Package ‘bimets’

June 2, 2020
Type Package

Title Time Series and Econometric Modeling

Version 1.5.1

Date 2020-06-01

Maintainer Andrea Luciani <andrea.luciani@bancaditalia.it>

Author Andrea Luciani [aut, cre],
Roberto Stok [aut],
Bank of Italy [cph]

ByteCompile no

Description Time series analysis, (dis)aggregation and manipulation, e.g. time series exten-
sion, merge, projection, lag, lead, delta, moving and cumulative average and product, selec-
tion by index, date and year-period, conversion to daily, monthly, quarterly, (semi)annually. Si-
multaneous equation models definition, estimation, simulation and forecasting with coeffi-
cient restrictions, error autocorrelation, exogenization, add-factors, impact and interim multipli-
ers analysis, conditional equation evaluation, endogenous targeting and model renormalization.

Depends R (>= 3.3), xts, zoo

Imports stats

LazyData true

License GPL-3

Encoding UTF-8

NeedsCompilation no

Repository CRAN

Date/Publication 2020-06-01 23:50:02 UTC

R topics documented:

bimets-package 3
AlID . e e e e 29
ANNUAL e e e 31
as.bimets L L e e 32
bimetsConf 34

R topics documented:

bimetsDataset e 37
CUMPROD e e e 37
CUMSUM e e e 39
DAILY . . . e e e 40
date2yp e e 41
ELIMELS e e 42
ESTIMATE e e e 43
frequency e e e e 58
fromBIMETStoTS e 59
fromBIMETStoXTS e 60
fromTStoXTS e e e 62
fromXTStoTS e e 64
GETDATE e e 66
GETYEARPERIOD e 68
AXOVEr . . . o e e e e e e 69
INDEXNUM e e 73
INTS . e e 75
iIs.himets e e e e 76
LOAD_MODEL e e 79
LOAD_MODEL_DATA e e e e 87
LOCS . . e e 91
MDL . . e e e 92
MONTHLY e 104
MOVAVG e 106
MOVTOT e e e e e e e e 107
MULTMATRIX e e e e e e e 109
NAMELIST e e 115
NOELS e 117
normalizeYP e e 118
NUMPERIOD e 119
QUARTERLY e e e e 120
RENORM e e e e 121
SEMIANNUAL e e e e e e 129
SIMULATE e e e 130
summary.BIMETS_MODEL 144
TABIT e e 147
TSDELTA e 149
TSDELTALOG e e e e e e 151
TSDELTAP e e e e e 152
TSERIES e 153
TSEXTEND e e e 155
TSINFO e e e e 157
TSIOIN . . . e e e 159
TSLAG e 160
TSLEAD e e e 162
TSLOOK e e e e 163
TSMERGE e 164

TSPROJECT e 166

bimets-package 3

TSTRIM e e 167
VIMZ2YD o v o e 168
VA2YD o o o e e e e e e e e 169
Index 171
bimets-package bimets :: Time Series And Econometric Modeling In R
Description

bimets is a software framework developed by using R language and designed for time series anal-
ysis and econometric modeling, which allows creating and manipulating time series, specifying
simultaneous equation models of any size by using a kind of high-level description language, and
performing model estimation, simulation and forecasting.

In addition, bimets computational capabilities provide many tools to pre-process data and post-
process results, designed for statisticians and economists. These operations are fully integrated

with the R environment.

The package can be installed and loaded in R with the following commands (with R> as the R
command prompt):

R> install.packages('bimets"')
R> library(bimets)

TIME SERIES

bimets supports daily, weekly, monthly, quarterly, semiannual and yearly time series. Time series
with a frequency of 24 and 36 periods per year are also supproted. The time series are created by
the TIMESERIES function.

Example:

R> #yearly time series
R> myTS=TIMESERIES(1:10,START=as.Date('2000-01-01"'),FREQ=1)

R> #monthly time series
R> myTS=TIMESERIES(1:10,START=c(2002,3),FREQ='M")

The main bimets time series capabilities are:
- Indexing

- Aggregation / Disaggregation
- Manipulation

bimets-package

Time Series Indexing

The bimets package extends R indexing capabilities in order to ease time series analysis and ma-
nipulation. Users can access and modify time series data:

- by date: users can select and modify a single observation by date by using the syntax ts['Date'],
or multiple observations by using ts['StartDate/EndDate'];

- by year-period: users can select and modify observations by providing the year and the period
requested, i.e. ts[[Year,Period]];

- by observation index: users can select and modify observations by simply providing the array
of requested indexes, i.e. ts[indexes];

Example:

R> #create a daily time series
R> myTS=TIMESERIES((1:100),START=c(2000,1),FREQ='D")

R> myTS[1:3] #get first three obs.

R> myTS['2000-01-12"'] #get Jan 12, 2000 data
R> myTS['2000-02-03/2000-02-14'] #get Feb 3 up to Feb 14
R> myTS[[2000,14]] #get year 2000 period 14
R> myTS['2000-01-15"] = NA #assign to Jan 15, 2000
R> myTS[[2000,42]1] = NA #assign to Feb 11, 2000

R> myTS[[2000,100]] = c(-1,-2,-3) #extend time series starting from period 100

Time Series Aggregation/Disaggregation

The bimets package provides advanced (dis)aggregation capabilities, with several linear interpo-
lation capabilities in disaggregation, and many aggregation functions (e.g. STOCK, SUM, AVE, etc.)
while reducing the time series frequency.

Example:

R> #create a monthly time series
R> myMonthlyTS=TIMESERIES(1:100,START=c(2000,1),FREQ='M")

R> #convert to annual time series by using the average as aggregation fun
R> myAnnualTS=ANNUAL (myMonthlyTS, "AVE")

R> #convert to daily by using central interpolation as disaggregation fun
R> myDailyTS=DAILY(myMonthlyTS, 'INTERP_CENTER')

bimets-package

Time Series Manipulation

The bimets package provides, among others, the following time series manipulation capabilities:

- Time series extension TSEXTEND

- Time series merging TSMERGE

- Time series projection TSPROJECT
- Lag TSLAG

- Lead TSLEAD

- Lag differences: standard, percentage, and logarithmic TSDELTA TSDELTAP TSDELTALOG
- Cumulative product CUMPROD

- Cumulative sum CUMSUM

- Moving average MOVAVG

- Moving sum MOVSUM

- Time series data presentation TABIT

Example:

R> #define two time series
R> myTS1=TIMESERIES(1:100,START=c(2000,1),FREQ='M")
R> myTS2=TIMESERIES(-(1:100),START=c(2005,1),FREQ='M")

R> #extend time series up to Apr 2020 with quadratic formula
R> myExtendedTS=TSEXTEND(myTS1,UPTO = c(2020,4) ,EXTMODE = 'QUADRATIC')

R> #merge two time series with sum
R> myMergedTS=TSMERGE (myExtendedTS,myTS2,fun = 'SUM')

R> #project time series on arbitrary time range
R> myProjectedTS=TSPROJECT (myMergedTS, TSRANGE = c(2004,2,2006,4))

R> #lag and delta
R> myLagTS=TSLAG(myProjectedTsS, 2)
R> myDeltaPTS=TSDELTAP(myLagTS, 2)

R> #moving average
R> myMovAveTS=MOVAVG(myDeltaPTS, 5)

R> #print data

R> TABIT(myMovAveTS,
myTST,
TSRANGE=c(2004,8,2004,12)

bimets-package

)
DATE, PER, myMovAveTS , myTS1
Aug 2004, 8 , , 56
Sep 2004, 9 , 57
Oct 2004, 10 , 3.849002 , 58
Nov 2004, 11 , 3.776275 , 59
Dec 2004, 12 , 3.706247 , 60
ECONOMETRIC MODELING

bimets econometric modeling capabilities comprehend:

- Model Definition Language

- Estimation

- Simulation

- Multipliers Analysis

- Renormalization (Tinbergen Classification)

We will go through each item of the list with a simple Tinbergen-Klein model example.

Model Definition Language

bimets provides a language to unambiguously specify an econometric model. This section de-
scribes how to create a model and its general structure. The specification of an econometric model
is translated and identified by keyword statements which are grouped in a model file, i.e. a plain
text file with a specific syntax. Collectively, these keyword statements constitute the bimets Model
Description Language (from now on MDL). The model specifications consist of groups of statements.
Each statement begins with a keyword. The keyword classifies the component of the model which
is beign specified.

Below is an example of Klein’s model, that can either be stored in an R variable of class character
or in a plain text file with a MDL compliant syntax.

The content of the kleinl.txt variable is:

R> kleinl.txt="
MODEL

COMMENT> Consumption

BEHAVIORAL> cn

TSRANGE 1921 1 1941 1

EQ> cn = al + a2*p + a3*TSLAG(p,1) + adx(wl+w2)
COEFF> al a2 a3 a4

COMMENT> Investment

bimets-package 7

BEHAVIORAL> i

TSRANGE 1921 1 1941 1

EQ> i = b1 + b2xp + b3*TSLAG(p,1) + b4xTSLAG(k,1)
COEFF> b1 b2 b3 b4

COMMENT> Demand for Labor

BEHAVIORAL> w1

TSRANGE 1921 1 1941 1

EQ> wl = c1 + c2x(y+t-w2) + c3*TSLAG(y+t-w2,1)+c4dxtime
COEFF> c1 c2 c3 c4

COMMENT> Gross National Product
IDENTITY> y
EQ>y =cn+1i+g-1t

COMMENT> Profits
IDENTITY> p
EQ> p =y - (wl+w2)

COMMENT> Capital Stock
IDENTITY> k
EQ> k = TSLAG(k,1) + i

END

n

Please note that there are circular dependencies between equations of the model,
i.e. cn <-w1 <-y <-cn. Circular dependencies imply that the model simulation must be solved with
an iterative algorithm.

As shown, the model definition is quite intuitive. The first keyword is MODEL, while at the end

of the model definition we can find the END keyword. Available tags in the definition of a generic
bimets model are:

- EQUATION> or BEHAVIORALS> indicate the beginning of a series of keyword statements de-
scribing a behavioral equation;

- IDENTITY> indicates the beginning of a series of keyword statements describing an identity
or technical equation;

- EQ> specifies the mathematical expression for a behavioral equation or an identity equation;

- COEFF> specifies the coefficient names used in the EQ> keyword statement of a behavioral
equation;

- ERROR> specifies an autoregressive process of a given order for the regression error;
- PDL> defines an Almon polynomial distributed lag;

- RESTRICT> is a keyword that can be used to specify linear coefficient restrictions;

bimets-package

- IF> is used to conditionally evaluate an identity during a simulation, depending on the value
of a logical expression. Thus, it is possible to have a model alternating between two or more iden-
tity specifications for each simulation period, depending upon results from other equations;

- COMMENTS> can be used to insert comments into a model;

The mathematical expression in the EQ> and IF> definitions can include the standard arithmetic
operators, parentheses, and the following MDL time series functions:

- TSLAG(ts,1): lag the ts time series by i-periods;

- TSDELTA(ts,i): i-periods difference of the ts time series;

- TSDELTAP(ts,i): i-periods percentage difference of the ts time series;

- TSDELTALOG(ts,1): i-periods logarithmic difference of the ts time series;
- MOVAVG(ts,1i): i-periods moving average of the ts time series;

- MOVSUM(ts,1i): i-periods moving sum of the ts time series;

- LOG(ts): log of the ts time series.;

- EXP(ts): exponential of the ts time series;

- ABS(ts): absolute values of the ts time series;

More details are available in MDL and LOAD_MODEL help pages. LOAD_MODEL () is the bimets func-
tion that reads an MDL model file and creates an equivalent R data structure.

Back to Klein’s model example, the bimets LOAD_MODEL function reads the kleini.txt model as
previously defined:

R> kleinModel=LOAD_MODEL (modelText = kleinl.txt)

Analyzing behaviorals. ..
Analyzing identities...
Optimizing...
Loaded model "kleinl.txt":
3 behaviorals
3 identities
12 coefficients
...LOAD MODEL OK

As shown in the output, bimets counted 3 behavioral equations, 3 identities and 12 coefficients.
Now in the R session there is a variable named kleinModel that contains the model structure defined
in the kleinl.txt variable. From now on, the user can ask bimets about any details of this model.

bimets-package 9

For example, to gather information on the "cn" Consumption behavioral equation:
R> kleinModel$behaviorals$cn

$eq
[1]1 "cn=al+a2xp+a3*TSLAG(p, 1)+adx(wl+w2)"

$eqCoefficientsNames
[-I] lla1ll Ilazll Ha3ﬁl Ha4ll

$eqComponentsNames
I:-l :l ”Cn” lel Hw—l n HW2H

$tsrange
[1] 1921 1 1941 1

$eqRegressorsNames
[1] ”—IH ”pH ”TSLAG(p"I)H n (W1 +w2) n

$eqSimExp
expression(cn[2, 1 = cn__ADDFACTOR[2,] + +cn__al *x 1 + cn__a2 *
p[2, 1 + cn__a3 * (p[1, 1) + cn__a4 * (w1[2, 1 + w2[2, 1))

etc...

Users can always read (or carefully change) any model parameters. The LOAD_MODEL function
parses behavioral and identity expressions of the MDL definition, but it also does an important opti-
mization. Properly reordering the model equations is a key preparatory step in the later phase of the
simulation, in order to guarantee performance and convergence, if any, with the aim of minimizing
the number of feedback endogenous variables.

The LOAD_MODEL function builds the incidence matrix of the model, and uses this matrix to cal-
culate the proper evaluation order of the model equations during the simulation.

Back to the Klein’s model example, the incidence matrix and the reordering of the equations are
stored in the following variables:

R> kleinModel$incidence_matrix

cniwlypk
cne 01 010
i 0 00 010
wli @ 00 10090
y 1 10 000
p @ 01 100
k @ 10 000

R> kleinModel$vpre

10

bimets-package

NULL

R> kleinModel$vsim

[1]1 "w1™ "p" "cn" "i" "y"
R> kleinModel$vfeed

[11] "y”

R> kleinModel$vpost

[-I:I nkn

While simulating the Klein’s model, bimets will iterate on the computation of, in order,

wl ->p ->cn -> 1 ->y (the vsim variables), by looking for convergence on y (the vfeed variable,
only one in this example) that is the feedback variable. If the convergence is achieved, it will calcu-
late k (the vpost variable). The vpre array in this example is empty, that is no equation has to be
evaluated before the iterative algorithm.

More details on the equations reordering are available in MDL and LOAD_MODEL help pages.

Once the model has been parsed, users needs to load the data of all the time series involved in
the model, by using the LOAD_MODEL_DATA function. In the following example, the code defines a
list of time series and loads this list into the Klein’s model previously defined:

R> kleinModelData=list(

cn =TIMESERIES(39.8,41.9,45,49.2,50.6,52.6,55.1,56.2,57.3,57.8,
55,50.9,45.6,46.5,48.7,51.3,57.7,58.7,57.5,61.6,65,69.7,
START=c(1920,1),FREQ=1),

g =TIMESERIES(4.6,6.6,6.1,5.7,6.6,6.5,6.6,7.6,7.9,8.1,9.4,10.7,
10.2,9.3,10,10.5,10.3,11,13,14.4,15.4,22.3,
START=c(1920,1) ,FREQ=1),

i =TIMESERIES(2.7,-.2,1.9,5.2,3,5.1,5.6,4.2,3,5.1,1,-3.4,-6.2,
-5.1,-3,-1.3,2.1,2,-1.9,1.3,3.3,4.9,
START=c(1920,1),FREQ=1),

k =TIMESERIES(182.8,182.6,184.5,189.7,192.7,197.8,203.4,207.6,
210.6,215.7,216.7,213.3,207.1,202,199,197.7,199.8,
201.8,199.9,201.2,204.5,209.4,
START=c(1920,1),FREQ=1),

p =TIMESERIES(12.7,12.4,16.9,18.4,19.4,20.1,19.6,19.8,21.1,21.7,
15.6,11.4,7,11.2,12.3,14,17.6,17.3,15.3,19,21.1,23.5,
START=c(1920,1) ,FREQ=1),

wl =TIMESERIES(28.8,25.5,29.3,34.1,33.9,35.4,37.4,37.9,39.2,41.3,
37.9,34.5,29,28.5,30.6,33.2,36.8,41,38.2,41.6,45,53.3,
START=c(1920,1),FREQ=1),

y =TIMESERIES(43.7,40.6,49.1,55.4,56.4,58.7,60.3,61.3,64,67,57.7,

bimets-package 11

50.7,41.3,45.3,48.9,53.3,61.8,65,61.2,68.4,74.1,85.3,
START=c(1920,1),FREQ=1),

t =TIMESERIES(3.4,7.7,3.9,4.7,3.8,5.5,7,6.7,4.2,4,7.7,7.5,8.3,5.4,
6.8,7.2,8.3,6.7,7.4,8.9,9.6,11.6,
START=c(1920,1),FREQ=1),

time=TIMESERIES(NA,-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,
1,2,3,4,5,6,7,8,9,10,
START=c(1920,1),FREQ=1),

w2 =TIMESERIES(2.2,2.7,2.9,2.9,3.1,3.2,3.3,3.6,3.7,4,4.2,4.8,
5.3,5.6,6,6.1,7.4,6.7,7.7,7.8,8,8.5,
START=c(1920,1),FREQ=1)

)

R> kleinModel=LOAD_MODEL_DATA(kleinModel, kleinModelData)

Since time series and other data (e.g. regressor coefficients, error coefficients, constant adjustments,
targets, instruments, etc...) are stored into the model object, users can define multiple model objects
- each with its own arbitrary data - in the same R session. bimets makes it possible to estimate,
simulate and compare results from different models with different data sets. Furthermore, users
can easily save an estimated or a simulated model as a standard R variable, thus reloading it later,
having all available data and time series stored into it, i.e. endogenous and exogenous time series,
estimated coefficients, constant adjustments, simulation options, simulated time series, calculated
instruments, targets, etc. (see also RENORM and SIMULATE)

An advanced MDL model example follows:

R> #KLEIN MODEL WITH AUTOCORRELATION, RESTRICTIONS,
R> #CONDITIONAL EVALUATIONS AND LHS FUNCTIONS

R> lhskKleinl.txt="
MODEL

COMMENT> Modified Klein Model 1 of the U.S. Economy with PDL,
COMMENT> autocorrelation on errors, restrictions,
COMMENT> conditional evaluations and LHS functions on EQ

COMMENT> Exp Consumption

BEHAVIORAL> cn

TSRANGE 1925 1 1941 1

EQ> EXP(cn) = al + a2*p + a3*LAG(p,1) + ad*(wl+w2)
COEFF> al a2 a3 a4

ERROR> AUTO(2)

COMMENT> Log Investment

BEHAVIORAL> i

TSRANGE 1925 1 1941 1

EQ> LOG(i) = b1 + b2xp + b3*LAG(p,1) + b4xLAG(k,1)
COEFF> b1 b2 b3 b4

12

bimets-package

RESTRICT> b2 + b3 =1

COMMENT> Demand for Labor

BEHAVIORAL> w1

TSRANGE 1925 1 1941 1

EQ> wl = ¢c1 + c2*x(TSDELTA(y)+t-w2) + c3*xLAG(TSDELTA(y)+t-w2,1)+c4*time
COEFF> c1 c2 c3 c4

PDL> c3 1 3

COMMENT> Delta Gross National Product
IDENTITY> y
EQ> TSDELTA(y) = EXP(cn) + LOG(i) + g - t

COMMENT> Profits
IDENTITY> p
EQ> p = TSDELTA(y) - (wl+w2)

COMMENT> Capital Stock with switches
IDENTITY> k

EQ> k = LAG(k,1) + LOG(i)

IF> LOG(i) > @

IDENTITY> k

EQ> k = LAG(k,1)

IF> LOG(i) <= 0

END"

See MDL help page for details.

Estimation

The bimets ESTIMATE function estimates equations that are linear in the coefficients, as specified in
the behavioral equations of the model object. Coefficients can be estimated for single equations or
blocks of simultaneous equations. The estimation function supports:

- Ordinary Least Squares;

- Instrumental Variables;

- Deterministic linear restrictions on the coefficients;
- Almon Polynomial Distributed Lags;

- Autocorrelation of the errors;

- Structural stability analysis (Chow tests);

Restrictions procedure derives from the theory of Lagrange Multipliers, while the Cochrane-Orcutt
method allows to account for residuals autocorrelation.

The estimation of the previously defined Klein’s model is shown in the following example:

R> kleinModel=ESTIMATE (kleinModel)

bimets-package 13

Users can also estimate a selection of behavioral equations:

R> kleinModel=ESTIMATE (kleinModel,eqlList=c('cn'))
.CHECK_MODEL_DATA(): warning, there are undefined values in time series "time".
Estimate the Model kleinl.txt:

the number of behavioral equations to be estimated is 1.
The total number of coefficients is 4.

BEHAVIORAL EQUATION: cn
Estimation Technique: OLS

cn = 16.2366
T-stat. 12.46382 **x*
+ 0.1929344 p
T-stat. 2.115273 *
+ 0.0898849 TSLAG(p,1)
T-stat. 0.9915824
+ 0.7962187 (wl+w2)
T-stat. 19.93342 **%
STATs:
R-Squared : 0.9810082
Adjusted R-Squared : 0.9776567
Durbin-Watson Statistic : 1.367474
Sum of squares of residuals : 17.87945
Standard Error of Regression : 1.02554
Log of the Likelihood Function : -28.10857
F-statistic . 292.7076
F-probability : 7.993606e-15
Akaike's IC : 66.21714
Schwarz's IC : 71.43975
Mean of Dependent Variable : 53.99524
Number of Observations ;21
Number of Degrees of Freedom : 17
Current Sample (year-period) 1 1921-1 / 1941-1

Signif. codes: *** 0.001 **x .01 * 0.05

...ESTIMATE OK

bimets-package

A similar output is shown for each estimated regression. Once the estimation is completed, coeffi-
cient values, residuals, statistics, etc. are stored into the model object.

R> #print estimated coefficients
R> kleinModel$behaviorals$cn$coefficients

[,11]
al 16.2366003
a2 0.1929344
a3 0.0898849
a4 0.7962187

R> #print residuals
R> kleinModel$behaviorals$cn$residuals

A\

Time Series:

Start = 1921

End = 1941

Frequency = 1

[11 -0.323893544 -1.250007790 -1.565741401 -0.493503129 0.007607907
[6] ©.869096295 1.338476868 1.054978943 -0.588557053 ©0.282311734
[11] -0.229653489 -0.322131892 ©0.322281007 -0.058010257 -0.034662717
[16] 1.616497310 -0.435973632 0.210054350 ©.989201310 ©0.785077489
[21] -2.173448309

R> #print a selection of estimate statistics
R> kleinModel$behaviorals$cn$statistics$DegreesOfFreedom

[11 17
R> kleinModel$behaviorals$cn$statistics$StandardErrorRegression
[1]1 1.02554
R> kleinModel$behaviorals$cn$statistics$CoeffCovariance
al a2 a3 a4
al 1.6970227814 ©.0005013886 -0.0177068887 -0.0329172192
a2 0.0005013886 ©0.0083192948 -0.0052704304 -0.0013188865
a3 -0.0177068887 -0.0052704304 ©.0082170486 -0.0006710788
a4 -0.0329172192 -0.0013188865 -0.0006710788 ©.0015955167

R> kleinModel$behaviorals$cn$statistics$AdjustedRSquared
[1] 0.9776567

R> kleinModel$behaviorals$cn$statistics$Loglikelihood
[1] -28.10857

Below is an example of a model estimation that presents coefficient restrictions, PDL, error auto-

bimets-package

correlation and conditional equation evaluations:

R> #define model
R> advancedKleinl.txt=
"MODEL

COMMENT> Modified Klein Model 1 of the U.S. Economy with PDL,
COMMENT> autocorrelation on errors, restrictions and
COMMETN> conditional equation evaluations

COMMENT> Consumption with autocorrelation on errors
BEHAVIORAL> cn

TSRANGE 1925 1 1941 1

EQ> cn = al + a2*p + a3*TSLAG(p,1) + adx(wl+w2)
COEFF> al a2 a3 a4

ERROR> AUTO(2)

COMMENT> Investment with restrictions
BEHAVIORAL> i

TSRANGE 1923 1 1941 1

EQ> i = b1 + b2xp + b3*TSLAG(p,1) + b4*TSLAG(k,1)
COEFF> b1 b2 b3 b4

RESTRICT> b2 + b3 =1

COMMENT> Demand for Labor with PDL

BEHAVIORAL> w1

TSRANGE 1925 1 1941 1

EQ> wl = c1 + c2x(y+t-w2) + c3*TSLAG(y+t-w2,1) + cd*time
COEFF> c1 c2 c3 c4

PDL> c3 1 2

COMMENT> Gross National Product
IDENTITY> y
EQ>y=cn+1i+g-1t

COMMENT> Profits
IDENTITY> p
EQ> p =y - (wl+w2)

COMMENT> Capital Stock with IF switches
IDENTITY> k

EQ> k = TSLAG(k,1) + i

IF>1i >0

IDENTITY> k

EQ> k = TSLAG(k, 1)

IF> i <=0

END"

15

16

bimets-package

R> #load model and data
R> advancedKleinModel=LOAD_MODEL (modelText=advancedKleinl.txt)

Analyzing behaviorals...
Analyzing identities...
Optimizing. ..
Loaded model "advancedKleinl.txt":
3 behaviorals
3 identities
12 coefficients
...LOAD MODEL OK

R> advancedKleinModel=LOAD_MODEL_DATA(advancedKleinModel,kleinModelData)

Load model data "kleinModelData"” into model "advancedKleinl.txt”...
...LOAD MODEL DATA OK

R> #testimate model
R> advancedKleinModel=ESTIMATE (advancedKleinModel)

.CHECK_MODEL_DATA(): warning, there are undefined values in time series "time".
Estimate the Model advancedKleinl.txt:

the number of behavioral equations to be estimated is 3.
The total number of coefficients is 13.

BEHAVIORAL EQUATION: cn
Estimation Technique: OLS
Autoregression of Order 2 (Cochrane-Orcutt procedure)

Convergence was reached in 9 / 20 iterations.
cn = 19.01352
T-stat. 12.13083 Kkk

+ 0.3442816 p
T-stat. 3.533253 Kk

+ 0.03443117 TSLAG(p, 1)
T-stat. ©0.3937881

+ 0.6993905 (wl+w2)
T-stat. 14.0808 *kk

bimets-package 17

ERROR: AUTO(2)

AUTOREGRESSIVE PARAMETERS:

Rho Std. Error T-stat.
0.05743131 0.3324101 0.1727725
0.007785936 0.2647013 0.02941404

STATs:

R-Squared : 0.985263

Adjusted R-Squared : 0.9785644

Durbin-Watson Statistic : 1.966609

Sum of squares of residuals 1 9.273455

Standard Error of Regression : 0.9181728

Log of the Likelihood Function : -18.97047

F-statistic : 147.0844

F-probability : 1.090551e-09

Akaike's IC : 51.94093

Schwarz's IC : 57.77343

Mean of Dependent Variable : 55.71765

Number of Observations : 17

Number of Degrees of Freedom 11

Current Sample (year-period) : 1925-1 / 1941-1

Signif. codes: **%x 0.001 *x 0.01 * 0.05

BEHAVIORAL EQUATION: i
Estimation Technique: OLS

2.868104
T-stat. 0.3265098

.
1

+ 0.5787626 p
T-stat. 4.456542 *kk

+ 0.4212374 TSLAG(p,1)
T-stat. 3.243579 *x

- 0.09160307 TSLAG(k,1)
T-stat. -2.11748

RESTRICTIONS:
b2+b3=1

18

RESTRICTIONS F-TEST:

F-value : 8.194478
F-prob(1,15) : 0.0118602
STATs:

R-Squared

Adjusted R-Squared
Durbin-Watson Statistic

Sum of squares of residuals
Standard Error of Regression

Log of the Likelihood Function :
: 66.64659
. 1.740364e-08
: 68.43001
. 72.20776
: 1.310526
;19

: 16

1 1923-1 / 1941-1

F-statistic

F-probability

Akaike's IC

Schwarz's IC

Mean of Dependent Variable
Number of Observations
Number of Degrees of Freedom
Current Sample (year-period)

1 0.8928283
1 0.8794319
: 1.173106
1 26.76483
: 1.293368

-30.215

Signif. codes: **%x 0.001 *x 0.01 * 0.05

BEHAVIORAL EQUATION: wi
Estimation Technique: OLS

T-stat. 0.7290738

+ 0.4358984 (y+t-w2)

11.35698

TSLAG(y+t-w2,1)

3.398964

wi = 1.103637
T-stat.
+ c3
PDL
+ 0.1363549 time
T-stat.
PDL:
c3 12

Distributed Lag Coefficient: c3

*kk

**

bimets-package

bimets-package 19

Lag Coeff. Std. Error T-stat.

0 0.1212886 0.06620502 1.832015
1 0.0354339 0.04657983 0.7607135
SUM 0.1567225 0.04163457

STATs:

R-Squared : 0.9891508
Adjusted R-Squared : 0.9855344
Durbin-Watson Statistic : 2.219659

Sum of squares of residuals : 6.3545

Standard Error of Regression : 0.7276962

Log of the Likelihood Function : -15.75753

F-statistic : 273.5171
F-probability : 1.130929%e-11
Akaike's IC : 43.51506
Schwarz's IC : 48.51434

Mean of Dependent Variable : 37.69412
Number of Observations : 17

Number of Degrees of Freedom : 12

Current Sample (year-period) : 1925-1 / 1941-1

Signif. codes: **%x 0.001 *x 0.01 * 0.05

...ESTIMATE OK

Structural Stability

One of the main purposes of the econometric modeling is its use for forecast and policy evaluation
and, to this end, the stability of a behavioral equation parameters over time should be verified. In
order to check for structural stability two different procedures, which can be derived from the so
called Chow-tests, are applied.

