1:2, Stage=1:5))
opChar2(algorithm="ID5", alpha=c(18.25, 0.75, 0.75, 0.25),

Se=Se, Sp=Sp, hier.config=config.mat)

Calculate the operating characteristics for
non-informative array testing without master pooling.
Se <- matrix(data=rep(0.95, 4), nrow=2, ncol=2,

dimnames=list(Infection=1:2, Stage=1:2))
Sp <- matrix(data=rep(0.99, 4), nrow=2, ncol=2,

dimnames=list(Infection=1:2, Stage=1:2))
opChar2(algorithm="A2", p.vec=c(0.90, 0.04, 0.04, 0.02),

Se=Se, Sp=Sp, rowcol.sz=12)

Calculate the operating characteristics for
non-informative array testing with master pooling.
Se <- matrix(data=rep(0.95, 6), nrow=2, ncol=3,

dimnames=list(Infection=1:2, Stage=1:3))
Sp <- matrix(data=rep(0.99, 6), nrow=2, ncol=3,

dimnames=list(Infection=1:2, Stage=1:3))
opChar2(algorithm="A2M", p.vec=c(0.90, 0.04, 0.04, 0.02),

Se=Se, Sp=Sp, rowcol.sz=10)

48 OTC1

OTC1 Find the optimal testing configuration for group testing algorithms
that use a single-disease assay

Description

Find the optimal testing configuration (OTC) using non-informative and informative hierarchical
and array-based group testing algorithms. Single-disease assays are used at each stage of the algo-
rithms.

Usage

OTC1(
algorithm,
p = NULL,
probabilities = NULL,
Se = 0.99,
Sp = 0.99,
group.sz,
obj.fn = c("ET", "MAR"),
weights = NULL,
alpha = 2,
trace = TRUE,
print.time = TRUE,
...

)

Arguments

algorithm character string defining the group testing algorithm to be used. Non-informative
testing options include two-stage hierarchical ("D2"), three-stage hierarchical
("D3"), square array testing without master pooling ("A2"), and square array test-
ing with master pooling ("A2M"). Informative testing options include two-stage
hierarchical ("ID2"), three-stage hierarchical ("ID3"), and square array testing
without master pooling ("IA2").

p overall probability of disease that will be used to generate a vector/matrix of
individual probabilities. For non-informative algorithms, a homogeneous set of
probabilities will be used. For informative algorithms, the expectOrderBeta
function will be used to generate a heterogeneous set of probabilities. Further
details are given under ’Details’. Either p or probabilities should be speci-
fied, but not both.

probabilities a vector of individual probabilities, which is homogeneous for non-informative
testing algorithms and heterogeneous for informative testing algorithms. Either
p or probabilities should be specified, but not both.

Se a vector of sensitivity values, where one value is given for each stage of test-
ing (in order). If a single value is provided, sensitivity values are assumed to

OTC1 49

be equal to this value for all stages of testing. Further details are given under
’Details’.

Sp a vector of specificity values, where one value is given for each stage of test-
ing (in order). If a single value is provided, specificity values are assumed to
be equal to this value for all stages of testing. Further details are given under
’Details’.

group.sz a single group size or range of group sizes for which to calculate operating
characteristics and/or find the OTC. The details of group size specification are
given under ’Details’.

obj.fn a list of objective functions which are minimized to find the OTC. The expected
number of tests per individual, "ET", will always be calculated. Additional op-
tions include "MAR" (the expected number of tests divided by the expected num-
ber of correct classifications, described in Malinovsky et al. (2016)), and "GR"
(a linear combination of the expected number of tests, the number of misclassi-
fied negatives, and the number of misclassified positives, described in Graff &
Roeloffs (1972)). See Hitt et al. (2019) for additional details. The first objective
function specified in this list will be used to determine the results for the top
configurations. Further details are given under ’Details’.

weights a matrix of up to six sets of weights for the GR function. Each set of weights is
specified by a row of the matrix.

alpha a shape parameter for the beta distribution that specifies the degree of hetero-
geneity for the generated probability vector (for informative testing only).

trace a logical value indicating whether the progress of calculations should be printed
for each initial group size provided by the user. The default is TRUE.

print.time a logical value indicating whether the length of time for calculations should be
printed. The default is TRUE.

... arguments to be passed to the expectOrderBeta function, which generates a
vector of probabilities for informative testing algorithms. Further details are
given under ’Details’.

Details

This function finds the OTC for group testing algorithms with an assay that tests for one disease
and computes the associated operating characteristics, as described in Hitt et al. (2019).

Available algorithms include two- and three-stage hierarchical testing and array testing with and
without master pooling. Both non-informative and informative group testing settings are allowed
for each algorithm, except informative array testing with master pooling is unavailable because this
method has not appeared in the group testing literature. Operating characteristics calculated are
expected number of tests, pooling sensitivity, pooling specificity, pooling positive predictive value,
and pooling negative predictive value for each individual.

For informative algorithms where the p argument is specified, the expected value of order statistics
from a beta distribution are found. These values are used to represent disease risk probabilities for
each individual to be tested. The beta distribution has two parameters: a mean parameter p (overall
disease prevalence) and a shape parameter alpha (heterogeneity level). Depending on the specified
p, alpha, and overall group size, simulation may be necessary to generate the vector of individual

50 OTC1

probabilities. This is done using expectOrderBeta and requires the user to set a seed to reproduce
results.

Informative two-stage hierarchical (Dorfman) testing is implemented via the pool-specific optimal
Dorfman (PSOD) method described in McMahan et al. (2012a), where the greedy algorithm pro-
posed for PSOD is replaced by considering all possible testing configurations. Informative array
testing is implemented via the gradient method (the most efficient array design), where higher-risk
individuals are grouped in the left-most columns of the array. For additional details on the gradient
arrangement method for informative array testing, see McMahan et al. (2012b).

The sensitivity/specificity values are allowed to vary across stages of testing. For hierarchical test-
ing, a different sensitivity/specificity value may be used for each stage of testing. For array testing, a
different sensitivity/specificity value may be used for master pool testing (if included), row/column
testing, and individual testing. The values must be specified in order of the testing performed.
For example, values are specified as (stage 1, stage 2, stage 3) for three-stage hierarchical testing or
(master pool testing, row/column testing, individual testing) for array testing with master pooling. A
single sensitivity/specificity value may be specified instead. In this situation, sensitivity/specificity
values for all stages are assumed to be equal.

The value(s) specified by group.sz represent the initial (stage 1) group size for hierarchical test-
ing and the row/column size for array testing. For informative two-stage hierarchical testing, the
group.sz specified represents the block size used in the pool-specific optimal Dorfman (PSOD)
method, where the initial group (block) is not tested. For more details on informative two-stage
hierarchical testing implemented via the PSOD method, see Hitt et al. (2019) and McMahan et al.
(2012a).

If a single value is provided for group.sz with array testing or non-informative two-stage hierar-
chical testing, operating characteristics will be calculated and no optimization will be performed.
If a single value is provided for group.sz with three-stage hierarchical or informative two-stage
hierarchical, the OTC will be found over all possible configurations. If a range of group sizes is
specified, the OTC will be found over all group sizes.

In addition to the OTC, operating characteristics for some of the other configurations corresponding
to each initial group size provided by the user will be displayed. These additional configurations
are only determined for whichever objective function ("ET", "MAR", or "GR") is specified first in
the function call. If "GR" is the objective function listed first, the first set of corresponding weights
will be used. For algorithms where there is only one configuration for each initial group size (non-
informative two-stage hierarchical and all array testing algorithms), results for each initial group
size are provided. For algorithms where there is more than one possible configuration for each ini-
tial group size (informative two-stage hierarchical and all three-stage hierarchical algorithms), two
sets of configurations are provided: 1) the best configuration for each initial group size, and 2) the
top 10 configurations for each initial group size provided by the user. If a single value is provided
for group.sz with array testing or non-informative two-stage hierarchical testing, operating char-
acteristics will not be provided for configurations other than that specified by the user. Results are
sorted by the value of the objective function per individual, value.

The displayed overall pooling sensitivity, pooling specificity, pooling positive predictive value, and
pooling negative predictive value are weighted averages of the corresponding individual accuracy
measures for all individuals within the initial group (or block) for a hierarchical algorithm, or within
the entire array for an array-based algorithm. Expressions for these averages are provided in the
Supplementary Material for Hitt et al. (2019). These expressions are based on accuracy definitions
given by Altman and Bland (1994a, 1994b). Individual accuracy measures can be calculated using
the operatingCharacteristics1 (opChar1) function.

OTC1 51

The OTC1 function accepts additional arguments, namely num.sim, to be passed to the expectOrderBeta
function, which generates a vector of probabilities for informative group testing algorithms. The
num.sim argument specifies the number of simulations from the beta distribution when simulation
is used. By default, 10,000 simulations are used.

Value

A list containing:

algorithm the group testing algorithm used for calculations.

prob the probability of disease or the vector of individual probabilities, as specified
by the user.

alpha level of heterogeneity for the generated probability vector (for informative test-
ing only).

