bimets:
Time Series and Econometric Modeling in R

Andrea Luciani
Bank of Italy*

Abstract

bimets is an R package developed with the aim of easing time series analysis and
building up a framework that facilitates the definition, estimation and simulation of si-
multaneous equation models.

This package supports daily, weekly, monthly, quarterly, semiannual and yearly time
series. Time series with frequency of 24 and 36 periods per year are also supported.
Users can access and modify time series data by date, year-period and observation index.
Advanced time series manipulation and (dis)aggregation capabilities are provided, e.g.
time series extension, merging, projection, lag, cumulative and moving product and sum,
etc.

Econometric modeling capabilities comprehend advanced model definition (e.g. condi-
tional evaluation of equations, per-equation estimation method and time range), estima-
tion of equations with instrumental variables, coefficient restrictions and error autocorre-
lation, static and dynamic simulation of simultaneous equations with exogenizations and
add-factors, interim and impact multipliers analysis, endogenous targeting with model
“renormalization”.

bimets does not depend on compilers or third-party software so it can be freely down-
loaded and installed on Linux, MS Windows® and Mac OSX®, without any further
requirements.

Keywords: R, system of simultaneous equations, ols, instrumental variables, error autocor-
relation, polynomial distributed lag, linear restrictions, incidence matrix, model simulation,
forecasting, add-factors, exogenization, multipliers, model renormalization.

1. Introduction

bimets is a software framework developed by using R language and designed for time se-
ries analysis and econometric modeling, which allows creating and manipulating time series,
specifying simultaneous equation models of any size by using a kind of high-level description

*Disclaimer: The views and opinions expressed in these pages are those of the author and do not necessarily
reflect the official policy or position of the Bank of Italy. Examples of analysis performed within these pages
are only examples. They should not be utilized in real-world analytic products as they are based only on very
limited and dated open source information. Assumptions made within the analysis are not reflective of the
position of the Bank of Italy.

2 bimets: Time Series and Econometric Modeling in R

language, and performing model estimation, simulation and forecasting.

In addition, bimets computational capabilities provide many tools to pre-process data and
post-process results, designed for statisticians and economists. These operations are fully
integrated with the R environment.

bimets estimation and simulation results have been compared to the output results of leading
commercial econometric software, by using several large and complex models.

The models used in the comparison have more than:

e +100 behavioral equations;

e +700 technical identities;

e +500 coefficients;

e +1000 time series of endogenous and exogenous variables;

In these models we can find equations with restricted coefficients, polynomial distributed lags,
error autocorrelation and conditional evaluation of technical identities; all models have been
simulated in static, dynamic, and forecast mode, with exogenization and constant adjustments
of endogenous variables through the use of bimets capabilities.

In the +800 endogenous simulated time series over the +20 simulated periods (i.e. more
than 16.000 simulated observations), the average percentage difference between bimets and
leading commercial software results has a magnitude of 1077%. The difference between results
calculated using different commercial software has the same average magnitude.

bimets stands for Bank of Italy Model Easy Time Series; it does not depend on compilers or
third-party software so it can be freely downloaded and installed on Linux, MS Windows®
and Mac OSX®, without any further requirements.

The package can be installed and loaded in R with the following commands (with "R>” as
the R command prompt):

R> install.packages('bimets')

R> library(bimets)

2. Time Series

bimets supports daily, weekly, monthly, quarterly, semiannual and yearly time series. Time
series with a frequency of 24 and 36 periods per year are also supproted. The time series are
created by the TIMESERIES() function.

Example:

R> #yearly time series
R> myTS <- TIMESERIES(1:10,START=as.Date('2000-01-01"'),FREQ=1)

R>
R>

Andrea Luciani

#monthly time series
myTS <- TIMESERIES(1:10,START=c(2002,3),FREQ='M")

The main bimets time series capabilities are:

— Indezing
— Aggregation / Disaggregation

— Manipulation

2.1. Time Series Indexing

The bimets package extends R indexing capabilities in order to ease time series analysis and
manipulation. Users can access and modify time series data:

— by date: users can select and modify a single observation by date by using the syntax
ts[’Date’], or multiple observations using ts[’StartDate/EndDate’];

— by year-period: users can select and modify observations by providing the year and the
period, i.e. ts[[Year,Period]];

— by observation index: users can select and modify observations by simply providing the
array of requested indexes, i.e. ts[indexes];

Example:

R> #create a daily time series

R> myTS <- TIMESERIES((1:100),START=c(2000,1),FREQ='D")

R> myTS[1:3] #get first three obs.

R> myTS['2000-01-12'] #get Jan 12, 2000 data

R> myTS['2000-02-03/2000-02-14'] #get Feb 3 up to Feb 14

R> myTS[[2000, 14]1] #get year 2000 period 14

R> myTS['2000-01-15'] <- NA #assign to Jan 15, 2000

R> myTS[[2000,42]] <- NA #assign to Feb 11, 2000

R> myTS[[2000,100]] <- c(-1,-2,-3) #extend time series starting from period 100

2.2. Time Series Aggregation/Disaggregation

The bimets package provides advanced (dis)aggregation capabilities, with several linear in-
terpolation capabilities in disaggregation, and many aggregation functions (e.g. STOCK, SUM,
AVE, etc.) while reducing the time series frequency.

Example:

R>
R>

#create a monthly time series
myMonthlyTS <- TIMESERIES(1:100,START=c(2000,1),FREQ='M')

R>
R>

R>
R>

bimets: Time Series and Econometric Modeling in R

#convert to annual time series using the average as aggregation fun
myAnnualTS <- ANNUAL (myMonthlyTS, 'AVE')

#convert to daily using central interpolation as disaggregation fun
myDailyTS <- DAILY(myMonthlyTS, 'INTERP_CENTER')

2.3. Time Series Manipulation

The bimets package provides, among others, the following time series manipulation capabili-
ties:

— Time series extension TSEXTEND ()
— Time series merging TSMERGE ()

— Time series projection TSPROJECT ()
— Lag TSLAG()

— Lag differences: standard, percentage and logarithmic, i.e. TSDELTA() TSDELTAP()
TSDELTALOG()

— Cumulative product CUMPROD ()
— Cumulative sum CUMSUM()

— Moving average MOVAVG ()

— Moving sum MOVSUM()

— Time series data presentation TABIT()

Example:

R>
R>
R>

R>
R>

R>
R>

R>
R>

R>
R>
R>

R>
R>

#define two time series
myTS1 <- TIMESERIES(1:100,START=c(2000,1),FREQ='M"')
myTS2 <- TIMESERIES(-(1:100),START=c(2005,1),FREQ="M")

#extend time series up to Apr 2020 with quadratic formula
myExtendedTS <- TSEXTEND(myTS1,UPTO = c(2020,4),EXTMODE = 'QUADRATIC')

#merge two time series with sum
myMergedTS <- TSMERGE(myExtendedTS,myTS2,fun = 'SUM')

#project time series on arbitrary time range
myProjectedTS <- TSPROJECT (myMergedTS,TSRANGE = c(2004,2,2006,4))

#lag and deltaj, time series
myLagTS <- TSLAG(myProjectedTS,2)
myDeltaPTS <- TSDELTAP(myLagTS,2)

#moving average
myMovAveTS <- MOVAVG(myDeltaPTS,5)

R> #print data

R> TABIT(myMovAveTS,

myTS1,
TSRANGE=c (2004, 8,2004,12)

)

DATE,

PER,

Aug 2004, 8
Sep 2004, 9

Oct 2004,
Nov 2004,
Dec 2004,

10
11
12

3

>

>

myMovAveTS

3.849002
3.776275
3.706247

>

myTS1

56
57
58
59
60

Andrea Luciani

6 bimets: Time Series and Econometric Modeling in R

3. Econometric Modeling

bimets econometric modeling capabilities comprehend:

— Model Definition Language

— Estimation

Simulation
— Multipliers Analysis

— Renormalization (Tinbergen Classification)

We will go through each item of the list with a simple Tinbergen-Klein model example.

3.1. Model Definition Language

bimets provides a language to unambiguously specify an econometric model. This section
describes how to create a model and its general structure. The specification of an econometric
model is translated and identified by keyword statements which are grouped in a model file, i.e.
a plain text file or a character variable with a specific syntax. Collectively, these keyword
statements constitute the bimets Model Description Language (from now on "MDL”). The
model specifications consist of groups of statements. Each statement begins with a keyword.
The keyword classifies the component of the model which is beign specified.

Below is an example of Klein’s model, that can either be stored in an R variable of class
character or in a plain text file with a MDL compliant syntax.

The content of the kleinl.txt variable is:

R> kleinl.txt <- "
MODEL

COMMENT> Consumption

BEHAVIORAL> cn

TSRANGE 1921 1 1941 1

EQ> cn = al + a2*p + a3*TSLAG(p,1) + a4*(wil+w2)
COEFF> al a2 a3 a4

COMMENT> Investment

BEHAVIORAL> i

TSRANGE 1921 1 1941 1

EQ> i = bl + b2%p + b3*TSLAG(p,1) + b4*TSLAG(k,1)
COEFF> bl b2 b3 b4

COMMENT> Demand for Labor
BEHAVIORAL> wli
TSRANGE 1921 1 1941 1

EQ> w1l = c1 + c2%(y+t-w2) + c3*TSLAG(y+t-w2,1) + c4*time

Andrea Luciani 7

COEFF> c1 c2 c3 c4

COMMENT> Gross National Product
IDENTITY> y
EQ> y=cn+1i+g-t

COMMENT> Profits
IDENTITY> p
EQ> p =y - (wi+w2)

COMMENT> Capital Stock
IDENTITY> k
EQ> k = TSLAG(k,1) + 1

END

Please note that there are circular dependencies between equations of the model, i.e. cn <-
wl <- y <- cn. Circular dependencies imply that the model simulation must be solved with
an iterative algorithm.