Given a sample of observations (i.e. the base TSRANGE) and selecting an arbitrary forward extension
(i.e. the extended TSRANGE) we can perform the same regression by using these two time ranges.

In general a stability analysis is carried on in the following ways:

- comparing the parameter estimates arising from the two regressions: this is known as the covari-
ance analysis;

- checking the accuracy of the forecast for the dependent variable in the extended TSRANGE, using
the estimates produced in the base TSRANGE: this is known as the predictive power test.

The test statistic follows the F distribution and can be performed during the ESTIMATE() function
execution by using the CHOWTEST argument set to TRUE (more details in the ESTIMATE help page).

Example:

bimets-package

#chow test for the consumption equation

#base TSRANGE set to 1921/1935

R> kleinModelChow <- ESTIMATE(kleinModel
,egList="cn'
, TSRANGE=c(1921,1,1935,1)
, forceTSRANGE=TRUE
, CHOWTEST=TRUE)

Estimate the Model kleinl.txt:
the number of behavioral equations to be estimated is 1.
The total number of coefficients is 4.

BEHAVIORAL EQUATION: cn
Estimation Technique: OLS

cn = 13.1275
T-stat. 6.5046 K%k
+ 0.16698 p
T-stat. 2.18304
+ 0.0885684 TSLAG(p,1)
T-stat. 0.975042
+ 0.887964 (wl+w2)
T-stat. 12.61 KKk
STATs:
R-Squared : 0.978728
Adjusted R-Squared 1 0.972926
Durbin-Watson Statistic : 1.38
Sum of squares of residuals : 6.9186
Standard Error of Regression : 0.793072

Log of the Likelihood Function : -15.4803

F-statistic : 168.7
F-probability : 1.77673e-09
Akaike's IC : 40.9606
Schwarz's IC : 44,5009

Mean of Dependent Variable : 50.9133

Number of Observations : 15

Number of Degrees of Freedom : 11

Current Sample (year-period) :1921-1 / 1935-1

Signif. codes: **%x 0.001 *x 0.01 * 0.05

bimets-package 21

STABILITY ANALYSIS:
Behavioral equation: cn

Chow test:

Sample (auto) 2 1936-1 / 1941-1
F-value : 4.48873
F-prob(6,17) : 0.668723

Predictive Power:

Predictive Power:

DATE, PER, ACTUAL , PREDICT , ERROR , STDERR , TSTAT
1936, 1 , 57.7 , 56.5544 , 1.14564 , 1.01181 , 1.13227
1937, 1 , 58.7 , 59.931 , -1.23099 , 1.0201 , -1.20673
1938, 1 , 57.5 , 57.9721 , -0.472122 , 0.968638 , -0.487409
1939, 1 , 61.6 , 61.5207 , ©.0793139 , 1.20048 , ©.0660685
1940, 1 , 65 , 65.3957 , -0.395718 , 1.24227 , -0.318545
1941, 1 , 69.7 , 73.7965 , -4.09655 , 1.6693 , -2.45405

...ESTIMATE OK

Simulation

The simulation of an econometric model basically consists in solving the system of the equations
describing the model for each time period in the specified time interval. Since the equations may
also not be linear in the variables, and since the graph derived from the incidence matrix may be
cyclic, the usual methods based on linear algebra are not applicable, and the simulation must be
solved by using an iterative algorithm.

bimets simulation capabilities support:

- Static simulations: a static multiple equation simulation, in which the historical values for the
lagged endogenous variables are used in the solutions of subsequent periods;

- Dynamic simulations: a dynamic simulation, in which the simulated values for the lagged en-
dogenous variables are used in the solutions of subsequent periods;

- Forecast simulations: similar to dynamic simulation, but during the initialization of the itera-
tive algorithm the starting values of endogenous variables in a period are set equal to the simulated
values of the previous period. This allows the simulation of future endogenous observations, i.e.
the forecast;

22

bimets-package

- Residuals check: a single period, single equation simulation; simulated time series in output are
just the computation of the RHS (right-hand-side) of their equation, by using the historical values
of the involved time series and by accounting for error autocorrelation and PDLs, if any;

- Partial or total exogenization of endogenous variables: in the provided time interval (i.e. partial
exog.) or in the whole simulation time range (i.e. total exog.), the values of the selected endoge-
nous variables can be definitely set to their historical values, by excluding their equations from the
iterative algorithm of simulation;

- Constant adjustment of endogenous variables (add-factors): adds another exogenous time se-
ries - the "constant adjustment” - in the equation of the selected endogenous variables;

- Backfill of simulated time series: specifies the periods of historical data prior to the simulation
time interval which are to be included in the simulation results;

More details are available in the SIMULATE help page.

Back to Kelin’s model example, let’s forecast the GNP (i.e. the "y" endogenous variable) up to
1943:

R> #FORECAST GNP in 1942 and 1943

R> #we need to extend exogenous variables in 1942 and 1943
R> kleinModel$modelData=within(kleinModel$modelData, {

w2 = TSEXTEND(w2, UPTO=c(1943,1))
t = TSEXTEND(t, UPTO=c(1943,1))
g = TSEXTEND(g, UPTO=c(1943,1))
time = TSEXTEND(time,UPTO=c(1943,1)

,EXTMODE='LINEAR")
b))

R> #simulate model

R> kleinModel=SIMULATE (kleinModel
,simType="FORECAST'
, TSRANGE=c (1940, 1,1943,1)
,SimConvergence=0.00001
,simIterLimit=100
)

Simulation: 100.00
.. .SIMULATE OK

R> #get forecasted GNP
R> TABIT(kleinModel$simulation$y)

DATE, PER, kleinModel$simulation$y
1940, 1, 74.57806

bimets-package 23

1941, 1, 94.01525
1942, 1, 133.9687
1943, 1, 199.9133

In the following figure you will find the historical consumption, the dynamic simulated consump-
tion and the RHS computation of the consumption equation, from 1921 to 1941:

Consumption

80 4

60 +
N /
20
30 +

20 4

F N " &8 ® ® R A AR ®R # & 2 % ¥ &2 %5 B 8 g ¢
2 3 3 3 33 333 3 3a 3 3 33 a2 3 a3 a3 a3
m——H|STORICAL =——=DYMNAMIC RESCHECK

Below is an example of advanced simulation:

R> #STATIC SIMULATION EXAMPLE WITH EXOGENIZATION AND CONSTANT ADJUSTMENTS

R> #define exogenization list
R> #'cn' exogenized in 1923-1925
R> #'i' exogenized in the whole TSRANGE
R> exogenizelist=1list(
cn = ¢(1923,1,1925,1),
i = TRUE
)

R> #define add-factor list
R> constantAdjList=1ist(
cn = TIMESERIES(1,-1,START=c(1923,1),FREQ="'A"),
y = TIMESERIES(©.1,-0.1,-0.5,START=c(1926,1),FREQ="A")

24

bimets-package

)

R> #simulate model

R> kleinModel=SIMULATE (kleinModel
,SimType="'STATIC'
, TSRANGE=c(1923,1,1941,1)
,simConvergence=0.00001
,simIterLimit=100
,Exogenize=exogenizelist
,ConstantAdjustment=constantAdjList
)

Multipliers Analysis

The bimets MULTMATRIX function computes the matrix of both impact and interim multipliers, for
a selected set of endogenous variables (i.e. TARGET) with respect to a selected set of exogenous
variables (i.e. INSTRUMENT), by subtracting the results from different simulations in each period of
the provided time range (i.e. TSRANGE). The simulation algorithms are the same as those used for
the SIMULATE operation.

The MULTMATRIX() procedure is articulated as follows:
1. simultaneous simulations are done;
2. the first simulation establishes the base line solution (without shocks);

3. the other simulations are done with shocks applied to each of the INSTRUMENT one at a time
for every period in TSRANGE;

4. each simulation follows the defaults described in the Simulation section, but has to be STATIC
for the IMPACT multipliers and DYNAMIC for INTERIM multipliers;

5. given the MM_SHOCK shock amount as a very small positive number, derivatives are computed
by subtracting the base line solution of the TARGET from the shocked solution, then dividing by the
value of the base line INSTRUMENT times the MM_SHOCK;

bimets users can also declare an endogenous variable as the INSTRUMENT variable. In this case, the
constant adjustment related to the provided endogenous variable will be used as the INSTRUMENT
exogenous variable.

Back to our Klein’s model example, we can calculate impact multipliers of Government non-Wage

Spending "g" and Government Wage Bill "w2" with respect of Consumption "cn" and Gross Na-
tional Product "y" in the year 1941 by using the previously estimated model:

R> kleinModel=MULTMATRIX(kleinModel,
TSRANGE=c(1941,1,1941,1),
INSTRUMENT=c('w2','g"),

bimets-package

Multipliter Matrix: 100.00

.. .MULTMATRIX OK

TARGET=c('cn','y")

)

R> kleinModel$MultiplierMatrix

w2_1
cn_1 0.4540346
y_1 0.2532000

g_1
1.671956

3.653260

25

Results show that the impact multiplier of "y" with respect to "g" is +3.65. If we change the Govern-
ment non-Wage Spending "g" value in 1941 from 22.3 (his historical value) to 23.3 (+1), then the
simulated Gross National Product "y" in 1941 changes from 95.2 to 99, thusly roughly confirming
the +3.65 impact multiplier. Note that "g" only appears once in the model definition, and only in

the "y" equation, with a coefficient of one (Keynes would approve).

An interim-multiplier example follows:

R> #multi-period interim multipliers

R> kleinModel=MULTMATRIX(kleinModel,
TSRANGE=c(1940,1,1941,1),
INSTRUMENT=c('w2','g"),
TARGET=c('cn','y"))
Multipliter Matrix: 100.00

.. .MULTMATRIX OK

R> #output multipliers matrix (note the zeros where the period
R> #of the INSTRUMENT is greater than the period of the TARGET)

R> kleinModel$MultiplierMatrix

w2_1
cn_1 0.4478202
y_1 0.2433382
cn_2 -0.3911001
y_2 -0.6251177

g_1
1.582292
3.510971
1.785042
2.843960

w2_2 g2
0.0000000 0.000000
0.0000000 0.000000
0.4540346 1.671956
0.2532000 3.653260

Renormalization

The renormalization of econometric models consists of solving the model while interchanging the

role of one or more endogenous variables with an equal number of exogenous variables.

The bimets RENORM procedure determines the values for the INSTRUMENT exogenous variables which
allow the objective TARGET endogenous variables to be achieved, with respect to the constraints

given by the model MDL definition.

This is an approach to economic and monetary policy analysis, and is based on two assumptions:

26

bimets-package

1. there exists a desired level for a set of n endogenous variables of the model defined as TARGET;
2. there exists a set of n exogenous variables defined as INSTRUMENT;

Given these premises, the renormalization process consists in determining the values of the exoge-
nous variables chosen as INSTRUMENT allowing us to achieve the desired values for the endogenous
variables designated as TARGET. In other words the procedure allows users to exchange the role of
exogenous and endogenous among a set of variables pairs.

Given a list of exogenous INSTRUMENT variables and a list of TARGET endogenous time series, the
iterative procedure can be split into the following steps:

1. Computation of the multipliers matrix MULTMAT of the TARGET endogenous variables with re-
spect to the INSTRUMENT exogenous variables (this is a square matrix by construction);

2. Solution of the linear system (if any):

Vezog(i + 1) = Vegog(i)+ MULTMAT ~1 % (Vepdog (i) — TARGET), where V50, (i) are the exogenous
variables in the INSTRUMENT list and Vendog(i) are the endogenous variables that have a related tar-
get in the TARGET list, given i the current iteration ;

3. Simulation of the model with the new set of exogenous variables computed in step 2, then a
convergence check by comparing the subset of endogenous variables arising from this simulation
and the related time series in TARGET list. If the convergence condition is satisfied, or the maximum
number of iterations is reached, the algorithm will stop, otherwise it will go back to step 1;

Users can also declare an endogenous variable as an INSTRUMENT variable. In this case, the constant
adjustment related to the provided endogenous variable will be used as the instrument exogenous
variable. This procedure is particularly suited for the automatic computation of the add-factors
needed to fine tune the model into a baseline path and to improve the forecasting accuracy.

If the convergence condition is satisfied, the RENORM procedure will return the requested INSTRUMENT
time series allowing to achieve the desired values for endogenous variables designated as TARGET.

Back to our Klein’s model example, we can perform the renormalization of the previously esti-
mated model. First of all, the targets must be defined:

R> #we want an arbitrary value on Consumption of 66 in 1940 and 78 in 1941
R> #we want an arbitrary value on GNP of 77 in 1940 and 98 in 1941

R> kleinTargets = list(
cn = TIMESERIES(66,78,START=c(1940,1),FREQ=1),
y = TIMESERIES(77,98,START=c(1940,1),FREQ=1)
)

Then, we can perform the model renormalization by using the "w2" (Wage Bill of the Government
Sector) and the "g" (Government non-Wage Spending) exogenous variables as INSTRUMENT, in the

years 1940 and 1941:

R> kleinModel=RENORM(kleinModel

bimets-package 27

,INSTRUMENT = c('w2','g")
,TARGET = kleinTargets
,TSRANGE = c¢(1940,1,1941,1)
,simIterLimit = 100

)

Once RENORM completes, the calculated values of exogenous INSTRUMENT allowing us to achieve the
desired endogenous TARGET values are stored into the model:

R> with(kleinModel, TABIT(modelData$w2,
renorm$INSTRUMENT $w2,
modelDatas$g,
renorm$INSTRUMENT $g,
TSRANGE=c(1940,1,1941,1)
)

)

DATE, PER, modelData$w2, renorm$INSTRUMENT$w2, modelData$g, renorm$INSTRUMENTS$g
1940, 1, 8 , 7.413331 , 15.4 , 16.1069
1941, 1, 8.5 , 9.3436 , 22.3 , 22.65985

So, if we want to achieve on "cn" (Consumption) an arbitrary simulated value of 66 in 1940 and 78
in 1941, and if we want to achieve on "y" (GNP) an arbitrary simulated value of 77 in 1940 and 98
in 1941, we need to change exogenous "w2" (Wage Bill of the Government Sector) from 8 to 7.41 in
1940 and from 8.5 to 9.34 in 1941, and we need to change exogenous "g" (Government non-Wage
Spending) from 15.4 to 16.1 in 1940 and from 22.3 to 22.66 in 1941.

Let’s verify:

R> #create a new model
R> kleinRenorm=kleinModel

R> #get instruments to be used
R> newInstruments=kleinModel$renorm$INSTRUMENT

R> #change exogenous by using new instruments data
R> kleinRenorm$modelData=within(kleinRenorm$modelData,
{
w2[[1940,1]1]=newInstruments$w2[[1940,1]]
w2[[1941,1]1]=newInstruments$w2[[1941,1]]
g[[1940,1]] =newInstruments$g[[1940,1]1]
g[[1941,11] =newInstruments$g[[1941,1]]
3
)

R> #users can also replace last two commands with:
R> #kleinRenorm$modelData=kleinRenorm$renorm$modelData

bimets-package

R> #simulate the new model

R> kleinRenorm=SIMULATE (kleinRenorm
, TSRANGE=c (1940,1,1941,1)
,simConvergence=0.00001
,simIterLimit=100
)

Simulation: 100.00

...SIMULATE OK

R> #verify targets are achieved
R> with(kleinRenorm$simulation,
TABIT(cn,y)

)

DATE, PER, cn Y
1940, 1, 66.01116 , 77.01772
1941, 1, 78.02538 , 98.04121

bimets estimation and simulation results have been compared to the output results of leading com-
mercial econometric software, by using several large and complex models.

The models used in the comparison have more than:

+100 behavioral equations;

+700 technical identities;

+500 coefficients;

+1000 time series of endogenous and exogenous variables;

In these models we can find equations with restricted coefficients, polynomial distributed lags, error
autocorrelation and conditional evaluation of technical identities; all models have been simulated
in static, dynamic, and forecast mode, with exogenization and constant adjustments of endogenous
variables through the use of bimets capabilities.

In the +800 endogenous simulated time series over the +20 simulated periods (i.e. more than 16.000
simulated observations), the average percentage difference between bimets and leading commer-
cial software results has a magnitude of 10~7%. The difference between results calculated by using
different commercial software has the same average magnitude.

bimets stands for Bank of Italy Model Easy Time Series; it does not depend on compilers or third-
party software so it can be freely downloaded and installed on Linux, MS Windows(R) and Mac
OSX(R), without any further requirements.

More details in:

AID

- MDL

- LOAD_MODEL
- ESTIMATE

- SIMULATE

- MULTMATRIX
- RENORM

Details

Package:

Type:

License:

29

bimets - Time Series And Econometric Modeling In R
Package
GPL-3

Disclaimer: The views and opinions expressed in these pages are those of the authors and do not
necessarily reflect the official policy or position of the Bank of Italy. Examples of analysis per-
formed within these pages are only examples. They should not be utilized in real-world analytic
products as they are based only on very limited and dated open source information. Assumptions
made within the analysis are not reflective of the position of the Bank of Italy.

Author(s)

Andrea Luciani <andrea.luciani @bancaditalia.it>
Roberto Stok <roberto.stok @bancaditalia.it>

A1D

AID

Description

This function returns the array built with input argment values. Input can be time series, numerical

arrays or strings.

Usage

AID(..., length = NULL, avoidCompliance = FALSE)

Arguments

Input argument list. This function accepts strings, time series, objects of class
numeric or logical. Input time series must satisfy the compliance control
check defined in is.bimets

30 AID

length Length of output array, that must be greater than the sum of each input argument
size: if the length of the output array is provided, than the output array will be
eventually filled with zeros.

avoidCompliance
If TRUE, compliance control check of input time series will be skipped. See
is.bimets

Value

This function returns an array of the same class of the input.

See Also

NOELS
is.bimets
BIMETS indexing
TIMESERIES
TSDATES
LOCS
NAMELIST
INTS
TSINFO
TSLOOK
TABIT
ELIMELS
INDEXNUM

Examples

n=10;
#create ts
ts1=TSERIES(rnorm(n),START=c(2000,1),FREQ=1)

#create AID() array with scalars, ts, and NA
out_ald=A1D(length=25, ts1, 1, -8.9, NA)
print(out_ald)

#same example no length specified
out_ald=A1D(ts1, 1, -8.9, NA)
print(out_ald)

#strings example
out_ald=A1D(length=5,'aa’', 'bb', 'ccc')
print(out_ald)

ANNUAL

31

ANNUAL

Annual Time Series (Dis)Aggregation

Description

This function returns an annual aggregated time series, by using as input a semiannual, quarterly,
monthly or daily time series.

Usage

ANNUAL (x =

Arguments

X

fun

avoidCompliance

Value

NULL, fun = NULL, avoidCompliance = FALSE, ...)

Input time series, that must satisfy the compliance control check defined in
is.bimets.

STOCK: the output value of a year is equal to the value of the input time series
in the last period of the same year

NSTOCK: the output value of a year is equal to the value of the input time se-
ries in the last non-missing NA period of the same year

SUM: the output value of a year is equal to the sum of all the observations of
the input time series in the same year

NSUM: the output value of a year is equal to the sum of all the non-missing NA
observations of the input time series in the same year

AVE: the output value of a year is equal to the average of all the observations of
the input time series in the same year

NAVE: the output value of a year is equal to the average of all the non-missing
NA observations of the input time series in the same year

If TRUE, compliance control check of input time series will be skipped. See
is.bimets

Backward compatibility.

This function returns an annual BIMETS time series.

See Also

SEMIANNUAL
QUARTERLY
MONTHLY
DAILY

32 as.bimets

Examples

#TS DAILY TO ANNUAL

n=366

ts1=TIMESERIES(@:n, START=c(2000,1),FREQ="D")
ts1[101=NA

TABIT(ANNUAL (ts1, fun="'NAVE'))

as.bimets Convert a Time Series to BIMETS

Description

This function tries to convert a time series of class ts() or xts() into a BIMETS time series that
satisfy the compliance control check defined in is.bimets

All the information in the input time series will be preserved.

Input time series must be of class ts() or xts(), and will be converted in the BIMETS class-
type specified in the global option BIMETS_CONF_CCT (see BIMETS configuration).

If the input time series has a temporal discontinuity (i.e. a missing pair Date-Value in the case
of xts() time series) then the missing pair Date-Value is inserted in the output time series with a
missing value NA, or with the value provided in the FILLVALUE argument.

If BIMETS_CONF_CCT="'XTS"', in the case of a monthly time series the . indexCLASS is converted
to the class yearmon(); in the case of a quarterly time series the .indexCLASS is converted to
yearqtr(); in the case of other input frequency the .indexCLASS is converted to Date(). If
BIMETS_CONF_CCT="XTS' the dates of all the output observations are set accordingly to the BIMETS
global option BIMETS_CONF_DIP, i.e. the first or the last dates in the period (see BIMETS configuration).

If the input time series has multiple observations in the same date, e.g. an xts() with a two or
more observations in the same date, the duplication is removed and the output time series will con-
tain only the later observation (see examples).

If the input time series is multivariate the output time series will contain only the first column
of the input matrix of data (where the matrix of data is the matrix built with the aligned input time
series as columns).

If the input time series is a daily time series of class xts () and the global option BIMETS_CONF_CCT="TS'
then the 366 period of the output time series in each non-bissextile year will have the value of the
365 period in the same year (duplicated value).

Usage

as.bimets(x=NULL, FILLVALUE=NA, VERBOSE=FALSE, ...)

as.bimets 33

Arguments
X Input time series of class ts() or xts().
FILLVALUE Value inserted in the output time series in the case of temporal discontinuity.
Defaults to missing NA.
VERBOSE If TRUE, a verbose description of inserted and/or removed observations, if any,
will be shown.
Backward compatibility.
Value

This function returns a BIMETS time series (see also BIMETS configuration).

See Also

is.bimets
TIMESERIES

BIMETS indexing
BIMETS configuration
fromBIMETStoXTS
fromBIMETStoTS

Examples

#xts series with dates equal to the first date in the period,
#and some missing observations

#first...set option and work with xts

setBIMETSconf ('BIMETS_CONF_CCT', 'XTS')

#create xts
xt=xts(1:10,order.by=seq(as.Date('2000-01-01"'),len=10,by="year"))
#remove some data

xt=xt[-5]

xt=xt[-3]

#convert to bimets

xtBimets=as.bimets(xt)

#print before and after...

print(xt)

print(xtBimets)

#ts bivariate series into xts

setBIMETSconf ('BIMETS_CONF_CCT', 'XTS")
ts=ts(matrix(c(1,2,3,4,5,6),nrow=3,ncol=2),start=c(2000,1),frequency=1)
print(ts)

xtsBimets=as.bimets(ts)

print(xtsBimets)

#reset defaults
setBIMETSconf ('BIMETS_CONF_DIP', 'LAST')
setBIMETSconf ('BIMETS_CONF_CCT','TS")

34 bimetsConf

#xts quarterly with irregular dates and missings data
xt=xts(1:10,order.by=seq(as.Date('2000-01-03"'),1en=10,by="'3 months'))
#remove some data

xt=xt[-5]

xt=xt[-3]

#convert

tsBimets=as.bimets(xt)

#print before and after

print(xt)

print(tsBimets)

#xts daily with duplicated observations and missing data

xt=xts(1:11,order.by=c(as.Date('2000-01-01"),
seq(as.Date('2000-01-01"),
len=10,by="day"')))

xt=xt[-5]

xt=xt[-3]

#convert

tsBimets=as.bimets(xt)

#print before and after

print(xt)

print(tsBimets)

#verbose and fillvalue

xt=xts(1:11,order.by=c(as.Date('2000-01-01"),
seq(as.Date('2000-01-01"),
len=10,by="day"')))

xt=xt[-5]

xt=xt[-3]

as.bimets(xt,FILLVALUE=99.99,VERBOSE=TRUE)

bimetsConf BIMETS Global Options Configuration

Description

BIMETS package depends on some options in order to transform and to present time series data.
These options can be read or changed by using the functions:
setBIMETSconf (opt,value) and getBIMETSconf (opt)

Usage

setBIMETSconf (opt=NULL, value=NULL, suppressOutput=FALSE)
getBIMETSconf (opt=NULL)

bimetsConf 35

Arguments

opt Name of the BIMETS option. Available option names are:

BIMETS_CONF_DIP: Date In Period. Users can associate to each observa-
tion in a time series the first or the last date in the period, i.e. 1 January or 31
December in the case of an annual time series, 1 January/1 July or 30 June/31
December in the case of a semiannual time series, 1 January/31 January in the
case of an monthly time series in January, etc. The assignments by date to time
series (e.g. ts['2000-01-01'J=value) need to be coherent to the value of this
global option. Accepted values are:

LAST: (default) each observation has associated the last date of the period, e.g.
31 Mar for a quarterly time series, 31 January for a monthly time series in the
first period, etc.

FIRST: each observation has associated the first date of the period, e.g. 1 Jan
for a quarterly time series, 1 Feb for a monthly time series in the second period,
etc.

BIMETS_CONF_CCT: Constructor Class Type. The package supports ts()
and xts() time series as input arguments; furthermore the user can select the
base class of a BIMETS time series, i.e. the class used when a time series is
created with TIMESERIES() or converted to BIMETS with as.bimets(). This
is a global option; Users can locally override the selection of the output class
by using the class="'TS' or class="'XTS' argument in the TIMESERIES() func-
tion. The option BIMETS_CONF_CCT can be assigned to the following values:
TS: (default) the time series constructor TIMESERIES () and the conversion func-
tion as.bimets() return an object of class ts()

XTS: the time series constructor TIMESERIES() and the conversion function
as.bimets() return an object of class xts().

Please note that BIMETS package performs better with BIMETS_CONF_CCT="TS’

BIMETS_CONF_NOC: NO Compliance test. If this option is set TRUE then
the compliance control check on input time series, i.e. is.bimets(), will be
globally disabled. The default is set to FALSE. The compliance check on input
time series should generally be active, otherwise a malformed input time series
can produce unwanted results in operations.

value The value to be assigned to the BIMETS option.
suppressOutput If TRUE, the output messages will be disabled.

Value

This function set or read global BIMETS options, and return a NULL value.

See Also

TIMESERIES
is.bimets

36 bimetsConf

as.bimets

fromBIMETStoXTS
fromBIMETStoTS
BIMETS indexing

Examples

#default BIMETS_CONF_DIP is LAST
#create ts
tsT=TSERIES((1:10),START=c(2000,1),FREQ=1)

#transform to xts and print
xt1=fromBIMETStoXTS(ts1)
print(xt1) #....dates as of 31 Dec

#set configuration BIMETS_CONF_DIP to FIRST
setBIMETSconf ('BIMETS_CONF_DIP', 'FIRST")

#create ts
ts1=TSERIES((1:10),START=c(2000,1),FREQ=1)

#transform to xts and print
xt1=fromBIMETStoXTS(ts1)
print(xt1) #....dates as of 1 Jan

#set configuration BIMETS_CONF_DIP to LAST
setBIMETSconf ('BIMETS_CONF_DIP', 'LAST")

#work on XTS
setBIMETSconf ('BIMETS_CONF_CCT', 'XTS")

#check compliance of xt1 and fail...
is.bimets(xt1) #... FALSE

#set configuration BIMETS_CONF_DIP to FIRST
setBIMETSconf ('BIMETS_CONF_DIP', 'FIRST')

#check compliance of xt1 and ok...
is.bimets(xt1) #... TRUE

print(getBIMETSconf ('BIMETS_CONF_DIP')) # ... returns FIRST
print(getBIMETSconf ('BIMETS_CONF_CCT')) # ... returns XTS

print(is.xts(TSERIES(1:10,START=c(2000,1),FREQ=1))) #...print TRUE
print(is.ts(TSERIES(1:10,START=c(2000,1),FREQ=1,class="'TS'))) #...print TRUE

#NOC
setBIMETSconf ('BIMETS_CONF_CCT', 'XTS")

bimetsDataset 37

is.bimets(xts()) #FALSE
setBIMETSconf ('BIMETS_CONF_NOC', TRUE)
is.bimets(xts()) #TRUE

#...back to default

setBIMETSconf ('BIMETS_CONF_DIP', 'LAST')
setBIMETSconf ('BIMETS_CONF_CCT', 'TS")
setBIMETSconf ('BIMETS_CONF_NOC',FALSE)

bimetsDataset BIMETS User and Internal datasets

Description

BIMETS package contains examples and hidden datasets that provide faster performance in time
series analysis.

See Also

TIMESERIES
is.bimets
as.bimets
fromBIMETStoXTS
fromBIMETStoTS
BIMETS indexing

CUMPROD Cumulative Product

Description

This function returns the cumulative product of the elements of the input array or time series. The
result is an object of the same class of the input, and its elements are the cumulative product of the
current and the previous elements of the input.

If the input is a time series, users can provide the argument TSRANGE in order to project the input
time series before the cumulative product.

Usage

CUMPROD (x=NULL, TSRANGE=NULL, avoidCompliance=FALSE, ...)

38 CUMPROD

Arguments

X Input numerical array or time series that must satisfy the compliance control
check defined in is.bimets.