Se the vector of sensitivity values for each stage of testing.

Sp the vector of specificity values for each stage of testing.
opt.ET, opt.MAR, opt.GR

a list of results for each objective function specified by the user, containing:

OTC a list specifying elements of the optimal testing configuration, which may
include:
Stage1 group size for the first stage of hierarchical testing, if applicable.
Stage2 group sizes for the second stage of hierarchical testing, if applica-

ble.
Block.sz the block size/initial group size for informative Dorfman testing,

which is not tested.
pool.szs group sizes for the first stage of testing for informative Dorfman

testing.
Array.dim the row/column size for array testing.
Array.sz the overall array size for array testing (the square of the row/column

size).
p.vec the sorted vector of individual probabilities, if applicable.
p.mat the sorted matrix of individual probabilities in gradient arrangement, if

applicable. Further details are given under ’Details’.
ET the expected testing expenditure to decode all individuals in the algorithm;

this includes all individuals in all groups for hierarchical algorithms or in
the entire array for array testing.

value the value of the objective function per individual.
Accuracy a matrix of overall accuracy measures for the algorithm. The columns

correspond to the pooling sensitivity, pooling specificity, pooling positive
predictive value, and pooling negative predictive value for the overall algo-
rithm. Further details are given under ’Details’.

Configs a data frame containing results for the best configuration for each initial group
size provided by the user. The columns correspond to the initial group size,
configuration (if applicable), overall array size (if applicable), expected number
of tests, value of the objective function per individual, pooling sensitivity, pool-
ing specificity, pooling positive predictive value, and pooling negative predictive

52 OTC1

value. No results are displayed if a single group.sz is provided. Further details
are given under ’Details’.

Top.Configs a data frame containing results for some of the top configurations for each ini-
tial group size provided by the user. The columns correspond to the initial group
size, configuration, expected number of tests, value of the objective function
per individual, pooling sensitivity, pooling specificity, pooling positive predic-
tive value, and pooling negative predictive value. No results are displayed for
non-informative two-stage hierarchical testing or for array testing algorithms.
Further details are given under ’Details’.

Note

This function returns the pooling positive and negative predictive values for all individuals even
though these measures are diagnostic specific; e.g., the pooling positive predictive value should
only be considered for those individuals who have tested positive.

Additionally, only stage dependent sensitivity and specificity values are allowed within the program
(no group within stage dependent values are allowed). See Bilder et al. (2019) for additional
information.

Author(s)

Brianna D. Hitt

References

Altman, D., Bland, J. (1994). “Diagnostic tests 1: Sensitivity and specificity.” BMJ, 308, 1552.

Altman, D., Bland, J. (1994). “Diagnostic tests 2: Predictive values.” BMJ, 309, 102.

Bilder, C., Tebbs, J., McMahan, C. (2019). “Informative group testing for multiplex assays.” Bio-
metrics, 75, 278–288. doi: 10.1111/biom.12988.

Graff, L., Roeloffs, R. (1972). “Group testing in the presence of test error; an extension of the
Dorfman procedure.” Technometrics, 14, 113–122. doi: 10.1080/00401706.1972.10488888.

Hitt, B., Bilder, C., Tebbs, J., McMahan, C. (2019). “The objective function controversy for group
testing: Much ado about nothing?” Statistics in Medicine, 38, 4912–4923. doi: 10.1002/sim.8341.

Malinovsky, Y., Albert, P., Roy, A. (2016). “Reader reaction: A note on the evaluation of group
testing algorithms in the presence of misclassification.” Biometrics, 72, 299–302. doi: 10.1111/
biom.12385.

McMahan, C., Tebbs, J., Bilder, C. (2012a). “Informative Dorfman Screening.” Biometrics, 68,
287–296. doi: 10.1111/j.15410420.2011.01644.x.

McMahan, C., Tebbs, J., Bilder, C. (2012b). “Two-Dimensional Informative Array Testing.” Bio-
metrics, 68, 793–804. doi: 10.1111/j.15410420.2011.01726.x.

See Also

Other OTC functions: OTC2()

https://doi.org/10.1111/biom.12988
https://doi.org/10.1080/00401706.1972.10488888
https://doi.org/10.1002/sim.8341
https://doi.org/10.1111/biom.12385
https://doi.org/10.1111/biom.12385
https://doi.org/10.1111/j.1541-0420.2011.01644.x
https://doi.org/10.1111/j.1541-0420.2011.01726.x

OTC1 53

Examples

Estimated running time for all examples was calculated
using a computer with 16 GB of RAM and one core of
an Intel i7-6500U processor. Please take this into
account when interpreting the run times given.

Find the OTC for non-informative
two-stage hierarchical (Dorfman) testing.
OTC1(algorithm="D2", p=0.05, Se=0.99, Sp=0.99,

group.sz=3:100, obj.fn=c("ET", "MAR"),
trace=TRUE, print.time=TRUE)

Find the OTC for informative two-stage hierarchical
(Dorfman) testing.
A vector of individual probabilities is generated using
the expected value of order statistics from a beta
distribution with p = 0.01 and a heterogeneity level
of alpha = 0.5.
This example takes approximately 2.5 minutes to run.

set.seed(52613)
OTC1(algorithm="ID2", p=0.01, Se=0.95, Sp=0.95, group.sz=50,

obj.fn=c("ET", "MAR", "GR"),
weights=matrix(data=c(1, 1, 10, 10, 0.5, 0.5),
nrow=3, ncol=2, byrow=TRUE), alpha=0.5,
trace=FALSE, print.time=TRUE, num.sim=10000)

Find the OTC over all possible testing configurations
for non-informative three-stage hierarchical testing
with a specified group size.
OTC1(algorithm="D3", p=0.001, Se=0.95, Sp=0.95, group.sz=18,

obj.fn=c("ET", "MAR", "GR"),
weights=matrix(data=c(1, 1), nrow=1, ncol=2, byrow=TRUE),
trace=FALSE, print.time=FALSE)

Find the OTC for non-informative three-stage
hierarchical testing.
This example takes approximately 20 seconds to run.

OTC1(algorithm="D3", p=0.06, Se=0.90, Sp=0.90,
group.sz=3:30, obj.fn=c("ET", "MAR", "GR"),
weights=matrix(data=c(1, 1, 10, 10, 100, 100),
nrow=3, ncol=2, byrow=TRUE))

Find the OTC over all possible configurations
for informative three-stage hierarchical testing
with a specified group size and a heterogeneous
vector of probabilities.
set.seed(1234)
OTC1(algorithm="ID3",

probabilities=c(0.012, 0.014, 0.011, 0.012, 0.010, 0.015),
Se=0.99, Sp=0.99, group.sz=6, obj.fn=c("ET","MAR","GR"),

54 OTC2

weights=matrix(data=c(1, 1), nrow=1, ncol=2, byrow=TRUE),
alpha=0.5, num.sim=5000, trace=FALSE)

Calculate the operating characteristics for
non-informative array testing without master pooling
with a specified array size.
OTC1(algorithm="A2", p=0.005, Se=0.95, Sp=0.95, group.sz=8,

obj.fn=c("ET", "MAR"), trace=FALSE)

Find the OTC for informative array testing without
master pooling.
A vector of individual probabilities is generated using
the expected value of order statistics from a beta
distribution with p = 0.03 and a heterogeneity level
of alpha = 2. The probabilities are then arranged in
a matrix using the gradient method.
This example takes approximately 30 seconds to run.

set.seed(1002)
OTC1(algorithm="IA2", p=0.03, Se=0.95, Sp=0.95,

group.sz=3:20, obj.fn=c("ET", "MAR", "GR"),
weights=matrix(data=c(1, 1, 10, 10, 100, 100),

nrow=3, ncol=2, byrow=TRUE), alpha=2)

Find the OTC for non-informative array testing
with master pooling.
This example takes approximately 20 seconds to run.

OTC1(algorithm="A2M", p=0.02, Se=0.90, Sp=0.90,
group.sz=3:20, obj.fn=c("ET", "MAR", "GR"),
weights=matrix(data=c(1, 1, 10, 10, 0.5, 0.5, 2, 2, 100, 100,

10, 100), nrow=6, ncol=2, byrow=TRUE))

OTC2 Find the optimal testing configuration for group testing algorithms
that use a multiplex assay for two diseases

Description

Find the optimal testing configuration (OTC) using non-informative and informative hierarchical
and array-based group testing algorithms. Multiplex assays for two diseases are used at each stage
of the algorithms.

Usage

OTC2(
algorithm,
p.vec = NULL,
probabilities = NULL,
alpha = NULL,

OTC2 55

Se,
Sp,
ordering = matrix(data = c(0, 1, 0, 1, 0, 0, 1, 1), nrow = 4, ncol = 2),
group.sz,
trace = TRUE,
print.time = TRUE,
...