As shown, the model definition is quite intuitive. The first keyword is MODEL, while at the
end of the model definition we can find the END keyword. Available tags in the definition of
a generic bimets model are:

— EQUATION> or BEHAVIORAL> indicate the beginning of a series of keyword

statements describing a behavioral equation. The behavioral statement general form is:
BEHAVIORAL> name [TSRANGE startYear, startPeriod, endYear, endPeriod]
where name is the name of the behavioral equation and the optional TSRANGE specifies
that the provided time interval must be used in the coefficients estimation. The optional
TSRANGE is defined as a 4-dimensional numerical array built with starting year, starting
period, ending year and ending period.

Given Y = 0% X + ¢, where Y are the historical values of the dependent variable and X
are the historical values of the regressors, if the requested estimation method is OLS (Or-
dinary Least Squares), in the general case (i.e. no restrictions nor error auto-correlation,
as described later) the coefficients will be calculated as: Bors = (X' * X)L X' %Y.

If the requested estimation method is IV (Instrumental Variables), given Z the matrix
built with instrumental variables as columns Z;, that should not be correlated to the
disturbance terms, i.e. E[¢’ x Z;] = 0, the coefficients will be either calculated as

Bry = (Z'« X)™' % Z' « Y, or more generally as: Sy = (X'« Q 1« X) 1« X/ Q1 xY
where X = Z% (Z'« Z) '« Z' « X and Q = 02 % I, 02 = E[€ * ¢

IDENTITY > indicates the beginning of a series of keyword statements describing an
identity or technical equation. The identity statement general form is:

IDENTITY> name

where name is the identity name.

bimets: Time Series and Econometric Modeling in R

— EQ> specifies the mathematical expression for a behavioral or an identity equation.

The equation statement general form for a behavioral equation is:

EQ> LHS = coeffi1*fl + coeff2*f2 + coeff3*xf3 + ...

where LHS is a function of the behavioral variable,

coeffl, coeff2, coeff3, ... are the names of the coeflicients of the equation and
f1, f2, £3, ... are functions of variables.

The equation statement general form for an identity equation is:
EQ> LHS = f1 + f2 + £3 + ...

where LHS is a function of the identity variable and

f1, £f2, £3, ... are functions of variables.

The following MDL functions can be used in the LHS left-hand side of the equation, with
name as the name of the behavioral or the identity variable:

- name - i.e. the identity function;

- TSDELTA (name, i) - i-periods difference of the name time series;

- TSDELTAP (name, i) - i-periods percentage difference of the name time series;

- TSDELTALOG (name,i) - i-periods logarithmic difference of the name time series;

- LOG (name) - log of the name time series;

- EXP(name) - exponential of the name time series.

On the other side the mathematical expression available for using in the RHS right-hand
side of the EQ> equation (i.e. f1, f2, £3, ...) can include the standard arithmetic
operators, parentheses and the following MDL functions:

- TSLAG(ts,1i): lag the ts time series by i-periods;

- TSDELTA(ts,1i): i-periods difference of the ts time series;

- MOVAVG(ts,i): i-periods moving average of the ts time series;

- MOVSUM(ts,1i): i-periods moving sum of the ts time series;

- LOG(ts): log of the ts time series;

- EXP(ts): exponential of the ts time series;

- ABS(ts): absolute values of the ts time series;

MDL function names are reserved names. They cannot be used as variable or coefficient
names. The coefficient names are specified in a subsequent COEFF> keyword statement

Andrea Luciani

within a behavioral equation. By definition, identities do not have any coefficient that
must be assessed. Any name not specified as a coefficient name nor mentioned on the
list of the available MDL functions is assumed to be a variable.

COEFF> specifies the coefficient names used in the EQ> keyword statement of a
behavioral equation. The coefficients statement general form is:

COEFF> coeff0O coeffl coeff2 ... coeffn.

The coefficients order in this statement must be the same as it appears in the behavioral
equation.

ERROR> specifies an autoregressive process of a given order for the regression error.
The error statement general form is:

ERROR> AUTO(n)

where n is the order of the autoregressive process for the error.

During an estimation, users must ensure that the required data is available for the
specified error structure: n periods of data prior to the time interval specified by TSRANGE
are requested in any time series involved in the regression.

The solution requires an iterative algorithm. Given Y] = 31 * X1 + €1, where Y7 are
the historical values of the dependent variable and X7 are the historical values of the
regressors, the iterative algorithm is based on the Cochrane-Orcutt procedure:

1) Make an initial estimation by using the original TSRANGE extended backward n
periods (given n as the autocorrelation order).

2) Estimate the error autocorrelation coefficients p; = p; 1, ..., pin With ¢ = 1 by regress-
ing the residuals ¢; on their lagged values through the use of the auxiliary model:
€ = pi1*TSLAG(€i, 1) + ... + pin * TSLAG(€;,)

3) Transform the data for the dependent and the independent variables by using the esti-
mated p;. The new dependent variable will be: Y;11 = P; % Y;, and the new independent
variables will be X;11 = P; *x X; with the matrix P; defined as:

1 0 0 0 0 0

—pPi,1 1 0 0 0 0

Pi = —Pi2 —pPil 1 0 0 0
0 0 o —Pin .- TP 1

4) Run another estimation on the original model Y; 1 = Bi41 * X;+1 + €;+1 by using the
suitable TSRANGE and the transformed data coming out of step 3 and compute the new
time series for the residuals.

5) Estimate the new error autocorrelation coefficients pj11 = pit1,1, ..., pi+1,n Dy regress-
ing the new residuals arising from step 4 (similarly to step 2)

6) Carry out the convergence check through a comparison among the previous p; and
the new ones arising from steps 5.

If all(abs(pi+1 — pi) < &), where p; is the p vector at the iteration ¢ and J is a small
convergence factor, then exit otherwise repeat from step 3 with i <- i+1.

10

bimets: Time Series and Econometric Modeling in R

— RESTRICT> is a keyword that can be used to specify linear coefficient restrictions.

A deterministic restriction can be applied to any equation coefficient. Any number of
RESTRICT> keywords is allowed for each behavioral equation.

A deterministic (exact) coefficient restriction sets a linear expression containing one or
more coefficients equal to a constant. The restriction only affects the coefficients of the
behavioral equation in which it is specified. The restriction statement general form is:

RESTRICT> linear_combination_of_coefficients_1 = value_1
linear_combination_of_coefficients_n = value_n

where linear_combination_of_coefficients_i, i=1..n is a linear combination of
the coefficient(s) to be restricted and value_i is the in-place scalar value to which the
linear combination of the coefficients is set equal. Each linear combination can be set
equal to a different value.

MDL example:

RESTRICT> coeffl = 0
coeff2 = 10.5
coeff3-3xcoeff4d+1.2xcoeff5 = 0

In many econometric packages, linear restrictions have to be coded by hand in the
equations. bimets allows the users to write down the restriction in a natural way thus
applying a constrained minimization. This procedure, although it leads to approximate
numerical estimates, allows an easy implementation.

The theory behind this procedure is that of the Lagrange multipliers. Presented here is
an example of its implementation.

Suppose that we have an equation defined as:

EQUATION> Y TSRANGE 2010 1 2015 4
EQ> Y = C1xX1 + C2%xX2 + C3*X3
COEFF> C1 C2 C3

RESTRICT> 1.1#C1 + 1.3%C3 = 2.1
1.2%xC2 = 0.8

Ccoefficients C1, C2, C3 are to be estimated. They are subject to the linear con-
straints specified by the RESTRICT> keyword statement. In the case of OLS estimation,
this is carried out in the following steps:

1) Compute the cross-product matrices X’ X and X'Y where X is a matrix with [NOBS
x NREG] size containing the values of the independent variables (regressors) historical
observations (and a vector of ones for the constant term, if any), and where Y is a NOBS
elements vector of the dependent variable (regressand) historical observations; NOBS is
the number of observations available on the TSRANGE specified in the behavioral equa-
tion and NREG is the number of regressors or coefficients;

Andrea Luciani 11

2) Build the restriction matrices. In the example:

11 0 13
R‘<o 1.2 0)

and

. 2.1

—\0.8
R is a matrix of [NRES x NREG] size and r is a vector of [NRES] length, where NRES is
the number of restrictions;

3) Compute the scaling factors for the augmentation to be performed in the next step:

. mean(X'X
Rscaleli] = W(R[ij))

where R[i,] is the i-th row of the matrix R.

Assuming mean(X’'X) = 5000, in the example above we will have:
Rscale[1] = 5000/1.3
Rscalel2] = 5000/1.2

The augmented matrices will then be defined as:

Ro_ 1.1 % Rscale[1] 0 1.3 % Rscale[1]
g 0 1.2 x Rscale[2] 0
and

. 2.1 % Rscale[l]
@9\ 0.8 * Rscale|2]

4) Compute the so-called “augmented” cross-product matrix (X’X). by adding to
the cross-product matrix (X’'X) a total of NRES rows and NRES columns:
X'X R >

1 — aug
XXy (X5 1

5) In a similar way, compute the so-called "augmented” cross-product matrix (X'Y")qug
by adding a total of NRES elements to the cross-product matrix (X'Y):

XY
(X/Y)aug = (>
Taug

6) Calculate the Baug augmented coefficients by regressing the (X'Y") 44 on the (X' X)qyg-

The first NREG values of the augmented coefficients Baug array are the estimated co-
efficients with requested restrictions. The last NRES values are the errors we have on the
deterministic restrictions.