TSRANGE Optional date range of operations that process the input time series. TSRANGE
must be specified as an array composed by starting year, starting period, end-
ing year and ending period, i.e. TSRANGE=c (START_Y, START_P,END_Y,END_P).
The projection into the time interval specified in TSRANGE takes place before the
cumulative product.

avoidCompliance
If TRUE, compliance control check of input time series will be skipped. See
is.bimets
Backward compatibility.

Value

This function returns an object of the same class of the input, i.e. an array or a BIMETS time series.

See Also

TSPROJECT
MOVAVG
TSDELTA
TSLAG
TSPROJECT
TSEXTEND
TSLEAD
INDEXNUM

Examples

#create ts
tsT=TSERIES(INTS(1,10),START=c(2000,1) ,FREQ="M")
out_CUMPROD=CUMPROD(ts1)

TABIT (out_CUMPROD)

out_CUMPROD=CUMPROD (ts1, TSRANGE=c (2000, 4,2001,1))
TABIT(ts1,out_CUMPROD)

#define an array
arr1=c(INTS(1,5),INTS(-1,-5))
out_CUMPROD=CUMPROD(arr1)
print(out_CUMPROD)

CUMSUM 39

CUMSUM Cumulative Sum

Description

This function returns the cumulative sum of the elements of the input array or time series. The result
is an object of the same class of the input, and its elements are the cumulative sum of the current
and the previous elements of the input.

If the input is a time series, users can provide the argument TSRANGE in order to project the input
time series before the cumulative sum.

CUMULO is an alias form CUMSUM with the argument MODE="YEARLY".

Usage

CUMSUM(x=NULL, TSRANGE=NULL, MODE=NULL, avoidCompliance=FALSE,...)
CUMULO(x=NULL, TSRANGE=NULL, avoidCompliance=FALSE,...)

Arguments

X Input numerical array or time series that must satisfy the compliance control
check defined in is.bimets.

TSRANGE Optional date range of operations that process time series. TSRANGE must be
specified as an array composed by starting year, starting period, ending year and
ending period,

i.e. TSRANGE=c (START_YEAR, START_PERIOD,END_YEAR,END_PERIOD). The pro-
jection into the time interval specified in TSRANGE takes place before the cumu-
lative sum.

MODE When selecting MODE="YEARLY"' or MODE="'MONTHLY' the sum is reset to zero
when a new year or a new month starts.

avoidCompliance
If TRUE, compliance control check of input time series will be skipped. See
is.bimets
Backward compatibility.

Value

This function returns an object of the same class of the input, i.e. an array or a BIMETS time series.

See Also

TSPROJECT
MOVAVG
TSDELTA
TSLAG
TSPROJECT
TSEXTEND

40 DAILY

TSLEAD
INDEXNUM
CUMPROD

Examples

#create ts
ts1=TSERIES(INTS(1,30),START=c(2000,1),FREQ="'M")
out_CUMSUM=CUMSUM(ts1)

TABIT (out_CUMSUM)

out_CUMSUM=CUMSUM(ts1, TSRANGE=c (2000, 4,2001,7))
out_CUMSUM_Y=CUMSUM(ts1, TSRANGE=c (2000, 4,2001,7) ,MODE="'YEARLY")
TABIT(ts1,out_CUMSUM, out_CUMSUM_Y)

#define an array
arr1=c(INTS(1,10),INTS(-1,-10))
out_CUMSUM=CUMSUM(arr1)
print(out_CUMSUM)

#print...1 3 6101521 ... 27 19 10 @
DAILY Daily Time Series (Dis)Aggregation
Description

This function returns a daily disaggregated time series, by using as input an annual, semiannual,
quarterly or monthly time series.

Usage
DAILY(x = NULL, fun = NULL, avoidCompliance = FALSE, ...)
Arguments
X Input time series, that must satisfy the compliance control check defined in
is.bimets.
fun NULL: (default) the output value of each daily observation is set equal to the
value of the input observation the date belongs to (i.e. duplicated values over
the period)

INTERP_END: the value of the input time series in a period is copied into the

date2yp 41

last day of the output time series that lies in the same period. Other values are
calculated by linear interpolation.

INTERP_CENTER: the value of the input time series in a period is copied into
the median day of the output time series that lies in the same period. Other val-
ues are calculated by linear interpolation.

INTERP_BEGIN: the value of the input time series in a period is copied into
the first day of the output time series that lies in the same period. Other values
are calculated by linear interpolation.

avoidCompliance

If TRUE, compliance control check of input time series will be skipped. See
is.bimets

Backward compatibility.

Value

This function returns a daily BIMETS time series.

See Also

ANNUAL
SEMIANNUAL
QUARTERLY
MONTHLY

Examples

#TS quarterly
ts1=TSERIES((1:2),START=c(2000,1),FREQ='0Q")
TABIT(DAILY(ts1,fun='INTERP_CENTER'))

#TS monthly
ts1=TSERIES((1:4),START=c(2000,1),FREQ=12)
TABIT(DAILY(ts1))

date2yp Date to Year-Period Conversion

Description
This function converts an object of class Date() to an array c(YEAR,PERIOD), where YEAR and
PERIOD are the year-period the input Date () belongs to, given an input frequency.

Usage
date2yp(x = NULL, f = 1)

42 ELIMELS

Arguments

X Input of class Date().

f Positive integer. Valid values are: 1, 2, 3, 4, 12, 24, 36, 53, 366
Value

This function returns a two-dimensional array c (YEAR, PERIOD).

See Also

yaz2yp
ym2yp
GETDATE
INTS
TABIT

Examples

print(date2yp(as.Date('2001/06/30'),2)) #2001,1
print(date2yp(as.Date('2002/03/23'),1)) #2002,1
print(date2yp(as.Date('2003/07/01'),366)) #2003,182
print(date2yp(as.Date('2004/09/13"'),2)) #2004,2
print(date2yp(as.Date('2004/01/13"),12)) #2004,1
print(date2yp(as.Date('2004/07/24"),4)) #2004,3
print(date2yp(c(as.Date('1900-01-01"'),as.Date('1944-12-01"),
as.Date('1964-06-12"'),as.Date('1923-03-01"),
as.Date('1943-12-05"')),f=366)) #...

ELIMELS Eliminate Elements from Arrays or Time Series

Description

This function eliminates the selected elements from the input array or the input time series.

Usage
ELIMELS(x=NULL, idx=NULL, avoidCompliance=FALSE, ...)
Arguments
X Input numerical array or time series that must satisfy the compliance control

check defined in is.bimets.

ESTIMATE

idx

avoidCompliance

Value

43

Numerical array built with the indexes of selected elements to be removed from
the input. If the input is a time series the index must be provided as a sequence
of numbers IDX=YEAR+PERIOD/FREQ with YEAR and PERIOD the year and the
period to be removed (see example).

If TRUE, compliance control check of input time series will be skipped. See
is.bimets

Backward compatibility.

This function returns an array with the kept elements from the input array or the input time series.

See Also

TIMESERIES
is.bimets
BIMETS indexing
GETYEARPERIOD
LOCS

NAMELIST

INTS

TSINFO

TSLOOK

TABIT

NOELS

Examples

print (ELIMELS(INTS(1,10),c(1,4,5)))
#print 2 36 7 8 9 10

print (ELIMELS(TSERIES(1:10,START=c(2000,1),FREQ=4),c(2000.25,2000.75)))
#print 2 4 5 6 7 8 910

ESTIMATE

Estimate a BIMETS model object

44

Description

ESTIMATE

This function estimates equations that are linear in the coefficients, as specified in the behavioral
equations of the input model object. Coefficients can be estimated for single equations or blocks
of simultaneous equations. Coefficients restriction procedure derives from the theory of Lagrange
Multipliers, while the Cochrane-Orcutt method allows to account for residuals autocorrelation.

The estimation function supports:

- Ordinary Least Squares;

- Instrumental Variables;

- Deterministic linear restrictions on the coefficients;
- Almon Polynomial Distributed Lags;

- Autocorrelation of the errors;

- Structural stability analysis (Chow tests);

Further details on estimation calculus can be found in MDL help page; further details on Chow
test can be found below in this section;

Usage

ESTIMATE (model=NULL,

egList=NULL,
TSRANGE=NULL,
forceTSRANGE=FALSE,
estTech="'0LS"',
IV=NULL,
quietly=FALSE,
showWarnings=FALSE,
tol=.Machine$double.eps,
digits=getOption('digits'),
centerCOV=TRUE,
CHOWTEST=FALSE,
CHOWPAR=NULL,
avoidCompliance=FALSE,

.2

Arguments

model
eglList

TSRANGE

forceTSRANGE

The BIMETS model object to be estimated (see also LOAD_MODEL).

The character array of behavioral names to be estimated. If it is NULL then all
the behaviorals of the model will be estimated.

The time range of the estimation, as a four dimensional numerical array,

i.e. TSRANGE=c(start_year,start_period,end_year,end_period). The TSRANGE
provided in the behavioral MDL definition takes precedence over this function ar-
gument.

If TRUE, the TSRANGE defined in the previous argument takes precedence over
the TSRANGE provided in the behavioral MDL definition.

ESTIMATE 45

estTech The estimation technique used in the regression. Ordinary Least Squares OLS
and Instrumental Variables estimation IV are supported.

Iv The character array built with the Instrumental Variable expressions, in the
case of Instrumental Variables estimation (see examples).

quietly If TRUE, information messages will be suppressed, e.g. results and regression
statistics.

showWarnings If TRUE and if a model time series has a missing value then warning message
will be shown.

tol The tolerance for detecting linear dependencies in the columns of a matrix while
an inversion is requested. The default is .Machine$double.eps.

digits Controls the number of digits to print when printing coefficients and statistics of
the estimation. Valid values are 1 to 22 with a default of 7.

centerCOV If TRUE, the function subtracts the mean from the residuals before calculating
the residual covariance matrix.

CHOWTEST If TRUE, the structural stability analysis will be performed.

CHOWPAR Indicates the last year-period where the stability test is performed. If NULL it

will be automatically calculated by using all available time series data. It must
be provided as an integer array, e.g. c(YEAR, PERIOD).

avoidCompliance
If TRUE, compliance control check of model time series will be skipped. See
is.bimets

Backward compatibility.

Value

If outputText=TRUE, for each behavioral in the eqList this function will print out:

- the name of the estimated behavioral;

- the estimation technique used;

- the autocorrelation order of the error, if any, and the iterations count required to achieve the con-
vergence;

- the estimated equation with calculated coefficients and regressor expression; for each coefficient
the T-statistic and the significance will be printed out;

- the restriction equations imposed on the coefficients, if any;

- the F-test for the restrictions, including the PDL restrictions, if any;

- the final autocorrelation parameters for the error, along with their standard error, the T-statistic and
the significance;

- the R-Squared and the Adjusted R-Squared,

- the Durbin-Watson Statistic;

- the Sum of squares of residuals;

- the Standard Error of Regression;

- the Log of the Likelihood Function;

- the F-statistic and the F-probability;

- the AIC and the BIC;

- the Mean of the Dependent Variable;

- the Number of Observations,

46

ESTIMATE

- the Number of Degrees of Freedom;
- the Current Sample, i.e. the TSRANGE of estimation;

For each behavioral in the eqList this function will add 4 new named elements into the related
behavioral of the output model object:

1) coefficients: a numerical array built with the estimated coefficients;

2) errorCoefficients: a numerical array built with the estimated coefficient for the error autore-
gression, if the ERROR> structure has been provided in the model MDL definition;

3) residuals: the time series of the regression residuals. If an ERROR> structure has been provided
in the behavioral definition, the related residuals will be calculated as described in the Cochrane-
Orcutt procedure (see MDL).

3) residuals_no_error_correction: if an ERROR> structure has been provided in the behavioral
definition, the residuals caclucated by using the original dependant and independent varibles are
stored into this list element.

4) statistics: alist built with the parameters and the statistics of the estimation, e.g.:

- TSRANGE: TSRANGE requested in the latest estimation of the behavioral;

- estimationTechinque: estimation technique requested in the latest estimation of the behavioral;
- CoeffCovariance: coefficients covariance;

- StandardErrorRegression and StandardErrorRegressionNotCentered: standard error of the
regression (centered and not-centered);

- CoeffTstatistic: T-statistic of the coefficients;

- RSquared: R-Squared;

- AdjustedRSquared: adjusted R-Squared;

- DegreesOfFreedom: degrees of freedom of the regression;

- CoeffPvalues: coefficients p-values;

- LogLikelihood: Log of the Likelihood Function;

- Fstatistics: F-statistics;

- RhosTstatistics: rhos T-statistic (if any);

- FtestRestrValue: F-test value for the restrictions;

- FtestRestrProbability: F-test probability for the restrictions;

- AIC: Akaike’s Information Criterion;

- BIC: Schwarz’s Information Criterion;

- matrixX: the regressors matrix;

- vectorY: the dependent variable;

-matrixX_error_corrected: the regressors matrix arising from the Cochrane-Orcutt procedure;
- etc.

Structural Stability - Chow test

One of the main purposes of the econometric modeling is its use for forecast and policy evalua-
tion and, to this end, the stability of a behavioral equation parameters over time should be verified.
In order to check for structural stability two different procedures, which can be derived from the so
called Chow-tests, are applied.

Given a sample of Ty = tg, ..., t,, observations (i.e. the base TSRANGE) and selecting an arbitrary
forward extension in 1} = t, ..., tp, ..., t,, observations (i.e. the extended TSRANGE) in the general

ESTIMATE 47

case we have the following two regressions:

1) Yy = Box Xo + €0, €0~ N(0,03), having time series projected on the base TSRANGE
Y =6 x X1 +e, e ~N(O, a%), having time series projected on the extended TSRANGE

In general a stability analysis is carried on in the following ways:

- comparing the parameter estimates arising from the two regressions: this is known as the covari-
ance analysis;

- checking the accuracy of the forecast for the dependent variable in the extended TSRANGE, using
the estimates produced in the base TSRANGE: this is known as the predictive power test.

The first Chow test is calculated as:

S’S’leSSRo DOF1
SSR, DoF,—DoF,’

T =

with SSR; as the sum of squared residuals and DoF; as the number of degrees of fredoom in
the regression ¢ = 0, 1.

The test is completed by calculating the following time series on the extended TSRANGE:
- the forecast error;

- the standard error of forecast;

- the t-statistic for the error;

The standard error of the forecast for the t; observation in the extended TSRANGE is computed
according to:

SE; = 00\/1 —s—ij x (Xg * Xo) " *ay

having x; as the independent values (i.e. regressors) on the ¢; observation in the 77 extended
TSRANGE, withn < j < m.

The null hypothesis for 7 is:

H* : By = fo, given 07 = o}
The test statistic 7 follows the F' distribution with (DoF; — DoFy) and DoF; degrees of freedom,

and can be performed during the ESTIMATE () function execution by using the CHOWTEST argument
set to TRUE.

If CHOWTEST is TRUE, for each behavioral in the eqList the output model will have the following
named element:

- ChowTest: it contains the statistics and the time series computed during the last structural analysis
performed on the related behavioral.

See Also

MDL
LOAD_MODEL

48 ESTIMATE

SIMULATE

MULTMATRIX

RENORM

TIMESERIES

BIMETS indexing
BIMETS configuration
summary

Examples

#define model
myModelDefinition=
"MODEL

COMMENT> Modified Klein Model 1 of the U.S. Economy with PDL,
COMMENT> autocorrelation on errors, restrictions and conditional evaluations

COMMENT> Consumption

BEHAVIORAL> cn

TSRANGE 1925 1 1941 1

EQ> cn = al + a2*p + a3*TSLAG(p,1) + ad*(wl+w2)
COEFF> a1 a2 a3 a4

ERROR> AUTO(2)

COMMENT> Investment

BEHAVIORAL> i

TSRANGE 1923 1 1941 1

EQ> i = b1 + b2xp + b3*TSLAG(p,1) + b4xTSLAG(k,1)
COEFF> b1 b2 b3 b4

RESTRICT> b2 + b3 =1

COMMENT> Demand for Labor

BEHAVIORAL> w1

TSRANGE 1925 1 1941 1

EQ> wl = ¢l + c2*(y+t-w2) + c3*TSLAG(y+t-w2,1) + c4*time
COEFF> c1 c2 c3 c4

PDL> c3 1 3

COMMENT> Gross National Product
IDENTITY> y
EQ>y=cn+i+g-1t

COMMENT> Profits
IDENTITY> p
EQ> p =y - (wi+w2)

COMMENT> Capital Stock with switches
IDENTITY> k

EQ> k = TSLAG(k,1) + i

IF>1i >0

ESTIMATE

IDENTITY> k

EQ> k = TSLAG(k,1)
IF> i <= @

END"

#define model data
myModelData=1list(

cn

=TIMESERIES(39.8,41.9,45,49.2,50.6,52.6,55.1,56.2,57.3,57.8,55,50.9,
45.6,46.5,48.7,51.3,57.7,58.7,57.5,61.6,65,69.7,
START=c(1920,1),FREQ=1),

g

=TIMESERIES(4.6,6.6,6.1,5.7,6.6,6.5,6.6,7.6,7.9,8.1,9.4,10.7,10.2,9.3,10,
10.5,10.3,11,13,14.4,15.4,22.3,
START=c(1920,1),FREQ=1),

i

=TIMESERIES(2.7,-.2,1.9,5.2,3,5.1,5.6,4.2,3,5.1,1,-3.4,-6.2,-5.1,-3,-1.3,
2.1,2,-1.9,1.3,3.3,4.9,
START=c(1920,1),FREQ=1),

k

=TIMESERIES(182.8,182.6,184.5,189.7,192.7,197.8,203.4,207.6,210.6,215.7,
216.7,213.3,207.1,202,199,197.7,199.8,201.8,199.9,
201.2,204.5,209.4,
START=c(1920,1),FREQ=1),

p

=TIMESERIES(12.7,12.4,16.9,18.4,19.4,20.1,19.6,19.8,21.1,21.7,15.6,11.4,
7,11.2,12.3,14,17.6,17.3,15.3,19,21.1,23.5,
START=c(1920,1),FREQ=1),

wl

=TIMESERIES(28.8,25.5,29.3,34.1,33.9,35.4,37.4,37.9,39.2,41.3,37.9,34.5,
29,28.5,30.6,33.2,36.8,41,38.2,41.6,45,53.3,
START=c(1920,1),FREQ=1),

y

=TIMESERIES(43.7,40.6,49.1,55.4,56.4,58.7,60.3,61.3,64,67,57.7,50.7,41.3,
45.3,48.9,53.3,61.8,65,61.2,68.4,74.1,85.3,
START=c(1920,1),FREQ=1),

t
=TIMESERIES(3.4,7.7,3.9,4.7,3.8,5.5,7,6.7,4.2,4,7.7,7.5,8.3,5.4,6.8,7.2,
8.3,6.7,7.4,8.9,9.6,11.6,
START=c(1920,1),FREQ=1),
time

=TIMESERIES(NA,-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,
START=c(1920,1),FREQ=1),

w2
=TIMESERIES(2.2,2.7,2.9,2.9,3.1,3.2,3.3,3.6,3.7,4,4.2,4.8,5.3,5.6,6,6.1,
7.4,6.7,7.7,7.8,8,8.5,
START=c(1920,1),FREQ=1)

#load model
myMode1=LOAD_MODEL (modelText=myModelDefinition)

49

50

#load data into the model
myModel=LOAD_MODEL_DATA(myModel,myModelData, showWarnings = TRUE)

HHHHEHHH AR
#OLS case

#estimate the model
myModel1=ESTIMATE (myModel)

#HERE BELOW THE OUTPUT OF THE ESTIMATION (COMMENTED OUT):

ESTIMATE

#.CHECK_MODEL_DATA(): warning, there are undefined values in time series "time".

#
#Estimate the Model myModelDefinition:

#the number of behavioral equations to be estimated is 3.
#The total number of coefficients is 14.

#

#

#

#BEHAVIORAL EQUATION: cn
#Estimation Technique: OLS
#Autoregression of Order

2 (Cochrane-Orcutt procedure)

#

#Convergence was reached in 9 / 20 iterations.
#

#

#cn = 19.01352

T-stat. 12.13083 *kk
#

+ 0.3442816 p

T-stat. 3.533253 *%
#

+ 0.03443117 TSLAG(p,1)
T-stat. ©.3937881

#

+ 0.6993905 (wl+w2)

T-stat. 14.0808 *kk
#

#ERROR: AUTO(2)

#

#AUTOREGRESSIVE PARAMETERS:

#Rho Std. Error T-stat.
#0.05743131 0.3324101 0.1727725

0.007785936 0.2647013 0.02941404

#

#

#STATs:

#R-Squared 0.985263
#Adjusted R-Squared : 0.9785644
#Durbin-Watson Statistic : 1.966609

#Sum of squares of residuals 9.273455
#Standard Error of Regression 1 0.9181728
#lLog of the Likelihood Function : -18.97047
#F-statistic : 147.0844

ESTIMATE

#F-probability : 1.090551e-09
#Akaike's IC : 51.94093
#Schwarz's IC : 57.77343

#Mean of Dependent Variable : 55.71765
#Number of Observations 2 17

#Number of Degrees of Freedom 1

#Current Sample (year-period) 1 1925-1 / 1941-1
#

#

#Signif. codes: *x*x 0.001 =*x* 0.01 * 0.05

*od o

#BEHAVIORAL EQUATION: i
#Estimation Technique: OLS

#

#i = 2.868104

T-stat. 0.3265098

#

+ 0.5787626 p

T-stat. 4.456542 *kk
#

+ 0.4212374 TSLAG(p,1)
T-stat. 3.243579 **
#

- 0.09160307 TSLAG(k,1)
T-stat. -2.11748

#

#RESTRICTIONS:

#b2+b3=1

#

#RESTRICTIONS F-TEST:

#F-value : 8.194478

#F-prob(1,15) : 0.0118602

#

#

#STATs:

#R-Squared : 0.8928283
#Adjusted R-Squared 1 0.8794319
#Durbin-Watson Statistic : 1.173106
#Sum of squares of residuals : 26.76483
#Standard Error of Regression : 1.293368
#lLog of the Likelihood Function : -30.215
#F-statistic : 66.64659
#F-probability : 1.740364e-08
#Akaike's IC : 68.43001
#Schwarz's IC 1 72.20776
#Mean of Dependent Variable : 1.310526
#Number of Observations ;19

#Number of Degrees of Freedom : 16

#Current Sample (year-period)

1 1923-1 / 1941-1

52

#
#

#Signif. codes: *%% 0.001 ** 0.01 * 0.05

T

#BEHAVIORAL EQUATION: w1
#Estimation Technique: OLS
#

#w1 = 1.12869

T-stat. 0.6479266

#

+ 0.4398767 (yt+t-w2)

T-stat. 12.01268 *kk
#

+ 3 TSLAG(y+t-w2,1)
PDL

#

+ 0.1368206 time

T-stat. 3.373905 *%
#

#PDL :

#c3 1 3

#

#Distributed Lag Coefficient: c3

#Lag Coeff. Std. Error T-stat.
#0 0.1076812 0.04283967 2.513586
#1 0.05074557 0.01291231 3.930015
#2 -0.00619005 0.03110492 -0.1990055
#SUM 0.1522367 0.03873693

#

#RESTRICTIONS F-TEST:

#F-value : 0.06920179

#F-prob(1,11) : 0.7973647

#

#

#STATs:

#R-Squared 0.9890855
#Adjusted R-Squared 1 0.9854474
#Durbin-Watson Statistic 1 2.174168

#Sum of squares of residuals 6.392707
#Standard Error of Regression 1 0.7298805

#lLog of the Likelihood Function : -15.80848
#F-statistic 1 271.8645
#F-probability 1 1.172284e-11
#Akaike's IC 1 43.61697
#Schwarz's IC : 48.61625

#Mean of Dependent Variable 1 37.69412
#Number of Observations : 17

#Number of Degrees of Freedom : 12

#Current Sample (year-period)

1 1925-1 / 1941-1

**

ESTIMATE

ESTIMATE

#

#

#Signif. codes: **%% 0.001 ** 0.01 * 0.05
#

#

#...ESTIMATE OK

#tget residuals of 'cn
myModel$behaviorals$cn$residuals

#Time Series:

#Start = 1925

#End = 1941

#Frequency = 1

[1] -0.88562504 0.25109884 0.66750111
#[17] -1.41795908
#get residuals of 'i'

myModel$behaviorals$i$residuals

#Time Series:

#Start = 1923

#End = 1941

#Frequency = 1

[1] 1.464518775 -1.469763968 ©0.078674017

#[16] -2.425079127 -0.698071507 -1.352967430 -1.724306054

#get estimation coefficients of 'cn' and 'wl'
myModel$behaviorals$cn$coefficients

[,1]

#a1 19.01352476

#a2 0.34428157

#a3 0.03443117

#a4 0.69939052

myModel$behaviorals$cn$errorCoefficients
[,1]
#RHO_1 0.057431312
#RHO_2 0.007785936

myModel$behaviorals$wi$coefficients

[,1]
#c1 1.12869024
#c2 0.43987666
#c3 0.10768118

#c3_PDL_1 ©.05074557
#c3_PDL_2 -0.00619005
#ca 0.13682057

HHHHEHHHEH AR R
#IV case

#estimation of Consumption "cn” with arbitrary IVs
#and error autocorrelation

53

54

ESTIMATE

myModel1=ESTIMATE (myModel,
egList = 'en',
estTech = 'IV',
IV=c('1’',
"TSLAG(Y) ',
'"TSLAG(w1)*pi+0.5",
‘exp(w2) ')
#Estimate the Model myModelDefinition:
#the number of behavioral equations to be estimated is 1.
#The total number of coefficients is 4.
#
#
#
#BEHAVIORAL EQUATION: cn
#Estimation Technique: IV
#Autoregression of Order 2 (Cochrane-Orcutt procedure)

#

#Convergence was reached in 7 / 20 iterations.
#

#

#cn = 18.07073

T-stat. 11.72958 *kk
#

+ 0.2530483 p

T-stat. 1.583881

#

+ 0.08631646 TSLAG(p,1)
T-stat. @.7556204

#

+ 0.7363227 (wl+w2)

T-stat. 13.11572 *kk
#

#ERROR: AUTO(2)

#

#AUTOREGRESSIVE PARAMETERS:

#Rho Std. Error T-stat.
#0.01559806 0.343195 0.04544955
#-0.1196327 0.283432 -0.422086

#

#

#STATs:

#R-Squared : 0.9843186
#Adjusted R-Squared : 0.9771907
#Durbin-Watson Statistic : 1.917329
#Sum of squares of residuals : 9.867739
#Standard Error of Regression 1 0.9471363
#lLog of the Likelihood Function : -19.49844
#F-statistic : 138.0938
#F-probability : 1.532807e-09
#Akaike's IC : 52.99689
#Schwarz's IC : 58.82938
#Mean of Dependent Variable : 55.71765

#Number of Observations 17

ESTIMATE

#Number of Degrees of Freedom : 11

#Current Sample (year-period) : 1925-1 / 1941-1
#

#

#Signif. codes: **x 0.001 ** 0.01 * 0.05

#

#

#...ESTIMATE OK

nin

#estimation of Investment "i" with arbitrary IVs
#and coefficient restrictions
myModel=ESTIMATE (myModel,
eqList = 'i',
estTech = 'IV',
IV=c('1',
'TSLAG(w2) ',
"TSLAG(w1)*pi+0.5",
"exp(w2) "))

#.CHECK_MODEL_DATA(): warning, there are undefined values in time series "time".
#

#Estimate the Model myModelDefinition:

#the number of behavioral equations to be estimated is 1.

#The total number of coefficients is 4.

#

#

#

#BEHAVIORAL EQUATION: i

#Estimation Technique: IV

#
#i = 34.517544

T-stat. 1.264388

#

+ 0.3216326 p

T-stat. 0.8648297

#

+ 0.6783672 TSLAG(p,1)
T-stat. 1.824043

#

- 0.2475568 TSLAG(k,1)
T-stat. -1.842520

#

#RESTRICTIONS:

#b2+b3=1

#

#RESTRICTIONS F-TEST:

#F-value : 2.465920

#F-prob(1,15) : 0.137190

#

#

56

ESTIMATE
#STATs:
#R-Squared : 0.805773
#Adjusted R-Squared 1 0.781494
#Durbin-Watson Statistic : 0.940534
#Sum of squares of residuals : 48.50580
#Standard Error of Regression : 1.741152
#Log of the Likelihood Function : -35.86365
#F-statistic : 33.18894
#F-probability 1 2.025229e-06
#Akaike's IC 2 79.72731
#Schwarz's IC : 83.50506
#Mean of Dependent Variable : 1.310526
#Number of Observations : 19
#Number of Degrees of Freedom : 16
#Current Sample (year-period) 1 1923-1 / 1941-1
#
#
#Signif. codes: **%% 0.001 ** 0.01 * 0.05
#
#

#...ESTIMATE OK

HHHHHHHRHEAEE AR
#CHOW TEST on w1l

#base TSRANGE set to 1925 / 1935
myModel=ESTIMATE (myModel,
eqList="w1"',
TSRANGE=c(1925,1,1935,1),
forceTSRANGE=TRUE,
CHOWTEST=TRUE)

#Estimate the Model myModelDefinition:

#the number of behavioral equations to be estimated is 1.
#The total number of coefficients is 6.