)

Arguments

algorithm character string defining the group testing algorithm to be used. Non-informative
testing options include two-stage hierarchical ("D2"), three-stage hierarchical
("D3"), square array testing without master pooling ("A2"), and square array test-
ing with master pooling ("A2M"). Informative testing options include two-stage
hierarchical ("ID2") and three-stage hierarchical ("ID3") testing.

p.vec vector of overall joint probabilities. The joint probabilities are assumed to be
equal for all individuals in the algorithm (non-informative testing only). There
are four joint probabilities to consider: p00, the probability that an individual
tests negative for both diseases; p10, the probability that an individual tests posi-
tive only for the first disease; p01, the probability that an individual tests positive
only for the second disease; and p11, the probability that an individual tests posi-
tive for both diseases. The joint probabilities must sum to 1. Only one of p.vec,
probabilities, or alpha should be specified.

probabilities matrix of joint probabilities for each individual, where rows correspond to the
four joint probabilities and columns correspond to each individual in the algo-
rithm. Only one of p.vec, probabilities, or alpha should be specified.

alpha vector containing positive shape parameters of the Dirichlet distribution (for
informative testing only). The vector will be used to generate a heterogeneous
matrix of joint probabilities for each individual. The vector must have length 4.
Further details are given under ’Details’. Only one of p.vec, probabilities,
or alpha should be specified.

Se matrix of sensitivity values, where one value is given for each disease (or infec-
tion) at each stage of testing. The rows of the matrix correspond to each disease
k = 1, ...,K, and the columns of the matrix correspond to each stage of testing
s = 1, ..., S. If a vector of K values is provided, the sensitivity values associ-
ated with disease k are assumed to be equal to the kth value in the vector for all
stages of testing. Further details are given under ’Details’.

Sp matrix of specificity values, where one value is given for each disease (or infec-
tion) at each stage of testing. The rows of the matrix correspond to each disease
k = 1, ...,K, and the columns of the matrix correspond to each stage of testing
s = 1, ..., S. If a vector of K values is provided, the specificity values associ-
ated with disease k are assumed to be equal to the kth value in the vector for all
stages of testing. Further details are given under ’Details’.

ordering matrix detailing the ordering for the binary responses of the diseases. The
columns of the matrix correspond to each disease and the rows of the matrix

56 OTC2

correspond to each of the 4 sets of binary responses for two diseases. This or-
dering is used with the joint probabilities. The default ordering is (p_00, p_10,
p_01, p_11).

group.sz single group size or range of group sizes for which to calculate operating char-
acteristics and/or find the OTC. The details of group size specification are given
under ’Details’.

trace a logical value indicating whether the progress of calculations should be printed
for each initial group size provided by the user. The default is TRUE.

print.time a logical value indicating whether the length of time for calculations should be
printed. The default is TRUE.

... additional arguments to be passed to functions for hierarchical testing with mul-
tiplex assays for two diseases.

Details

This function finds the OTC for standard group testing algorithms with a multiplex assay that tests
for two diseases and computes the associated operating characteristics. Calculations for hierarchical
group testing algorithms are performed as described in Bilder et al. (2019) and calculations for
array-based group testing algorithms are performed as described in Hou et al. (2019).

Available algorithms include two- and three-stage hierarchical testing and array testing with and
without master pooling. Both non-informative and informative group testing settings are allowed for
hierarchical algorithms. Only non-informative group testing settings are allowed for array testing
algorithms. Operating characteristics calculated are expected number of tests, pooling sensitivity,
pooling specificity, pooling positive predictive value, and pooling negative predictive value for each
individual.

For informative algorithms where the alpha argument is specified, a heterogeneous matrix of joint
probabilities for each individual is generated using the Dirichlet distribution. This is done using
rBeta2009::rdirichlet and requires the user to set a seed to reproduce results. See Bilder et al.
(2019) for additional details on the use of the Dirichlet distribution for this purpose.

The sensitivity/specificity values are allowed to vary across stages of testing. For hierarchical test-
ing, a different sensitivity/specificity value may be used for each stage of testing. For array testing, a
different sensitivity/specificity value may be used for master pool testing (if included), row/column
testing, and individual testing. The values must be specified in the order of the testing performed.
For example, values are specified as (stage 1, stage 2, stage 3) for three-stage hierarchical testing or
(master pool testing, row/column testing, individual testing) for array testing with master pooling.
A vector of K sensitivity/specificity values may be specified, and sensitivity/specificity values for
all stages of testing are assumed to be equal. The first value in the vector will be used at each stage
of testing for the first disease, and the second value in the vector will be used at each stage of testing
for the second disease.

The value(s) specified by group.sz represent the initial (stage 1) group size for hierarchical testing
and the row/column size for array testing. If a single value is provided for group.sz with two-stage
hierarchical or array testing, operating characteristics will be calculated and no optimization will be
performed. If a single value is provided for group.sz with three-stage hierarchical, the OTC will
be found over all possible configurations with this initial group size. If a range of group sizes is
specified, the OTC will be found over all group sizes.

OTC2 57

In addition to the OTC, operating characteristics for some of the other configurations correspond-
ing to each initial group size provided by the user are displayed. For algorithms where there is
only one configuration for each initial group size (non-informative two-stage hierarchical and all
array testing algorithms), results for each initial group size are provided. For algorithms where
there is more than one possible configuration for each initial group size (informative two-stage hi-
erarchical and all three-stage hierarchical algorithms), two sets of configurations are provided: 1)
the best configuration for each initial group size, and 2) the top 10 configurations for each initial
group size provided by the user. If a single value is provided for group.sz with array testing or
non-informative two-stage hierarchical testing, operating characteristics will not be provided for
configurations other than that specified by the user. Results are sorted by the value of the objective
function per individual, value.

The displayed overall pooling sensitivity, pooling specificity, pooling positive predictive value, and
pooling negative predictive value are weighted averages of the corresponding individual accuracy
measures for all individuals within the initial group (or block) for a hierarchical algorithm, or within
the entire array for an array-based algorithm. Expressions for these averages are provided in the
Supplementary Material for Hitt et al. (2019). These expressions are based on accuracy definitions
given by Altman and Bland (1994a, 1994b). Individual accuracy measures can be calculated using
the operatingCharacteristics2 (opChar2) function.

Value

A list containing:

algorithm the group testing algorithm used for calculations.

prob.vec the vector of joint probabilities provided by the user, if applicable (for non-
informative algorithms only).

joint.p the matrix of joint probabilities for each individual provided by the user, if ap-
plicable.

alpha.vec the alpha vector provided by the user, if applicable (for informative algorithms
only).

Se the matrix of sensitivity values for each disease at each stage of testing.

Sp the matrix of specificity values for each disease at each stage of testing.

opt.ET a list containing:

OTC a list specifying elements of the optimal testing configuration, which may
include:
Stage1 group size for the first stage of hierarchical testing, if applicable.
Stage2 group sizes for the second stage of hierarchical testing, if applica-

ble.
Block.sz the block size/initial group size for informative Dorfman testing,

which is not tested.
pool.szs group sizes for the first stage of testing for informative Dorfman

testing.
Array.dim the row/column size for array testing.
Array.sz the overall array size for array testing (the square of the row/column

size).

58 OTC2

p.mat the matrix of joint probabilities for each individual in the algorithm.
Each row corresponds to one of the four joint probabilities. Each column
corresponds to an individual in the testing algorithm.

ET the expected testing expenditure for the OTC.
value the value of the expected number of tests per individual.
Accuracy the matrix of overall accuracy measures for the algorithm. The rows

correspond to each disease. The columns correspond to the pooling sen-
sitivity, pooling specificity, pooling positive predictive value, and pooling
negative predictive value for the overall algorithm. Further details are given
under ’Details’.

Configs a data frame containing results for the best configuration for each initial group
size provided by the user. The columns correspond to the initial group size,
configuration (if applicable), overall array size (if applicable), expected number
of tests, value of the objective function per individual, and accuracy measures
for each disease. Accuracy measures include the pooling sensitivity, pooling
specificity, pooling positive predictive value, and pooling negative predictive
value. No results are displayed if a single group.sz is provided. Further details
are given under ’Details’.

Top.Configs a data frame containing results for some of the top configurations for each initial
group size provided by the user. The columns correspond to the initial group
size, configuration, expected number of tests, value of the objective function per
individual, and accuracy measures for each disease. Accuracy measures include
the pooling sensitivity, pooling specificity, pooling positive predictive value, and
pooling negative predictive value. No results are displayed for non-informative
two-stage hierarchical testing or for array testing algorithms. Further details are
given under ’Details’.

Note

This function returns the pooling positive and negative predictive values for all individuals even
though these measures are diagnostic specific; e.g., the pooling positive predictive value should
only be considered for those individuals who have tested positive.

Additionally, only stage dependent sensitivity and specificity values are allowed within the program
(no group within stage dependent values are allowed). See Bilder et al. (2019) for additional
information.

Author(s)

This function was written by Brianna D. Hitt. It calls ET.all.stages.new and PSePSpAllStages,
which were originally written by Christopher Bilder for Bilder et al. (2019), and ARRAY, which
was originally written by Peijie Hou for Hou et al. (2020). The functions ET.all.stages.new,
PSePSpAllStages, and ARRAY were obtained from http://chrisbilder.com/grouptesting. Mi-
nor modifications were made to the functions for inclusion in the binGroup2 package.