12

bimets: Time Series and Econometric Modeling in R

In the case of IV estimation the procedure is the same as in the OLS case, but the ma-
trix X has to be replaced with the matrix X as previously defined in the BEHAVIORAL>
keyword.

PDL> is a keyword that defines an Almon polynomial distributed lag to be used in
an estimation. Almon polynomial distributed lags are a specific kind of deterministic
restrictions imposed on the coefficients of the distributed lags of a specific regressor.
Multiple PDLs on a single behavioral equation can be defined.

The PDL> statement general form is:

PDL> coeffname degree laglength [N] [F],

where coeffname is the name of a coefficient, degree is an integer scalar specifying the
degree of the polynomial, laglength is an integer scalar specifying the length of the
polynomial (in number of time periods), the optional N (i.e. "nearest”) means that the
nearest lagged term of the expansion, i.e. the first term, is restricted to zero, and the
optional F (i.e. "farthest”) means that the farthest lagged term of the expansion, i.e.
the last term, is restricted to zero; the PDL> keyword statement thusly defined applies
an Almon polynomial distributed lag to the regressor associated with the coeffname
coefficient, of laglength length and degree degree, by providing the appropriate ex-
pansion and the deterministic restrictions for the degree and length specified. These
expansions are not explicitly shown to the user, i.e. the original model is not changed.

laglength must be greater than degree (see example below).

A PDL term can be further referenced in a RESTRICT> keyword statement by using
the following syntax: LAG(coefname, pdllag).

Example: RESTRICT> LAG(coeff2,3) = 0 means that, during the estimation, the re-
gressor related to the coefficient coeff2 and lagged by 3 periods in the PDL expansion
must have a coefficient equal to zero. This example also implies that a PDL> coeff2 x
y with y > 3 has been declared in the same behavioral equation.

The implementing rules are the following:

1) Read off the laglength of the PDL keyword and expand the column of the re-
gressor related to coeffname in the matrix X (i.e. the original regressors matrix) with
the lagged values of the regressor, from the left to the right, starting form the lag 1 to
the lag laglength-1. The matrix X will now have a [NOBS x (NREG+laglength-1)]
size, with NOBS as the number of observations in the specified TSRANGE and NREG as the
number of regressors, or coefficients.

2) Build the restriction matrix R with the following [Nrow x Ncol] dimensions:
Nrow = laglength - (degree + 1)
Ncol = NREG + laglength - 1

The elements of this matrix will be zero except for the (laglength)-columns related to
the section of the expanded columns in the X matrix. For every row we will have to

Andrea Luciani 13

insert degree+2 numbers different from zero.

The degree+2 numbers are taken from the Tartaglia’s-like triangle:

1 -2 1

1 -3 3 -1

1 -4 6 -4 1
1 -5 10 =10 5 1

where in the i-th row we will find the numbers for a PDL of degree=i.

The r vector giving the knows terms for the restrictions is a vector of NRES = laglength
- (degree + 1) elements equal to zero.

An example will clarify:

EQUATION> Y TSRANGE 2010 1 2015 4
EQ> Y = C1xX1 + C2%X2 + C3*X3
COEFF> C1 C2 C3

PDL> C2 2 5

then

-0

The expanded regressors are:
X1, X2, TSLAG(X2,1), TSLAG(X2,2), TSLAG(X2,3), TSLAG(X2,4), X3.

The scaling factor is given, as in the standard restriction case, by: mean(X’X)/max(abs(R][i,]))

IF> keyword is used to conditionally evaluate an identity during a simulation, depend-
ing on the value of a logical expression. Thus, it is possible to have a model alternating
between two or more identity specifications for each simulation period, depending upon
results from other equations.

The IF> statement general form is:
IF> logical_expression

The IF> keyword must be specified within an identity group; this keyword causes the
equation specified in the identity group to be evaluated during the current simulation
period only when the logical_expression is TRUE.

14

bimets: Time Series and Econometric Modeling in R

Only one IF> keyword is allowed in an identity group. Further occurrences produce
an error message and processing stops.

The logical_expression can be composed of constants, endogenous variables, exoge-
nous variables, an expression among variables, combinations of the logical operators;
mathematical operators and the MDL functions listed in the EQ> section are allowed.

In the following MDL example, the value of the endogenous myIdentity variable is speci-
fied with two complementary conditional identities, depending on the TSDELTA () result:

IDENTITY> myIdentity
IF> TSDELTA (myEndog* (1-myExog)) > O
EQ> myIdentity = TSLAG(myIdentity)+1

IDENTITY> myIdentity
IF> TSDELTA (myEndog* (1-myExog)) <= 0
EQ> myIdentity = TSLAG(myIdentity)

— COMMENT?> can be used to insert comments into a model. The general form of this

keyword is:
COMMENT> text

The text following the COMMENT> keyword is ignored during all processing, and must
lie in the same line. A comment cannot be inserted within another keyword statement.
A dollar sign in the first position of a line is equivalent to using the COMMENT >
keyword, as in the following example:

$This is a comment

No other keywords are currently allowed in the MDL syntax.

Back to Klein’s model example, the bimets LOAD_MODEL () function reads the kleini.txt model
as previously defined:

R> kleinModel <- LOAD_MODEL (modelText = kleinl.txt)

Analyzing behaviorals...

Analyzing identities...

Optimizing...
Loaded model "kleinl.txt":

3 behaviorals

3 identities

12 coefficients

...LOAD MODEL OK

Andrea Luciani 15

As shown in the output, bimets counted 3 behavioral equations, 3 identities and 12 coefficients.
Now in the R session there is a variable named kleinModel that contains the model structure
defined in the kleinl.txt variable. From now on, the user can ask bimets about any details of
this model.

For example, to gather information on the "cn” Consumption behavioral equation:

R> kleinModel$behaviorals$cn

$eq
[1] "cn=al+a2*p+a3*TSLAG(p,1)+ad* (wi+w2)"

$eqCoefficientsNames
[1] gl Mg ng3n nggn

$eqCoefficientsCount
[1]1 4

$eqCoefficientsNamesOriginal
[1] gl ng2n ng3n nggn

$eqComponentsNames
[1] Ilcnll |lpll IIW1II "W2"

$tsrange
[1] 1921 1 1941 1

$eqRegressorsNames
[1] nqn llpll "TSLAG(p,l)" n (W1+W2)"

$eqRegressorsNamesOriginal
[1] Il1|l npu "TSLAG(p,l)" n (W1+W2)"

$1hsFun
$1hsFun$funName
[1] uIll

$1hsFun$args
[1] "cn"

$1lhsFun$raw
[1] "cn"
$eqComponentsNamesBehaviorals

[1] "en" "wi"

$eqComponentsNamesIdentities
[1] upn

16 bimets: Time Series and Econometric Modeling in R

$eqComponentsNamesExogenous
[1] "W2"

$eqSimExp
expression(cn[2, 1 = cn__ADDFACTOR[2,] + cn__al * 1 + cn__a2 *
pl2, 1 + cn__a3 * (p[1, 1) + cn__ad4 * (wi[2,] + w2([2, 1))

Users can always read (or carefully change) any model parameters. The LOAD_MODEL() func-
tion parses behavioral and identity expressions of the MDL definition, but it also does an
important optimization. Properly reordering the model equations is a key preparatory step
in the later phase of simulation, in order to guarantee performance and convergence, if any,
with the aim of minimizing the number of feedback endogenous variables (see the "The Op-
timal Reordering” section).

The LOAD_MODEL() function builds the incidence matrix of the model, and uses this ma-
trix to calculate the proper evaluation order of the model equations during the simulation.

Back to the Klein’s model example, the incidence matrix and the reordering of the equa-
tions are stored in the following variables:

R> kleinModel$incidence_matrix

cniwlypk
cn 00 1010
i 00 0010
wl 00 0100
y 11 0000
p 00 1100
k 01 0000

R> kleinModel$vpre

NULL

R> kleinModel$vsim

[1] "wi" "p" ‘'"cn" "i" "y
R> kleinModel$vfeed

(11 "y

R> kleinModel$vpost

[11 "x"

While simulating the Klein’s model, bimets will iterate on the computation of, in order, wl1 ->
p —> cn -> i -> y (the vsim variables), by looking for convergence on y (the vfeed variable,
only one in this example) that is the feedback variable. If the convergence is achieved, it will
calculate k (the vpost variable). The vpre array in this example is empty, that is no equation
has to be evaluated before the iterative algorithm.