#

#

#

#BEHAVIORAL EQUATION: w1

#Estimation Technique: OLS

#

H+

=

=
1
1

4.48873
T-stat. -2.47402 *

+ 0.545102 (y+t-w2)
T-stat. 15.3462 #xx%

3 TSLAG(y+t-w2,1)
PDL

+ 0.292018 time
T-stat. 5.58588 *%

N E E EEE
+

ESTIMATE

#PDL :

#c3 1 3

#

#Distributed Lag Coefficient: c3
#lLag Coeff. Std. Error
#0 0.0413985 0.0336676
#1 0.0493551 0.00742323
#2 0.0573116 0.0265487
#SUM 0.148065 0.0222697
#

#RESTRICTIONS F-TEST:

#F-value : 3.35954
#F-prob(1,5) 1 0.126295

#

#

#STATs:

#R-Squared

#Adjusted R-Squared

#Durbin-Watson Statistic
#Sum of squares of residuals
#Standard Error of Regression

#Log of the Likelihood Function :
: 367.183

: 2.68564e-07

1 13.4843

: 15.8717

: 34.9909

11

: 6

1 1925-1 / 1935-1

#F-statistic

#F-probability

#Akaike's IC

#Schwarz's IC

#Mean of Dependent Variable
#Number of Observations
#Number of Degrees of Freedom
#Current Sample (year-period)

T-stat.

1.22963

6.64873 K%k
2.15873

1 0.995931
1 0.993219
1 2.43313

1 0.737093
1 0.350498

-0.742173

#

#

#Signif. codes: *%% 0.001 ** 0.01 * .05

#

#

#

#STABILITY ANALYSIS:

#Behavioral equation: wil

#

#Chow test:

#Sample (auto) : 1936-1 / 1941-1

#F-value : 15.3457

#F-prob(6,12) : 0.00534447

#

#Predictive Power:

#

#DATE, PER, ACTUAL , PREDICT , ERROR

#

#1936, 1 , 36.8 , 38.439 , —1.63901
#1937, 1, 44 , 40.824 , 0.176033
#1938, 1, 38.2 , 39.6553 , -1.4553
#1939, 1 , 41.6 , 45.0547 , —3.45466
#1940, 1 , 45 , 49.0118 , —4.01179

’

STDERR

0.547471
0.630905
0.672192
0.834433
0.966472

TSTAT

-2.99378
0.279017
-2.165
-4.14012
-4.15096

57

58 frequency

#1941, 1, 53.3 , 56.6727 , —3.37275 , 1.23486 , —2.73127
#

#

#...ESTIMATE OK

frequency Frequency of a Time Series

Description

This function returns the frequency of a time series. In the case of a sparse xts() time series, and in
other cases, the R functions xts: :periodicity() and frequency() do not return BIMETS com-
pliant values. We suggest to use this function when a BIMETS time series frequency is requested.

Usage

S3 method for class 'xts'
frequency(x,...)

Arguments
X Input time series.
Backward compatibility.
Value

This function returns the integer value stored in the attribute .bimetsFreq of the input time series,
if any. Otherwise the frequency will be calculated by using the shortest time difference between
two observations, while accounting for daysaving and bissextile years.

See Also

normalizeYP
NUMPERIOD
BIMETS indexing

Examples

#build a sparse xts()

xArr=rnorm(13)

dateArr=seq(as.Date('2000/01/01'),by="'6 months', length=10)
dateArr2=seq(as.Date('2010/01/01'),by="'3 months',length=3)

#strange array of dates here below...
dateArr3=c(dateArr,dateArr2)
dataF=data.frame(dateArr3, xArr)
xt=xts(dataF[,2],order.by=dataF[,1])

fromBIMETStoTS 59

#get bimets calculated frequency
cat(frequency(xt)) #print 4... without bimets R returns 1

#...legacy periodicity()
periodicity(xt)

fromBIMETStoTS Convert BIMETS to TS

Description

This function transforms a BIMETS compliant time series (as defined in is.bimets) into a time
series of class ts(). The core R function as.ts() does not satisfy all the requirements of the
compliance control check, so it has been extended. Attributes and description of the input time
series will be copied to the output time series (see TIMESERIES).

Usage
fromBIMETStoTS(x = NULL, ...)
Arguments
X Input time series that must satisfy the compliance control check defined in is.bimets.
Backward compatibility.
Value

This function returns a time series of class ts() that has the same observations of the input BIMETS
time series.

See Also

fromBIMETStoXTS
as.bimets

is.bimets

BIMETS indexing
BIMETS configuration

Examples

#work with XTS
setBIMETSconf ('BIMETS_CONF_CCT', 'XTS")

60

fromBIMETStoXTS

#create yearly time series
xts=TSERIES(1:10,START=c(2000,1) ,FREQ="'A")
print(is.ts(xts))#FALSE

#convert to ts

ts=fromBIMETStoTS(xts)
print(is.ts(ts))#TRUE

print(ts)

#create monthly time series
Xts=TSERIES(1:10,START=c(2000,1) ,FREQ="'M")
print(is.ts(xts))#FALSE

#convert to ts

ts=fromBIMETStoTS(xts)
print(is.ts(ts))#TRUE

print(ts)

#create daily time series
xts=TSERIES(1:1@,START=c(2000,1),FREQ='D")
print(is.ts(xts))#FALSE

#convert to ts

ts=fromBIMETStoTS(xts)
print(is.ts(ts))#TRUE

print(ts)

#reset default
setBIMETSconf ('BIMETS_CONF_CCT','TS")

fromBIMETStoXTS Convert BIMETS to XTS

Description

This function transforms a BIMETS compliant time series (as defined in is.bimets) into a time
series of class xts().

The core XTS function as.xts() does not satisfy all the requirements of the compliance control
check, so it has been extended. If the output time series will have an . indexClass of type Date(),
i.e. neither monthly nor quarterly, the output dates will be chosen accordingly to the BIMETS
option BIMETS_CONF_DIP: if this option is set to LAST (default), the output xts() time series will
have the date of the period set equal to the last day in the same period, e.g. 31 December for annual
time series, 30 June for semiannual, etc.; if the BIMETS option BIMETS_CONF_DIP is set to FIRST,
the output xts() time series will have the date of the period set equal to the first day in the same
period, e.g. 1 January for annual time series, 1 July for semiannual time series on the second period,
etc.

In the case of quarterly time series the . indexClass=yearqtr;

in the case of monthly time series the . indexClass=yearmon

Attributes and description of the input time series will be copied to the output time series (see
TIMESERIES)

fromBIMETStoXTS 61

Usage
fromBIMETStoXTS(x = NULL, ...)
Arguments
X Input time series that must satisfy the compliance control check defined in is.bimets.
Backward compatibility.
Value

This function returns a time series of class xts() that has the same observations of the input
BIMETS time series.

See Also

fromBIMETStoTS
as.bimets

is.bimets

BIMETS indexing
BIMETS configuration

Examples

#create yearly time series
ts=TSERIES(1:1@,START=c(2000,1),FREQ="A")
print(is.xts(ts))#FALSE

#convert to xts

xts=fromBIMETStoXTS(ts)
print(is.xts(xts))#TRUE

print(xts)

#create monthly time series
ts=TSERIES(1:10,START=c(2000,1) ,FREQ='M")
print(is.xts(ts))#FALSE

#convert to xts

xts=fromBIMETStoXTS(ts)
print(is.xts(xts))#TRUE

print(xts)

#create daily time series
ts=TSERIES(1:10,START=c(2000,1) ,FREQ='D")
print(is.xts(ts))#FALSE

#convert to xts

xts=fromBIMETStoXTS(ts)
print(is.xts(xts))#TRUE

print(xts)

#create yearly time series with first date on period
setBIMETSconf ('BIMETS_CONF_DIP', 'FIRST')

62

fromTStoXTS

ts=TSERIES(1:10,START=c(2000,1) ,FREQ="A")
print(is.xts(ts))#FALSE

#convert to xts

xts=fromBIMETStoXTS(ts)
print(is.xts(xts))#TRUE

print(xts)#dates on Jan 1

#treset default
setBIMETSconf ('BIMETS_CONF_DIP', 'LAST")

fromTStoXTS Convert TS to XTS

Description

This function transforms a BIMETS compliant ts time series (as defined in is.bimets) into a time
series of class xts().

The core XTS function as.xts() does not satisfy all the requirements of the compliance control
check, so it has been extended. If the output time series has an .indexClass of type Date(),
i.e. neither monthly nor quarterly, the output dates are chosen accordingly to the BIMETS option
BIMETS_CONF_DIP: if this option is set to LAST (default), the output xts() time series will have
the date of the period set equal to the last day in the same period, e.g. 31 December for annual
time series, 30 June for semiannual, etc.; if BIMETS option BIMETS_CONF_DIP is set to FIRST, the
output xts () time series will have the date of the period set equal to the first day in the same period,
e.g. 1 January for annual time series, 1 July for semiannual time series on the second period, etc.
In the case of quarterly time series the . indexClass=yearqtr;

in the case of monthly time series the . indexClass=yearmon.

Attributes and description of the input time series will be copied to the output time series (see
TIMESERIES)

Usage
fromTStoXTS(x = NULL, avoidCompliance = FALSE, ...)
Arguments
X Input ts time series that must satisfy the compliance control check defined in
is.bimets.
avoidCompliance
If TRUE, compliance control check of input time series will be skipped. See
is.bimets.
Backward compatibility.
Value

This function returns a time series of class xts() that has the same observations of the input ts
time series.

fromTStoXTS

See Also

fromXTStoTS
as.bimets

is.bimets

BIMETS indexing
BIMETS configuration

Examples

#day and month names can change depending on locale
Sys.setlocale('LC_ALL','C")
Sys.setlocale('LC_TIME','C")

#BIMETS_CONF_DIP default on LAST
print('annual')
t=ts(1:20,start=c(2005,2), frequency=1)
ts=fromTStoXTS(t)

print(t);print(ts) #...dates on 31 Dec

print('semiannual')
t=ts(1:20,start=c(2005,2), frequency=2)
ts=fromTStoXTS(t)

print(t);print(ts) #...dates on 31 Dec/30 Jun

#set configuration BIMETS_CONF_DIP on FIRST
setBIMETSconf ('BIMETS_CONF_DIP', 'FIRST")

print('annual')
t=ts(1:20,start=c(2005,2),frequency=1)
ts=fromTStoXTS(t)

print(t);print(ts) #...dates on 1 Jan

print('semiannual')
t=ts(1:20,start=c(2005,2), frequency=2)
ts=fromTStoXTS(t)

print(t);print(ts) #...dates on 1 Jan/1 Jul

print('quarterly"')
t=ts(1:20,start=c(2004, 3), frequency=4)
ts=fromTStoXTS(t)
print(t);print(ts)

print('monthly')
t=ts(1:20,start=c(2003,5), frequency=12)
ts=fromTStoXTS(t)

print(t);print(ts)

print('daily')
t=ts(1:20,start=c(2003,125), frequency=366)

63

64 fromXTStoTS

ts=fromTStoXTS(t)
print(t);print(ts)

fromXTStoTS Convert XTS to TS

Description

This function transforms a BIMETS compliant xts() time series (as defined in is.bimets) into
a time series of class ts(). The core R function as. ts() does not satisfy all the requirements of
the compliance control check, so it has been extended. Attributes and description of the input time
series will be copied to the output time series (see TIMESERIES).

Usage
fromXTStoTS(x = NULL, avoidCompliance = FALSE, ...)
Arguments
X Input xts() time series that must satisfy the compliance control check defined
inis.bimets.
avoidCompliance
If TRUE, compliance control check of input time series will be skipped. See
is.bimets.
Backward compatibility.
Value

This function returns a time series of class ts() that has the same observations of the input xts()
time series.

See Also

fromTStoXTS
as.bimets

is.bimets

BIMETS indexing
BIMETS configuration

Examples

#day and month names can change depending on locale
Sys.setlocale('LC_ALL','C")
Sys.setlocale('LC_TIME','C")

fromXTStoTS

#set configuration BIMETS_CONF_DIP on FIRST
setBIMETSconf ('BIMETS_CONF_DIP', 'FIRST')

#set configuration BIMETS_CONF_CCT on XTS
setBIMETSconf ('BIMETS_CONF_CCT', 'XTS')

#semiannual with Date()

n=10

xArr=rnorm(n)

dateArr=seq(as.Date('2000/07/01"'),by="6 months',length=n)
dataF=data.frame(dateArr,xArr)
xt=xts(dataF[,2],order.by=dataF[,1])
print(fromXTStoTS(xt))

#set configuration BIMETS_CONF_DIP on LAST
setBIMETSconf ('BIMETS_CONF_DIP', 'LAST')

#annual with Date()

n=190

XArr=rnorm(n)
dateArr=seq(as.Date('2000/12/31"'),by="year"', length=n)
dataF=data.frame(dateArr,xArr)
xt=xts(dataF[,2],order.by=dataF[,1])
print(fromXTStoTS(xt))

#quarterly with yearqtr()

n=10

xArr=rnorm(n+1)
dateArr=as.yearqtr('2000 Q2') + @0:n/4
dataF=data.frame(dateArr, xArr)
xt=xts(dataF[,2],order.by=dataF[,1])
print(fromXTStoTS(xt))

#monthly with yearmon()

n=10

xArr=rnorm(n+1)

dateArr=as.yearmon('Jul 2000') + @:n/12
dataF=data.frame(dateArr,xArr)
xt=xts(dataF[,2],order.by=dataF[,1])
print(fromXTStoTS(xt))

#daily with Date()

n=10

xArr=rnorm(n)
dateArr=seq(as.Date('2000/07/14"'),by="day',length=n)
dataF=data.frame(dateArr,xArr)
xt=xts(dataF[,2],order.by=datafF[,1])
print(fromXTStoTS(xt))

#restore defaults
setBIMETSconf ('BIMETS_CONF_DIP', 'LAST'")
setBIMETSconf ('BIMETS_CONF_CCT','TS"')

65

66 GETDATE

GETDATE Retrieve Dates of Time Series

Description

This function returns the dates array of selected observations, in the requested print format. Dates
will be provided accordingly to the BIMETS configuration option BIMETS_CONF_DIP
(see BIMETS configuration)

Usage
GETDATE(x=NULL, index=NULL, format='%Y-%m-%d', avoidCompliance=FALSE, ...)
Arguments
X Input time series that must satisfy the compliance control check defined in is.bimets.
index Index of observations to be selected. The output dates will be the dates of the
selected observations. If index=NULL this function will retrieve all available
dates in the input time series.
format Output print format, provided as a paste of the following codes:
%Y : 4 digits year
%y: 2 digits year
%J: period in the year for daily time series
% q: quarter index, available only if also %y or %Y have been requested
%m: 2 digits month
%b: 3 digits month
%B: full month name
%d: 2 digits day
%a: 3 letters weekday
% A: full weekday name
avoidCompliance
If TRUE, compliance control check of input time series will be skipped. See
is.bimets
Backward compatibility.
Value

This function returns the dates array of selected observations, in the requested print format.

GETDATE

See Also

BIMETS configuration
BIMETS indexing
yq2yp

ym2yp

date2yp

LOCS

NAMELIST

TSLOOK

TABIT

ELIMELS

Examples

#day and month names can change depending on locale
Sys.setlocale('LC_ALL','C")
Sys.setlocale('LC_TIME','C")

#work on xts
setBIMETSconf ('BIMETS_CONF_CCT', 'XTS"')

#XTS yearly

n=10

xArr=(n:1)
dateArr=seq(as.Date('2000-12-31"'),by="year"',length=n)
dataF=data.frame(dateArr,xArr)
ts1=xts(dataF[,2],order.by=dataF[,1])

ts1[5]=NA

print(GETDATE(ts1,5)) #...print 2004-12-31

print (GETDATE(ts1,5, '%A %d %b %Y')) #print... Friday 31 Dec 2004

print(GETDATE(ts1)) #print... "2000-12-31" "2001-12-31" ...

#XTS quarterly

n=15

xArr=(n:0)

dateArr=as.yearqtr('2000 Q1')+0:n/4
dataF=data.frame(dateArr,xArr)
ts1=xts(dataF[,2],order.by=dataF[,1])

print (GETDATE(ts1,9, '%b %Y')) #print...Mar 2002

#XTS monthly

#set configuration BIMETS_CONF_DIP to FIRST
setBIMETSconf ('BIMETS_CONF_DIP', 'FIRST')

n=15

xArr=(n:0)

dateArr=as.yearmon('Jan 2000')+0:n/12
dataF=data.frame(dateArr,xArr)
ts1=xts(dataF[,2],order.by=dataF[,1])

print (GETDATE(ts1,9, '%b %Y')) #print...Sep 2000

"2009-12-31"

67

68 GETYEARPERIOD

#set configuration BIMETS_CONF_DIP to LAST
setBIMETSconf ('BIMETS_CONF_DIP', 'LAST")

#2000 is bissextile...
print (GETDATE(ts1,2)) #print... 2000-02-29

#quarter. ..
print (GETDATE(ts1,5,'%Y Q%q')) #print... 2000 Q2

#restore default
setBIMETSconf ('BIMETS_CONF_CCT','TS")

GETYEARPERIOD Get Time Series Year-Period

Description

This function returns a two-element list (or a two-columns matrix in the case of JOIN=TRUE) built
with the the years and the periods of the input time series observations. Users can provide the output
list names. TSDATES is an alias for GETYEARPERIOD.

Usage

GETYEARPERIOD(x=NULL, YEARS='YEAR', PERIODS='PRD', JOIN=FALSE, avoidCompliance=FALSE, ...)
TSDATES(x=NULL, YEARS='YEAR', PERIODS='PRD', JOIN=FALSE, avoidCompliance=FALSE, ...)

Arguments
X Input time series, that must satisfy the compliance control check defined in
is.bimets
YEARS Argument of type string that will be the output list name for the array of obser-
vation years.
PERIODS Argument of type string that will be the output list name for the array of obser-
vation periods.
JOIN If TRUE, the output will be a matrix having each row built with the year and the
period of the related observation.
avoidCompliance
If TRUE, compliance control check of input time series will be skipped. See
is.bimets
Backward compatibility.
Value

This function returns an object of class 1ist (). If JOIN=TRUE, this function returns a matrix.

1dxOver

See Also

NOELS

TSERIES
is.bimets
BIMETS indexing
TSLEAD

TSINFO

TSLOOK

TABIT

ELIMELS

Examples

#create quarterly ts

n=20
ts1=TSERIES((n:1),START=c(2000,1),FREQ=4)
myYP=GETYEARPERIOD(ts1)

print(myYP$YEAR) #print 2000 2000 ...
print(myYP$PRD) #print 1 2341 2 ...

#create monthly ts
ts1=TSERIES((n:1),START=c(2000,1),FREQ="M")
myYP=GETYEARPERIOD(ts1)

print(myYP$YEAR) #print 2000 2000 ...
print(myYP$PRD) #print 1 23456 7 ...

#create yearly ts
ts1=TSERIES((1:n),START=c(2000,1),FREQ=1)
myYP=GETYEARPERIOD(ts1,YEARS='YEARSS', PERIODS='PRDSS')
print(myYP$YEARSS) #print 2000 2001 2002 ...
print(myYP$PRDSS) #print 1 1 1 1.....

#JOIN=TRUE
ts1=TSERIES((n:1),START=c(2000,1),FREQ="M")
myYP=GETYEARPERIOD(ts1,JOIN=TRUE)
print(myYP) #print 2000 2000 ...

[,11[,2]

#[1,] 2000 1

#[2,] 2000 2

#[3,] 2000 3

#...

69

idxOver BIMETS Time Series Indexing

70 idxOver

Description

The package extends the way users can access and modify time series data in order to ease time
series analysis and manipulation.

SELECTING BY DATE: users can select a single observation by date by using the syntax ts['Date']
and multiple observations by using ts['StartDate/EndDate'] or

ts['StartDate'+(0:n)/f], with f=frequency, n=#observations.

Data modification follows the same syntax:
ts['Date']=value,ts['Date/Date']=c(value,value,...,value), etc. Users can also pro-
vide the string representing only the year of selection, or the year and the month of selection. For
quarterly and monthly time series it is possible to select dates by using instances of class yearmon()
and yearqgtr() (See examples).

SELECTING BY YEAR-PERIOD: Users can select observations by providing the year and the
period requested. Selection and modification of data require the double square bracket syntax,

e.g. ts[[YEAR,PERIOD]J=value. Users can also assign an array of values to the input time series,
starting from the [[YEAR,PERIOD]] provided,

i.e. ts[[YEAR,PERIOD]]=c(valuel,value2,...,valueN): in this case the input time series will
be eventually extended in order to sequentially insert all values of the provided array (See exam-

ples).

SELECTING BY INDEXES: (core R) Users can select observations by simply providing the
array of requested indexes,

e.g. ts[c(idx1,idx2,...,1idxN)] while reading and
tsfc(idx1,idx2,...,idxN)]=c(valuel,value2, ..., valueN) while writing time series data.

See Also

GETDATE
BIMETS configuration
date2yp
ya2yp
ym2yp
as.bimets
is.bimets
LOCS
NAMELIST
TABIT
ELIMELS

Examples

#day and month names can change depending on locale
Sys.setlocale('LC_ALL','C")
Sys.setlocale('LC_TIME','C")

#monthly

idxOver

print('MONTHLY GET by DATE')
n=25

#create ts
ts1=TIMESERIES((@:n),START=c(2000,1),FREQ=12)

print(ts1['2001-01"']) #get Jan 2001
print(tsi[as.yearmon('Jan 2001')]) #get Jan 2001
print(ts1['2000-09/2001-01']) #get data from Sep 2000 to Jan 2001
print(ts1['2000-09/']) #get data from Sep 2000
print(ts1['/2001-01"']) #get data till Jan 2001
print(ts1['2001']) #gat all data in year 2001

#get 3 consecutive months starting from Jan 2001
print(ts1[as.yearmon('Jan 2001')+ 0:2/12])
print(tsi[c(2,4,5)]) #get observation number 2,4 and 5
print('MONTHLY GET by YEAR-PERIOD')
print(ts1[[2000,5]]) #get year 2000 period 5

#get year 2010 period 1 (out of range)
tryCatch({print(ts1[[2010,1]11)},error=function(e){cat(e$message)l})

print(ts1[[2002,2]]) #get year 2002 period 2
print('MONTHLY SET by DATE')

ts1['2000-08'1=9.9 #assign to Aug 2000
ts1[as.yearmon('Feb 2001')]1=8.8 #assign to Feb 2001

#assign 8.8 on Feb 2001 and give warning
ts1[as.yearmon('Feb 2001')]1=c(8.8,7.7)

#assign same value to all observation in range Sep 2000 - Jan 2001
ts1['2000-09/2001-01"'1=11.11

#assign repeatedly the two values to each observation starting from Sep 2001
ts1['2001-09/']=c(1.1,2.2)

print(ts1)

print('MONTHLY SET by YEAR-PERIOD')

ts1[[2000,5]1]=NA #set year 2000 period 5

#assign an array starting from year 2002 period 2 (extend time series)

ts1[[2002,2]]=c(-1,-2,-3,-4,-5)
TABIT(ts1)

71

72

#quarterly
print('QUARTERLY GET by DATE')

#create ts
ts1=TSERIES((@:n),START=c(2000,1),FREQ=4)

print(tsi[as.yearqtr('2001 Q1')]) #get 2001 Q1
print(ts1['2001']) #get all data in year 2001

#get 4 consecutive quarters starting from 2002 Q2
print(tsi[as.yearqtr('2002 Q2')+ 0:3/4])

print(ts1['2003/']) #gat all data from 2003 Q1
print('QUARTERLY GET by YEAR-PERIOD')
print(ts1[[2002,4]]) #get year 2002 period 4
print('QUARTERLY SET by DATE')

ts1[as.yearqtr('2001 Q1')]1=7.7 #assign to 2001 QI
ts1['2002']=NA #assign to all observations of 2002

#assign to 3 quaters starting from 2003 Q2
ts1[as.yearqtr('2003 Q2')+ 0:2/41=0

ts1['2004/'1= -1 #assign to all observations starting from 2004
TABIT(ts1)

print('QUARTERLY SET by YEAR-PERIOD')

ts1[[2005,4]1]=c(1,2,3) #assign array starting from year 2005 period 4
TABIT(ts1)

#annual

print('ANNUAL GET by DATE')

#create ts
ts1=TSERIES((1:n),START=c(2000,1),FREQ=1)

print(ts1['2002-12-31']) #get 2002 data
print(ts1['2002']) #get 2002 data
print(ts1['2000/2004']) #get data from 2000 to 2004
print(ts1['2005/']) #get data starting from 2005

print('ANNUAL GET by YEAR-PERIOD')

print(ts1[[2005,1]]) #get year 2005
#get year 2032 (out of range)

idxOver

INDEXNUM

tryCatch({print(ts1[[2032,1]1)},error=function(e){cat(e$message)})

print('ANNUAL SET by DATE')

ts1['2004'J=NA #assign to 2004

ts1['2007/']=0.0 #assign starting from 2007
ts1['2000/2002' 1= -1 #assign in range 2000/2002
TABIT(ts1)

print('ANNUAL SET by YEAR-PERIOD')
ts1[[2005,1]]=NA #assign to 2005

ts1[[2014,1]1]1= c(-1,-2,-3) #assign array starting from 2014 (extend series)
TABIT(ts1)

print('DAILY GET by DATE')

#create ts
ts1=TSERIES((1:n),START=c(2000,1),FREQ="'D")

print(ts1['2000-01-12']) #get Jan 12, 2000 data

print('DAILY GET by YEAR-PERIOD')

print(ts1[[2000,14]]) #get year 2000 period 14

#get year 2032 (out of range)

tryCatch({print(ts1[[2032,1]]1) },error=function(e){cat(e$message)l})

print('DAILY SET by DATE'")

ts1['2000-01-15"']=NA #assign to Jan 15, 2000
TABIT(ts1)

print('DAILY SET by YEAR-PERIOD')
ts1[[2000,3]1]=NA #assign to Jan 3, 2000
#assign array starting from 2000 period 35 (extend series)

ts1[[2000,35]11= c(-1,-2,-3)
TABIT(ts1)

73

INDEXNUM Rebase a Time Series

74 INDEXNUM

Description

This function rebases an input time series to the value of 100 in the year selected by the BASEYEAR
argument. If the input time series frequency is greater than one, the initial reference is set to the
average value of the input time series observations that lie in the BASEYEAR.

Usage
INDEXNUM(x=NULL, BASEYEAR=NULL, avoidCompliance=FALSE, ...)
Arguments
X Input time series that must satisfy the compliance control check defined in is.bimets.
BASEYEAR Rebasing year.
avoidCompliance
If TRUE, compliance control check of input time series will be skipped. See
is.bimets
Backward compatibility.
Value

This function returns a BIMETS time series.

See Also

TSJOIN
TSEXTEND
TSMERGE
MOVAVG
GETYEARPERIOD
CUMSUM

Examples

#create yearly ts

n=20
ts1=TSERIES(1:n,START=c(2000,1),FREQ=1)
TABIT(ts1, INDEXNUM(ts1,2005))

#quarterly
ts1=TSERIES(1:n,START=c(2000,1) ,FREQ=4)
ts1[5]1=NA

TABIT(ts1, INDEXNUM(ts1,2000))

INTS 75

INTS Create Range of Indexes

Description

A command such INTS(i, j) returns a one-dimensional array built with the integers i,i+1,i+2,...,j
when i, j are both scalars, and j is greater than i. When j is less than i, the command shown above
defines a one-dimensional array built with the integers i,i-1,1i-2,...,3.

Users can specify the k increment with a syntax like INTS(i, j, k) which defines a one-dimensional
array built with the values i,i+k,i+2xk, ..., i+N*k.

The value of the last element of the array is the maximum value of i+Nxk that is less than or
equal to j, for positive k. For negative k, the value of the last element of the array is the minimum

value of i+Nxk that is greater than or equal to j.

The command can be used with one parameter by using a syntax like INTS(i) where i is a positive

scalar. The result is a one-dimensional array built with the integers 1,2,3,...,1. When i is less
than 1, the array is built with the integers -1,-2,...,-1i.
Usage
INTS(FROM=NULL, TO=NULL, BY=NULL, ...)
Arguments
FROM The first integer of the sequence. If arguments TO and BY are NULL and FROM>0

the sequence will start from 1 and will end in FROM; If arguments TO and BY
are NULL and FROM<@ the sequence will start from -1 and will end in FROM (see

examples).
T0 The last integer of the sequence.
BY Increment between two elements of the sequence.

Backward compatibility.

Value

This function returns an object of class c().

See Also

TSJOIN
TSEXTEND
TSMERGE
MOVAVG
GETYEARPERIOD
TSLAG

76 is.bimets

TSINFO
TABIT
ELIMELS

Examples

print(INTS(10,1,-2)) #... 106 8 6 4 2

#...Error in INTS(10@, 1, -0.5) : INTS(): inputs must be integers.
tryCatch({print(INTS(10,1,-0.5));},error=function(e){cat(e$message)})

print(INTS(10)) #... 1 2 3 4 5 6 7 8 910
print(INTS(-10)) # -1 -2 -3 -4 -5 -6 -7 -8 -9 -10

Error in INTS(Q) : INTS(): magnitude must be >=1
tryCatch({print(INTS(Q));},error=function(e){cat(e$message)?})

print (INTS(-10,-45)) # -10 -11 -12 ... -41 -42 -43 -44 -45

#...Error in seq.default(FROM, TO, BY) : wrong sign in 'by' argument
tryCatch({print(INTS(-10,-45,3));},error=function(e){cat(e$message)})

print(INTS(-10,-45,-3)) # -10 -13 -16 -19 -22 -25 -28 -31 -34 -37 -40 -43

is.bimets Check the Compliance of a Time Series

Description

This function checks the compliance of the input time series that must verify the following BIMETS
requirements:

- the input time series must be of the class defined in BIMETS_CONF_CCT (see BIMETS configuration)

- If BIMETS_CONF_CCT="TS" the input time series must be of class ts, univariate, with at least
one observation and with a frequency f=1,2,3,4,12,24,36,53 or 366 per year.