References

Altman, D., Bland, J. (1994). “Diagnostic tests 1: Sensitivity and specificity.” BMJ, 308, 1552.

Altman, D., Bland, J. (1994). “Diagnostic tests 2: Predictive values.” BMJ, 309, 102.

http://chrisbilder.com/grouptesting

OTC2 59

Bilder, C., Tebbs, J., McMahan, C. (2019). “Informative group testing for multiplex assays.” Bio-
metrics, 75, 278–288. doi: 10.1111/biom.12988.

Hitt, B., Bilder, C., Tebbs, J., McMahan, C. (2019). “The objective function controversy for group
testing: Much ado about nothing?” Statistics in Medicine, 38, 4912–4923. doi: 10.1002/sim.8341.

Hou, P., Tebbs, J., Wang, D., McMahan, C., Bilder, C. (2020). “Array testing with multiplex assays.”
To appear in Biostatistics.

McMahan, C., Tebbs, J., Bilder, C. (2012a). “Informative Dorfman Screening.” Biometrics, 68,
287–296. doi: 10.1111/j.15410420.2011.01644.x.

See Also

Other OTC functions: OTC1()

Other multiplex testing functions: operatingCharacteristics2()

Examples

Estimated running time for all examples was calculated
using a computer with 16 GB of RAM and one core of
an Intel i7-6500U processor. Please take this into
account when interpreting the run times given.

Find the OTC for non-informative two-stage
hierarchical (Dorfman) testing
Se <- matrix(data = c(0.95, 0.95, 0.99, 0.99), nrow = 2, ncol = 2,

dimnames = list(Infection = 1:2, Stage = 1:2))
Sp <- matrix(data = c(0.96, 0.96, 0.98, 0.98), nrow = 2, ncol = 2,

dimnames = list(Infection = 1:2, Stage = 1:2))
OTC2(algorithm = "D2", p.vec=c(0.90, 0.04, 0.04, 0.02),

Se = Se, Sp = Sp, group.sz = 3:30)

Find the OTC over all possible testing configurations
for informative two-stage hierarchical (Dorfman)
testing with a specified group size.
A matrix of joint probabilities for each individual is
generated using the Dirichlet distribution.
This examples takes approximately 25 seconds to run.
Se <- matrix(data = rep(0.95, 4), nrow = 2, ncol = 2,

dimnames = list(Infection = 1:2, Stage = 1:2))
Sp <- matrix(data = rep(0.99, 4), nrow = 2, ncol = 2,

dimnames = list(Infection = 1:2, Stage = 1:2))

set.seed(1002)
OTC2(algorithm = "ID2", alpha=c(18.25, 0.75, 0.75, 0.25),

Se = Se, Sp = Sp, group.sz = 10:20)

Find the OTC for non-informative three-stage
hierarchical testing.
This example takes approximately 1 minute to run.
Se <- matrix(data = rep(0.95, 6), nrow = 2, ncol = 3,

dimnames = list(Infection = 1:2, Stage = 1:3))
Sp <- matrix(data = rep(0.99, 6), nrow = 2, ncol = 3,

https://doi.org/10.1111/biom.12988
https://doi.org/10.1002/sim.8341
https://doi.org/10.1111/j.1541-0420.2011.01644.x

60 predict.gtReg

dimnames = list(Infection = 1:2, Stage = 1:3))

OTC2(algorithm = "D3", p.vec=c(0.95, 0.02, 0.02, 0.01),
Se = Se, Sp = Sp, group.sz = 3:20)

Find the OTC over all possible configurations
for informative three-stage hierarchical
testing with a specified group size
and a heterogeneous matrix of joint
probabilities for each individual.
set.seed(8791)
Se <- matrix(data = rep(0.95, 6), nrow = 2, ncol = 3,

dimnames = list(Infection = 1:2, Stage = 1:3))
Sp <- matrix(data = rep(0.99, 6), nrow = 2, ncol = 3,

dimnames = list(Infection = 1:2, Stage = 1:3))
p.unordered <- t(rBeta2009::rdirichlet(n = 12,

shape = c(18.25, 0.75, 0.75, 0.25)))
p.ordered <- p.unordered[, order(1 - p.unordered[1,])]
OTC2(algorithm="ID3", probabilities = p.ordered,

Se=Se, Sp=Sp, group.sz = 12,
trace=FALSE, print.time=FALSE)

Find the OTC for non-informative array testing
without master pooling.
Se <- matrix(data = rep(0.95, 4), nrow = 2, ncol = 2,

dimnames = list(Infection = 1:2, Stage = 1:2))
Sp <- matrix(data = rep(0.99, 4), nrow = 2, ncol = 2,

dimnames = list(Infection = 1:2, Stage = 1:2))
OTC2(algorithm = "A2", p.vec=c(0.90, 0.04, 0.04, 0.02),

Se = Se, Sp = Sp, group.sz = 3:12)

Find the OTC for non-informative array testing
with master pooling.
Se <- matrix(data = rep(0.95, 6), nrow = 2, ncol = 3,

dimnames = list(Infection = 1:2, Stage = 1:3))
Sp <- matrix(data = rep(0.99, 6), nrow = 2, ncol = 3,

dimnames = list(Infection = 1:2, Stage = 1:3))
OTC2(algorithm = "A2M", p.vec=c(0.90, 0.04, 0.04, 0.02),

Se = Se, Sp = Sp, group.sz = 10,
trace=FALSE, print.time=FALSE)

predict.gtReg Predict method for group testing regression model fits

Description

Obtains predictions for individual observations and optionally estimates standard errors of those
predictions from objects of class "gtReg" returned by gtReg.

predict.gtReg 61

Usage

S3 method for class 'gtReg'
predict(
object,
newdata,
type = c("link", "response"),
se.fit = FALSE,
conf.level = NULL,
na.action = na.pass,
...

)

Arguments

object a fitted object of class "gtReg".

newdata an optional data frame in which to look for variables with which to predict. If
omitted, the fitted linear predictors are used.

type the type of prediction required. The "link" option is on the scale of the linear
predictors. The "response" option is on the scale of the response variable.
Thus, for the logit model, the "link" predictions are of log-odds (probabilities
on the logit scale) and type="response" gives the predicted probabilities.

se.fit a logical value indicating whether standard errors are required.

conf.level the confidence level of the interval for the predicted values.

na.action a function determining what should be done with missing values in newdata.
The default is to predict NA.

... currently not used.

Details

If newdata is omitted, the predictions are based on the data used for the fit. When newdata is
present and contains missing values, how the missing values will be dealt with is determined by the
na.action argument. In this case, if na.action=na.omit, omitted cases will not appear, whereas if
na.action=na.exclude, omitted cases will appear (in predictions and standard errors) with value
NA.

Value

If se=FALSE, a vector or matrix of predictions. If se=TRUE, a list containing:

fit predictions.

se.fit estimated standard errors.

lower the lower bound of the confidence interval, if calculated.

upper the upper bound of the confidence interval, if calculated.

Author(s)

Boan Zhang

62 print.designPower

Examples

data(hivsurv)
fit1 <- gtReg(formula = groupres ~ AGE + EDUC., data = hivsurv,

groupn = gnum, sens = 0.9, spec = 0.9,
linkf = "logit", method = "V")

pred.data <- data.frame(AGE = c(15, 25, 30), EDUC. = c(1, 3, 2))
predict(object = fit1, newdata = pred.data, type = "link",

se.fit = TRUE)
predict(object = fit1, newdata = pred.data, type = "response",

se.fit = TRUE, conf.level = 0.9)
predict(object = fit1, type = "response", se.fit = TRUE,

conf.level = 0.9)

print.designPower Print method for objects of class "designPower"

Description

Print method for objects of class "designPower" created by designPower.

Usage

S3 method for class 'designPower'
print(x, ...)

Arguments

x an object of class "designPower" created by designPower.

... additional arguments to be passed to print. Currently only digits to be passed
to signif for appropriate rounding.

Value

A print out detailing whether or not power was reached in the range of values (n or s) provided,
the maximal power reached in the range of values, the alternative hypothesis, and the assumed true
proportion.

Author(s)

This function was originally written as print.bgtDesign by Frank Schaarschmidt for the binGroup
package. Minor modifications were made for inclusion in the binGroup2 package.

print.gtTest 63

print.gtTest Print method for objects of class "gtTest"

Description

Print method for objects of class "gtTest" created by the gtTest function.

Usage

S3 method for class 'gtTest'
print(x, ...)

Arguments

x An object of class "gtTest" (gtTest).

... Additional arguments to be passed to print. Currently only digits to be passed
to signif for appropriate rounding.

Value

A print out of the p-value and point estimate resulting from gtTest.

Author(s)

This function was originally written as print.bgtTest by Brad Biggerstaff for the binGroup pack-
age. Minor modifications were made for inclusion of the function in the binGroup2 package.

print.propCI Print method for objects of class "propCI"

Description

Print method for objects of class "propCI" created by the propCI function.