Andrea Luciani 17

Once the model has been parsed, users needs to load the data of all the time series involved
in the model, by using the LOAD_MODEL_DATA () function. In the following example, the code
defines a list of time series and loads this list into the Klein’s model previously defined:

R> kleinModelData <- list(

cn

wl

=TIMESERIES(39.8,41.9,45,49.2,50.6,52.6,55.1,56.2,57.3,57.8,
55,50.9,45.6,46.5,48.7,51.3,57.7,58.7,57.5,61.6,65,69.7,
START=c (1920, 1) ,FREQ=1),
=TIMESERIES(4.6,6.6,6.1,5.7,6.6,6.5,6.6,7.6,7.9,8.1,9.4,10.7,
10.2,9.3,10,10.5,10.3,11,13,14.4,15.4,22.3,
START=c (1920, 1) ,FREQ=1),
=TIMESERIES(2.7,-.2,1.9,5.2,3,5.1,5.6,4.2,3,5.1,1,-3.4,-6.2,
-5.1,-3,-1.3,2.1,2,-1.9,1.3,3.3,4.9,
START=c(1920,1) ,FREQ=1),
=TIMESERIES(182.8,182.6,184.5,189.7,192.7,197.8,203.4,207.6,
210.6,215.7,216.7,213.3,207.1,202,199,197.7,199.8,
201.8,199.9,201.2,204.5,209.4,
START=c(1920,1) ,FREQ=1),
=TIMESERIES(12.7,12.4,16.9,18.4,19.4,20.1,19.6,19.8,21.1,21.7,
15.6,11.4,7,11.2,12.3,14,17.6,17.3,15.3,19,21.1,23.5,
START=c(1920,1) ,FREQ=1),
=TIMESERIES(28.8,25.5,29.3,34.1,33.9,35.4,37.4,37.9,39.2,41.3,
37.9,34.5,29,28.5,30.6,33.2,36.8,41,38.2,41.6,45,53. 3,
START=c(1920,1) ,FREG=1),
=TIMESERIES(43.7,40.6,49.1,55.4,56.4,58.7,60.3,61.3,64,67,57.7,
50.7,41.3,45.3,48.9,53.3,61.8,65,61.2,68.4,74.1,85.3,
START=c (1920, 1) ,FREQ=1),
=TIMESERIES(3.4,7.7,3.9,4.7,3.8,5.5,7,6.7,4.2,4,7.7,7.5,8.3,5.4,
6.8,7.2,8.3,6.7,7.4,8.9,9.6,11.6,
START=c(1920,1) ,FREG=1),

time=TIMESERIES (NA,-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,

w2

1,2,3,4,5,6,7,8,9,10,
START=c (1920, 1) ,FREQ=1),
=TIMESERIES(2.2,2.7,2.9,2.9,3.1,3.2,3.3,3.6,3.7,4,4.2,4.8,
5.3,5.6,6,6.1,7.4,6.7,7.7,7.8,8,8.5,
START=c(1920,1) ,FREQ=1)
)

R> kleinModel <- LOAD_MODEL_DATA (kleinModel,kleinModelData)

Load model data "kleinModelData" into model "kleinl.txt"...
...LOAD MODEL DATA OK

Since time series and other data (e.g. regressor coefficients, error coefficients, constant adjust-
ments, targets, instruments, etc...) are stored into the model object, users can define multiple
model objects - each with its own arbitrary data - in the same R session. bimets makes it
possible to estimate, simulate and compare results from different models with different data
sets. Furthermore, users can easily save an estimated or a simulated model as a standard R
variable, thus reloading it later, having all available data and time series stored into it, i.e.
endogenous and exogenous time series, estimated coefficients, constant adjustments, simula-

18 bimets: Time Series and Econometric Modeling in R

tion options, simulated time series, calculated instruments, targets, etc.

An advanced MDL model example follows (original time series are manually adjusted in
order to fit the example):

R> 1hsKleinl.txt <- "
MODEL

COMMENT> Modified Klein Model 1 of the U.S. Economy with PDL,
COMMENT> autocorrelation on errors, restrictions and conditional evaluations
COMMENT> LHS functions on E(@

COMMENT> Exp Consumption

BEHAVIORAL> cn

TSRANGE 1925 1 1941 1

EQ> EXP(cn) = al + a2+p + a3*LAG(p,1) + ad*(wl+w2)
COEFF> al a2 a3 a4

ERROR> AUTO(2)

COMMENT> Log Investment

BEHAVIORAL> i

TSRANGE 1925 1 1941 1

EQ> LOG(i) = bl + b2*p + b3*LAG(p,1) + b4*LAG(k,1)
COEFF> bl b2 b3 b4

RESTRICT> b2 + b3 = 1

COMMENT> Demand for Labor

BEHAVIORAL> wi

TSRANGE 1925 1 1941 1

EQ> w1 = c1 + c2*(TSDELTA(y)+t-w2) + c3*LAG(TSDELTA(y)+t-w2,1)+c4*time
COEFF> c1 c2 c3 c4

PDL> c3 1 3

COMMENT> Delta Gross National Product
IDENTITY> y
EQ> TSDELTA(y) = EXP(cn) + LOG(i) + g - ¢

COMMENT> Profits
IDENTITY> p
EQ> p = TSDELTA(y) - (wi+w2)

COMMENT> Capital Stock with switches
IDENTITY> k

EQ> k = LAG(k,1) + LOG(i)

IF> LOG(i) > 0

IDENTITY> k

EQ> k = LAG(k,1)

IF> LOG(i) <= 0

R>
R>

R>
R>

R>
R>
R>

Andrea Luciani 19

END"

#adjust the original data in order to estimate and to simulate the model
lhsKleinModelData <- within(kleinModelData,{
i =exp(i); #we have LOG(i) in the model MDL definition
cn=log(cn); #we have EXP(cn) in the model MDL definition
y =CUMSUM(y) #we have TSDELTA(y) in the model MDL definition
»

lhsKleinModel <- LOAD_MODEL (modelText = lhsKleinl.txt)
lhsKleinModel <- LOAD_MODEL_DATA(lhsKleinModel,lhsKleinModelData)

#ESTIMATE and SIMULATE functions are described later
lhsKleinModel <- ESTIMATE(lhsKleinModel)
lhsKleinModel <- SIMULATE(lhsKleinModel, TSRANGE = c(1925,1,1930,1))

3.2. Estimation

The bimets ESTIMATE() function estimates equations that are linear in the coefficients, as
specified in the behavioral equations of the model object. Coefficients can be estimated for
single equations or blocks of simultaneous equations. The estimation function supports:

— Ordinary Least Squares;

Instrumental Variables;

Deterministic linear restrictions on the coefficients;
— Almon Polynomial Distributed Lags;

— Autocorrelation of the errors;

Restrictions procedure derives from the theory of Lagrange Multipliers, while the Cochrane-
Orcutt method allows to account for residuals autocorrelation.

The estimation of the previously defined Klein’s model is shown in the following example
(R output omitted):

R>

kleinModel <- ESTIMATE (kleinModel, quietly=TRUE)

Users can also estimate a selection of behavioral equations:

R>

kleinModel <- ESTIMATE (kleinModel, eqList=c('cn'))

Estimate the Model kleinl.txt:

the number of behavioral equations to be estimated is 1.

The total number of coefficients is 4.

BEHAVIORAL EQUATION: cn

20 bimets: Time Series and Econometric Modeling in R

Estimation Technique: OLS

cn = 16.2366
T-stat. 12.46382 *kk

+ 0.1929344 p
T-stat. 2.115273 *

+ 0.0898849 TSLAG(p,1)
T-stat. 0.9915824

+ 0.7962187 (wi+w2)
T-stat. 19.93342 ¥k ok

STATs:

R-Squared : 0.9810082
Adjusted R-Squared : 0.9776567
Durbin-Watson Statistic : 1.367474
Sum of squares of residuals : 17.87945
Standard Error of Regression : 1.02554

Log of the Likelihood Function : -28.10857
F-statistic 1 292.7076
F-probability 1 7.993606e-15
Akaike's IC 1 66.21714
Schwarz's IC 1 71.43975
Mean of Dependent Variable : 53.99524
Number of Observations 21

Number of Degrees of Freedom : 17

Current Sample (year-period) 1 1921-1 / 1941-1

Signif. codes: **xx 0.001 **x 0.01 * 0.05

.. .ESTIMATE OK

A similar output is shown for each estimated regression. Once the estimation is completed,
coefficient values, residuals, statistics, etc. are stored into the model object.

R> #print estimated coefficients

R> kleinModel$behaviorals$cn$coefficients

[,1]
al 16.2366003
a2 0.1929344
a3 0.0898849
a4 0.7962187

R> #print residuals

Andrea Luciani

R> kleinModel$behaviorals$cn$residuals

Time Series:
Start = 1921
End = 1941
Frequency = 1
[1] -0.323893544 -1.250007790 -1.565741401 -0.493503129 0.007607907
[6] 0.869096295 1.338476868 1.054978943 -0.588557053 0.282311734
[11] -0.229653489 -0.322131892 0.322281007 -0.058010257 -0.034662717
[16] 1.616497310 -0.435973632 0.210054350 0.989201310 0.785077489
[21] -2.173448309

R> #print a selection of estimate statistics

R> kleinModel$behaviorals$cn$statistics$DegreesOfFreedom

(1] 17

R> kleinModel$behaviorals$cn$statistics$StandardErrorRegression
[1] 1.02554

R> kleinModel$behaviorals$cn$statistics$CoeffCovariance

al a2 a3 ad
al 1.6970227814 0.0005013886 -0.0177068887 -0.0329172192
a2 0.0005013886 0.0083192948 -0.0052704304 -0.0013188865
a3 -0.0177068887 -0.0052704304 0.0082170486 -0.0006710788
a4 -0.0329172192 -0.0013188865 -0.0006710788 0.0015955167

R> kleinModel$behaviorals$cn$statistics$AdjustedRSquared
[1] 0.9776567
R> kleinModel$behaviorals$cn$statistics$LogLikelihood

[1] -28.10857

3.3. Advanced estimation example

Below is an example of a model estimation that presents coefficient restrictions, PDL, error
autocorrelation and conditional equation evaluations:

R> #define model
R> advancedKleinl.txt <-
"MODEL

COMMENT> Modified Klein Model 1 of the U.S. Economy with PDL,

COMMENT> autocorrelation on errors, restrictions and conditional equation evaluations

COMMENT> Consumption with autocorrelation on errors
BEHAVIORAL> cn

21

bimets: Time Series and Econometric Modeling in R

TSRANGE 1925 1 1941 1

EQ> cn = al + a2*p + a3*TSLAG(p,1) + a4*(wil+w2)
COEFF> al a2 a3 a4

ERROR> AUTO(2)

COMMENT> Investment with restrictions
BEHAVIORAL> i

TSRANGE 1923 1 1941 1

EQ> i = bl + b2¥p + b3*TSLAG(p,1) + b4*TSLAG(k,1)
COEFF> bl b2 b3 b4

RESTRICT> b2 + b3 = 1

COMMENT> Demand for Labor with PDL

BEHAVIORAL> wi

TSRANGE 1925 1 1941 1

EQ> w1l = c1 + c2%(y+t-w2) + c3*TSLAG(y+t-w2,1) + c4*time
COEFF> c1 c2 c3 c4

PDL> c3 1 2

COMMENT> Gross National Product
IDENTITY> y
EQ> y=cn +1i+g -t

COMMENT> Profits
IDENTITY> p
EQ> p = y - (wi+w2)

COMMENT> Capital Stock with IF switches
IDENTITY> k

EQ> k = TSLAG(k,1) + i

IF> i >0

IDENTITY> k

EQ> k = TSLAG(k,1)

IF> i <=0

END"

R> #load model and data
R> advancedKleinModel <- LOAD_MODEL (modelText=advancedKleinl.txt)

Analyzing behaviorals...

Analyzing identities...

Optimizing...

Loaded model "advancedKleinl.txt":

3 behaviorals

3 identities

12 coefficients

...LOAD MODEL OK

Andrea Luciani

R> advancedKleinModel <- LOAD_MODEL_DATA (advancedKleinModel,kleinModelData)

Load model data "kleinModelData" into model "advancedKleinl.txt"...
...LOAD MODEL DATA OK

R> #estimate model
R> advancedKleinModel <- ESTIMATE (advancedKleinModel)

Estimate the Model advancedKleinl.txt:
the number of behavioral equations to be estimated is 3.

The total number of coefficients is 13.

BEHAVIORAL EQUATION: cn

Estimation Technique: OLS

Autoregression of Order 2 (Cochrane-Orcutt procedure)
Convergence was reached in 9 / 20 iterationms.

cn = 19.01352

T-stat. 12.13083 oKk

+ 0.3442816 p
T-stat. 3.533253 *%

+ 0.03443117 TSLAG(p,1)
T-stat. 0.3937881

+ 0.6993905 (wi+w2)
T-stat. 14.0808 *okok

ERROR: AUT0(2)

AUTOREGRESSIVE PARAMETERS:

Rho Std. Error T-stat.
0.05743131 0.3324101 0.1727725
0.007785936 0.2647013 0.02941404

STATs:

R-Squared 0.985263

Adjusted R-Squared 0.9785644

Durbin-Watson Statistic : 1.966609

Sum of squares of residuals 9.273455

Standard Error of Regression 0.9181728

Log of the Likelihood Function : -18.97047
F-statistic 1 147.0844

24 bimets: Time Series and Econometric Modeling in R

F-probability : 1.090551e-09
Akaike's IC : 51.94093
Schwarz's IC : 57.77343

Mean of Dependent Variable : 65.71765
Number of Observations 1 17

Number of Degrees of Freedom 11

Current Sample (year-period) : 1925-1 / 1941-1

Signif. codes: *xk 0.001 *x 0.01 =* 0.05

BEHAVIORAL EQUATION: i
Estimation Technique: OLS

i = 2.868104
T-stat. 0.3265098

+ 0.5787626 p
T-stat. 4.456542 *kk

+ 0.4212374 TSLAG(p,1)
T-stat. 3.243579 *k

- 0.09160307 TSLAG(k,1)
T-stat. -2.11748

RESTRICTIONS:
b2+b3=1

RESTRICTIONS F-TEST:

F-value 1 8.194478

F-prob(1,15) : 0.0118602

STATs:

R-Squared : 0.8928283
Adjusted R-Squared : 0.8794319
Durbin-Watson Statistic 1 1.173106
Sum of squares of residuals 1 26.76483
Standard Error of Regression : 1.293368
Log of the Likelihood Function : -30.215
F-statistic : 66.64659
F-probability 1 1.740364e-08

Akaike's IC : 68.43001

Andrea Luciani

Schwarz's IC 1 72.20776

Mean of Dependent Variable : 1.310526
Number of Observations : 19

Number of Degrees of Freedom : 16

Current Sample (year-period) 1 1923-1 / 1941-1

Signif. codes: **%% 0.001 *x 0.01 =*x 0.05

BEHAVIORAL EQUATION: wil
Estimation Technique: OLS

wl = 1.103637
T-stat. 0.7290738

+ 0.4358984 (y+t-w2)
T-stat. 11.35698 *kok

+ c3 TSLAG (y+t-w2,1)
PDL

+ 0.1363549 time
T-stat. 3.398964 *%

PDL:
c3 12

Distributed Lag Coefficient: c3

Lag Coeff. Std. Error T-stat.

0 0.1212886 0.06620502 1.832015
1 0.0354339 0.04657983 0.7607135
SUM 0.1567225 0.04163457

STATs:

R-Squared 0.9891508
Adjusted R-Squared 0.9855344
Durbin-Watson Statistic 1 2.219659

Sum of squares of residuals 6.3545
Standard Error of Regression 0.7276962

Log of the Likelihood Function : -15.75753
F-statistic : 273.5171
F-probability 1 1.130929e-11

Akaike's IC : 43.51506

25

26 bimets: Time Series and Econometric Modeling in R

Schwarz's IC : 48.51434

Mean of Dependent Variable : 37.69412
Number of Observations : 17

Number of Degrees of Freedom : 12

Current Sample (year-period) : 1925-1 / 1941-1

Signif. codes: **%% 0.001 *x 0.01 =*x 0.05

.. .ESTIMATE OK

3.4. Structural Stability

One of the main purposes of the econometric modeling is its use for forecast and policy eval-
uation and, to this end, the stability of a behavioral equation parameters over time should
be verified. In order to check for structural stability two different procedures, which can be
derived from the so called Chow-tests', are applied.

Given a sample of Ty = t, ..., t, observations (i.e. the base TSRANGE) and selecting an ar-
bitrary forward extension in T} = tg, ..., tn, ..., t;, Observations (i.e. the extended TSRANGE) we
have the following two regressions:

1. Yo = Bo* Xo+ €0, €0~ N(0, 0(2)), having time series projected on the base TSRANGE

2. YT=0hxX1+e, e ~N(0, a%), having time series projected on the extended TSRANGE
In general a stability analysis is carried on in the following ways:

— comparing the parameter estimates arising from the two regressions: this is known as
the covariance analysis;

— checking the accuracy of the forecast for the dependent variable in the extended TSRANGE,
using the estimates produced in the base TSRANGE: this is known as the predictive power
test.

The first Chow test (i.e. predictive failure) is calculated as:

= SSR1—SSRg Dol
- SSRo DoFy1—Dokp?

with SSR; as the sum of squared residuals and DoF; as the number of degrees of fredoom in
the regression 7 = 0, 1.

The test is completed by calculating the following time series on the extended TSRANGE:

— the forecast error;

1G. C. Chow, Tests of equality between sets of coefficients in two linear regressions. Econometrica, Vol 28,
4. July 1960

Andrea Luciani

— the standard error of forecast;

— the t-statistic for the error;

The standard error of the forecast for the ¢; observation in the extended TSRANGE is computed
according to:

SE; :ao\/l—l—:n;r*(XJ*XO)*l*:Uj

having x; as the independent values (i.e. regressors) on the ¢; observation in the T ex-
tended TSRANGE, with n < 7 < m.

The null hypothesis for 7 is:
H* : 81 = By, given a% = ag

The test statistic 7 follows the F' distribution with (DoFy — DoFy) and DoF; degrees of free-
dom, and can be performed during the ESTIMATE() function execution by using the CHOWTEST
argument set to TRUE, and optionally by providing the argument CHOWPAR as an integer array,
i.e. c(year,period), built by the year and the period of the last required observation in the
extended TSRANGE.

Example:

R> #chow test for the consumption equation

R> #base TSRANGE set to 1921/1935

R> kleinModelChow <- ESTIMATE(kleinModel
,eqList='cn'
, TSRANGE=c (1921,1,1935,1)
,forceTSRANGE=TRUE
, CHOWTEST=TRUE)

Estimate the Model kleinl.txt:
the number of behavioral equations to be estimated is 1.

The total number of coefficients is 4.

BEHAVIORAL EQUATION: cn
Estimation Technique: OLS

13.12755
T-stat. 6.504605 *kokk

cn

+ 0.1669801 p

T-stat. 2.183045

+ 0.08856838 TSLAG(p,1)
T-stat. 0.9750418

27

28 bimets: Time Series and Econometric Modeling in R

+ 0.887964
T-stat.