-if BIMETS_CONF_CCT="XTS" the input time series must be of class xts, univariate, with at least one
observation and with a frequency f=1,2,3,4,12,24,36,53 or 366 per year; the input time series
must also be stricty regular, i.e. without any temporal discontinuity, and must have an . indexClass
of type yearmon () for monthly time series, of type yearqtr () for quarterly time series and of type
Date() for any other frequency. If configuration option BIMETS_CONF_DIP="'LAST', i.e. the default
value, the provided observation dates of the input xts() time series must be the last dates in the
period, e.g. Dec. 31 for annual time series, Jun. 30 for the first period in a semiannual time series,
etc.; If configuration option BIMETS_CONF_DIP="FIRST' the provided observation dates of the in-
put xts() time series must be the first dates in the period, e.g. Jan. 1 for an annual time series, Jul.

is.bimets 77

1 for the second period in a semiannual time series, etc.;
BIMETS package functions return time series that are compliant to the above requirements.

The compliance check can be locally disabled by using the function argument avoidCompliance=TRUE,
that is available in almost all package functions. The compliance check of a BIMETS generated
time series can be avoided and disabling the control check can speed up the execution time. This is
suggested when users concatenate several call to the package functions, e.g. the compliance check

of the ts2 time series in the following example can be avoided:
ts2=TSLAG(ts1);ts3=TSDELTA(ts2,avoidCompliance=TRUE);.

Time series must lie in the year range 1800-2199: in this range the conversion between a date
and the related year-period (and vice versa) has been hardcoded in order to speedup the execution
time.

If the compliance check is disabled, i.e. avoidCompliance=TRUE and the input time series does not
verify all the above requirements, the package functions can have an erroneous behavior. Should
any doubt arise, we suggest to call the package functions using the default arguments; we also sug-
gest to create time series object by using the command TIMESERIES.

Usage

is.bimets(x = NULL, suppressErrors=TRUE, ...)
Arguments

X Input time series.

suppressErrors If suppressErrors=TRUE the function returns a logical value TRUE/FALSE when-
ever the input time series is BIMETS compliant. If suppressErrors=FALSE the
function will throw an error if the input time series is not BIMETS compliant.

Backward compatibility.

Value

This function returns a logical value TRUE/FALSE whenever the input time series is compliant to the
above BIMETS requirements. If the test fails and suppressErrors=FALSE this function will throw
an error.

See Also

as.bimets
TIMESERIES

BIMETS indexing
BIMETS configuration
fromBIMETStoTS
fromBIMETStoXTS

78

Examples

#day and month names can change depending on locale

Sys.setlocale('LC_ALL','C")
Sys.setlocale('LC_TIME','C")

#set day in period to last
setBIMETSconf ('BIMETS_CONF_DIP', 'LAST")

#set constructor class type
setBIMETSconf ('BIMETS_CONF_CCT', 'XTS')

#create an xts
xt=TIMESERIES(1:10,START=c(2000,1),FREQ="A")

print(xt); #...dates are at Dec 31
print(is.bimets(xt)) #...TRUE

#change setting
setBIMETSconf ('BIMETS_CONF_DIP','FIRST')

print(is.bimets(xt)) #...FALSE

#set constructor class type
setBIMETSconf ('BIMETS_CONF_CCT','TS")

#bivariate ts

tsBiv=ts(matrix(c(1,2,3,4,5,6),nrow=3,ncol=2),start=c(2000,1), frequency=1)

print(is.bimets(tsBiv)) #...FALSE

#...error

tryCatch({is.bimets(tsBiv, suppressError=FALSE)},

is.bimets

error=function(e){cat(e$message)});try({is.bimets(tsBiv, suppressError=FALSE)})

#ts year

n=10

XArr=rnorm(n)
t=ts(data=xArr,start=c(2000,1),frequency=1)
cat('is compliant?',is.bimets(t),'\n")

#ts semestral

n=10

XArr=rnorm(n)
t=ts(data=xArr,start=c(2000,1),frequency=2)
cat('is compliant?',is.bimets(t),'\n")

#set configuration BIMETS_CONF_DIP on FIRST
setBIMETSconf ('BIMETS_CONF_DIP','FIRST')

#work with XTS

LOAD_MODEL 79

setBIMETSconf ('BIMETS_CONF_CCT', 'XTS")

#xts annual with dates

n=10

XArr=rnorm(n)
dateArr=seq(as.Date('2000/01/01"'),by="year"',length=n)
dataF=data.frame(dateArr, xArr)
xt=xts(dataF[,2],order.by=dataF[,1])

cat('is compliant?',is.bimets(xt), '\n")

#xts daily

n=10

XArr=rnorm(n)
dateArr=seq(as.Date('2000/01/01"'),by="day',length=n)
dataF=data.frame(dateArr,xArr)
xt=xts(dataF[,2],order.by=dataF[,1])

cat('is compliant?',is.bimets(xt),'\n")

#xts monthly with dates

n=10

XArr=rnorm(n)

dateArr=seq(as.Date('2000/01/01"'),by="month"',length=n)
dataF=data.frame(dateArr,xArr)

xt=xts(dataF[,2],order.by=dataF[,1])

cat('monthly with dates is compliant? ',is.bimets(xt),'\n') #...false

#xts monthly with yearmon

n=10

XArr=rnorm(n+1)

dateArr=as.yearmon('Jan 2001')+0:n/12

dataF=data.frame(dateArr,xArr)

xt=xts(dataF[,2],order.by=dataF[,1])

cat('monthly with yearmon is compliant? ' ,is.bimets(xt),'\n') #...true

#restore defaults
setBIMETSconf ('BIMETS_CONF_CCT','TS")
setBIMETSconf ('BIMETS_CONF_DIP', 'LAST')

LOAD_MODEL Load a BIMETS model description file

Description

This function parses a MDL model definition and creates an equivalent R data structure that can be
estimated and simulated. The input model definition can be either an external plain text file or a
character variable.

80 LOAD_MODEL

Usage

LOAD_MODEL (modelFile=NULL,
modelText=NULL,
showWarnings=TRUE,
quietly=FALSE,
oldStyleModel=FALSE,

.
Arguments
modelFile The path to the text file containing the MDL model definition.
modelText The character variable containing the MDL model definition. modelText takes

precedence over modelFile if both are defined.

showWarnings If TRUE a warning message will be shown if the model has a null set of endoge-
nous variables or a null set of exogenous variables.

quietly If TRUE, information messages will be suppressed.
oldStyleModel Backward compatibility.
Backward compatibility.

Value

This function returns a BIMETS model object containing all the information gathered from the
parsing of the input model definition.

A BIMETS model created with the LOAD_MODEL function can be viewed as a complex R list()
containing the following elements (see examples):

- rawData and cleanModel: string arrays containing the original model definition. cleanModel
is a clean version of the model definition, i.e. without comments, blank lines, etc.;

- behaviorals and identities: sub-lists containing all the information gathered from the behavioral
and the identity definitions. This sub lists are described later in this page;

- vendog and vexog: string array containing the names of the endogenous and exogenous vari-
ables of the model; the former is also subsetted into vendogBehaviorals and vendogIdentities

- totNumEgqs, totNumlds and eqCoeffNum: integer variables containing the behaviorals count,
the identities count and the coefficients count of the model;

- incidence_matrix: the incidence matrix built from the model equations; it is a square matrix
in which each row and each column represent an endogenous variable. If the (i,j) element is
equal to 1 than in the model definition the current value of the endogenous variable referred by the
i-row directly depends on the current value of the endogenous variable referred by the j-column.
(see example)

- vpre, vsim, vfeed and vpost: the simulation process takes advantage of an appropriate ordering
of the equations to increase the performances by iteratively solving only one subset of equations,

LOAD_MODEL 81

while the other equations are solved straightforwardly. (Ref: Don Gallo - Solving large sparse
systems of equations in econometric models - Journal of Forecasting 1987 and Numerical methods
for simulation and optimal control of large-scale macroeconomic models - Nepomiastchy, Rachidi,
Ravelli - 1980). The optimal reordering of the model equations is achieved by using an iterative
algorithm applied to the incidence matrix, that produces 4 ordered arrays of endogenous variables:
1) vpre is the ordered string array containing the names of the endogenous pre-recursive variables
that must be computed (by using their EQ> definition) before the simulation iterative algorithm takes
place;

2) vsim is the ordered string array containing the names of the endogenous variables that must be
sequentially computed during each iteration of the simulation algorithm;

3) vfeed is the ordered string array containing the names of the endogenous feedback variables to
be evaluated for convergence during the simulation iterative algorithm;

4) vpost is the ordered string array containing the names of the endogenous post-recursive variables
that must be computed after the execution and the convergence of the iterative algorithm in step 3
(more details in BIMETS package and SIMULATE help pages);

- max_lag: the max lag of the model, i.e. the highest number of periods a time series of the
model is lagged by in the MDL definition. It also accounts for PDLs and for the order of the error

autocorrelation, if any;

- modelName: the name of the model, copied from the input file name or from the input character
variable name containing the model definition;

BEHAVIORALS and IDENTITIES

The elements ’behaviorals’ and ’identities’ of the BIMETS model are named lists that contain
information on behaviorals and identities of the model. In both of this two lists, the name of each
element is the name of the behavioral or the identity the data refer to, as specified in the model
definition file: e.g. given a BIMETS model named myModel, the information on a behavioral
named cn (i.e there exists a "BEHAVIORAL> cn" in the MDL definition of the model) is stored
into myModel$behavioralss$cn.

Behavioral elements have the following components:

- eq: the equation of the behavioral, as a character variable;

- eqCoefficientsNames: the names of the coefficients (the original ones and eventually the ones
created by the PDL> expansion);

- eqCoefficientsNamesOriginal: the names of the original coefficients;

- eqComponentsNames: the names of endogenous and exogenous variables that appear in the
behavioral equation;

- eqComponentsNamesBehaviorals: the names of behavioral endogenous variables that appear
in the behavioral equation;

- eqComponentsNamesldentities: the names of identity endogenous variables that appear in the

82

LOAD_MODEL

behavioral equation;

- eqComponentsNamesExogenous: the names of exogenous variables that appear in the behav-
ioral equation;

- tsrange: the estimation time range as a 4 integer array;

- eqRegressorsNames: a character array containing the regressor expressions (the original ones
and eventually the ones created by the PDL> expansion);

- eqRegressorsNamesOriginal: a character array containing the expressions of the original re-
gressors;

- errorRaw: the original definition of the error autocorrelation, if any (see MDL);
- errorType: the type of the error structure;
- errorDim: the dimension of the error autocorrelation;

- eqSimExp: the R optimized expression of the behavioral equation that is used in the simula-
tion algorithm;

- matrixR: the R Lagrange matrix that is used in restriction analysis (see MDL);

- vectorR: the r Lagrange vector that is used in restriction analysis (see MDL);

- restrictRaw: the original definition of the coefficient restrictions, if any.

- pdIRaw: the original definition of the PDL restrictions, if any (see examples and MDL).

- pdIRestrictionMatrix: the R Lagrange matrix that is used in PDL restriction analysis (see ex-
amples and MDL);

For example, given a BIMETS model named myModel, the information on a techincal identity
named y (i.e there exists an "IDENTITY> y" in the MDL definition of the model) is stored in
myModel$identities$y.

Identity elements have the following components:

- eqRaw: the original equations of the identity (more than one if the identity has multiple equa-
tions and has IF> conditions), as a character variable (see examples and MDL);

- ifRaw: the original IF> conditions, if any, of the identity, as a character variable;

- eqFull: the full expression of the identity, composed with IF> conditions and related equations
(see examples), as a character variable;

- eqComponentsNames: the names of endogenous and exogenous variables that appear in the

LOAD_MODEL 83

identity equation;

- eqComponentsNamesBehaviorals: the names of behavioral endogenous variables that appear
in the identity equation;

- eqComponentsNamesldentities: the names of identity endogenous variables that appear in the
identity equation;

- eqSimExp: the R optimized expression of the identity equation that is used in the simulation
algorithm;

- hasIF: boolean, TRUE if the identity has an IF> condition;

See Also

MDL

LOAD_MODEL_DATA
ESTIMATE

SIMULATE

MULTMATRIX

RENORM

TIMESERIES

BIMETS indexing
BIMETS configuration

Examples

#define model
myModelDefinition=
"MODEL

COMMENT> Modified Klein Model 1 of the U.S. Economy with PDL,
COMMENT> autocorrelation on errors, restrictions and conditional evaluations

COMMENT> Consumption

BEHAVIORAL> cn

TSRANGE 1925 1 1941 1

EQ> cn = al + a2xp + a3*TSLAG(p,1) + adx(wl+w2)
COEFF> al a2 a3 a4

ERROR> AUTO(2)

COMMENT> Investment

BEHAVIORAL> i

TSRANGE 1923 1 1941 1

EQ> i = b1 + b2*p + b3*xTSLAG(p,1) + b4xTSLAG(k,1)
COEFF> b1 b2 b3 b4

RESTRICT> b2 + b3 =1

84

COMMENT> Demand for Labor

BEHAVIORAL> w1

TSRANGE 1925 1 1941 1

EQ> wl = c1 + c2x(y+t-w2) + c3*TSLAG(y+t-w2,1) + cd*time
COEFF> c1 c2 c3 c4

PDL> c3 1 3

COMMENT> Gross National Product
IDENTITY> y
EQ>y=cn+1i+g-t

COMMENT> Profits
IDENTITY> p
EQ> p =y - (wl+w2)

COMMENT> Capital Stock with switches
IDENTITY> k

EQ> k = TSLAG(k,1) + i

IF>1i >0

IDENTITY> k

EQ> k = TSLAG(k,1)

IF> i <=0

END"

#load model
myModel=LOAD_MODEL (modelText=myModelDefinition)

#retrieve model structure...

#tget definition

myModel$cleanModel

[1] "BEHAVIORAL> cn”

[2] "TSRANGE 1925 1 1941 1"

[3] "EQ> cn = al + a2*p + a3*TSLAG(p,1) + adx(wl+w2)"
[4] "COEFF> al a2 a3 a4”

[51 "ERROR> AUTO(2)"

[6] "BEHAVIORAL> i"

[7] "TSRANGE 1923 1 1941 1"

[8] "EQ> i = b1 + b2*p + b3*TSLAG(p,1) + b4*TSLAG(k,1)"
[9] "COEFF> b1 b2 b3 b4”

#[10] "RESTRICT> b2 + b3 = 1"

#[11] "BEHAVIORAL> w1"

#[12] "TSRANGE 1925 1 1941 1"

#[13] "EQ> wl = c1 + c2*(y+t-w2) + c3xTSLAG(y+t-w2,1)+c4*time”
#[14] "COEFF> c1 c2 c3 c4"

#[15]1 "PDL> c3 1 3"

#[16] "IDENTITY> y"

#[17] "EQ> y = cn + i + g - t"

#[18] "IDENTITY> p”

#0191 "EQ> p = y - (wl+w2)”

#[20] "IDENTITY> k"

#0211 "EQ> k = TSLAG(k,1) + i”

#[22] "IF> i > 0"

#[23] "IDENTITY> k"

T E N

LOAD_MODEL

LOAD_MODEL

#[241 "EQ> k = TSLAG(k,1)"
#[25] "IF> i <= 0"

#get endogenous and exogenous

myModel$vendog

#0117 "cn” "iT "wiT y" o "pt K
myModel$vexog

4017 "w2" "t” "time” "g"

#get behaviorals, identities and coefficients count
myModel$totNumEqgs

#[11 3

myModel$totNumIds

#[11 3

myModel$eqCoeffNum

#[1] 12

#get the incidence matrix
myModel$incidence_matrix
cniwlypk

#cn 00 1010
#i 00 0010
#wl 00 0100
#y 11 0000
#4p 00 1100
#4k 01 0000

#get the optimal reordering arrays
myModel$vpre

#NULL

myModel$vsim

#L11 "w1” "p" Men" "i" "y"
myModel$vfeed

#11 "y”

myModel$vpost

#[11 "k"

#get the model max lag and the model name
myModel$max_lag

#[1]1 3

myModel$modelName

#myModelDefinition

#get infos on behavioral wil

myModel$behaviorals$wi$eq
#1] "wl=cl+c2x(y+t-w2)+c3*TSLAG(y+t-w2,1)+c4*xtime"

myModel$behaviorals$wi$eqCoefficientsNames
#[1] "c1” "c2" "c3" "c3_PDL_1" "c3_PDL_2"

”C4”

85

86

LOAD_MODEL

myModel$behaviorals$wil$eqCoefficientsNamesOriginal
#[-I] "C1 n ”C2” ”C3" “C4"

myModel$behaviorals$wl$eqComponentsNames
4017 "t” "time” "wl” w2 "y"

myModel$behaviorals$wi$tsrange
#[1] 1925 1 1941 1

myModel$behaviorals$wl$eqRegressorsNames
#01] "1" " (y+t-w2)”
#[3] "TSLAG(y+t-w2,1)" "TSLAG(TSLAG(y+t-w2,1),1)" "TSLAG(TSLAG(y+t-w2,1),2)" "time"

myModel$behaviorals$wil$eqRegressorsNamesOriginal
#011 "M "(y+tt-w2)”
#[3] "TSLAG(y+t-w2,1)" "time"

myModel$behaviorals$wil$pdlRaw
#[1]1 "c3 1 3;"

myModel$behaviorals$wil$pdlRestrictionMatrix
(,11 0,21 (,31C,4] [,5]L,6]
#01,1] 0 0 1 -2 1 0

#get infos on behavioral cn

myModel$behaviorals$cn$errorRaw
#[11 "AUTO(2)"

myModel$behaviorals$cn$errorType
#[1] "AUTO"

myModel$behaviorals$cn$errorDim
#[1] 2

myModel$behaviorals$cn$eqSimExp

#texpression(cn[4,]=cn__ADDFACTOR[4, J+cn__al+cn__a2*p[4, J+cn__a3x(p[3,1)+
#tcn__ad4x(w1[4,]1+w2[4,]1)+cn__RHO_1*(cn[3,]-(cn__ADDFACTOR[3,]+
#cen__al+en__a2*p[3,1+cn__a3x(p[2,1)+cn__ad*x(w1[3,]+w2[3,1)))+
#cn__RHO_2*x(cn[2,]1-(cn__ADDFACTOR[2, J+cn__al+cn__a2*p[2,]+
#ten__a3x(pl1, D +cn__ad4x(wi1[2,1+w2[2,1))))

#get infos on behavioral i
myModel$behaviorals$i$matrixR
[,11 0,21 [,3]1L,4]
#1,1 o 1 1 0

myModel$behaviorals$i$vectorR

LOAD_MODEL_DATA 87

#0111

myModel$behaviorals$i$restrictRaw
#[1] "b2+b3=1;"

#get infos on identitiy k

myModel$identities$k$eqRaw
#[1] "k=TSLAG(k,1)+i;k=TSLAG(k,1);"

myModel$identities$k$ifRaw
#[11 "i > 0;i <= 0;"

myModel$identities$k$eqFull
#011 "__IF__ (i > @) __THEN__ k=TSLAG(k,1)+i;

IF__ (i <= @) __THEN__ k=TSLAG(k,1);"

myModel$identities$k$eqComponentsNames
#01] "i" "k”

myModel$identities$k$eqSimExp
#expression(k[4,]1=.MODEL_VIF(k[4,]1,i[4,] > @,k_ADDFACTOR[4, 1+
#(k[3,1)+i[4,1),k[4,]1=.MODEL_VIF(k[4,]1,i[4,] <= o,
#Kk_ADDFACTOR[4, 1+(k[3,1)))

myModel$identities$k$hasIF
#[1] TRUE

LOAD_MODEL _DATA Load time series data into a BIMETS model object

Description
This function verifies the input time series list and copies the data into a BIMETS model object.
Provided time series must be BIMETS compliant, as defined in is.bimets

Usage

LOAD_MODEL_DATA(model=NULL, modelData=NULL, showWarnings=FALSE, quietly=FALSE, ...)

Arguments
model The BIMETS model object (see LOAD_MODEL).
modelData The input time series list containing endogenous and exogenous data (see exam-

ple).

88 LOAD_MODEL_DATA

showWarnings If TRUE, a warning message will be shown if any input time series has missing
values.

quietly If TRUE, information messages will be suppressed.

Backward compatibility.

Value

This function add a new named element, i.e. modelData, into the output model object.

The new modelData element is a named R list that contains all the input time series. Each ele-
ment name of this list is set equal to the name of the endogenous or exogenous variable the time
series data refer to.

See Also

MDL

LOAD_MODEL

ESTIMATE

SIMULATE

MULTMATRIX

RENORM

TIMESERIES

BIMETS indexing
BIMETS configuration

Examples

#define model data
myModelData=1ist(
cn
=TIMESERIES(39.8,41.9,45,49.2,50.6,52.6,55.1,56.2,57.3,57.8,55,50.9,
45.6,46.5,48.7,51.3,57.7,58.7,57.5,61.6,65,69.7,
START=c(1920,1),FREQ=1),
g
=TIMESERIES(4.6,6.6,6.1,5.7,6.6,6.5,6.6,7.6,7.9,8.1,9.4,10.7,10.2,9.3,10,
10.5,10.3,11,13,14.4,15.4,22.3,
START=c(1920,1),FREQ=1),
i
=TIMESERIES(2.7,-.2,1.9,5.2,3,5.1,5.6,4.2,3,5.1,1,-3.4,-6.2,-5.1,-3,-1.3,
2.1,2,-1.9,1.3,3.3,4.9,
START=c(1920,1),FREQ=1),
k
=TIMESERIES(182.8,182.6,184.5,189.7,192.7,197.8,203.4,207.6,210.6,215.7,
216.7,213.3,207.1,202,199,197.7,199.8,201.8,199.9,
201.2,204.5,209.4,
START=c(1920,1),FREQ=1),

LOAD_MODEL_DATA 89

=TIMESERIES(12.7,12.4,16.9,18.4,19.4,20.1,19.6,19.8,21.1,21.7,15.6,11.4,
7,11.2,12.3,14,17.6,17.3,15.3,19,21.1,23.5,
START=c(1920,1),FREQ=1),

wl

=TIMESERIES(28.8,25.5,29.3,34.1,33.9,35.4,37.4,37.9,39.2,41.3,37.9,34.5,
29,28.5,30.6,33.2,36.8,41,38.2,41.6,45,53.3,
START=c(1920,1),FREQ=1),

y

=TIMESERIES(43.7,40.6,49.1,55.4,56.4,58.7,60.3,61.3,64,67,57.7,50.7,41.3,
45.3,48.9,53.3,61.8,65,61.2,68.4,74.1,85.3,
START=c(1920,1),FREQ=1),

t
=TIMESERIES(3.4,7.7,3.9,4.7,3.8,5.5,7,6.7,4.2,4,7.7,7.5,8.3,5.4,6.8,7.2,
8.3,6.7,7.4,8.9,9.6,11.6,
START=c(1920,1),FREQ=1),
time

=TIMESERIES(NA,-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,
START=c(1920,1) ,FREQ=1),

w2
=TIMESERIES(2.2,2.7,2.9,2.9,3.1,3.2,3.3,3.6,3.7,4,4.2,4.8,5.3,5.6,6,6.1,
7.4,6.7,7.7,7.8,8,8.5,
START=c(1920,1),FREQ=1)
)
#define model
myModelDefinition=

"MODEL

COMMENT> Modified Klein Model 1 of the U.S. Economy with PDL,
COMMENT> autocorrelation on errors, restrictions and conditional evaluations
COMMENT> Consumption

BEHAVIORAL> cn

TSRANGE 1925 1 1941 1

EQ> cn = al + a2*p + a3*TSLAG(p,1) + ad*(wl+w2)

COEFF> a1 a2 a3 a4

ERROR> AUTO(2)

COMMENT> Investment

BEHAVIORAL> i

TSRANGE 1923 1 1941 1

EQ> i = b1 + b2xp + b3*TSLAG(p,1) + b4xTSLAG(k,1)
COEFF> b1 b2 b3 b4

RESTRICT> b2 + b3 =

COMMENT> Demand for Labor

BEHAVIORAL> w1

TSRANGE 1925 1 1941 1

EQ> wl = ¢l + c2*(y+t-w2) + c3*TSLAG(y+t-w2,1)+c4xtime
COEFF> c1 c2 c3 c4

PDL> c3 1 3

COMMENT> Gross National Product

IDENTITY> y

EQ>y=cn+i+g-1t

COMMENT> Profits

IDENTITY> p

EQ> p =y - (wl+w2)

90

LOAD_MODEL_DATA

COMMENT> Capital Stock with switches
IDENTITY> k

EQ> k = TSLAG(k,1) + i

IF>i >0

IDENTITY> k

EQ> k = TSLAG(k,1)

IF> i <=0

END"

#load model
myModel=LOAD_MODEL (modelText=myModelDefinition)

#load data into the model
myModel=LOAD_MODEL_DATA(myModel,myModelData, showWarnings = TRUE)

#lLoad model data "myModelData” into model "myModelDefinition”...
#CHECK_MODEL_DATA(): warning, there are missing values in series "time".
#...LOAD MODEL DATA OK

#retrieve data from model object

myModel$modelDatas$cn
#Time Series:
#Start = 1920
#End = 1941

#Frequency = 1
[1] 39.8 41.
#57.8 55.0 50.
#[21] 65.0 69.

myModel$modelData$wi
#Time Series:
#Start = 1920
#End = 1941
#Frequency =
[1] 28.8 25.5 29.3 34.1 33.9
#41.3 37.9 34.5 29.0 28.5 30.6
#[21] 45.0 53.3

1

35.4 37.4 37.9 39.2
33.2 36.8 41.0 38.2 41.6
myModel$modelData$i

#Time Series:

#Start = 1920

#End = 1941

#Frequency = 1

[1] 2.7 -0.2 1.9 5.2 3.0 5.1 5.6 4.2 3.0 5.1
#1.0 -3.4 -6.2 -5.1 -3.0 -1.3 2.1 2.0 -1.9 1.3

#[211 3.3 4.9

myModel$modelData$time
#Time Series:

#Start = 1920

#End = 1941

#Frequency = 1

LOCS

[1]1 NA -10
#o 1 2 3

91

-9 -8 -7 -6 -5 -4 -3 -2 -1
4 5 6 7 8 9 10

LOCS

Select Time Series Indexes

Description

This function returns the indexes of the input TRUE elements. The input can be either an array or a
time series. The result is usually used as a structured index to produce a new array.

Usage
LOCS(x=NULL, options='ALL', ...)
Arguments
X This function accepts as input a boolean array or a boolean time series, often as
the result of a logic comparison between an expression and a numerical array or
a numerical time series:
e.g. LOCS(c(a,b,c,...)>=k); LOCS(ts==j);
LOCS(ts<expr); LOCS(is.na(ts)); etc...
options A selection option can refine the result:
ALL: (default) all the TRUE indices will be returned in the output.
UNIQUE: return the index of the unique TRUE result; if there are multiple TRUE
results then an error will be thrown.
FIRST: return the first TRUE result.
LAST: return the last TRUE result.
Backward compatibility.
Value

This function returns a numerical array built with the indexes of the values that are TRUE in the input
boolean array or in the input boolean time series.

See Also

NOELS
is.bimets

BIMETS indexing

TSERIES
GETYEARPERIOD
NOELS
NAMELIST

INTS

92 MDL

TSINFO
TABIT
ELIMELS

Examples

#create ts

n=10
tsT=TSERIES((1:n),START=c(2000,1),FREQ=1)
print(LOCS(ts1>7,options="FIRST')) #print 8

#tgenerate error: print LOCS(): input has more than one TRUE element.
tryCatch({print(LOCS(ts1>=3,options="UNIQUE"'));},error=function(e){print(e$message);3l})

print(LOCS(is.na(c(1,2,NA,4,5,6,7,NA,NA)))) #print c(3,8,9)

MDL BIMETS Model Description Language

Description

BIMETS provides a language to unambiguously specify an econometric model. This page describes
how to create a model and its general structure. The specification of an econometric model is trans-
lated and identified by keyword statements which are grouped in a model file, i.e. a plain text file
or a character variable with a specific syntax. Collectively, these keyword statements constitute
the BIMETS Model Description Language (from now on MDL). The model specifications consist of
groups of statements. Each statement begins with a keyword. The keyword classifies the compo-
nent of the model which is beign specified.

Below is an example of a Klein’s model with a MDL compliant syntax that can either be stored
in a character variable or in a plain text file.

The content of the kleinl.txt variable is:

R> klein?l.txt="
MODEL

COMMENT> Consumption

BEHAVIORAL> cn

TSRANGE 1921 1 1941 1

EQ> cn = al + a2*p + a3*TSLAG(p,1) + adx(wl+w2)
COEFF> al a2 a3 a4

COMMENT> Investment
BEHAVIORAL> i
TSRANGE 1921 1 1941 1

MDL 93

EQ> i = b1 + b2*p + b3*TSLAG(p,1) + b4*TSLAG(k,1)
COEFF> b1 b2 b3 b4

COMMENT> Demand for Labor

BEHAVIORAL> w1

TSRANGE 1921 1 1941 1

EQ> wl = c1 + c2x(y+t-w2) + c3*TSLAG(y+t-w2,1)+c4xtime
COEFF> c1 c2 c3 c4

COMMENT> Gross National Product
IDENTITY> y
EQ> y=cn+i+g-t

COMMENT> Profits
IDENTITY> p
EQ> p =y - (wl+w2)

COMMENT> Capital Stock
IDENTITY> k
EQ> k = TSLAG(k,1) + i

END

n

Please note that there are circular dependencies between equations of the model, i.e. cn <-wl <-y
<-cn. Circular dependencies imply that the model simulation must be solved with an iterative algo-
rithm.