Usage

S3 method for class 'propCI'
print(x, ...)

Arguments

x An object of class "propCI" (propCI).

... Additional arguments to be passed to print.

64 print.propDiffCI

Value

A print out of the point estimate and confidence interval found with propCI.

Author(s)

This function is a combination of print.poolbindiff and print.bgt, written by Brad Biggerstaff
for the binGroup package. Minor modifications were made for inclusion of the function in the
binGroup2 package.

print.propDiffCI Print method for objects of class "propDiffCI"

Description

Print method for objects of class "propDiffCI" created by the propDiffCI function.

Usage

S3 method for class 'propDiffCI'
print(x, ...)

Arguments

x An object of class "propDiffCI" (propDiffCI).

... Additional arguments to be passed to print.

Value

A print out of the point estimate and confidence interval found with propDiffCI.

Author(s)

This function was originally written as print.poolbindiff by Brad Biggerstaff for the binGroup
package. Minor modifications were made for inclusion of the function in the binGroup2 package.

print.summary.gtReg 65

print.summary.gtReg Print method for summary.gtReg

Description

Print method for objects obtained by summary.gtReg.

Usage

S3 method for class 'summary.gtReg'
print(
x,
digits = max(3, getOption("digits") - 3),
signif.stars = getOption("show.signif.stars"),
...

)

Arguments

x An object of class "summary.gtReg" created by summary.gtReg.

digits digits for rounding.

signif.stars a logical value indicating whether significance stars should be shown.

... Additional arguments to be passed to printCoefmat.

Value

A print out of the function call, deviance residuals (for simple pooling and halving only), coeffi-
cients, null and residual deviance and degrees of freedom (for simple pooling only), AIC (for simple
pooling and halving only), number of Gibbs samples (for array testing only), and the number of it-
erations.

Author(s)

This function combines code from print.summary.gt and print.summary.gt.mp, written by
Boan Zhang for the binGroup package. Minor modifications were made for inclusion in the
binGroup2 package.

66 propCI

propCI Confidence intervals for one proportion in group testing

Description

Calculates point estimates and confidence intervals for a single proportion with group testing data.
Methods are available for groups of equal or different sizes.

Usage

propCI(
x,
m,
n,
pt.method = "mle",
ci.method,
conf.level = 0.95,
alternative = "two.sided",
maxiter = 100,
tol = .Machine$double.eps^0.5

)

Arguments

x integer specifying the number of positive groups when groups are of equal size,
or a vector specifying the number of positive groups among the n groups tested
when group sizes differ. If the latter, this vector must be of the same length as
the m and n arguments.

m integer specifying the common size of groups when groups are of equal size,
or a vector specifying the group sizes when group sizes differ. If the latter, this
vector must be of the same length as the x and n arguments.

n integer specifying the number of groups when these groups are of equal size,
or a vector specifying the corresponding number of groups of the sizes m when
group sizes differ. If the latter, this vector must be of the same length as the x
and m arguments.

pt.method character string specifying the point estimate to compute. Options include "Firth"
for the bias-preventative, "Gart" and "bc-mle" for the bias-corrected MLE
(where the latter allows for backward compatibility), and "mle" for the MLE.

ci.method character string specifying the confidence interval to compute. Options include
"AC" for the Agresti-Coull interval, "bc-skew-score" for the bias- and skewness-
corrected interval, "Blaker" for the Blaker interval, "CP" for the Clopper-Pearson
interval, "exact" for the exact interval as given by Hepworth (1996), "lrt" for
the likelihood ratio test interval, "score" for the Wilson score interval, "skew-
score" for the skewness-corrected interval, "soc" for the second-order corrected
interval, and "Wald" for the Wald interval. Note that the Agresti-Coull, Blaker,
Clopper-Pearson, and second-order corrected intervals can only be calculated
when x, m, and n are given as integers (equal group size case).

propCI 67

conf.level confidence level of the interval.

alternative character string defining the alternative hypothesis, either "two.sided", "less",
or "greater".

maxiter the maximum number of steps in the iteration of confidence limits, for use only
with the "exact" method when group sizes differ.

tol the accuracy required for iterations in internal functions, for use with asymptotic
intervals when group sizes differ only.

Details

Confidence interval methods include the Agresti-Coull (ci.method="AC"), bias- and skewness-
corrected (ci.method="bc-skew-score"), Blaker (ci.method="Blaker"), Clopper-Pearson (ci.method="CP"),
exact (ci.method="exact"), likelihood ratio test (ci.method="lrt"), Wilson score (ci.method="score"),
skewness-corrected (ci.method="skew-score"), second-order corrected (ci.method="soc"), and
Wald (ci.method="Wald") intervals. The Agresti-Coull, Blaker, Clopper-Pearson, and second-
order corrected intervals are available only for the equal group size case.

Point estimates available include the MLE (pt.method="mle"), bias-corrected MLE (pt.method="Gart"
or pt.method="bc-mle"), and bias-preventative (pt.method="Firth"). Only the MLE method is
available when calculating the Clopper-Pearson, Blaker, Agresti-Coull, second-order corrected, or
exact intervals.

Equal group sizes: Computation of confidence intervals for group testing with equal group sizes
are described in Tebbs & Bilder (2004) and Schaarschmidt (2007).

Unequal group sizes: While the exact method is available when group sizes differ, the algorithm
becomes computationally very expensive if the number of different groups, n, becomes larger
than three. See Hepworth (1996) for additional details on the exact method and other methods
for constructing confidence intervals in group testing situations. For computational details and
simulation results of the remaining methods, see Biggerstaff (2008). See Hepworth & Biggerstaff
(2017) for recommendations on the best point estimator methods.

Value

A list containing:

conf.int a confidence interval for the proportion.

estimate the point estimator of the proportion.

pt.method the method used for point estimation.

ci.method the method used for confidence interval estimation.

conf.level the confidence level of the interval.

alternative the alternative specified by the user.

x the number of positive groups.

m the group sizes.

n the numbers of groups with corresponding group sizes m.

68 propCI

Author(s)

This function is a combination of bgtCI and bgtvs written by Frank Schaarschmidt and pooledBin
written by Brad Biggerstaff for the binGroup package. Minor modifications have been made for
inclusion of the functions in the binGroup2 package.

References

Biggerstaff, B. (2008). “Confidence intervals for the difference of proportions estimated from
pooled samples.” Journal of Agricultural, Biological, and Environmental Statistics, 13, 478–496.
doi: 10.1198/108571108X379055.

Hepworth, G. (1996). “Exact confidence intervals for proportions estimated by group testing.”
Biometrics, 52, 1134–1146.

Hepworth, G., Biggerstaff, B. (2017). “Bias correction in estimating proportions by pooled test-
ing.” Journal of Agricultural, Biological, and Environmental Statistics, 22, 602–614. doi: 10.1007/
s1325301702972.

Schaarschmidt, F. (2007). “Experimental design for one-sided confidence intervals or hypothesis
tests in binomial group testing.” Communications in Biometry and Crop Science, 2, 32–40. ISSN
1896-0782.

Tebbs, J., Bilder, C. (2004). “Confidence interval procedures for the probability of disease transmis-
sion in multiple-vector-transfer designs.” Journal of Agricultural, Biological, and Environmental
Statistics, 9, 75–90. doi: 10.1198/1085711043127.

See Also

propDiffCI for confidence intervals for the difference of proportions in group testing, gtTest for
hypothesis tests in group testing, gtPower for power calculations in group testing, and binom.test
for an exact confidence interval and test.

Other estimation functions: designEst(), designPower(), gtPower(), gtTest(), gtWidth(),
propDiffCI()

Examples

Example from Tebbs and Bilder (2004):
3 groups out of 24 test positively;
each group has a size of 7.
Clopper-Pearson interval:
propCI(x=3, m=7, n=24, ci.method="CP",

conf.level=0.95, alternative="two.sided")

Blaker interval:
propCI(x=3, m=7, n=24, ci.method="Blaker",

conf.level=0.95, alternative="two.sided")

Wilson score interval:
propCI(x=3, m=7, n=24, ci.method="score",

conf.level=0.95, alternative="two.sided")

One-sided Clopper-Pearson interval:

https://doi.org/10.1198/108571108X379055
https://doi.org/10.1007/s13253-017-0297-2
https://doi.org/10.1007/s13253-017-0297-2
https://doi.org/10.1198/1085711043127

propCI 69

propCI(x=3, m=7, n=24, ci.method="CP",
conf.level=0.95, alternative="less")

Calculate confidence intervals with a group size of 1.
These match those found using the binom.confint()
function from the binom package.
propCI(x = 4, m = 1, n = 10, pt.method = "mle",

ci.method = "AC")
propCI(x = 4, m = 1, n = 10, pt.method = "mle",

ci.method = "score")
propCI(x = 4, m = 1, n = 10, pt.method = "mle",

ci.method = "Wald")

Example from Hepworth (1996, table 5):
1 group out of 2 tests positively with
groups of size 5; also,
2 groups out of 3 test positively with
groups of size 2.
propCI(x=c(1,2), m=c(5,2), n=c(2,3), ci.method="exact")