STATs:

R-Squared

Adjusted R-Squared
Durbin-Watson Statistic
Sum of squares of residuals

Standard Error of Regression

Log of the Likelihood Function :
: 168.7001

: 1.776731e-09

: 40.96061

: 44.50086

: 50.91333

: 15

: 11

: 1921-1 / 1935-1

F-statistic

F-probability

Akaike's IC

Schwarz's IC

Mean of Dependent Variable
Number of Observations
Number of Degrees of Freedom

Current Sample (year-period)

(wi+w2)

12.61002 *okok

o OO » O O

.9787275
.972926
.379996
.918601
.7930723
-15.4803

Signif. codes: **x 0.001 **x 0.01 * 0.05

STABILITY ANALYSIS:

Behavioral equation: cn

Chow test:

Sample (auto) : 1936-1 / 1941-1
F-value : 4.488731
F-prob(6,17) : 0.6687229

Predictive Power:

DATE, PER, ACTUAL

1936, 1 , b57.7
1937, 1, 58.7
1938, 1 , 57.5
1939, 1 , 61.6
1940, 1 , 65

1941, 1, 69.7

.. .ESTIMATE OK

>

PREDICT , ERROR , STDERR
56.55436 , 1.145638 , 1.01181
59.93099 , —1.230988 , 1.020099
57.97212 , —0.4721225 , 0.9686377
61.52069 , 0.0793139 , 1.200479
65.39572 , —0.3957177 , 1.242267
73.79655 , —4.096547 , 1.669299

TSTAT

1.132265
-1.206734
-0.4874087

0.06606853
-0.3185448
-2.454053

Andrea Luciani 29

3.5. Simulation

The simulation of an econometric model basically consists in solving the system of the equa-
tions describing the model for each time period in the specified time interval. Since the
equations may not be linear in the variables, and since the graph derived from the incidence
matrix may be cyclic, the usual methods based on linear algebra are not applicable, and the
simulation must be solved by using an iterative algorithm.

bimets simulation capabilities support:

— Static stimulations: in which the historical values for the lagged endogenous variables
are used in the solutions of subsequent periods;

— Dynamic simulations: in which the simulated values for the lagged endogenous variables
are used in the solutions of subsequent periods;

— Forecast simulations: similar to dynamic simulation, but during the initialization of the
iterative algorithm the starting values of endogenous variables in a period are set equal
to the simulated values of the previous period. This allows the simulation of future
endogenous observations, i.e. the forecast;

— Residuals check: a single period, single equation simulation; output simulated time
series are just the RHS (right-hand-side) computation of their equation, by using the
historical values of the involved time series and by accounting for error autocorrelation
and PDLs, if any;

— Partial or total exogenization of endogenous variables: in the provided time interval
(i.e. partial exog.) or in the whole simulation time range (i.e. total exog.), the values of
the selected endogenous variables can be definitely set equal to their historical values,
by excluding their equations from the iterative algorithm of simulation;

— Constant adjustment of endogenous variables (add-factors): adds another exogenous
time series - the ”constant adjustment” - in the equation of the selected endogenous
variables;

In details, the generic model suitable for simulation in bimets can be written as:

1 = [1(T,7)
being:

n the number of equations in the model;

g = [y1, ..., yn] the n-dimensional vector of the endogenous variables;

z = [x1, ..., T the m-dimensional vector of the exogenous variables;

fi(...),i = 1..n any kind of functional expression able to be written by using the MDL syntax;

As described later on, a modified Gauss-Seidel iterative algorithm can solve the system of
equations. The convergence properties may vary depending on the model specifications. In

30 bimets: Time Series and Econometric Modeling in R

some conditions, the algorithm may not converge for a specific model or a specific set of data.

A convergence criterion and a maximum number of iterations to be performed are provided
by default. Users can change these criteria by using the simConvergence and simIterLimit
arguments of the SIMULATE() function.

The general conceptual scheme of the simulation process (for each time period) is the fol-
lowing:

1. initialize the solution for the current simulation period;
2. iteratively solve the system of equations;

3. save the solution, if any;
Step 2 means that for each iteration you will need to:

2.1 update the values of the current endogenous variables;

2.2 verify that the convergence criterion is satisfied or that the maximum number of allowed
iterations has been reached;

The initial solution for the iterative process (step 1) can be given alternatively by:

— the historical value of the endogenous variables for the current simulation period (the
default);

— the simulated value of the endogenous variables from the previous simulation period
(this alternative is driven by the simType=’FORECAST’ argument of the SIMULATE()
function);

In the "dynamic” simulations (i.e. simulations performed by using either the default
simType=’DYNAMIC’ or the simType=’FORECAST’), whenever lagged endogenous variables are
needed in the computation, the simulated values of the endogenous variables y assessed in
the previous time periods are used. In this case, the results of the simulation in a given time
period depends on the results of the simulation in the previous time periods. This kind of
simulation is defined as "multiple equation, multiple period”.

As an alternative, the actual historical values can be used in the ”static” simulations (i.e.
simulations performed by using simType=’STATIC’) rather than simulated values whenever
lagged endogenous variables are needed in the computations. In this case, the results of
the simulation in a given time period does not depend on the results of the simulation in the
previous time periods. This kind of simulation is defined as multiple equation, single period”.

The last simulation type available is the residual check (simType=’RESCHECK’). With this
option a "single equation, single period” simulation is performed. In this case no iteration
must be carried out. The endogenous variables are assessed for each single time period through
the use of historical values for each variable on the right-hand side of their equation, for both

Andrea Luciani

lagged and current periods. This kind of simulation is very helpful for debugging and check-
ing the logical coherence of the equations and the data, and can be used as a simple tool to
compute the add-factors.

The debugging of the logical coherence of the model-equation and the data is carried out
by means of a procedure called "Residual Check”.

It consists in the following steps:

1. add another exogenous variable - the constant adjustment - to every equation of the
model, both behavioral and technical identity (i.e. by using the ConstantAdjustment
argument of the SIMULATE() function);

2. fill in with the estimated residuals all the constant adjustments for the behavioral equa-
tions;

3. fill in with zeroes the constant adjustments for the technical identities;
4. perform a simulation of the model with the simType=’RESCHECK’ option;

5. compute the difference between the historical and the simulated values for all the en-
dogenous variables;

6. check whether all the differences assessed in step 5 are zero in the whole time range;

If a perfect tracking of the history is obtained then the equations have been written coher-
ently with the data, otherwise a simulated equation not tracking the historical values is an
unambiguous symptom of data inconsistent with the model definition.

Aside from the residual check, the add-factors constitute an important tool to significantly
improve the accuracy of forecasts made through an econometric model. Considering the fol-
lowing model:

1= [1(Z,9) + =1
Yn = fn(i‘ﬂj) + Zn

the add-factors z = [z1,...,2z,] can be interpreted as estimates of the future values of the
disturbance terms or, alternatively, as adjustments of the intercepts in each equation. These
add-factors round out the forecasts, by summarizing the effects of all the systematic factors
not included in the model. One choice for the computation of the add-factors is given by
past estimation residuals and past forecast errors or by an average of these errors. This
consideration suggests an easy way of computing the add-factors:

1. add the constant adjustments to every equation of the model, both behavioral and
technical identity;

2. fill in with zeroes all the constant adjustments;

31

32 bimets: Time Series and Econometric Modeling in R

3. solve the model, with the simType="RESCHECK’ option, in a time interval including
some periods beyond the estimation sample;

4. compute the difference between the historical and the simulated values for each endoge-
nous variables;

5. average, or process in a suitable way, the difference arising from point 4 in the time
periods beyond the estimation sample to compute the constant value to be used as an
add-factor in the following forecasting exercises;

Back to Kelin’s model example, let’s forecast the GNP (i.e. the ”y” endogenous variable) up
to 1943:

R> #FORECAST GNP in 1942 and 1943
R> #we need to extend exogenous variables in 1942 and 1943
R> kleinModel$modelData <- within(kleinModel$modelData,{

w2 = TSEXTEND(w2, UPTO=c(1943,1))
t = TSEXTEND(t, UPT0=c(1943,1))
g = TSEXTEND(g, UPTO0=c(1943,1))
time = TSEXTEND (time,UPTO=c(1943,1)

,EXTMODE="'LINEAR')
P

R> #simulate model

R> kleinModel <- SIMULATE(kleinModel
,8imType="'FORECAST'
, TSRANGE=c (1940,1,1943,1)
,simConvergence=0.00001
,simIterLimit=100

)
Simulation: 25.00%
Simulation: 50.00%
Simulation: 75.00%
Simulation: 100.00%

.. .SIMULATE OK

R> #get forecasted GNP
R> TABIT(kleinModel$simulation$y)

DATE, PER, kleinModel$simulation$y

1940, 1 , 74.57806
1941, 1, 94.01525
1942, 1, 133.9687
1943, 1, 199.9133

Historical GNP was 166.36 in 1942 and 203.41 in 1943 (source FRED - Federal Reserve Bank
of St. Louis).

Andrea Luciani 33

In the following figure you will find the historical consumption, the dynamic simulated con-
sumption and the RHS computation of the consumption equation, from 1921 to 1941:

Consumption

BO -~

70 4 /

50—/"

40 -
30 -
20 7

10 +

H A R & B & R B AR R = & B & B &8 B & ” 8 3
a2 3 a3 3 383 3 3 33 3 3 3 8 3 3 a3 3 a s 3
=——HISTORICAL ====DYNAMIC RESCHECK

3.6. The Optimal Reordering

In fact, the simulation process takes advantage of an appropriate ordering of the equations to
increase the performances by iteratively solving only one subset of equations, while the others
are solved straightforwardly?.