As shown, the model definition is quite intuitive. The first keyword is MODEL, while at the end
of the model definition we can find the END keyword. Available tags in the definition of a generic
BIMETS model are:

- EQUATION> or BEHAVIORALS> indicate the beginning of a series of keyword statements de-
scribing a behavioral equation. The behavioral statement general form is:

BEHAVIORAL> name [TSRANGE startYear,startPeriod, endYear,endPeriod]

where name is the name of the behavioral equation and the optional TSRANGE specifies that the pro-
vided time interval must be used in the coefficients estimation. The optional TSRANGE is defined
as a 4-dimensional numerical array built with starting year, starting period, ending year and ending
period.

Given Y = 3% X + ¢, where Y are the historical values of the dependent variable and X are
the historical values of the regressors, if the requested estimation method is OLS (Ordinary Least
Squares), in the general case (i.e. no restrictions nor error auto-correlation, as described later) the
coefficients will be calculated as: Bors = (X' * X)L+ X' x Y.

If the requested estimation method is IV (Instrumental Variables), given Z the matrix built with
instrumental variables as columns Z;, that should not be correlated to the disturbance terms, i.e.
El¢' x Z;] = 0, the coefficients will be either calculated as

Brv = (Z'«X)~' % Z' Y, or more generally as: By = (X' Q1% X)" 1% X'« Q!+ Y where

94

MDL

X=Zx(Z'«2)"'«Z xXandQ =0?*1,0% = E[¢ ¢

- IDENTITY> indicates the beginning of a series of keyword statements describing an identity
or technical equation. The identity statement general form is:

IDENTITY> name

where name is the identity name.

- EQ> specifies the mathematical expression for a behavioral or an identity equation.
The equation statement general form for a behavioral equation is:

EQ> LHS = coeff1%f1 + coeff2*xf2 + coeff3xf3 + ...

where LHS is a function of the behavioral variable,

coeff1,coeff2,coeff3, ... are the coefficient names of the equation and
f1,f2,f3,... are functions of variables.

The equation statement general form for an identity equation is:
EQ>LHS=f1+f2+f3+ ...

where LHS is a function of the identity variable and

f1,f2,f3,... are functions of variables.

The following MDL functions can be used in the LHS left-hand side of the equation, with name as
the name of the behavioral or the identity variable:

- name - i.e. the identity function;

- TSDELTA(name, i) - i-periods difference of the name time series;

- TSDELTAP(name, i) - i-periods percentage difference of the name time series;

- TSDELTALOG(name, i) - i-periods logarithmic difference of the name time series;

- LOG(name) - log of the name time series;

- EXP(name) - exponential of the name time series.

On the other side the mathematical expression available for using in the RHS right-hand side of
the EQ> equation (i.e. f1,f2,f3,...) can include the standard arithmetic operators, parentheses
and the following MDL functions:

- TSLAG(ts, 1) - lag the ts time series by i-periods;

- TSDELTA(ts, i) - i-periods difference of the ts time series;

- TSDELTAP(ts, i) - i-periods percentage difference of the ts time series;

- TSDELTALOG(ts, 1) - i-periods logarithmic difference of the ts time series;

- MOVAVG(ts, i) - i-periods moving average of the ts time series;

MDL 95

- MOVSUM(ts, i) - i-periods moving sum of the ts time series;
- LOG(ts) - log of the ts time series;

- EXP(ts) - exponential of the ts time series;

- ABS(ts) - absolute values of the ts time series.

MDL function names are reserved names. They cannot be used as variable or coefficient names.
The coefficient names are specified in a subsequent COEFF> keyword statement within a behavioral
equation. By definition, identities do not have any coefficient that must be assessed. Any name not
specified as a coefficient name or mentioned on the list of the available MDL functions is assumed to
be a variable.

- COEFF> specifies the coefficient names used in the EQ> keyword statement of a behavioral
equation. The coefficients statement general form is:

COEFF> coeff@ coeff1 coeff2 ... coeffn.

The coefficients order in this statement must be the same as it appears in the behavioral equation.

- ERROR> specifies an autoregressive process of a given order for the regression error. The er-
ror statement general form is:

ERROR> AUTO(n)

where n is the order of the autoregressive process for the error.

During an estimation, users must ensure that the required data is available for the specified er-
ror structure: n periods of data prior to the time interval specified by TSRANGE are requested in any
time series involved in the regression.

The solution requires an iterative algorithm. Given Y; = (31 * X1 + €1, where Y} are the historical
values of the dependent variable and X are the historical values of the regressors, the iterative
algorithm is based on the Cochrane-Orcutt procedure:

1) Make an initial estimation by using the original TSRANGE extended backward n periods (given
n as the autocorrelation order).

2) estimate the error autocorrelation coefficients p; = p; 1, ..., pi,n With ¢ = 1 by regressing the
residuals €; on their lagged values by using the auxiliary model:
€ = pi1 * TSLAG(€;, 1) + ... + pin * TSLAG(€;, 1)

3) transform the data for the dependent and the independent variables by using the estimated p;.
The new dependent variable will be: Y;1 1 = P; Y}, and the new independent variables will be
Xiy1 = P; + X; with the matrix P; defined as:

1 0 0 0 0 0
—pPil 1 0 0 0 0
Pi=1 —pi2 —pix 1 0 0 0

0 0 e —Pim e TP 1

96

MDL

4) run another estimation on the original model Y; 1 = B;41 * X;+1 + €;41 by using the suitable
TSRANGE and the transformed data coming out of step 3 and compute the new time series for the
residuals.

5) estimate the new autocorrelation coefficients p; 11 = pi+1,1; ..., Pi+1,n, Dy regressing the new
residuals arising from step 4 (similar to step 2)

6) carry out the convergence check through a comparison among the previous p; and the new ones
arising from steps 5.

If ali(abs(pi+1 — pi) < &), where p; is the p vector at the iteration ¢ and 0 is a small convergence
factor, then exit otherwise repeat from step 3 with i <-i+1.

- RESTRICT?> is a keyword that can be used to specify linear coefficient restrictions. A determin-
istic restriction can be applied to any equation coefficient. Any number of RESTRICT> keywords is
allowed for each behavioral equation.

A deterministic (exact) coefficient restriction sets a linear expression containing one or more co-
efficients equal to a constant. The restriction only affects the coefficients of the behavioral equation
in which it is specified. The restriction statement general form is:

RESTRICT> linear_combination_of_coefficients_1 = value_1
linear_combination_of_coefficients_n = value_n

where linear_combination_of_coefficients_i,i=1..n is a linear combination of the coeffi-
cient(s) to be restricted and value_i is the in-place scalar value to which the linear combination of
the coefficients is set equal. Each linear combination can be set equal to a different value.

MDL example:

RESTRICT> coeffl = 0
coeff2 = 10.5
coeff3-3xcoeff4+1.2xcoeff5 = 0@

In many econometric packages, linear restrictions have to be coded by hand in the equations.
BIMETS allows the users to write down the restriction in a natural way thus applying a constrained
minimization. This procedure, although it leads to approximate numerical estimates, allows an easy
implementation.

The theory behind this procedure is that of the Lagrange multipliers. Presented here is an example
of its implementation.

Suppose that we have an equation defined as:

EQUATION> Y TSRANGE 2010 1 2015 4
EQ> Y = C1%X1 + C2xX2 + C3%X3
COEFF> C1 C2 C3

RESTRICT> 1.1xC1 + 1.3%C3 = 2.1
1.2xC2 = 0.8

MDL 97

Coefficients C1,C2,C3 are to be estimated. They are subject to the linear constraints specified by
the RESTRICT> keyword statement. In the case of OLS estimation, this is carried out in the following
steps:

1) Compute the cross-product matrices X’X and X'Y where X is a matrix with dimension

[NOBS x NREG] containing the values of the independent variables (regressors) historical observa-
tions (and a vector of ones for the constant term, if any), and where Y is a NOBS elements vector
of the dependent variable (regressand) historical observations; NOBS is the number of observations
available on the TSRANGE specified in the behavioral equation and NREG is the number of regressors,
or coefficients;

2) Build the restriction matrices. In the example:

11 0 13
R‘(o 1.2 o)

and

;o 2.1

—\08
R is a matrix of [NRES x NREG] size and r is a vector of [NRES] length, where NRES is the number
of restrictions;

3) Compute the scaling factors for the augmentation to be performed in the next step:

, mean(X'X)
Rscale[i] = — A2 2)

sealell) = s (RELD))
where R[i,] is the i-th row of the R matrix.

Assuming mean(X'X) = 5000, in the example above we will have:
Rscale[l] = 5000/1.3
Rscale[2] = 5000/1.2

The augmented matrices will then be defined as:

R 1.1 % Rscale[l] 0 1.3 % Rscale[l]
g 0 1.2 x Rscale[2) 0

and

S 2.1 % Rscale[1]
@97\ 0.8 x Rscale|2]

4) Compute the so-called "augmented" cross-product matrix (X’X),,, by adding to the cross-
product matrix (X’ X) a total of NRES rows and NRES columns:

X'X R,
/ — aug
(X X)aug (Raug O)

5) In a similar way, compute the so-called "augmented" cross-product matrix (X'Y"),.q by adding
a total of NRES elements to the cross-product matrix (X'Y"):

98

MDL

(XY Yang = (X'Y)

Taug

6) Caculate the Baug augmented coefficients by regressing the (X'Y") 4,4 on the (X' X)qyy.

The first NREG values of the augmented coefficients Baug array are the estimated coefficients with
requested restrictions. The last NRES values are the errors we have on the deterministic restrictions.

In the case of IV estimation the procedure is the same as in the OLS case, but the matrix X has
to be replaced with the matrix X, as previously defined in the BEHAVIORAL> keyword.

- PDL> is a keyword that defines an Almon polynomial distributed lag to be used in an estima-
tion. Almon Polynomial distributed lags are specific kind of deterministic restrictions imposed on
the coefficients of the distributed lags of a specific regressor. Multiple PDLs on a single behavioral
equation can be defined.

The PDL> statement general form is:

PDL> coeffname degree laglength [N] [F]

where coeffname is the name of a coefficient, degree is an integer scalar specifying the degree of
the polynomial, 1aglength is an integer scalar specifying the length of the polynomial (in number
of time periods), the optional N (i.e. "nearest") means that the nearest lagged term of the expansion,
i.e., the first term, is restricted to zero, and the optional F (i.e. "farthest") means that the farthest
lagged term of the expansion, i.e., the last term, is restricted to zero; the PDL> keyword statement
thusly defined applies an Almon polynomial distributed lag to the regressor associated with the
coeffname coefficient, of laglength length and degree degree, by providing the appropriate ex-
pansion and the deterministic restrictions for the degree and length specified. These expansions are
not explicitly shown to the user, i.e., the original model is not changed.

laglength must be greater than degree (see example below).

A PDL term can be further referenced in a RESTRICT> keyword statement by using the follow-
ing syntax: LAG(coefname,pdllag).

Example: RESTRICT> LAG(coeff2,3) = @ means that, during the estimation, the regressor related
to the coefficient coeff2 and lagged by 3 periods in the PDL expansion must have a coefficient
equal to zero. This example also implies that a PDL> coeff2 x y with y > 3 has been declared in the
same behavioral.

The implementing rules are the following:

1) Read off the laglength of the PDL keyword and expand the column of the regressor related
to coeffname in the matrix X (i.e. the original regressors matrix) with the lagged values of the
regressor, from the left to the right, starting form the lag 1 to the lag laglength-1. The matrix X
will now have a [NOBS x (NREG+laglength-1)] size, with NOBS as the number of observations in
the specified TSRANGE and NREG as the number of regressors, or coefficients.

2) Build the restriction matrix R with the following [Nrow x Ncol] dimensions:
Nrow = laglength -(degree + 1)

MDL 99

Ncol = NREG + laglength -1

The elements of this matrix will be zero except for the (laglength)-columns related to the sec-
tion of the expanded columns in the X matrix. For every row we will have to insert degree+2
numbers different from zero.

The degree+2 numbers are taken form the Tartaglia’s-like triangle:

where in the i-th row we find the numbers for a PDL of degree=i.

The r vector giving the knows terms for the restrictions is a vector of
NRES = laglength -(degree + 1) elements equal to zero.

An example will clarify:

EQUATION> Y TSRANGE 2010 1 2015 4
EQ> Y = CI1xX1 + C2%X2 + C3*X3
COEFF> C1 C2 C3

PDL> C2 2 5

then

R701—33100
~\0 0 1 -3 310

and

-0

The expanded regressors are:
X1,X2, TSLAG(X2,1),TSLAG(X2,2),TSLAG(X2,3), TSLAG(X2,4) ,X3.

The scaling factor is given, as in the standard restriction case, by: mean(X’X)/max(abs(R]i,]))

- IF> keyword is used to conditionally evaluate an identity during a simulation, depending on the
value of a logical expression. Thus, it is possible to have a model alternating between two or more
identity specifications for each simulation period, depending upon results from other equations.

The IF> statement general form is:
IF> logical_expression

100 MDL

The IF> keyword must be specified within an identity group; this keyword causes the equation
specified in the identity group to be evaluated during the current simulation period only when the
logical_expression is TRUE.

Only one IF> keyword is allowed in an identity group. Further occurrences produce an error mes-
sage and processing stops.

The logical_expression can be composed of constants, endogenous variables, exogenous vari-
ables, an expression among variables, combinations of the logical operators; mathematical operators
and the MDL functions listed in the EQ> section are allowed.

In the following MDL example, the value of the endogenous myIdentity variable is specified with
two complementary conditional identities, depending on the TSDELTA() result:

IDENTITY> myIdentity
IF> TSDELTA(myEndog*(1-myExog)) > @
EQ> myIdentity = TSLAG(myIdentity)+1

IDENTITY> myIdentity
IF> TSDELTA(myEndog#(1-myExog)) <= @
EQ> myIdentity = TSLAG(myIdentity)

- COMMENT?> can be used to insert comments into a model. The general form of this keyword is:
COMMENT> text

The text following the COMMENT> keyword is ignored during all processing, and must lie in the
same line. A comment cannot be inserted within another keyword statement. A dollar sign in the
first position of a line is equivalent to using the COMMENT> keyword, as in this exmaple:

$This is a comment

No other keywords are currently allowed in the MDL syntax.

See Also

LOAD_MODEL

ESTIMATE

SIMULATE

MULTMATRIX

RENORM

TIMESERIES

BIMETS indexing
BIMETS configuration
summary

Examples

MDL 101

A
#KLEIN MODEL WITH AUTOCORRELATION, RESTRICTIONS AND
#CONDITIONAL EVALUATIONS

#define model
myModel=
"MODEL

COMMENT> Modified Klein Model 1 of the U.S. Economy with PDL,
COMMENT> autocorrelation on errors, restrictions and conditional evaluations

COMMENT> Consumption with autocorrelation on errors
BEHAVIORAL> cn

TSRANGE 1925 1 1941 1

EQ> cn = al + a2xp + a3*TSLAG(p,1) + ad*(wl+w2)
COEFF> a1 a2 a3 a4

ERROR> AUTO(2)

COMMENT> Investment with restrictions
BEHAVIORAL> i

TSRANGE 1923 1 1941 1

EQ> i = bl + b2#p + b3*TSLAG(p,1) + b4*xTSLAG(k,1)
COEFF> b1 b2 b3 b4

RESTRICT> b2 + b3 =1

COMMENT> Demand for Labor with PDL

BEHAVIORAL> w1

TSRANGE 1925 1 1941 1

EQ> wl = ¢l + c2*%(y+t-w2) + c3*TSLAG(y+t-w2,1)+c4xtime
COEFF> c1 c2 c3 c4

PDL> c3 1 2

COMMENT> Gross National Product
IDENTITY> y
EQ>y=cn+i+g-1t

COMMENT> Profits
IDENTITY> p
EQ> p =y - (wl+w2)

COMMENT> Capital Stock with switches
IDENTITY> k

EQ> k = TSLAG(k,1) + i

IF>1i >0

IDENTITY> k

EQ> k = TSLAG(k,1)

IF> i <=0

END"
#define model data

modelData=list(
cn =TIMESERIES(39.8,41.9,45,49.2,50.6,52.6,55.1,56.2,57.3,57.8,55,50.9,

102 MDL

45.6,46.5,48.7,51.3,57.7,58.7,57.5,61.6,65,69.7,

START=c(1920,1),FREQ=1),

g =TIMESERIES(4.6,6.6,6.1,5.7,6.6,6.5,6.6,7.6,7.9,8.1,9.4,10.7,10.2,9.3,10,
10.5,10.3,11,13,14.4,15.4,22.3,
START=c(1920,1),FREQ=1),

i =TIMESERIES(2.7,-.2,1.9,5.2,3,5.1,5.6,4.2,3,5.1,1,-3.4,-6.2,-5.1,-3,-1.3,
2.1,2,-1.9,1.3,3.3,4.9,
START=c(1920,1),FREQ=1),

k =TIMESERIES(182.8,182.6,184.5,189.7,192.7,197.8,203.4,207.6,210.6,215.7,
216.7,213.3,207.1,202,199,197.7,199.8,201.8,199.9,
201.2,204.5,209.4,
START=c(1920,1),FREQ=1),

p =TIMESERIES(12.7,12.4,16.9,18.4,19.4,20.1,19.6,19.8,21.1,21.7,15.6,11.4,
7,11.2,12.3,14,17.6,17.3,15.3,19,21.1,23.5,
START=c(1920,1),FREQ=1),

wl =TIMESERIES(28.8,25.5,29.3,34.1,33.9,35.4,37.4,37.9,39.2,41.3,37.9,34.5,
29,28.5,30.6,33.2,36.8,41,38.2,41.6,45,53.3,
START=c(1920,1),FREQ=1),

y =TIMESERIES(43.7,40.6,49.1,55.4,56.4,58.7,60.3,61.3,64,67,57.7,50.7,41.3,
45.3,48.9,53.3,61.8,65,61.2,68.4,74.1,85.3,
START=c(1920,1),FREQ=1),

t =TIMESERIES(3.4,7.7,3.9,4.7,3.8,5.5,7,6.7,4.2,4,7.7,7.5,8.3,5.4,6.8,7.2,
8.3,6.7,7.4,8.9,9.6,11.6,
START=c(1920,1),FREQ=1),

time =TIMESERIES(NA,-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,
START=c(1920,1),FREQ=1),

w2 =TIMESERIES(2.2,2.7,2.9,2.9,3.1,3.2,3.3,3.6,3.7,4,4.2,4.8,5.3,5.6,6,6.1,
7.4,6.7,7.7,7.8,8,8.5,
START=c(1920,1),FREQ=1)

)

#load model and model data
model=LOAD_MODEL (modelText=myModel)
model=LOAD_MODEL_DATA(model,modelData)

#estimate model
model=ESTIMATE (model)

#simulate model

model=SIMULATE (model
, TSRANGE=c(1923,1,1941,1)
,SsimConvergence=0.00001
,simIterLimit=100

SRR R R R
#KLEIN MODEL WITH LHS FUNCTIONS

#define the model with LHS funs
myModel="MODEL

MDL 103

COMMENT> Modified Klein Model 1 of the U.S. Economy with PDL,
COMMENT> autocorrelation on errors, restrictions and conditional evaluations
COMMENT> LHS functions on EQ

COMMENT> Exp Consumption

BEHAVIORAL> cn

TSRANGE 1925 1 1941 1

EQ> EXP(cn) = al + a2xp + a3*LAG(p,1) + adx(wl+w2)
COEFF> al a2 a3 a4

ERROR> AUTO(2)

COMMENT> Log Investment

BEHAVIORAL> i

TSRANGE 1925 1 1941 1

EQ> LOG(i) = b1 + b2*p + b3*LAG(p,1) + b4*LAG(k,1)
COEFF> b1 b2 b3 b4

RESTRICT> b2 + b3 =1

COMMENT> Demand for Labor

BEHAVIORAL> w1

TSRANGE 1925 1 1941 1

EQ> wl = c1 + c2*(TSDELTA(y)+t-w2) + c3*LAG(TSDELTA(y)+t-w2,1)+c4xtime
COEFF> c1 c2 c3 c4

PDL> ¢c3 1 3

COMMENT> Delta Gross National Product
IDENTITY> y
EQ> TSDELTA(y) = EXP(cn) + LOG(i) + g - t

COMMENT> Profits
IDENTITY> p
EQ> p = TSDELTA(y) - (wl+w2)

COMMENT> Capital Stock with switches
IDENTITY> k

EQ> k = LAG(k,1) + LOG(i)

IF> LOG(1) > @

IDENTITY> k

EQ> k = LAG(k,1)

IF> LOG(1) <= 0

END'

#define model data
modelData=list(
cn=TSERIES(39.8,41.9,45,49.2,50.6,52.6,55.1,56.2,57.3,
57.8,55,50.9,45.6,46.5,48.7,51.3,57.7,58.7,57.5,61.6,65,69.7,
START=c(1920,1) ,FREQ=1),
g=TSERIES(4.6,6.6,6.1,5.7,6.6,6.5,6.6,7.6,7.9,8.1,9.4,
10.7,10.2,9.3,10,10.5,10.3,11,13,14.4,15.4,22.3,
START=c(1920,1) ,FREQ=1),
i=TSERIES(2.7,-.2,1.9,5.2,3,5.1,5.6,4.2,3,5.1,1,-3.4,

104 MONTHLY

-6.2,-5.1,-3,-1.3,2.1,2,-1.9,1.3,3.3,4.9,
START=c(1920,1),FREQ=1),
k=TSERIES(182.8,182.6,184.5,189.7,192.7,197.8,203.4,
207.6,210.6,215.7,216.7,213.3,207.1,202,
199,197.7,199.8,201.8,199.9,201.2,204.5,209.4,
START=c(1920,1),FREQ=1),
p=TSERIES(12.7,12.4,16.9,18.4,19.4,20.1,19.6,19.8,21.1,
21.7,15.6,11.4,7,11.2,12.3,14,17.6,17.3,15.3,19,21.1,23.5,
START=c(1920,1),FREQ=1),
w1=TSERIES(28.8,25.5,29.3,34.1,33.9,35.4,37.4,37.9,39.2,
41.3,37.9,34.5,29,28.5,30.6,33.2,36.8,41,38.2,41.6,45,53.3,
START=c(1920,1),FREQ=1),
y=TSERIES(43.7,40.6,49.1,55.4,56.4,58.7,60.3,61.3,64,67,
57.7,50.7,41.3,45.3,48.9,53.3,61.8,65,61.2,68.4,74.1,85.3,
START=c(1920,1),FREQ=1),
t=TSERIES(3.4,7.7,3.9,4.7,3.8,5.5,7,6.7,4.2,4,7.7,7.5,
8.3,5.4,6.8,7.2,8.3,6.7,7.4,8.9,9.6,11.6,
START=c(1920,1),FREQ=1),
time=TSERIES(NA,-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,
3,4,5,6,7,8,9,10,
START=c(1920,1),FREQ=1),
w2=TSERIES(2.2,2.7,2.9,2.9,3.1,3.2,3.3,3.6,3.7,4,4.2,
4.8,5.3,5.6,6,6.1,7.4,6.7,7.7,7.8,8,8.5,
START=c(1920,1) ,FREQ=1)

#example data transformation

modelData=within(modelData,{
i=exp(i); #we have LOG(i) in the model MDL definition
cn=log(cn); #we have EXP(cn) in the model MDL definition
y=CUMSUM(y) #we have TSDELTA(y) in the model MDL definition

»

#load model and model data
model=LOAD_MODEL (modelText=myModel)
model=LOAD_MODEL_DATA(model,modelData)

#estimate model
model=ESTIMATE (model)

#simulate model

model=SIMULATE (model
, TSRANGE=c(1925,1,1930,1)
,simConvergence=0.00001
,simIterLimit=100

MONTHLY Monthly Time Series (Dis)Aggregation

MONTHLY 105

Description

This function returns a monthly (dis)aggregated time series, by using as input an annual, semian-
nual, quarterly or daily time series.

Usage

MONTHLY(x = NULL, fun = NULL, avoidCompliance = FALSE, ...)

Arguments

X Input time series that must satisfy the compliance control check definedin is.bimets.

fun Only for daily input time series:
STOCK: the value of the input time series in the last observation of a month is
assigned to the same month of the output time series.
NSTOCK: the value of the input time series in the last non-missing observation
of a month is assigned to the same month of the output time series.
SUM: the sum of input observations in a month is assigned to the same month
of the output time series.
NSUM: the sum of input non-missing observations in a month is assigned to the
same month of the output time series.
AVE: the average of input observations in a month is assigned to the same month
of the output time series.
NAVE: the average of input non-missing observations in a month is assigned to
the same month of the output time series.

Only for quarterly, semiannual or annual input time series:

NULL: (default) the output value of each monthly observation is set equal to the
value of the input observation the month belongs to (i.e. duplicated values over
the period)

INTERP_END: the value of the input time series in a period is copied into the
last month of the output time series that lies in the same period. Other values
are calculated by linear interpolation.

INTERP_CENTER: the value of the input time series in a period is copied into
the median month of the output time series that lies in the same period. Other
values are calculated by linear interpolation.

INTERP_BEGIN: the value of the input time series in a period is copied into
the first month of the output time series that lies in the same period. Other values
are calculated by linear interpolation.

avoidCompliance
If TRUE, compliance control check of input time series will be skipped. See
is.bimets

Backward compatibility.

Value

This function returns a monthly BIMETS time series.

106 MOVAVG

See Also

ANNUAL
SEMIANNUAL
QUARTERLY
DAILY

Examples

#TS FREQ 2 SEMIANNUAL TO MONTHLY
tsT1=TSERIES((1:1@), START=c(2000,1) ,FREQ=2)
TABIT(MONTHLY(ts1, fun='INTERP_CENTER'))

#TS DAILY TO MONTHLY
ts1=TSERIES((1:366),START=c(2000,1),FREQ='D")
TABIT(MONTHLY(ts1, fun='STOCK"))

MOVAVG Moving Average

Description

This function returns the moving average of the elements of the input array or the input time series.
The result is an object of the same class of the input, and its elements are the moving average of
length L of the input values. If the input is a time series, the DIRECTION of the moving average, i.e
backward, forward or centered, can be provided. MAVE is an alias for MOVAVG

Usage
MOVAVG(x = NULL, L = NULL, DIRECTION = NULL, avoidCompliance = FALSE, ...)
MAVE(x = NULL, L = NULL, DIRECTION = NULL, avoidCompliance = FALSE, ...)
Arguments
X Input numerical array or time series that must satisfy the compliance control
check defined in is.bimets.
L Length of the mean. Must be a positive integer.
DIRECTION if x is a time series, given y as output and x as input:
AHEAD: the output observation value in index n will be
y[n] =mean(x[n],x[n+1],...,x[n+L-1]).
CENTER: the output observation value in index n will be
y[n] =mean(x[n-trunc(L/2)],...,x[n],x[n+1], ..., x[n+trunc(L/2)]).

NULL o BACK: (default) the output observation value in index n will be

MOVTOT 107

y[n] =mean(x[n+1-L],...,x[n-1],x[n]).

avoidCompliance

If TRUE, compliance control check of input time series will be skipped. See
is.bimets

Backward compatibility.

Value

This function returns an object of the same class of the input, i.e. an array or a BIMETS time series.

See Also

TSDELTA
TSLAG
TSPROJECT
TSEXTEND
TSLEAD
CUMSUM
INDEXNUM

Examples

#input data
inputArray=c(1,2,3,4,NA,1,2,3,4,5)

#array lag 3
out_movavg=MOVAVG(inputArray, 3)
print(out_movavg)

#ts lag 4 centered with missings
ts1=TSERIES(inputArray, START=c(2000,1),FREQ="A")
out_movavg=MAVE (ts1,4, 'CENTER")

TABIT (out_movavg)

#ts daily

ts1=TSERIES(inputArray, START=c(2000,1) ,FREQ='D")
out_movavg=MAVE(ts1,3)

TABIT(ts1,out_movavg)

MOVTOT Moving Sum

108 MOVTOT

Description

This function returns the moving sum of the elements of the input array or the input time series.
The result is an object of the same class of the input, and its elements are the moving sum of length
L of the input values. If the input is a time series, the DIRECTION of the moving sum, i.e backward,
forward or centered, can be provided. MTOT and MSUM are alias for MOVTOT and MOVSUM

Usage
MOVSUM(x = NULL, L = NULL, DIRECTION = NULL, avoidCompliance = FALSE, ...)
MOVTOT(x = NULL, L = NULL, DIRECTION = NULL, avoidCompliance = FALSE, ...)
Arguments
X Input numerical array or time series that must satisfy the compliance control
check defined in is.bimets.
L Length of the sum. Must be a positive integer.
DIRECTION if x is a time series, given y as output and x as input:
AHEAD: the output observation value in index n will be
yI[n] =sum(x[n],x[n+1],...,x[n+L-11).
CENTER: the output observation value in index n will be
y[n] = sum(x[n-trunc(L/2)],...x[n],x[n+1], ... ,x[n+trunc(L/2)]).
NULL o BACK: (default) the output observation value in index
nwill be y[n] = sum(x[n+1-L],...,x[n-1]1,x[n]).
avoidCompliance
If TRUE, compliance control check of input time series will be skipped. See
is.bimets
Backward compatibility.
Value

This function returns an object of the same class of the input, i.e. an array or a BIMETS time series.