Recalculate the example given in
Hepworth (1996), table 5:
propCI(x=c(0,0), m=c(5,2), n=c(2,3), ci.method="exact")
propCI(x=c(0,1), m=c(5,2), n=c(2,3), ci.method="exact")
propCI(x=c(0,2), m=c(5,2), n=c(2,3), ci.method="exact")
propCI(x=c(0,3), m=c(5,2), n=c(2,3), ci.method="exact")
propCI(x=c(1,0), m=c(5,2), n=c(2,3), ci.method="exact")
propCI(x=c(1,1), m=c(5,2), n=c(2,3), ci.method="exact")
propCI(x=c(1,2), m=c(5,2), n=c(2,3), ci.method="exact")
propCI(x=c(1,3), m=c(5,2), n=c(2,3), ci.method="exact")
propCI(x=c(2,0), m=c(5,2), n=c(2,3), ci.method="exact")
propCI(x=c(2,1), m=c(5,2), n=c(2,3), ci.method="exact")
propCI(x=c(2,2), m=c(5,2), n=c(2,3), ci.method="exact")
propCI(x=c(2,3), m=c(5,2), n=c(2,3), ci.method="exact")

Example with multiple groups of various sizes:
0 out of 5 groups test positively with
groups of size 1 (individual testing);
0 out of 5 groups test positively with
groups of size 5;
1 out of 5 groups test positively with
groups of size 10; and
2 out of 5 groups test positively with
groups of size 50.
x1 <- c(0,0,1,2)
m1 <- c(1,5,10,50)
n1 <- c(5,5,5,5)
propCI(x=x1, m=m1, n=n1, pt.method="Gart",

ci.method="skew-score")
propCI(x=x1, m=m1, n=n1, pt.method="Gart",

ci.method="score")

Reproducing estimates from Table 1 in

70 propDiffCI

Hepworth & Biggerstaff (2017):
propCI(x=c(1,2), m=c(20,5), n=c(8,8),

pt.method="Firth", ci.method="lrt")
propCI(x=c(7,8), m=c(20,5), n=c(8,8),

pt.method="Firth", ci.method="lrt")

propDiffCI Confidence intervals for the difference of proportions in group testing

Description

Calculates confidence intervals for the difference of two proportions based on group testing data.

Usage

propDiffCI(
x1,
m1,
x2,
m2,
n1 = rep(1, length(x1)),
n2 = rep(1, length(x2)),
pt.method = c("Firth", "Gart", "bc-mle", "mle"),
ci.method = c("skew-score", "bc-skew-score", "score", "lrt", "Wald"),
conf.level = 0.95,
tol = .Machine$double.eps^0.5

)

Arguments

x1 vector specifying the observed number of positive groups among the number of
groups tested (n1) in population 1.

m1 vector of corresponding group sizes in population 1. Must have the same length
as x1.

x2 vector specifying the observed number of positive groups among the number of
groups tested (n2) in population 2.

m2 vector of corresponding group sizes in population 2. Must have the same length
as x2.

n1 vector of the corresponding number of groups with sizes m1.

n2 vector of the corresponding number of groups with sizes m2.

pt.method character string specifying the point estimator to compute. Options include
"Firth" for the bias-preventative estimator (Hepworth & Biggerstaff, 2017),
the default "Gart" for the bias-corrected MLE (Biggerstaff, 2008), "bc-mle"
(same as "Gart" for backward compatibility), and "mle" for the MLE.

propDiffCI 71

ci.method character string specifying the confidence interval to compute. Options include
"skew-score" for the skewness-corrected, "score" for the score (the default),
"bc-skew-score" for the bias- and skewness-corrected, "lrt" for the likeli-
hood ratio test, and "Wald" for the Wald interval. See Biggerstaff (2008) for
additional details.

conf.level confidence level of the interval.

tol the accuracy required for iterations in internal functions.

Details

Confidence interval methods include the Wilson score (ci.method="score"), skewness-corrected
score (ci.method="skew-score"), bias- and skewness-corrected score (ci.method="bc-skew-score"),
likelihood ratio test (ci.method="lrt"), and Wald (ci.method="Wald") interval. For computa-
tional details, simulation results, and recommendations on confidence interval methods, see Big-
gerstaff (2008).

Point estimates available include the MLE (pt.method="mle"), bias-corrected MLE (pt.method="Gart"
or pt.method="bc-mle"), and bias-preventative (pt.method="Firth"). For additional details and
recommendations on point estimation, see Hepworth and Biggerstaff (2017).

Value

A list containing:

d the estimated difference of proportions.

lcl the lower confidence limit.

ucl the upper confidence limit.

pt.method the method used for point estimation.

ci.method the method used for confidence interval estimation.

conf.level the confidence level of the interval.

x1 the numbers of positive groups in population 1.

m1 the sizes of the groups in population 1.

n1 the numbers of groups with corresponding group sizes m1 in population 1.

x2 the numbers of positive groups in population 2.

m2 the sizes of the groups in population 2.

n2 the numbers of groups with corresponding group sizes m2 in population 2.

Author(s)

This function was originally written as the pooledBinDiff function by Brad Biggerstaff for the
binGroup package. Minor modifications were made for inclusion of the function in the binGroup2
package.

72 propDiffCI

References

Biggerstaff, B. (2008). “Confidence intervals for the difference of proportions estimated from
pooled samples.” Journal of Agricultural, Biological, and Environmental Statistics, 13, 478–496.
doi: 10.1198/108571108X379055.

Hepworth, G., Biggerstaff, B. (2017). “Bias correction in estimating proportions by pooled test-
ing.” Journal of Agricultural, Biological, and Environmental Statistics, 22, 602–614. doi: 10.1007/
s1325301702972.

See Also

propCI for confidence intervals for one proportion in group testing, gtTest for hypothesis tests in
group testing, and gtPower for power calculations in group testing.

Other estimation functions: designEst(), designPower(), gtPower(), gtTest(), gtWidth(),
propCI()

Examples

Estimate the prevalence in two populations
with multiple groups of various sizes:
Population 1:
0 out of 5 groups test positively with
groups of size 1 (individual testing);
0 out of 5 groups test positively with
groups of size 5;
1 out of 5 groups test positively with
groups of size 10; and
2 out of 5 groups test positively with
groups of size 50.
Population 2:
0 out of 5 groups test positively with
groups of size 1 (individual testing);
1 out of 5 groups test positively with
groups of size 5;
0 out of 5 groups test positively with
groups of size 10; and
4 out of 5 groups test positively with
groups of size 50.
x1 <- c(0,0,1,2)
m <- c(1,5,10,50)
n <- c(5,5,5,5)
x2 <- c(0,1,0,4)
propDiffCI(x1=x1, m1=m, x2=x2, m2=m, n1=n, n2=n,

pt.method="Gart", ci.method="score")

Compare recommended methods:
propDiffCI(x1=x1, m1=m, x2=x2, m2=m, n1=n, n2=n,

pt.method="mle", ci.method="lrt")

propDiffCI(x1=x1, m1=m, x2=x2, m2=m, n1=n, n2=n,
pt.method="mle", ci.method="score")

https://doi.org/10.1198/108571108X379055
https://doi.org/10.1007/s13253-017-0297-2
https://doi.org/10.1007/s13253-017-0297-2

Sterrett 73

propDiffCI(x1=x1, m1=m, x2=x2, m2=m, n1=n, n2=n,
pt.method="mle", ci.method="skew-score")

Sterrett Summary measures for Sterrett algorithms

Description

Summary measures for Sterrett algorithms.

Usage

Sterrett(
p,
Sp,
Se,
plot = TRUE,
plot.cut.dorf = TRUE,
cond.prob.plot = FALSE,
font.name = "sans"

)

Arguments

p a vector of individual risk probabilities.

Sp the specificity of the diagnostic test.

Se the sensitivity of the diagnostic test.

plot logical; if TRUE, a plot of the informative Sterrett CDFs will be displayed.
Further details are given under ’Details’.

plot.cut.dorf logical; if TRUE, the cut-tree for Dorfman testing will be displayed. Further
details are given under ’Details’.

cond.prob.plot logical; if TRUE, a second axis for the conditional probability plot will be dis-
played on the right side of the plot.

font.name the name of the font to be used in plots.

Details

This function calculates summary measures for informative Sterrett algorithms. Informative al-
gorithms include one-stage informative Sterrett (1SIS), two-stage informative Sterrett (2SIS), full
informative Sterrett (FIS), and Dorfman (two-stage hierarchical testing).

The mean and standard deviation of the number of tests, probability mass function (PMF), and
cumulative distribution function (CDF) are calculated for all informative Sterrett algorithms and
Dorfman testing. Conditional PMFs and conditional moments are calculated for all informative
Sterrett algorithms. Subtracting the mean number of tests for two procedures gives the area differ-
ence between their CDFs. This area difference is calculated for each pairwise comparison of 1SIS,

74 Sterrett

2SIS, FIS, and Dorfman testing. CDF plots provide a visualization of how probabilities are dis-
tributed over the number of tests. CDFs that increase more rapidly to 1 correspond to more efficient
retesting procedures.