The LOAD_MODEL () function builds the incidence matrix of the model, then defines the proper
equation reordering. The incidence matrix is built from the equations of the model; it is a
square matrix in which each row and each column represents an endogenous variable. If the
(i,j) element is equal to 1 then in the model definition the current value of the endogenous
variable referred by the i-row depends directly from the current value of the endogenous
variable referred by the j-column.

In econometric models, the incidence matrix is usually very sparse. Only a few of the to-
tal set of endogenous variables are used in each equation. In this situation, ordering the
equation in a certain sequence will lead to a sensible reduction of the number of iterations

27__a different ordering of the equations can substantially affect the speed of convergence of the algorithm;

indeed some orderings may produce divergence. The less feedback there is, the better the chances for fast
convergence...” - Don, Gallo - Solving large sparse systems of equations in econometric models - Journal of
Forecasting 1987.

34 bimets: Time Series and Econometric Modeling in R

needed to achieve convergence. Reordering the equations is equivalent to rearranging rows
and columns of the incidence matrix. In this way the incidence matrix might be made lower
triangular for a subset of the equations. For this subset, an endogenous variable determined
in a specific equation has no incidence in any equation above it, although the same variable
might have incidence in equations below it. Such a subset of equations is called recursive.
Recursive systems are easy to solve. It is only necessary to solve each equation once if this is
done in the right order. On the other hand, it is unlikely for the whole model to be recursive.
Indeed the incidence graph is often cyclic, as in the Klein’s model that presents the following
circular dependecies in the incidence matrix: cn <- wl <- y <- cn

For a subset of the equations, some 1’s will occur in the upper triangle of the incidence
matrix for all possible orderings. Such subset of equations is called simultaneous. In order
to be able to solve the endogenous variables in the simultaneous block of equations, an itera-
tive algorithm has to be used. Nevertheless, the equations in the simultaneous block may be
ordered so that the pattern of the 1’s in the upper triangle of the incidence matrix forms a
spike. The variables corresponding to the 1’s in the upper triangle are called feedback variables.

A qualitative graphical example of an ordered incidence matrix is given in the following
figure. The white areas are all 0’s, the gray areas contains both 0’s and 1’s. The 1’s in the
light gray areas refer to variables already assessed in previous blocks, therefore they are known
terms within the block. The 1’s in the dark gray areas refer to variables assessed within the
block.

variables

Feedback
variables

Convergence is
evaluated here

NWoOQ ==L O

The final pattern of an incidence matrix after the equation reordering generally features
three blocks:

1. a recursive block (the pre-recursive block);
2. a simultaneous block;

3. another recursive block (the post-recursive block);

As said, the pre-recursive and the post-recursive blocks are lower triangular. Therefore the
corresponding equations are solvable with a cascade substitution with no iteration. Just the

Andrea Luciani 35

simultaneous equations set needs an iterative algorithm to be solved. It is important to say
that the convergence criterion may also be applied to these variables only: when the feedback
variables converge, the rest of the simultaneous variables also do.

bimets builds and analyzes the incidence matrix of the model, and then it orders the equa-
tions in pre-recursive, simultaneous and post-recursive blocks. The simultaneous block is then
analyzed in order to find a minimal set of feedback variables. This last problem is known to
be NP-complete?.

The optimal reordering of the model equations is programmatically achieved through the
use of an iterative algorithm applied to the incidence matrix that can produce 4 ordered lists
of endogenous variables:

1. vpre is the ordered list containing the names of the endogenous pre-recursive variables
to be sequentially computed (using their EQ> definition in the MDL) before the simulation
iterative algorithm takes place;

2. vsim is the ordered list containing the names of the endogenous variables to be sequen-
tially computed during each iteration of the simulation iterative algorithm;

3. vfeed is the list containing the names of the endogenous feedback variables;

4. vpost is the ordered list containing the names of the endogenous post-recursive variables
to be sequentially computed once the simulation iterative algorithm has converged;

If equations are reordered, the previous conceptual scheme is modified as follow:

— initialize the solution for the current simulation period;

— compute the pre-recursive equations (i.e. the equation of the endogenous variables in
the vpre ordered list);

— iteratively compute the system of simultaneous equations (i.e. the equation of the
endogenous variables in the vsim ordered list); for each iteration update the values of
the current endogenous variables and verify that the convergence criterion is satisfied
on the feedback variables or that the maximum number of iterations has been reached;

— compute the post-recursive equations (i.e. the equation of the endogenous variables in
the vpost ordered list);

save the solutions;

Given zj,7 = 1..m the exogenous variables and y; 1,7 = 1..n the value of the i-endogenous
variable in the simultaneous block at the iteration k, with ¢ the position of the equation in
a reordered model, the modified Gauss-Seidel method simply takes for the approximation of
the endogenous variable y; ;. the solution of the following:

3Garey, Johnson - Computers and Intractability: a Guide to the Theory of NP-completeness - San Francisco,
Freeman 1979

36 bimets: Time Series and Econometric Modeling in R

Yik = fi(xh ey Ty YLks - Yi1,ky Yik—15 -+ yn,kfl)

As said, the convergence is then tested at the end of each iteration on the feedback vari-
ables.

Newton’s methods on a reordered model require the calculation of the Jacobian matrix on
the feedback endogenous variables, i.e. at least f + 2 iterations per simulation period, with f
as the number of feedback variables. For large models (i.e. more than 30 feedback variables)
if the overall required convergence is greater than 1075% the speedup over the Gauss-Siebel
method is small or negative. Moreover the Gauss-Siebel method does not require a matrix
inversion, therefore it is more robust against algebraical and numerical issues. For small mod-
els both methods are fast on modern computers.

The simulation of a non-trivial model, if computed by using the same data but on differ-
ent hardware, software or numerical libraries, produces numerical differences. Therefore a
convergence criterion smaller than 1077% frequently leads to a local solution.

See Numerical methods for simulation and optimal control of large-scale macroeconomic mod-
els - Gabay, Nepomiastchy, Rachidi, Ravelli - 1980 for further information.

Below is an example of advanced simulation:

R> #STATIC SIMULATION EXAMPLE WITH EXOGENIZATION AND CONSTANT ADJUSTMENTS
R>

R> #define exogenization list

R> #'cn' exogenized in 1923-1925

R> #'i' exogenized in the whole TSRANGE

R> exogenizeList <- list(

c(1923,1,1925,1),

TRUE

cn

i
)
R> #define add-factor list
R> constantAdjList <- list(
cn = TIMESERIES(1,-1,START=c(1923,1),FREQ='A"),
y = TIMESERIES(0.1,-0.1,-0.5,START=c(1926,1),FREQ="A")
)
R> #simulate model
R> kleinModel <- SIMULATE (kleinModel
,8imType="'STATIC'
, TSRANGE=c (1923,1,1941,1)
,simConvergence=0.00001
,simIterLimit=100
,Exogenize=exogenizelist
,ConstantAdjustment=constantAdjList
)

Andrea Luciani 37

3.7. Multipliers Analysis

The bimets MULTMATRIX () function computes the matrix of both impact and interim multi-
pliers, for a selected set of endogenous variables (i.e. TARGET) with respect to a selected set of
exogenous variables (i.e. INSTRUMENT), by subtracting the results from different simulations
in each period of the provided time range (i.e. TSRANGE). The simulation algorithms are the
same as those used for the SIMULATE() operation.

The MULTMATRIX () procedure is articulated as follows:

1. simultaneous simulations are done;
2. the first simulation establishes the base line solution (without shocks);

3. the other simulations are done with shocks applied to each of the INSTRUMENT one at a
time for every period in TSRANGE;

4. each simulation follows the defaults described in the ”"Simulation” section, but has to be
STATIC for the IMPACT multipliers and DYNAMIC for INTERIM multipliers;

5. given the MM_SHOCK shock amount as a very small positive number, derivatives are
computed by subtracting the base line solution of the TARGET from the shocked solution,
then dividing by the value of the base line INSTRUMENT times the MM_SHOCK;

The IMPACT multipliers measure the effects of impulse exogenous changes on the endoge-
nous variables in the same time period. They can be defined as partial derivatives of each
current endogenous variable with respect to each current exogenous variable, all other exoge-
nous variable being kept constant.

Given Y (t) an endogenous variable at time ¢ and X(f) an exogenous variable at time ¢,
the impact multiplier m(Y, X, t) is defined as m(Y, X,t) = Y (¢t)/0X(t) and can be approx-
imated by m(Y7 X, t) ~ (Y;hocked(t) - Y(t))/(Xshocked(t) - X(t))a with }/Shocked(t) the values
fo the simulated endogenous variable Y at time ¢ when X (t) is shocked to

Xshocked(t) = X(t)(l + MM,SHOCK)

The INTERIM or delay-r multipliers measure the delay-r effects of impulse exogenous changes
on the endogenous variables in the same time period. The delay-r multipliers of the endoge-
nous variable Y with respect to the exogenous variable X related to a dynamic simulation from
time t to time t+r can be defined as the partial derivative of the current endogenous variable
Y at time t+r with respect to the exogenous variable X at time t, all other exogenous variable
being kept constant.