See Also

TSDELTA
TSLAG
TSPROJECT
TSEXTEND
TSLEAD
CUMSUM
INDEXNUM

Examples

#input data

MULTMATRIX 109

inputArray=c(1,2,3,4,NA,1,2,3,4,5)

#array lag 3
out_movtot=MOVSUM(inputArray, 3)
print(out_movtot)

#ts lag 4 centered with missings
ts1=TSERIES(inputArray, START=c(2000,1),FREQ="'A")
out_movtot=MOVSUM(ts1,4, 'CENTER')
TABIT(out_movtot)

#ts daily
ts1=TSERIES(inputArray,START=c(2000,1),FREQ='D")
out_movtot=MSUM(ts1, 3)

TABIT(ts1,out_movtot)

MULTMATRIX Compute the multiplier matrix of a BIMETS model object

Description

This function computes the matrix of both impact and interim multipliers, for a selected set of
endogenous variables (i.e. TARGET) with respect to a selected set of exogenous variables (i.e.
INSTRUMENT), by subtracting the results from different simulations in each period of the provided
time range (i.e. TSRANGE). The simulation algorithms are the same as those used for the SIMULATE
operation.

The MULTMATRIX procedure is articulated as follows:
1- simultaneous simulations are done;
2- the first simulation establishes the base line solution (without shocks);

3- the other simulations are done with shocks applied to each of the INSTRUMENT one at a time
for every period in TSRANGE;

4- each simulation follows the defaults described in the SIMULATE help page, but has to be STATIC
for the IMPACT multipliers and DYNAMIC for INTERIM multipliers;

5- given the shock amount MM_SHOCK as a very small positive number, derivatives are computed

by subtracting the base line solution of the TARGET from the shocked solution, then dividing by the
value of the base line INSTRUMENT time the MM_SHOCK.

The IMPACT multipliers measure the effects of impulse exogenous changes on the endogenous

110 MULTMATRIX

variables in the same time period. They can be defined as partial derivatives of each current en-
dogenous variable with respect to each current exogenous variable, all other exogenous variable
being kept constant.

Given Y (t) an endogenous variable at time ¢ and X (¢) an exogenous variable at time ¢ the im-
pact multiplier m(Y, X, t) is defined as m(Y, X,t) = 0Y (t)/0X(t) and can be approximated
by m(Y, X, t) = (Yshocked(t) — Y (t))/(Xshocked(t) — X (t)), with Yspockea(t) the values fo the
simulated endogenous variable Y at time ¢ when X (¢) is shocked t0 Xgpockea(t) = X (¢)(1 +
MM_SHOCK)

The INTERIM or delay-r multipliers measure the delay-r effects of impulse exogenous changes
on the endogenous variables in the same time period. The delay-r multipliers of the endogenous
variable Y with respect to the exogenous variable X related to a dynamic simulation from time t to
time t+r can be defined as the partial derivative of the current endogenous variable Y at time t+r
with respect to the exogenous variable X at time t, all other exogenous variable being kept constant.

Given Y (¢t 4 r) an endogenous variable at time ¢ + and X (¢) an exogenous variable at time ¢ the
impact interim or delay-r multiplier m(Y, X, ¢,) is defined as m(Y, X, ¢,r) = 0Y (t + r)/0X (t)
and can be approximated by m(Y, X, ¢,7) = (Ysnocked(t +7) =Y (t + 7))/ (Xsnocked(t) — X (1)),
with Yspocked(t +) the values fo the simulated endogenous variable Y at time ¢ 4 r when X (¢) is
shocked t0 Xspocked(t) = X (t)(1+ MM_SHOCK)

Users can also declare an endogenous variable as the INSTRUMENT variable. In this case, the con-
stant adjustment (see SIMULATE) related to the provided endogenous variable will be used as the
INSTRUMENT exogenous variable (see example);

Usage
MULTMATRIX(model=NULL,
)
Arguments
model The BIMETS model object for which the multipliers matrix has to be calculated.

The operation requires that all the behaviorals in the model have been previously
estimated: all the behavioral coefficients (i.e. the estimation coefficients and the
autoregression coefficients for the errors, if any) must be numerically defined in
the model object. (see also ESTIMATE)

Other options to be sent to the underlying SIMULATE operation, e.g.:
TSRANGE: the time range of the multiplier analysis, as a four dimensional

numerical array,
i.e. TSRANGE=c(start_year,start_period,end_year,end_period).

simType, the simulation type requested:
DYNAMIC: the default, for interim multipliers. Whenever lagged endogenous

MULTMATRIX

111

variables are needed in the computations, the simulated values of the endoge-
nous variables evaluated in the previous time periods are used;

STATIC: for impact multiplier. Rather than the simulated values, the actual his-
torical values are used whenever lagged endogenous variables are needed in the
computations;

TARGET: a charcater array built with the names of the endogenous variables
for which the multipliers are requested;

INSTRUMENT: a charcater array with the names of the exogenous variables
with respect to which the multipliers are computed. Users can also declare an
endogenous variable as the INSTRUMENT variable: in this case the constant ad-
justment (see SIMULATE) related to the provided endogenous variable will be
used as the instrument exogenous variable (see example);

MM_SHOCK: the shock value added to variables in the derivative calculation.
The default value is @.00001 times the value of the exogenous variable (see also
MULTMATRIX);

simConvergence: the percentage convergence value requested for the iterative
process, that stops when the percentage difference of all the feedback variables
between iterations is less than simConvergence in absolute value;

simlterLimit: the value representing the maximum number of iterations to be
performed. The iterative procedure will stop when simIterLimit is reached or
the feedback variables satisfy the simConvergence criterion;

ZeroErrorAC: if TRUE it zeroes out all the autoregressive terms, if any, in the
behavioral equations;

Exogenize: a named list that specifies the endogenous variables to be exoge-
nized. During the simulation, in the specified time range the exogenized en-
dogenous variables will be assigned their historical values. The list names are
the names of the endogenous variables to be exogenized; each element of this
list contains the time range of the exogenization for the related endogenous vari-
able, in the form of a 4-dimensional integer array, i.e. start_year, start_period,
end_year, end_period. An element of the list can also be assigned TRUE: in this
case the related endogenous variable will be exogenized in the whole simulation
TSRANGE (see SIMULATE);

ConstantAdjustment: a named list that specifies the constant adjustments (i.e.
add factors) to be added to the selected equations of the model. Each constant
adjustment can be see as a new exogenous variable added to the equation of
the specified endogenous variable. The list names are the names of the endoge-
nous variables involved; each element of this is list contains the time series to be
added to the equation of the related endogenous variable. Each provided time se-
ries must be compliant with the compliance control check defined in is.bimets

112 MULTMATRIX

(see SIMULATE);

verbose: if TRUE some verbose output will be activated. Moreover the values
of all endogenous variables will be printed out during each iteration for all time
periods in the simulation TSRANGE;

quietly. if TRUE the MULTMATRIX operation will be executed quietly.

Value

This function will add a new element named MultiplierMatrix into the output BIMETS model
object.

The new MultiplierMatrix element is a

(NumPeriods * Nendogenous) X (NumPeriods * Nexogenous) matrix,

with NumPeriods as the number of periods specified in the TSRANGE, Nendogeous the count of the
endogenous variables in the TARGET array and Nexogenous the count of the exogenous variables in
the INSTRUMENT array.

The arguments passed to the function call during the latest MULTMATRIX() run will be inserted
into the '__SIM_PARAMETERS__' element of the model simulation list (see SIMULATE); that can
be useful in order to replicate the multiplier matrix results.

Row and column names in the output multiplier matrix identify the variables and the periods in-
volved in the derivative solution, with the syntax VARIABLE_PERIOD (see example).

See Also

MDL

LOAD_MODEL

ESTIMATE

SIMULATE

RENORM

TIMESERIES

BIMETS indexing
BIMETS configuration

Examples

#define model

myModelDefinition=

"MODEL

COMMENT> Klein Model 1 of the U.S. Economy

COMMENT> Consumption
BEHAVIORAL> cn

MULTMATRIX

TSRANGE 1921 1

EQ> cn = al + a2xp + a3*TSLAG(p,1) + ad*x(wl+w2)

1941 1

COEFF> a1l a2 a3 a4

COMMENT> Investment

BEHAVIORAL> i
TSRANGE 1921 1

EQ> i = bl + b2xp + b3*TSLAG(p,1) + b4xTSLAG(k,1)

1941 1

COEFF> b1 b2 b3 b4

COMMENT> Demand for Labor

BEHAVIORAL> w1
TSRANGE 1921 1

EQ> wl = c1 + c2*%(y+t-w2) + c3*TSLAG(y+t-w2,1)+c4xtime

1941 1

COEFF> c1 c2 c3 c4

COMMENT> Gross National Product

IDENTITY> y

EQ>y=cn+1i+g-t

COMMENT> Profits

IDENTITY> p

EQ> p =y - (wl+w2)

COMMENT> Capital Stock

IDENTITY> k

EQ> k = TSLAG(k,1) + i

END"

#define model

data

myModelData=1ist(

cn

=TIMESERIES(39.8,41.9,45,49.2,50.6,52.6,55.1,56.2,57.3,57.8,55,50.9,
45.6,46.5,48.7,51.3,57.7,58.7,57.5,61.6,65,69.7,

g

=TIMESERIES(4.6,6.6,6.1,5.7,6.6,6.5,6.6,7.6,7.9,8.1,9.4,10.7,10.2,9.3,10,

i

=TIMESERIES(2.7,-.2,1.9,5.2,3,5.1,5.6,4.2,3,5.1,1,-3.4,-6.2,-5.1,-3,-1.3,

k

=TIMESERIES(182.8,182.6,184.5,189.7,192.7,197.8,203.4,207.6,210.6,215.7,
216.7,213.3,207.1,202,199,197.7,199.8,201.8,199.9,

p

=TIMESERIES(12.7,12.4,16.9,18.4,19.4,20.1,19.6,19.8,21.1,21.7,15.6,11.4,
7,11.2,12.3,14,17.6,17.3,15.3,19,21.1,23.5,

START=c(1920,1),FREQ=1),

10.5,10.3,11,13,14.4,15.4,22.3,
START=c(1920,1),FREQ=1),

2.1,2,-1.9,1.3,3.3,4.9,
START=c(1920,1),FREQ=1),

201.2,204.5,209.4,
START=c(1920,1),FREQ=1),

START=c(1920,1),FREQ=1),

113

114

MULTMATRIX

wil

=TIMESERIES(28.8,25.5,29.3,34.1,33.9,35.4,37.4,37.9,39.2,41.3,37.9,34.5,
29,28.5,30.6,33.2,36.8,41,38.2,41.6,45,53.3,
START=c(1920,1),FREQ=1),

y

=TIMESERIES(43.7,40.6,49.1,55.4,56.4,58.7,60.3,61.3,64,67,57.7,50.7,41.3,
45.3,48.9,53.3,61.8,65,61.2,68.4,74.1,85.3,
START=c(1920,1),FREQ=1),

t
=TIMESERIES(3.4,7.7,3.9,4.7,3.8,5.5,7,6.7,4.2,4,7.7,7.5,8.3,5.4,6.8,7.2,
8.3,6.7,7.4,8.9,9.6,11.6,
START=c(1920,1),FREQ=1),
time

=TIMESERIES(NA,-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,
START=c(1920,1) ,FREQ=1),

w2
=TIMESERIES(2.2,2.7,2.9,2.9,3.1,3.2,3.3,3.6,3.7,4,4.2,4.8,5.3,5.6,6,6.1,
7.4,6.7,7.7,7.8,8,8.5,
START=c(1920,1),FREQ=1)

)

#load model and model data
myModel=LOAD_MODEL (modelText=myModelDefinition)
myModel=LOAD_MODEL_DATA(myModel,myModelData)

#estimate model
myModel=ESTIMATE (myModel)

#calculate impact multipliers of Government non-Wage Spending 'g' and
#Government Wage Bill 'w2' with respect of Consumption 'cn' and
#Gross National Product 'y' in the Klein model on the year 1941:

myModel=MULTMATRIX(myModel,
symType="'STATIC',
TSRANGE=c(1941,1,1941,1),
INSTRUMENT=c('w2','g"),
TARGET=c('cn','y"))

#Multipliter Matrix: 100.00%
#...MULTMATRIX OK

print(myModel$MultiplierMatrix)
w2_1 g1
#cn_1 0.4540346 1.671956
#y_1 ©.2532000 3.653260

#Results show that the impact multiplier of "y"

#with respect to "g" is +3.65

#If we change Government non-Wage Spending 'g' value in 1941
#from 22.3 (its historical value) to 23.3 (+1)

#then the simulated Gross National Product "y"
#in 1941 changes from 95.2 to 99,

#thusly roughly confirming the +3.65 impact multiplier.

NAMELIST 115

#Note that "g" appears only once in the model definition, and only
#in the "y" equation, with a coefficient of one. (Keynes would approve)

#multi-period interim multipliers

myMode1=MULTMATRIX(myModel,
TSRANGE=c(1940,1,1941,1),
INSTRUMENT=c('w2','g"),
TARGET=c('cn','y"))

#output multipliers matrix (note the zeros when the period
#of the INSTRUMENT is greater than the period of the TARGET)
print(myModel$MultiplierMatrix)

w2_1 g_1 w2_2 g2

#cn_1 0.4478202 1.582292 0.0000000 ©.000000

#y_1 0.2433382 3.510971 0.0000000 0.000000

#cn_2 -0.3911001 1.785042 0.4540346 1.671956

#y_2 -0.6251177 2.843960 0.2532000 3.653260

#multiplier matrix with endogenous variable 'wl' as instrument
#note the ADDFACTOR suffix in the column name, referring to the
#constant adjustment of the endogneous 'wl'
myMode1=MULTMATRIX(myModel,
TSRANGE=c(1940,1,1941,1),
INSTRUMENT=c('w2"','w1"),
TARGET=c('cn','y"))

#Multipliter Matrix: 100.00%
#...MULTMATRIX OK
myModel$MultiplierMatrix

w2_1 w1_ADDFACTOR_1 w2_2 w1_ADDFACTOR_2
#cn_1 0.4478202 0.7989328 0.0000000 0.0000000
#y_1 0.2433382 0.4341270 0.0000000 0.0000000
#cn_2 -0.3911001 -0.4866248 0.4540346 0.8100196
#y_2 -0.6251177 -0.9975073 0.2532000 0.4517209
NAMELIST Named List of Time Series
Description

In the case of strings input, this function returns a string array built with the input strings. In the
case of time series input, this function returns a list built with the input time series; the output list
names will be the variable names passed as arguments.

116 NAMELIST

Usage
NAMELIST(...)

Arguments
List of strings or list of time series. In the case of a list of strings, if an input
string is not eligible to be a variable name, e.g. a string composed only with
numbers, or with special characters, a warning will be thrown and a message
will describe the required change made to the input string in order to make it
eligible to be a variable name (see example).

Value

In the case of strings as input, this function returns a string array built with the input strings. In the
case of time series as input, this function returns a list built with the input time series; the output list
names will be the variable names passed as arguments.

See Also

NOELS
is.bimets
BIMETS indexing
TSERIES
GETYEARPERIOD
LoCS

Examples

#NAMELIST with time series...

ts1=TSERIES(1:10,START=c(2000,1),FREQ=12)
ts2=TSERIES(10:20,START=c(2002,5) ,FREQ=12)
myNamelList=NAMELIST(ts1,ts2)
print(myNamelList)

#prints a list with $ts1 and $ts2 elements
#please note that names are 'ts1' and 'ts2'...
#$ts1

Jan Feb Mar Apr May Jun Jul Aug Sep Oct
#2000 1 2 3 4 5 6 7 8 9 10

#$ts2
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
#2002 1 11 12 13 14 15 16 17

#2003 18 19 20

#define strange namelist

NOELS 117

#print warnings... '' converted in 'X', '9' converted in 'X9'
myNAMELIST=NAMELIST('pp','o0','ii',"'",'9");
print (myNAMELIST)
NOELS Count Elements
Description

This function returns a numerical array built with the length of each input argument. Input argu-
ments can be numerical or time series. Input arguments can also be string variables.

Usage
NOELS(...)
Arguments
List of input arguments. This function accepts input of class numerical, character,
or BIMETS time series. character arguments are exclusive: if an argument is
of class character, all other arguments must be of class character.
Value

This function returns an array of class c().

See Also

TIMESERIES
is.bimets
BIMETS indexing
TSDATES

LOCS

NAMELIST

INTS

TSINFO

TSLOOK

TABIT

Examples

out_NOELS=NOELS(c(1,2,3,4),c(5,6,7))
print(out_NOELS) #print c(4,3)

out_NOELS=NOELS(TSERIES(c(1,2,3,4),START=c (2000, 1) ,FREQ=1),c(5,6,7))

118 normalizeYP

print(out_NOELS) #print c(4,3)

out_NOELS=NQELS('aaa', 'bb")
print(out_NOELS) #print c(3,2)

normalizeYP Normalize Year-Period Array

Description
This function normalizes a numerical array c (YEAR,PERIOD), given a frequency f and PERIOD>=f.
e.g. normalizeYP(c(2000,15),12) = c(2001,3)

Usage

normalizeYP(x = NULL, f = NULL)

Arguments

X Input numerical array c(YEAR, PERIOD)

f Frequency of normalization. Must be a positive integer.
Value

This function returns a numerical array c(YEAR,PERIOD)

See Also

NUMPERIOD
frequency

Examples

#c(2,13) and frequency=4 => c(5,1)
print(normalizeYP(c(2,13),4))

NUMPERIOD 119

NUMPERIOD Distance Between Two Year-Periods

Description

This function returns the number of time periods that lie between the provided starting period
x1=c(YEAR1,PRD1) and the provided ending period x2=c(YEAR2,PRD2), given a frequency f.

Usage

NUMPERIOD(x1, x2, f = NULL)

Arguments
x1 Starting period specified as a numerical array ¢ (YEAR, PRD)
X2 Ending period specified as a numerical array c(YEAR, PRD)
f Frequency over the year. Must be a positive integer.

Value

This function returns an integer of class numeric.

See Also

normalizeYP
frequency
GETDATE
LOCS
NAMELIST

Examples

f=5, c(3,4) - c(2,3) = 6 periods
print (NUMPERIOD(c(2,3),c(3,4),5))

120 QUARTERLY

QUARTERLY Quarterly (Dis)Aggregation

Description

This function returns a quarterly (dis)aggregated time series, using as input an annual, semiannual,
monthly or daily time series.

Usage

QUARTERLY(x = NULL, fun = NULL, avoidCompliance = FALSE, ...)

Arguments

X Input time series that must satisfy the compliance control check defined in is.bimets.

fun Only for daily or monthly input time series:
STOCK: the value of the input time series in the last observation of a quarter is
assigned to the same quarter of the output time series.
NSTOCK: the value of the input time series in the last non-missing observation
of a quarter is assigned to the same quarter of the output time series.
SUM: the sum of input observations in a quarter is assigned to the same quarter
of the output time series.
NSUM: the sum of input non-missing observations in a quarter is assigned to
the same quarter of the output time series.
AVE: the average of input observations in a quarter is assigned to the same quar-
ter of the output time series.
NAVE: the average of input non-missing observations in a quarter is assigned to
the same quarter of the output time series.

Only for semiannual or annual input time series:
NULL: (default) the output value of each quarterly observation is set equal to
the value of the input observation the quarter belongs to (i.e. duplicated values
over the period)
INTERP_END: the value of the input time series in a period is copied into the
last quarter of the output time series that lies in the same period. Other values
are calculated by linear interpolation.
INTERP_CENTER: the value of the input time series in a period is copied into
the median quarter of the output time series that lies in the same period. Other
values are calculated by linear interpolation.
INTERP_BEGIN: the value of the input time series in a period is copied into
the first quarter of the output time series that lies in the same period. Other
values are calculated by linear interpolation.

avoidCompliance
If TRUE, compliance control check of input time series will be skipped. See
is.bimets

Backward compatibility.

RENORM 121

Value

This function returns a quarterly BIMETS time series.

See Also

ANNUAL
SEMIANNUAL
MONTHLY
DAILY

Examples

#TS ANNUAL TO QUARTERLY

n=10
ts1=TSERIES(1:n,START=c(2000,1),FREQ=1)
ts1[5]=NA
TABIT(QUARTERLY(ts1,fun="'INTERP_CENTER'));

#TS DAILY TO QUARTERLY

n=600
tsT1=TSERIES(1:n,START=c(2000,1),FREQ='D")
ts1[25]=NA
TABIT(QUARTERLY(tsT,fun="'SUM'))

RENORM Perform the renormalization of a BIMETS model object.

Description

The renormalization of econometric models consists of solving the model while interchanging the
role of one or more endogenous variables with an equal number of exogenous variables.

This function determines the values for the INSTRUMENT exogenous variables which allow the ob-
jective TARGET endogenous variables to be achieved, with respect to the constraints given by the
model MDL definition.

This is an approach to economic and monetary policy analysis, and is based on two assumptions:

1. there exists a desired level for a set of n endogenous variables defined as TARGET;
2. there exists a set of n exogenous variables defined as INSTRUMENT;

Given these premises, the renormalization process consists in determining the values of the exoge-
nous variables chosen as INSTRUMENT allowing us to achieve the desired values for the endogenous
variables designated as TARGET. In other words the procedure allows users to exchange the role of
exogenous and endogenous among a set of time series pairs.

122 RENORM

Given a list of exogenous INSTRUMENT variables and a list of TARGET endogenous time series, the
iterative procedure can be split into the following steps:

1. Computation of the multipliers matrix MULTMAT of the TARGET endogenous variables with re-
spect to the INSTRUMENT exogenous variables (this is a square matrix by construction);

2. Solution of the linear system:

Vewog(i + 1) = Vegog(i)+ MULTMAT ~1 % (V40 (1) — TARGET), where V04 (4) are the exogenous
variables in the INSTRUMENT list and Veyq04(%) are the endogenous variables that have a related tar-
get in the TARGET list, given ¢ the current iteration;

3. Simulation of the model with the new set of exogenous variables computed in step 2, then a
convergence check by comparing the subset of endogenous variables arising from this simulation
and the related time series in TARGET list. If the convergence condition is satisfied, or the maximum
number of iterations is reached, the algorithm will stop, otherwise it will go back to step 1;

Users can also declare an endogenous variable as an INSTRUMENT variable. In this case, the constant
adjustment related to the provided endogenous variable will be used as the instrument exogenous
variable. This procedure is particularly suited for the automatic computation of the add-factors
needed to fine tune the model into a baseline path and to improve the forecasting accuracy.

If the convergence condition is satisfied, the RENORM procedure will return the requested INSTRUMENT
time series allowing us to achieve the desired values for the endogenous variables designated as
TARGET.

Usage

RENORM(model=NULL,
renormIterLimit=10,
renormConvergence=10E-5,
TSRANGE=NULL,
TARGET=NULL,
INSTRUMENT=NULL,
ConstantAdjustment=NULL,
quietly=FALSE,
showWarnings=FALSE,
tol=.Machine$double.eps,
avoidCompliance=FALSE,

L)

Arguments

model The BIMETS model object to be renormalized. The operation requires that all
the behaviorals in the model have been previously estimated: all the behavioral
coefficients (i.e. the estimation coefficients and the autoregression coefficients

RENORM 123

for the errors, if any) must be numerically defined in the model object. (see also
ESTIMATE)
renormIterLimit
The value representing the maximum number of iterations to be performed. The
iterative renormalization procedure will stop when renormIterLimit is reached
or the TARGET variables satisfy the renormConvergence criterion;
renormConvergence
The convergence value requested for the iterative renormalization process, that
stops when the distance between each TARGET time series and the related simu-
lated endogenous variable is less than the renormConvergence value;

TSRANGE The time range of the RENORM analysis, as a four dimensional numerical array,
i.e. TSRANGE=c(start_year,start_period,end_year,end_period).

TARGET A named list that specifies the target endogenous variables. The list names are
the names of the endogenous variables involved in the renormalization; each
element of this list contains the time series of the target endogenous values;
the time series must be compliant with the compliance control check defined in
is.bimets (see examples);

INSTRUMENT A charcater array with the names of the exogenous variables involved in the
renormalization. User can also declare an endogenous variable as INSTRUMENT
variable: in this case the constant adjustment (see SIMULATE) related to the pro-
vided endogenous variable will be used as the instrument exogenous variable
(see example);

ConstantAdjustment
A named list that specifies the constant adjustments (i.e. add factors) to be added
to the selected equations of the model (see also SIMULATE);

quietly If TRUE, information messages will be suppressed.

showWarnings If TRUE, a warning message will be shown if any input time series has missing
values.

tol the tolerance for detecting linear dependencies in the columns of a matrix while
an inversion is requested. The default is .Machine$double.eps.

avoidCompliance
If TRUE, compliance control check of model time series will be skipped. See
is.bimets

Other options to be sent to the underlying MULTMATRIX operation, e.g.:

simType, the simulation type requested:

DYNAMIC: the default, for interim multipliers. Whenever lagged endogenous
variables are needed in the computations, the simulated values of the endoge-
nous variables evaluated in the previous time periods are used;

STATIC: for impact multiplier. Rather than the simulated values, the actual his-
torical values are used whenever lagged endogenous variables are needed in the
computations; see also MULTMATRIX;

simConvergence: the percentage convergence value requested for the simula-
tion process (see also SIMULATE);

124 RENORM

simlterLimit: the value representing the maximum number of iterations to be
performed in the simulation process (see also SIMULATE);

ZeroErrorAC: if TRUE it zeroes out all the autoregressive terms, if any, in the
behavioral equations;

Exogenize: a named list that specifies the endogenous variables to be exoge-
nized (see also SIMULATE);

MM_SHOCK: the value of the shocks added to variables in the derivative cal-
culation of the multipliers. The default value is @.00001 times the value of the
exogenous variable (see also MULTMATRIX);

Value

This function will add a new element named renorm into the output BIMETS model object.
The new renorm element is a named R list that contains the following elements:

- INSTRUMENT: a named R list that contains the time series of the INSTRUMENT exogenous vari-
ables which allow the objective TARGET endogenous variables to be achieved. The names of this list
are the names of the related exogenous variables. This element is populated only if the convergence
is reached. Users can also declare an endogenous variable as INSTRUMENT variable: in this case the
constant adjustment (see SIMULATE) related to the provided endogenous variable will be used as the
instrument exogenous variable. In this case, this INSTRUMENT output list will contains also the
time series of the constant adjustment related to the provided endogenous variable (see example)

- TARGET a named R list built with the time series of the achieved TARGET endogenous variables.
The names of this list are the names of the related endogenous variables the time series belong to;
- unConvergedTARGET: the names array of the endogenous TARGET variables that failed the con-
vergence. This element is populated only if the convergence has not been reached;

- modelData: the whole model input dataset wherein the INSTRUMENT exogenous variables have
been modified accordingly to the RENORM output time series. This can be useful in order to verify
that the model fed with the proper INSTRUMENT exogenous variable produces the desired TARGET
endogenous values. This element is populated only if the convergence is reached;

- ConstantAdjustment: the constant adjustment input list provided during the function call, if any,
wherein the constant adjustment related to a INSTRUMENT endogenous variables have been modified
accordingly to the RENORM output time series. This can be usefull in order to verify that the model
fed with the proper INSTRUMENT exogenous variable and with the proper ConstantAdjustment (if
any) produces the desired TARGET endogenous values. This element is populated only if the conver-
gence is reached;

-_RENORM_PARAMETERS_ : anamed R list that contains the arguments passed to the func-
tion call during the latest RENORM() run, e.g. TSRANGE, renormIterLimit, INSTRUMENT, TARGET,
etc.: that can be usefull in order to replicate the renorm results.