Non-informative Sterrett (NIS) decodes positive groups by retesting individuals at random, so there
are I! different possible NIS implementations. CDFs are found by permuting the elements in the
vector of individual risk probabilities and using the FIS CDF expression without reordering the indi-
vidual probabilities. That is, the FIS procedure uses the most efficient NIS implementation, which
is to retest individuals in order of descending probabilities. When implementing the informative
Sterrett algorithms with a large number of individuals, an algorithm is used to compute the PMF for
the number of tests under FIS. This is done automatically by Sterrett for I>12. The algorithm is
described in detail in the Appendix of Bilder et al. (2010).

Value

A list containing:

mean.sd a data frame containing the mean and standard deviation of the expected number
of tests for one-stage informative Sterrett (1SIS), two-stage informative Sterrett
(2SIS), full informative Sterrett (FIS), and Dorfman testing.

PMF a data frame containing the probability mass function for the number of tests
possible for one-stage informative Sterrett (1SIS), two-stage informative Sterrett
(2SIS), full informative Sterrett (FIS), and Dorfman testing.

CDF a data frame containing the cumulative distribution function for the number of
tests possible for one-stage informative Sterrett (1SIS), two-stage informative
Sterrett (2SIS), full informative Sterrett (FIS), and Dorfman testing.

cond.PMF a data frame containing the conditional probability mass function for the number
of tests possible for one-stage informative Sterrett (1SIS), two-stage informative
Sterrett (2SIS), and full informative Sterrett (FIS) testing.

cond.moments a data frame containing the mean and standard deviation of the conditional mo-
ments for one-stage informative Sterrett (1SIS), two-stage informative Sterrett
(2SIS), and full informative Sterrett (FIS) testing.

save.diff.CDF a data frame containing the sum of the differences in the cumulative distribution
function for each pairwise comparison of one-stage informative Sterrett (1SIS),
two-stage informative Sterrett (2SIS), full informative Sterrett (FIS), and Dorf-
man testing.

Author(s)

This function was originally written as info.gt by Christopher Bilder for Bilder et al. (2010). The
function was obtained from http://chrisbilder.com/grouptesting. Minor modifications were
made for inclusion of the function in the binGroup2 package.

References

Bilder, C., Tebbs, J., Chen, P. (2010). “Informative retesting.” Journal of the American Statistical
Association, 105, 942–955. doi: 10.1198/jasa.2010.ap09231.

http://chrisbilder.com/grouptesting
https://doi.org/10.1198/jasa.2010.ap09231

summary.gtReg 75

See Also

expectOrderBeta for generating a vector of individual risk probabilities for informative group test-
ing and opChar1 for calculating operating characteristics with hierarchical and array-based group
testing algorithms.

Other operating characteristic functions: halving(), operatingCharacteristics1(), operatingCharacteristics2()

Examples

Example 1: FIS provides the smallest mean
number of tests and the smallest standard
deviation. 2SIS has slightly larger mean
and standard deviation than FIS, but
its performance is comparable, indicating
2SIS may be preferred because it is
easier to implement.
set.seed(1231)
p.vec1 <- rbeta(n=8, shape1=1, shape2=10)
save.it1 <- Sterrett(p=p.vec1, Sp=0.90, Se=0.95)
save.it1$mean.sd

Example 2: One individual is "high risk" and
the others are "low risk". Since there is
only one high-risk individual, the three
informative Sterrett procedures perform
similarly. All three informative Sterrett
procedures offer large improvements over
Dorfman testing.
p.vec2 <- c(rep(x=0.01, times=9), 0.5)
save.it2 <- Sterrett(p=p.vec2, Sp=0.99, Se=0.99,

cond.prob.plot=TRUE)
save.it2$mean.sd

Example 3: Two individuals are at higher
risk than the others. All three informative
Sterrett procedures provide large
improvements over Dorfman testing.
Due to the large initial group size, an
algorithm (described in the Appendix of
Bilder et al. (2010)) is used for FIS.
The Sterrett() function does this
automatically for I>12.
p.vec3 <- c(rep(x=0.01, times=98), 0.1, 0.1)
save.it3 <- Sterrett(p=p.vec3, Sp=0.99, Se=0.99)
save.it3$mean.sd

summary.gtReg Summary method for group testing regression model fits

76 summary.gtReg

Description

Produce a summary list for objects of class "gtReg" returned by gtReg.

Usage

S3 method for class 'gtReg'
summary(object, ...)

Arguments

object a fitted object of class "gtReg".

... currently not used.

Details

The coefficients component of the results gives the estimated coefficients and their estimated
standard errors, together with their ratio. This third column is labeled z ratio using Wald tests. A
fourth column gives the two-tailed p-value corresponding to the z-ratio based on a Wald test. Note
that it is possible that there are no residual degrees of freedom from which to estimate, in which
case the estimate is NaN.

Value

summary.gtReg returns an object of class "summary.gtReg", a list containing:

call the component from object.

link the component from object.

deviance the component from object, for simple pooling (type="sp" in gtReg) only.

aic the component from object, for simple pooling (type="sp" in gtReg) only.

df.residual the component from object, for simple pooling (type="sp" in gtReg) only.

null.deviance the component from object, for simple pooling (type="sp" in gtReg) only.

df.null the component from object, for simple pooling (type="sp" in gtReg) only.

deviance.resid the deviance residuals, for simple pooling (type="sp" in gtReg) only.

coefficients the matrix of coefficients, standard errors, z-values, and p-values. Aliased coef-
ficients are omitted.

counts the component from object.

method the component from object, for simple pooling (type="sp" in gtReg) only.
Gibbs.sample.size

the component from object, for array testing (type="array" in gtReg) only.

cov.mat the estimated covariance matrix of the estimated coefficients.

Author(s)

The majority of this function was originally written as summary.gt and summary.gt.mp by Boan
Zhang for the binGroup package. Minor modifications were made to the function for inclusion in
the binGroup2 package.

summary.opChar 77

See Also

gtReg for creating an object of class "gtReg".

Examples

data(hivsurv)
fit1 <- gtReg(type="sp", formula=groupres ~ AGE + EDUC.,

data=hivsurv, groupn=gnum, sens=0.9, spec=0.9,
method="Xie")

summary(fit1)

This examples takes approximately 5 seconds to run.
5x6 and 4x5 array
set.seed(9128)
sa2a <- gtSim(type="array", par=c(-7,0.1), size1=c(5,4),

size2=c(6,5), sens=0.95, spec=0.95)
sa2 <- sa2a$dframe

fit2 <- gtReg(type="array", formula=cbind(col.resp, row.resp) ~ x,
data=sa2, coln=coln, rown=rown, arrayn=arrayn,
sens=0.95, spec=0.95, linkf="logit",
n.gibbs=1000, tol=0.005)

summary(fit2)

summary.opChar Summary method for operating characteristics results

Description

Produce a summary list for objects of class "opChar" returned by operatingCharacteristics1
(opChar1) or operatingCharacteristics2 (opChar2).

Usage

S3 method for class 'opChar'
summary(object, ...)

Arguments

object an object of class "opChar", providing the calculated operating characteristics
for a group testing algorithm.

... currently not used.

78 summary.opChar

Details

This function produces a summary list for objects of class "opChar" returned by operatingCharacteristics1
(opChar1) or operatingCharacteristics2 (opChar2). It formats the testing configuration, ex-
pected number of tests, expected number of tests per individual, and accuracy measures.

The Configuration component of the result gives the testing configuration, which may include the
group sizes for each stage of a hierarchical testing algorithm or the row/column size and array size
for an array testing algorithm. The Tests component of the result gives the expected number of
tests and the expected number of tests per individual for the algorithm.

The Accuracy component gives the individual accuracy measures for each individual in object
and the overall accuracy measures for the algorithm. Accuracy measures included are the pooling
sensitivity, pooling specificity, pooling positive predictive value, and pooling negative predictive
value. The overall accuracy measures displayed are weighted averages of the corresponding indi-
vidual accuracy measures for all individuals in the algorithm. Expressions for these averages are
provided in the Supplementary Material for Hitt et al. (2019). For more information, see the ’De-
tails’ section for the operatingCharacteristics1 (opChar1) or operatingCharacteristics2
(opChar2) function.

Value

summary.opChar returns an object of class "summary.opChar", a list containing:

Algorithm character string specifying the name of the group testing algorithm.
Configuration matrix detailing the configuration from object. For hierarchical testing, this

includes the group sizes for each stage of testing. For array testing, this includes
the array dimension (row/column size) and the array size (the total number of
individuals in the array).

Tests matrix detailing the expected number of tests and expected number of tests per
individual from object

.

Accuracy a list containing:
Individual matrix detailing the accuracy measures for each individual from

object (for objects returned by opChar1).
Disease 1 Individual matrix detailing the accuracy measures pertaining to dis-

ease 1 for each individual from object (for objects returned by opChar2).
Disease 2 Individual matrix detailing the accuracy measures pertaining to dis-

ease 2 for each individual from object (for objects returned by opChar2).
Overall matrix detailing the overall accuracy measures for the algorithm from

object.