Given Y (t + r) an endogenous variable at time ¢ 4+ r and X (¢) an exogenous variable at time
t the interim or delay-r multiplier m(Y, X, ¢,7) is defined as m(Y, X, t,7) = Y (t +r)/0X (t)
and can be approximated by m(Y, X, t,7) & (Yshocked(t + 1) — Y (t + 7))/ (Xshockea(t) — X (¢)),
with

Yishocked(t + 1) the values fo the simulated endogenous variable Y at time ¢ + r when X (¢) is
shocked to Xspocked(t) = X (t)(1 + MM_SHOCK)

bimets users can also declare an endogenous variable as the INSTRUMENT variable. In this

38 bimets: Time Series and Econometric Modeling in R

case, the constant adjustment related to the provided endogenous variable will be used as the
INSTRUMENT exogenous variable.

Back to our Klein’s model example, we can calculate impact multipliers of Government non-
Wage Spending "g” and Government Wage Bill "w2” with respect of Consumption ”cn” and
Gross National Product ”y” in the year 1941 by using the previously estimated model:

R> kleinModel <- MULTMATRIX(kleinModel,
TSRANGE=c(1941,1,1941,1),
INSTRUMENT=c('w2','g"'),
TARGET=c('cn','y")

Multipliter Matrix: 100.00%
.. .MULTMATRIX OK

R> kleinModel$MultiplierMatrix

w2_1 g_1
cn_1 0.4540346 1.671956
y_1 0.2532000 3.653260

Results show that the impact multiplier of ”y” with respect to ”g” is +3.65. If we change
the Government non-Wage Spending ”g” value in 1941 from 22.3 (its historical value) to 23.3
(41), then the simulated Gross National Product ”y” in 1941 changes from 95.2 to 99, thusly
roughly confirming the +3.65 impact multiplier. Note that "g” only appears once in the model
definition, and only in the "y” equation, with a coefficient of one (Keynes would approve).

An interim-multiplier example follows:

R> #multi-period interim multipliers

R> kleinModel <- MULTMATRIX(kleinModel,
TSRANGE=c(1940,1,1941,1),
INSTRUMENT=c('w2','g'),
TARGET=c('cn', 'y "))

Multipliter Matrix: 50.00%
Multipliter Matrix: 100.007%
.. .MULTMATRIX OK

R> #output multipliers matrix (note the zeros when the period
R> #of the INSTRUMENT is greater than the period of the TARGET)
R> kleinModel$MultiplierMatrix

w2_1 g 1 w2_2 g 2
cn_1 0.4478202 1.582292 0.0000000 0.000000
y_1 0.2433382 3.510971 0.0000000 0.000000
cn_2 -0.3911001 1.785042 0.4540346 1.671956
y_2 -0.6251177 2.843960 0.2532000 3.653260

Andrea Luciani

3.8. Renormalization

The renormalization? of econometric models consists of solving the model while interchang-
ing the role of one or more endogenous variables with an equal number of exogenous variables.

The bimets RENORM() procedure determines the values for the INSTRUMENT exogenous vari-
ables which allow the objective TARGET endogenous variables to be achieved, with respect to
the constraints given by the model MDL definition.

This is an approach to economic and monetary policy analysis, and is based on two as-
sumptions:

1. there exists a desired level for a set of n endogenous variables defined as TARGET;

2. there exists a set of n exogenous variables defined as INSTRUMENT;

Given these premises, the renormalization process consists in determining the values of the
exogenous variables chosen as INSTRUMENT allowing us to achieve the desired values for the
endogenous variables designated as TARGET. In other words the procedure allows users to ex-
change the role of exogenous and endogenous among a set of time series pairs.

Given a list of exogenous INSTRUMENT variables and a list of TARGET endogenous time se-
ries, the iterative procedure can be split into the following steps:

1. Computation of the multipliers matrix MULTMAT of the TARGET endogenous variables with
respect to the INSTRUMENT exogenous variables (this is a square matrix by construction);

2. Solution of the linear system:
Vewog(i + 1) = Vewog(i)+ MULTMAT ~! % (Venaog(i)— TARGET), where Vegoq(i) are the ex-
ogenous variables in the INSTRUMENT list and Vep404(7) are the endogenous variables that
have a related target in the TARGET list, given ¢ the current iteration;

3. Simulation of the model with the new set of exogenous variables computed in step 2,
then a convergence check by comparing the subset of endogenous variables arising from
this simulation and the related time series in TARGET list. If the convergence condition
is satisfied, or the maximum number of iterations is reached, the algorithm will stop,
otherwise it will go back to step 1;

Users can also declare an endogenous variable as an INSTRUMENT variable. In this case, the
constant adjustment related to the provided endogenous variable will be used as the instru-
ment exogenous variable. This procedure is particularly suited for the automatic computation
of the add-factors needed to fine tune the model into a baseline path and to improve the fore-
casting accuracy.

If the convergence condition is satisfied, the RENORM procedure will return the requested
INSTRUMENT time series allowing us to achieve the desired values for the endogenous vari-
ables designated as TARGET.

*On the Theory of Economic Policy - Tinbergen J. 1952

39

40 bimets: Time Series and Econometric Modeling in R

Back to our Klein’s model example, we can perform the renormalization of the previously
estimated model. First of all, the targets must be defined:

R> #we want an arbitrary value on Consumption of 66 in 1940 and 78 in 1941
R> #we want an arbitrary value on GNP of 77 in 1940 and 98 in 1941
R> kleinTargets <- list(

cn = TIMESERIES(66,78,START=c(1940,1),FREQ=1),

y = TIMESERIES(77,98,START=c(1940,1),FREQ=1)

)

Then, we can perform the model renormalization by using the "w2” (Wage Bill of the Govern-
ment Sector) and the ”’g” (Government non-Wage Spending) exogenous variables as INSTRUMENT,
in the years 1940 and 1941 (output omitted):

R> kleinModel <- RENORM(kleinModel
, INSTRUMENT = c('w2','g"')
, TARGET = kleinTargets
, TSRANGE = c(1940,1,1941,1)
,simIterLimit = 100
,quietly=TRUE)

Once RENORM completes, the calculated values of exogenous INSTRUMENT allowing us to achieve
the desired endogenous TARGET values are stored into the model:

R> with(kleinModel, TABIT (modelData$w2,

renorm$INSTRUMENT$w?2,
modelData$g,
renorm$INSTRUMENT$g,
TSRANGE=c (1940,1,1941,1)
)
)
DATE, PER, modelData$w2 , renorm$INSTRUMENT$w2, modelData$g , renorm$INSTRUMENTS$g
1940, 1 , 8 , T7.413331 , 15.4 , 16.1069
1941, 1 , 8.5 , 9.3436 , 22.3 , 22.65985

So, if we want to achieve on ”cn” (Consumption) an arbitrary simulated value of 66 in 1940
and 78 in 1941, and if we want to achieve on ”y” (GNP) an arbitrary simulated value of 77
in 1940 and 98 in 1941, we need to change exogenous "w2” (Wage Bill of the Government
Sector) from 8 to 7.41 in 1940 and from 8.5 to 9.34 in 1941, and we need to change exogenous
"g” (Government non-Wage Spending) from 15.4 to 16.1 in 1940 and from 22.3 to 22.66 in 1941.

Let’s verify:

R> #create a new model
R> kleinRenorm <- kleinModel

R> #get instruments to be used
R> newInstruments <- kleinModel$renorm$INSTRUMENT

R> #change exogenous by using new instruments data
R> kleinRenorm$modelData <- within(kleinRenorm$modelData,

R>
R>

R>
R>

R>
R>

Andrea Luciani

w2[[1940,1]]=newInstruments$w2[[1940,1]]
w2[[1941,1]]=newInstruments$w2[[1941,1]]
gl[1940,1]] =newInstruments$g[[1940,1]]
gl[[1941,1]] =newInstruments$g[[1941,1]]

}
)

#users can also replace last two commands with:

#kleinRenorm$modelData <- kleinRenorm$renorm$modelData

#simulate the new model

kleinRenorm <- SIMULATE (kleinRenorm
, TSRANGE=c (1940,1,1941,1)
,simConvergence=0.00001
,simIterLimit=100
,quietly=TRUE)

#verify targets are achieved
with(kleinRenorm$simulation,
TABIT(cn,y)
)

DATE, PER, cn > ¥y

1940, 1 , 66.01116 , 17.01772
1941, 1 , 78.02538 , 98.04121

41

42 bimets: Time Series and Econometric Modeling in R

References

[1] F. J. Henk Don and Giampiero M. Gallo Solving large sparse systems of equations in
econometric models. Journal of Forecasting, 6(3):167-180, 1987.

[2] Jan Tinbergen On the theory of economic policy. North-Holland, Amsterdam, 1952.

[3] Daniel Gabay, Pierre Nepomiastchy, M'Hamed Rachdi and Alain Ravelli Numerical
methods for simulation and optimal control of large-scale macroeconomic models. Ap-
plied stochastic control in econometrics and management science:115-158, 1980

[4] M. R. Garey, D. S. Johnson Computers and Intractability: a Guide to the Theory of
NP-completeness. San Francisco, Freeman 1979

[5] G. C. Chow, Tests of equality between sets of coefficients in two linear regressions.
Econometrica, Vol 28, 4. July 1960

Affiliation:

Andrea Luciani

Bank of Italy

Directorate General for Economics, Statistics and Research
Via Nagzgionale, 91

00184, Rome - Italy

E-mail: andrea.luciani@bancaditalia.it

mailto:andrea.luciani@bancaditalia.it

	Introduction
	Time Series
	Time Series Indexing
	Time Series Aggregation/Disaggregation
	Time Series Manipulation

	Econometric Modeling
	Model Definition Language
	Estimation
	Advanced estimation example
	Structural Stability
	Simulation
	The Optimal Reordering
	Multipliers Analysis
	Renormalization