Author(s)

Brianna D. Hitt

See Also

operatingCharacteristics1 (opChar1) and operatingCharacteristics2 (opChar2) for creat-
ing an object of class "opChar".

summary.OTC 79

Examples

Calculate the operating characteristics for
non-informative four-stage hierarchical testing.
config.mat <- matrix(data=c(rep(1, 24), rep(1, 16), rep(2, 8),

rep(1, 8), rep(2, 8), rep(3, 4),
rep(4, 2), rep(5, 2), 1:24),

nrow=4, ncol=24, byrow=TRUE)
calc1 <- opChar1(algorithm="D4", p=0.01, Se=0.99, Sp=0.99,

hier.config=config.mat, a=c(1, 9, 17, 21, 23))
summary(calc1)

Calculate the operating characteristics for
informative array testing without master pooling.
calc2 <- opChar1(algorithm="IA2", p=0.025, alpha=0.5,

Se=0.95, Sp=0.99, rowcol.sz=12)
summary(calc2)

Calculate the operating characteristics for
informative two-stage hierarchical testing.
config.mat <- matrix(data=c(rep(1, 5), rep(2, 4), 1, 1:10),

nrow=2, ncol=10, byrow=TRUE)
Se <- matrix(data=c(rep(0.95, 2), rep(0.99, 2)),

nrow=2, ncol=2, byrow=FALSE)
Sp <- matrix(data=c(rep(0.96, 2), rep(0.98, 2)),

nrow=2, ncol=2, byrow=FALSE)
calc3 <- opChar2(algorithm="ID2", alpha=c(18.25, 0.75, 0.75, 0.25),

Se=Se, Sp=Sp, hier.config=config.mat)
summary(calc3)

Calculate the operating characteristics for
non-informative array testing with master pooling.
calc4 <- opChar2(algorithm="A2M", p.vec=c(0.92, 0.05, 0.02, 0.01),

Se=rep(0.95, 2), Sp=rep(0.99, 2), rowcol.sz=8)
summary(calc4)

summary.OTC Summary method for optimal testing configuration results

Description

Produce a summary list for objects of class "OTC" returned by OTC1 or OTC2.

Usage

S3 method for class 'OTC'
summary(object, ...)

80 summary.OTC

Arguments

object an object of class "OTC", providing the optimal testing configuration and asso-
ciated operating characteristics for a group testing algorithm.

... currently not used.

Details

This function produces a summary list for objects of class "OTC" returned by OTC1 or OTC2. It
formats the optimal testing configuration, expected number of tests, expected number of tests per
individual, and accuracy measures. A summary of the results from OTC1 includes results for all
objective functions specified by the user.

The OTC component of the result gives the optimal testing configuration, which may include the
group sizes for each stage of a hierarchical testing algorithm or the row/column size and array size
for an array testing algorithm. The Tests component of the result gives the expected number of
tests and the expected number of tests per individual for the algorithm.

The Accuracy component gives the overall accuracy measures for the algorithm. Accuracy mea-
sures included are the pooling sensitivity, pooling specificity, pooling positive predictive value, and
pooling negative predictive value. These values are weighted averages of the corresponding in-
dividual accuracy measures for all individuals in the algorithm. Expressions for these averages
are provided in the Supplementary Material for Hitt et al. (2019). For more information, see the
’Details’ section for the OTC1 or OTC2 function.

Value

summary.OTC returns an object of class "summary.OTC", a list containing:

Algorithm character string specifying the name of the group testing algorithm.

OTC matrix detailing the optimal testing configuration from object. For hierarchical
testing, this includes the group sizes for each stage of testing. For array testing,
this includes the array dimension (row/column size) and the array size (the total
number of individuals in the array).

Tests matrix detailing the expected number of tests and expected number of tests per
individual from object

.

Accuracy matrix detailing the overall accuracy measures for the algorithm, including the
pooling sensitivity, pooling specificity, pooling positive predictive value, and
pooling negative predictive value for the algorithm from object. Further details
are found in the ’Details’ section.

Author(s)

Brianna D. Hitt

See Also

OTC1 and OTC2 for creating an object of class "OTC".

summary.OTC 81

Examples

Estimated running time for all examples was calculated
using a computer with 16 GB of RAM and one core of
an Intel i7-6500U processor. Please take this into
account when interpreting the run time given.

Find the optimal testing configuration for
non-informative two-stage hierarchical testing.
res1 <- OTC1(algorithm="D2", p=0.01, Se=0.99, Sp=0.99,

group.sz=3:100, obj.fn=c("ET", "MAR", "GR1"),
weights=matrix(data=c(1,1), nrow=1, ncol=2))

summary(res1)

Find the optimal testing configuration for
informative three-stage hierarchical testing
res2 <- OTC1(algorithm="ID3", p=0.025,

Se=c(0.95, 0.95, 0.99), Sp=c(0.96, 0.96, 0.98),
group.sz=3:15, obj.fn=c("ET", "MAR"), alpha=2)

summary(res2)

Find the optimal testing configuration for
informative array testing without master pooling.
This example takes approximately 30 seconds to run.

res3 <- OTC1(algorithm="IA2", p=0.05, alpha=2,
Se=0.90, Sp=0.90, group.sz=3:20, obj.fn="ET")

summary(res3)

Find the optimal testing configuraiton for
informative two-stage hierarchical testing.
Se <- matrix(data=c(rep(0.95, 2), rep(0.99, 2)),

nrow=2, ncol=2, byrow=FALSE)
Sp <- matrix(data=c(rep(0.96, 2), rep(0.98, 2)),

nrow=2, ncol=2, byrow=FALSE)
res4 <- OTC2(algorithm="ID2", alpha=c(18.25, 0.75, 0.75, 0.25),

Se=Se, Sp=Sp, group.sz=12)
summary(res4)

Find the optimal testing configuration for
non-informative three-stage hierarchical testing.
This example takes approximately 3 minutes to run.
Se <- matrix(data=c(rep(0.95, 6)), nrow=2, ncol=3)
Sp <- matrix(data=c(rep(0.99, 6)), nrow=2, ncol=3)

res5 <- OTC2(algorithm="D3", p.vec=c(0.95, 0.0275, 0.0175, 0.005),
Se=Se, Sp=Sp, group.sz=5:10)

summary(res5)

Find the optimal testing configuration for
non-informative array testing with master pooling.
This example takes approximately 10 seconds to run.

82 summary.OTC

res6 <- OTC2(algorithm="A2M", p.vec=c(0.90, 0.04, 0.04, 0.02),
Se=rep(0.99, 2), Sp=rep(0.99, 2), group.sz=3:15)

summary(res6)

Index

∗Topic datasets
hivsurv, 31

binGroup2, 3
binGroup2-package (binGroup2), 3
binom.test, 68

designEst, 4, 8, 12, 16, 27, 29, 68, 72
designPower, 4, 9, 10, 16, 27, 29, 62, 68, 72

expectOrderBeta, 13, 14, 31, 33, 35–37,
48–51, 75

gtPower, 4, 9, 11, 12, 15, 27, 29, 68, 72
gtReg, 4, 17, 23, 24, 26, 60, 76, 77
gtRegControl, 18, 22
gtSim, 4, 21, 24
gtTest, 4, 9, 12, 16, 26, 29, 63, 68, 72
gtWidth, 4, 9, 12, 16, 27, 28, 68, 72

halving, 30, 38, 45, 75
hivsurv, 31

informativeArrayProb, 14, 32

opChar1, 3, 50, 75, 78
opChar1 (operatingCharacteristics1), 34
opChar2, 3, 57, 78
opChar2 (operatingCharacteristics2), 40
operatingCharacteristics1, 3, 31, 34, 45,

50, 75, 77, 78
operatingCharacteristics2, 3, 31, 38, 40,

57, 59, 75, 77, 78
OTC1, 3, 48, 59, 79, 80
OTC2, 3, 45, 52, 54, 79, 80

predict.gtReg, 20, 21, 60
print.designPower, 62
print.gtTest, 63
print.propCI, 63
print.propDiffCI, 64

print.summary.gtReg, 65
propCI, 4, 9, 11, 12, 15, 16, 27–29, 63, 64, 66,

72
propDiffCI, 4, 9, 12, 16, 27, 29, 64, 68, 70

Sterrett, 31, 38, 45, 73
summary.gtReg, 20, 21, 65, 75
summary.opChar, 77
summary.OTC, 79

83

	binGroup2
	designEst
	designPower
	expectOrderBeta
	gtPower
	gtReg
	gtRegControl
	gtSim
	gtTest
	gtWidth
	halving
	hivsurv
	informativeArrayProb
	operatingCharacteristics1
	operatingCharacteristics2
	OTC1
	OTC2
	predict.gtReg
	print.designPower
	print.gtTest
	print.propCI
	print.propDiffCI
	print.summary.gtReg
	propCI
	propDiffCI
	Sterrett
	summary.gtReg
	summary.opChar
	summary.OTC
	Index