See Also
MDL

RENORM 125

LOAD_MODEL

ESTIMATE

SIMULATE

MULTMATRIX
TIMESERIES

BIMETS indexing
BIMETS configuration

Examples

#define model

myModelDefinition=

"MODEL

COMMENT> Klein Model 1 of the U.S. Economy

COMMENT> Consumption

BEHAVIORAL> cn

TSRANGE 1921 1 1941 1

EQ> cn = al + a2*p + a3*TSLAG(p,1) + ad*(wl+w2)
COEFF> al a2 a3 a4

COMMENT> Investment

BEHAVIORAL> i

TSRANGE 1921 1 1941 1

EQ> i = b1 + b2*p + b3*TSLAG(p,1) + b4xTSLAG(k,1)
COEFF> b1 b2 b3 b4

COMMENT> Demand for Labor

BEHAVIORAL> w1

TSRANGE 1921 1 1941 1

EQ> wl = c1 + c2x(yt+t-w2) + c3*TSLAG(y+t-w2,1) + cdxtime
COEFF> c1 c2 c3 c4

COMMENT> Gross National Product
IDENTITY> y
EQ>y=cn+1i+g-t

COMMENT> Profits
IDENTITY> p
EQ> p =y - (wi+w2)

COMMENT> Capital Stock
IDENTITY> k
EQ> k = TSLAG(k,1) + i

END"
#tdefine model data

myModelData=1ist(
cn

126

=TIMESERIES(39.8,41.9,45,49.2,50.6,52.6,55.1,56.2,57.3,57.8,55,50.9,
45.6,46.5,48.7,51.3,57.7,58.7,57.5,61.6,65,69.7,
START=c(1920,1),FREQ=1),

g

=TIMESERIES(4.6,6.6,6.1,5.7,6.6,6.5,6.6,7.6,7.9,8.1,9.4,10.7,10.2,9.3,10,
10.5,10.3,11,13,14.4,15.4,22.3,
START=c(1920,1),FREQ=1),

1

=TIMESERIES(2.7,-.2,1.9,5.2,3,5.1,5.6,4.2,3,5.1,1,-3.4,-6.2,-5.1,-3,-1.3,
2.1,2,-1.9,1.3,3.3,4.9,
START=c(1920,1),FREQ=1),

k

=TIMESERIES(182.8,182.6,184.5,189.7,192.7,197.8,203.4,207.6,210.6,215.7,
216.7,213.3,207.1,202,199,197.7,199.8,201.8,199.9,
201.2,204.5,209.4,
START=c(1920,1),FREQ=1),

p

=TIMESERIES(12.7,12.4,16.9,18.4,19.4,20.1,19.6,19.8,21.1,21.7,15.6,11.4,
7,11.2,12.3,14,17.6,17.3,15.3,19,21.1,23.5,
START=c(1920,1),FREQ=1),

wi

=TIMESERIES(28.8,25.5,29.3,34.1,33.9,35.4,37.4,37.9,39.2,41.3,37.9,34.5,
29,28.5,30.6,33.2,36.8,41,38.2,41.6,45,53.3,
START=c(1920,1),FREQ=1),

y

=TIMESERIES(43.7,40.6,49.1,55.4,56.4,58.7,60.3,61.3,64,67,57.7,50.7,41.3,
45.3,48.9,53.3,61.8,65,61.2,68.4,74.1,85.3,
START=c(1920,1),FREQ=1),

t
=TIMESERIES(3.4,7.7,3.9,4.7,3.8,5.5,7,6.7,4.2,4,7.7,7.5,8.3,5.4,6.8,7.2,
8.3,6.7,7.4,8.9,9.6,11.6,
START=c(1920,1),FREQ=1),
time

=TIMESERIES(NA,-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,
START=c(1920,1),FREQ=1),

w2

=TIMESERIES(2.2,2.7,2.9,2.9,3.1,3.2,3.3,3.6,3.7,4,4.2,4.8,5.3,5.6,6,6.1,
7.4,6.7,7.7,7.8,8,8.5,
START=c(1920,1),FREQ=1)

#load model and model data
myModel=LOAD_MODEL (modelText=myModelDefinition)
myModel=LOAD_MODEL_DATA(myModel,myModelData)

#estimate model
myModel=ESTIMATE (myModel)

#we want an arbitrary value of 66 on Consumption 'cn' in 1940 and 78 in 1941
#we want an arbitrary value of 77 on GNP 'y' in 1940 and 98 in 1941
kleinTargets = list(

cn = TSERIES(66,78,START=c(1940,1),FREQ=1),

y TSERIES(77,98,START=c(1940,1),FREQ=1)

RENORM

RENORM 127

)

#Then, we can perform the model renormalization by using Government Wage Bill 'w2'
#and Government non-Wage Spending 'g' as
#INSTRUMENT in the years 1940 and 1941:
myModel1=RENORM(myModel
,INSTRUMENT = c('w2','g")
,TARGET = kleinTargets
,TSRANGE = ¢(1940,1,1941,1)
,simIterLimit = 100

with(myModel, TABIT(modelData$w2,
renorm$INSTRUMENT $w2,
modelData$g,
renorm$INSTRUMENTS$g))

DATE, PER, modelData$w2, renorm$INSTRUMENT$w2, modelData$g, renorm$INSTRUMENTS$g

etc.

1938, 1, 7.7, , 13,

1939, 1, 7.8, s 14.4,

1940, 1 , 8, 7.41333, 15.4, 16.1069
1941, 1, 8.5, 9.3436, 22.3, 22.6599

#So, if we want to achieve on Consumption 'cn

#an arbitrary simulated value of 66

#in 1940 and 78 in 1941, and if we want

#to achieve on GNP 'y' an arbitrary

#simulated value of 77 in 1940 and 98 in 1941,

#we need to change exogenous 'w2' from 8 to 7.41

#in 1940 and from 8.5 to 9.34 in 1941,

#and we need to change exogenous 'g'

#from 15.4 to 16.1 in 1940 and from 22.3 to 22.66 in 1941

#let's verify:
#create a new model
kleinRenorm=myModel

#get instruments to be used
newInstruments=myModel$renorm$INSTRUMENT

#change exogenous by using new instruments
kleinRenorm$modelData=within(kleinRenorm$modelData,
{
w2[[1940,1]]1=newInstruments$w2[[1940,1]]
w2[[1941,1]1]=newInstruments$w2[[1941,1]]
g[[1940,1]1]1 =newInstruments$g[[1940,1]]
g[[1941,11] =newInstruments$g[[1941,1]1]
3
)

#users can also replace last two commands with:
#kleinRenorm$modelData=kleinRenorm$renorm$modelData

128

#simulate the new model

kleinRenorm=SIMULATE (kleinRenorm
, TSRANGE=c(1940,1,1941,1)
,simConvergence=0.00001
,simIterLimit=100
)

#Simulation: 100.00%

#...SIMULATE OK

#verify targets are achieved
with(kleinRenorm$simulation,
TABIT(cn,y)
)

#DATE, PER, cn L,y
#1940, 1 , 66.01116 , 77.01772
#1941, 1 , 78.02538 , 98.04121

A

#now use 'i' endogenous variable as an instrument
#first, define the related exogenous constant adjustment
myCA=list(i = myModel$modelData$i*0+@.1)
#run renorm with endogenous 'i' as instrument
myMode1=RENORM(myModel

,INSTRUMENT = c('w2','i")

,TARGET = kleinTargets

,TSRANGE = ¢(1940,1,1941,1)

,simIterLimit = 100

,ConstantAdjustment = myCA
)
#get the values of the constant adjustment for the endogenous 'i'
#in 1940-1941 that allow to achieve the target values for 'cn' and 'y'
myModel$renorm$ConstantAdjustment
#$1
#Time Series:
#Start = 1920
#End = 1941
#Frequency = 1
[1] 0.17000000 0.1000000 0.1000000 ...
#[20] 0.1000000 0.7069039 0.4388811

#these values are also reported in the INSTRUMENT output list
myModel$renorm$INSTRUMENT $1i

#Time Series:

#Start = 1940

#End = 1941

RENORM

SEMIANNUAL 129

#Frequency = 1
#[1] 0.7069039 0.4388811

SEMIANNUAL Semiannual (Dis)Aggregation

Description

This function returns a semi-annual (dis)aggregated time series, by using as input an annual, quar-
terly, monthly or daily time series.

Usage
SEMIANNUAL(x = NULL, fun = NULL, avoidCompliance = FALSE, ...)

Arguments
X Input time series that must satisfy the compliance control check defined in is.bimets.
fun Only for daily or monthly or quarterly input time series:

STOCK: the value of the input time series in the last observation of a half-year
is assigned to the same half-year of the output time series.

NSTOCK: the value of the input time series in the last non-missing observation
of a half-year is assigned to the same half-year of the output time series.

SUM: the sum of input observations in a half-year is assigned to the same half-
year of the output time series.

NSUM: the sum of input non-missing observations in a half-year is assigned to
the same half-year of the output time series.

AVE: the average of input observations in a half-year is assigned to the same
half-year of the output time series.

NAVE: the average of input non-missing observations in a half-year is assigned
to the same half-year of the output time series.

Only for annual input time series:

NULL: (default) the output value of each half-year observation is set equal to
the value of the input observation the half-year belongs to (i.e. duplicated values
over the period)

INTERP_END: the value of the input time series in a period is copied into the
last half-year of the output time series that lies in the same period. Other values
are calculated by linear interpolation.

INTERP_CENTER: the value of the input time series in a period is copied into
the median half-year of the output time series that lies in the same period. Other
values are calculated by linear interpolation.

INTERP_BEGIN: the value of the input time series in a period is copied into
the first half-year of the output time series that lies in the same period. Other
values are calculated by linear interpolation.

130 SIMULATE

avoidCompliance
If TRUE, compliance control check of input time series will be skipped. See
is.bimets

Backward compatibility.

Value

This function returns a semiannual BIMETS time series.

See Also

ANNUAL
QUARTERLY
MONTHLY
DAILY

Examples

#TS QUARTERLY TO SEMIANNUAL

n=14

xArr=(n:0)
ts1=TSERIES(xArr,START=c(2000,1),FREQ='Q")
print (SEMIANNUAL (ts1,fun="NAVE'"))

#TS ANNUAL TO SEMIANNUAL
ts1=TSERIES((1:10),START=c(2000,1) ,FREQ=1)
print (SEMIANNUAL (ts1,fun="'INTERP_END'))

SIMULATE Simulate a BIMETS model object

Description

The simulation of an econometric model basically consists in solving the system of the equations
describing the model for each time period in the specified time interval. Since the equations may
not be linear in the variables, and since the graph derived from the incidence matrix may be cyclic,
the usual methods based on linear algebra are not applicable, and the simulation must be solved by
using an iterative algorithm.

BIMETS simulation capabilities support:

- Static simulations: a static multiple equation simulation, in which the historical values for the
lagged endogenous variables are used in the solutions of subsequent periods;

- Dynamic simulations: a dynamic simulation, in which the simulated values for the lagged en-
dogenous variables are used in the solutions of subsequent periods;

SIMULATE 131

- Residuals check: a single period, single equation simulation; simulated time series in output are
just the computation of the RHS (right-hand-side) of their equation, by using the historical values
of the involved time series and by accounting for error autocorrelation and PDLs, if any;

- Forecast simulations: similar to dynamic simulation, but during the initialization of the itera-
tive algorithm the starting values of endogenous variables in a period are set equal to the simulated
values of the previous period. This allows the simulation of future endogenous observations, i.e.
the forecast;

- Partial or total exogenization of endogenous variables: in the provided time interval (i.e. partial
exog.) or in the whole simulation time range (i.e. total exog.), the values of the selected endogenous
variables can be definitely set equal to their historical values, by excluding their equations from the

iterative algorithm of simulation;

- Constant adjustment of endogenous variables (add-factors): adds another exogenous time se-
ries - the "constant adjustment” - in the equation of the selected endogenous variables;

In details, the generic model suitable for simulation in BIMETS can be written as:

y1 = f1(Z,9) +=

Yn = fn(ja ?j) + 2n

being:

n the number of equations in the model;

7 = [v1, ..., yn] the n-dimensional vector of the endogenous variables;

Z = [x1, ..., T,] the m-dimensional vector of the exogenous variables;

fi(...),7 = 1..n any kind of functional expression able to be written by using the MDL syntax;

As described later on, a modified Gauss-Seidel iterative algorithm can solve the system of equa-
tions. The convergence properties may vary depending on the model specifications. In some condi-
tions, the algorithm may not converge for a specific model or a specific set of data.

A convergence criterion and a maximum number of iterations to be performed are provided by
default. Users can change these criteria by using the simConvergence and simIterLimit argu-
ments of the SIMULATE () function.

The general conceptual scheme of the simulation process (for each time period) is the following:

1. initialize the solution for the current simulation period;

2. iteratively solve the system of equations;

3. save the solution, if any;

Step 2 means that for each iteration you will need to:

2.1 update the values of the current endogenous variables;

132 SIMULATE

2.2 verify that the convergence criterion is satisfied or that the maximum number of allowed itera-
tions has been reached;

The initial solution for the iterative process (step 1) can be given alternatively by:

- the historical value of the endogenous variables for the current simulation period (the default);
- the simulated value of the endogenous variables from the previous simulation period (this alterna-
tive is driven by the simType="'FORECAST' argument of the SIMULATE () function);

In the "dynamic" simulations (i.e. simulations performed by using either the default simType="DYNAMIC'
or the simType="'FORECAST '), whenever lagged endogenous variables are needed in the computa-
tion, the simulated values of the endogenous variables ¢ assessed in the previous time periods are
used. In this case, the results of the simulation in a given time period depends on the results of the
simulation in the previous time periods. This kind of simulation is defined as "multiple equation,
multiple period".

As an alternative, the actual historical values can be used in the "static" simulations (i.e. simulations
performed by using simType="'STATIC") rather than simulated values whenever lagged endogenous
variables are needed in the computations. In this case, the results of the simulation in a given time
period does not depend on the results of the simulation in the previous time periods. This kind of
simulation is defined as "multiple equation, single period".

The last simulation type available is the residual check (simType="'RESCHECK"). With this option a
"single equation, single period" simulation is performed. In this case no iteration must be carried
out. The endogenous variables are assessed for each single time period through the use of historical
values for each variable on the right-hand side of the equation, for both lagged and current periods.
This kind of simulation is very helpful for debugging and checking the logical coherence of the
equations and the data, and can be used as a simple tool to compute the add-factors.

The debugging of the logical coherence of the model-equation and the data is carried out by means
of a procedure called "Residual Check".

It consists in the following steps:

1. add another exogenous variable - the constant adjustment - to every equation of the model,
both behavioral and technical identity (i.e. by using the ConstantAdjustment argument of the
SIMULATE() function);

2. fill in with the estimated residuals all the constant adjustments for the behavioral equations;

3. fill in with zeroes the constant adjustments for the technical identities;

4. perform a simulation of the model with the simType="RESCHECK" option;

5. compute the difference between the historical and the simulated values for all the endogenous
variables;

6. check whether all the differences assessed in step 5 are zero in the whole time range;

If a perfect tracking of the history is obtained then the equations have been written coherently
with the data, otherwise a simulated equation not tracking the historical values is an unambiguous
symptom of data inconsistent with the model definition.

SIMULATE 133

Aside from the residual check, the add-factors constitute an important tool to significantly improve
the accuracy of forecasts made through an econometric model. Considering the following model:

1= f1(Z,9) + =1
Yn = fn(j7g) + 2n

the add-factors Z = [z, ..., z,] can be interpreted as estimates of the future values of the distur-
bance terms or, alternatively, as adjustments of the intercepts in each equation. These add-factors
round out the forecasts, by summarizing the effects of all the systematic factors not included in the
model. One choice for the computation of the add-factors is given by past estimation residuals and
past forecast errors or by an average of these errors. This consideration suggests an easy way of
computing the add-factors:

1. add the constant adjustments to every equation of the model, both behavioral and technical
identity;

2. fill in with zeroes all the constant adjustments;

3. solve the model, with the simType="RESCHECK" option, in a time interval including some periods
beyond the estimation sample;

4. compute the difference between the historical and the simulated values for each the endogenous
variables;

5. average, or process in a suitable way, the difference arising from point 4 in the time periods
beyond the estimation sample to compute the constant value to be used as an add-factor in the fol-
lowing forecasting exercises;

THE OPTIMAL REORDERING

In fact, the simulation process takes advantage of an appropriate ordering of the equations to in-
crease the performances by iteratively solving only one subset of equations, while the others are
solved straightforwardly. "...a different ordering of the equations can substantially affect the speed
of convergence of the algorithm; indeed some orderings may produce divergence. The less feedback
there is, the better the chances for fast convergence...”" - Don, Gallo - Solving large sparse systems
of equations in econometric models - Journal of Forecasting 1987.

The LOAD_MODEL function builds the incidence matrix of the model, then defines the proper equation
reordering. The incidence matrix is built from the equations of the model; it is a square matrix in
which each row and each column represents an endogenous variable. If the (i, j) element is equal
to 1 then in the model definition the current value of the endogenous variable referred by the i-row
depends directly from the current value of the endogenous variable referred by the j-column.

In econometric models, the incidence matrix is usually very sparse. Only a few of the total set
of endogenous variables are used in each equation. In this situation, ordering the equation in a
certain sequence will lead to a sensible reduction of the number of iterations needed to achieve con-
vergence. Reordering the equations is equivalent to rearranging rows and columns of the incidence
matrix. In this way the incidence matrix might be made lower triangular for a subset of the equa-
tions. For this subset, an endogenous variable determined in a specific equation has no incidence in

134 SIMULATE

any equation above it, although the same variable might have incidence in equations below it. Such
a subset of equations is called recursive. Recursive systems are easy to solve. It is only necessary
to solve each equation once if this is done in the right order. On the other hand, it is unlikely for
the whole model to be recursive. Indeed the incidence graph is often cyclic, as in the Klein’s model
that presents the following circular dependecies in the incidence matrix: cn <-wl <-y <-cn

For a subset of the equations, some 1’s will occur in the upper triangle of the incidence matrix
for all possible orderings. Such subset of equations is called simultaneous. In order to be able to
solve the endogenous variables in the simultaneous block of equations, an iterative algorithm has to
be used. Nevertheless, the equations in the simultaneous block may be ordered so that the pattern
of the 1’s in the upper triangle of the incidence matrix forms a spike. The variables corresponding
to the 1’s in the upper triangle are called feedback variables.

A qualitative graphical example of an ordered incidence matrix is given in the following figure. The
white areas are all 0’s, the gray areas contains 0’s and 1’s. The 1’s in the light gray areas refer to
variables already evaluated in previous blocks, therefore they are known terms within the block.
The 1’s in the dark gray areas refer to variables evaluated within the block.

variables

Feedback
variables

[

Convergence is
evaluated here

W00 — =W =0

The final pattern of an incidence matrix after the equation reordering generally features three blocks:

1. a recursive block (the pre-recursive block);
2. a simultaneous block;
3. another recursive block (the post-recursive block);

As said, the pre-recursive and the post-recursive blocks are lower triangular. Therefore the corre-
sponding equations are solvable with a cascade substitution with no iteration. Just the simultaneous
equations set needs an iterative algorithm to be solved. It is important to say that the convergence
criterion may also be applied to these variables only: when the feedback variables converge, the rest
of the simultaneous variables also do.

BIMETS builds and analyzes the incidence matrix of the model, and then it orders the equations in

SIMULATE 135

pre-recursive, post-recursive and simultaneous blocks. The simultaneous block is then analyzed in
order to find a minimal set of feedback variables. This last problem is known to be NP-complete
(Ref: Garey, Johnson - Computers and Intractability: a Guide to the Theory of NP-completeness -
San Francisco, Freeman 1979).

The optimal reordering of the model equations is programmatically achieved through the use of
an iterative algorithm applied to the incidence matrix that can produce 4 ordered lists of endoge-
nous variables:

1. vpre is the ordered list containing the names of the endogenous pre-recursive variables to be
sequentially computed (by using their EQ> definition in the MDL) before the simulation iterative al-
gorithm takes place;

2. vsim is the ordered list containing the names of the endogenous variables to be sequentially
computed during each iteration of the simulation iterative algorithm;

3. vfeed is the list containing the names of the endogenous feedback variables;

4. vpost is the ordered list containing the names of the endogenous post-recursive variables to be
sequentially computed once the simulation iterative algorithm has converged;

If equations are reordered, the previous conceptual scheme is modified as follow:

- initialize the solution for the current simulation period;

- compute the pre-recursive equations (i.e. the equation of the endogenous variables in the vpre
ordered list);

- iteratively compute the system of simultaneous equations (i.e. the equation of the endogenous
variables in the vsim ordered list); for each iteration update the values of the current endogenous
variables and verify that the convergence criterion is satisfied on the feedback variables or that the
maximum number of iterations has been reached;

- compute the post-recursive equations (i.e. the equation of the endogenous variables in the vpost
ordered list);

- save the solutions;

Given y; i, the value of the i-endogenous variable in the simultaneous block at the iteration k, with
1 the position of the equation in a reordered model, the modified Gauss-Seidel method simply takes
for the approximation of the endogenous variable y; ; the solution of the following:

Yik = fi(T1, o Ty Yl ks ooy Yie Lks Yisk—1s o> Y k—1)
As said, the convergence is then tested at the end of each iteration on the feedback variables.

Newton’s methods on a reordered model require the calculation of the Jacobian matrix on the feed-
back endogenous variables, i.e. at least f + 2 iterations per simulation period, with f as the number
of feedback variables. For large models (i.e. more than 30 feedback variables) if the overall re-
quired convergence is greater than 10~%% the speedup over the Gauss-Siebel method is small or
negative. Moreover the Gauss-Siebel method does not require a matrix inversion, therefore it is
more robust against algebraical and numerical issues. For small models both methods are fast on
modern computers.

The simulation of a non-trivial model, if computed by using the same data but on different hardware,

136

SIMULATE

software or numerical libraries, produces numerical differences. Therefore a convergence criterion

smaller than 10~7% frequently leads to a local solution.

See Numerical methods for simulation and optimal control of large-scale macroeconomic models -

Gabay, Nepomiastchy, Rachidi, Ravelli - 1980 for further information.

Usage

SIMULATE (model=NULL,
TSRANGE=NULL,
simType="DYNAMIC',
simConvergence=0.01,
simIterLimit=20,
ZeroErrorAC=FALSE,
BackFill=0,
Exogenize=NULL,

ConstantAdjustment=NULL,

verbose=FALSE,
verboseSincePeriod=0,
verboseVars=NULL,
MULTMATRIX=FALSE,
TARGET=NULL,
INSTRUMENT=NULL,
MM_SHOCK=0. 00001,
quietly=FALSE,
RESCHECKeqList=NULL,
avoidCompliance=FALSE,

.2

Arguments

model

TSRANGE

simType

The BIMETS model object to be simulated. The simulation requires that all
the behaviorals in the model have been previously estimated: all the behavioral
coefficients (i.e. the estimation coefficients and the autoregression coefficients
for the errors, if any) must be numerically defined in the model object. (see also
ESTIMATE)

The time range of the simulation, as a four dimensional numerical array,
i.e. TSRANGE=c(start_year,start_period,end_year,end_period).

The simulation type requested:

DYNAMIC: the default, whenever lagged endogenous variables are needed in
the computations, the simulated values of the endogenous variables evaluated in
the previous time periods are used;

STATIC: rather than the simulated values, the actual historical values are used
whenever lagged endogenous variables are needed in the computations;
FORECAST: similar to the 'DYNAMIC' option, but the initial solutions for the
iterative process are given by the simulated values of the endogenous variables
in the previous period. In this case there is no need for historical values of the

SIMULATE 137

endogenous variables in the whole provided TSRANGE;

RESCHECK: in this case there is no iteration to carry out. The endogenous
variables are evaluated for each single time period by using the historical values
for all the variables on the right-hand side of the equation, both lagged and
current period;

simConvergence The percentage convergence value requested for the iterative process, that stops
when the percentage difference of all the feedback variables between iterations
is less than simConvergence in absolute value;

simIterLimit The value representing the maximum number of iterations to be performed. The
iterative procedure will stop when simIterLimit is reached or the feedback
variables satisfy the simConvergence criterion;

ZeroErrorAC If TRUE it zeroes out all the autoregressive terms, if any, in the behavioral equa-
tions;
BackFill Defined as an integer, it is the length of historical data prior to the simulation

TSRANGE to be saved along with the solutions.

Exogenize A named list that specifies the endogenous variables to be exogenized. During
the simulation and inside the provided time range, the exogenized endogenous
variables will be assigned to their historical values. List names must be the
names of the endogenous variables to be exogenized; each element of this list
contains the time range of the exogenization for the related endogenous vari-
able, in the form of a 4-dimensional integer array, i.e. start_year, start_period,
end_year, end_period. A list element can also be assigned TRUE: in this case
the related endogenous variable will be exogenized in the whole simulation
TSRANGE (see examples);

ConstantAdjustment

A named list that specifies the constant adjustments (i.e. add factors) to be added
to the selected equations of the model. Each constant adjustment can be see as
a new exogenous variable added to the equation of the specified endogenous
variable. The list names are the names of the involved endogenous variables;
each element of this is list contains the time series to be added to the equation
of the related endogenous variable. Each provided time series must verify the
compliance control check defined in is.bimets (see examples);

verbose If TRUE some verbose output will be activated. Moreover the values of all en-
dogenous variables will be printed out during each iteration and for all time
periods inside the simulation TSRANGE;

verboseSincePeriod
An integer that activate the verbose output, during the iterative process, only
after the provided number of simulation periods;

verboseVars A charcater array with the names of the endogenous variables for which the
verbose output will be activated in the iterative process;

MULTMATRIX It is TRUE when the simulation is a vectorial simulation requested by a MULTMATRIX
operation;
TARGET A charcater array built with the names of the endogenous variables for which

the multipliers are requested (see MULTMATRIX);

138 SIMULATE

INSTRUMENT A charcater array built with the names of the exogenous variables with re-
spect to which the multipliers are evaluated. Users can also declare an endoge-
nous variable as INSTRUMENT variable: in this case the constant adjustment (see
SIMULATE) related to the provided endogenous variable will be used as the in-
strument exogenous variable (see MULTMATRIX);

MM_SHOCK The value of the shocks added to variables in the derivative calculation of the
multipliers. The default value is @.00001 times the value of the exogenous
variable (see MULTMATRIX);

quietly If TRUE, information messages will be suppressed.

RESCHECKegList If simType=RESCHECK, by using this arguments users can select a subset of tar-
get endogenous variables: the simulation will be perfmormed only for the se-
lected variables. It must be provided as an array of endogenous names, e.g.

c('endol', 'endo2',...).

avoidCompliance
If TRUE, compliance control check of model time series will be skipped. See
is.bimets

Backward compatibility.

Value

This function will add a new element named simulation into the output BIMETS model object.

The new simulation element is a named R list; the names of the simulation list are the names of
the endogenous variables of the model; each element of the simulation list contains the simulated
time series of the related endogenous variable (see examples).

The simulation list also contains the ' __SIM_PARAMETERS__' element that contains the arguments
passed to the function call during the latest SIMULATE () run, e.g. TSRANGE, symType, simConvergence,
symIterLimit, Exogenize, etc.: that can be useful in order to replicate the simulation results.

See Also

MDL

LOAD_MODEL

ESTIMATE

MULTMATRIX

RENORM

TIMESERIES

BIMETS indexing
BIMETS configuration

Examples

#define model
myModelDefinition=

SIMULATE 139

"MODEL
COMMENT> Klein Model 1 of the U.S. Economy

COMMENT> Consumption

BEHAVIORAL> cn

TSRANGE 1921 1 1941 1

EQ> cn = al + a2*p + a3*TSLAG(p,1) + ad*(wl+w2)
COEFF> al a2 a3 a4

COMMENT> Investment

BEHAVIORAL> i

TSRANGE 1921 1 1941 1

EQ> i = b1 + b2*p + b3*TSLAG(p,1) + b4xTSLAG(k,1)
COEFF> b1 b2 b3 b4

COMMENT> Demand for Labor

BEHAVIORAL> w1

TSRANGE 1921 1 1941 1

EQ> wl = ¢l + c2*(y+t-w2) + c3*xTSLAG(y+t-w2,1) + c4*time
COEFF> c1 c2 c3 c4

COMMENT> Gross National Product
IDENTITY> y
EQ>y=cn+1i+g-t

COMMENT> Profits
IDENTITY> p
EQ> p =y - (wl+w2)

COMMENT> Capital Stock
IDENTITY> k
EQ> k = TSLAG(k,1) + i

END"

#define model data
myModelData=1list(
cn
=TIMESERIES(39.8,41.9,45,49.2,50.6,52.6,55.1,56.2,57.3,57.8,55,50.9,
45.6,46.5,48.7,51.3,57.7,58.7,57.5,61.6,65,69.7,
START=c(1920,1),FREQ=1),
g
=TIMESERIES(4.6,6.6,6.1,5.7,6.6,6.5,6.6,7.6,7.9,8.1,9.4,10.7,10.2,9.3,10,
10.5,10.3,11,13,14.4,15.4,22.3,
START=c(1920, 1) ,FREQ=1),
i
=TIMESERIES(2.7,-.2,1.9,5.2,3,5.1,5.6,4.2,3,5.1,1,-3.4,-6.2,-5.1,-3,-1.3,
2.1,2,-1.9,1.3,3.3,4.9,
START=c(1920,1) ,FREQ=1),
k
=TIMESERIES(182.8,182.6,184.5,189.7,192.7,197.8,203.4,207.6,210.6,215.7,
216.7,213.3,207.1,202,199,197.7,199.8,201.8,199.9,
201.2,204.5,209.4,

140

)

SIMULATE

START=c(1920,1),FREQ=1),

p

=TIMESERIES(12.7,12.4,16.9,18.4,19.4,20.1,19.6,19.8,21.1,21.7,15.6,11.4,
7,11.2,12.3,14,17.6,17.3,15.3,19,21.1,23.5,
START=c(1920,1),FREQ=1),

wi

=TIMESERIES(28.8,25.5,29.3,34.1,33.9,35.4,37.4,37.9,39.2,41.3,37.9,34.5,
29,28.5,30.6,33.2,36.8,41,38.2,41.6,45,53.3,
START=c(1920,1),FREQ=1),

y

=TIMESERIES(43.7,40.6,49.1,55.4,56.4,58.7,60.3,61.3,64,67,57.7,50.7,41.3,
45.3,48.9,53.3,61.8,65,61.2,68.4,74.1,85.3,
START=c(1920,1),FREQ=1),

t
=TIMESERIES(3.4,7.7,3.9,4.7,3.8,5.5,7,6.7,4.2,4,7.7,7.5,8.3,5.4,6.8,7.2,
8.3,6.7,7.4,8.9,9.6,11.6,
START=c(1920,1),FREQ=1),
time

=TIMESERIES(NA,-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,
START=c(1920,1),FREQ=1),

w2

=TIMESERIES(2.2,2.7,2.9,2.9,3.1,3.
7.4,6.7,7.7,7.8,8,8.5,
START=c(1920,1),FREQ=1)

2,3.3,3.6,3.7,4,4.2,4.8,5.3,5.6,6,6.1,

#load model and model data
myModel=LOAD_MODEL (modelText=myModelDefinition)
myModel=LOAD_MODEL_DATA(myModel,myModelData)

#estimate model
myModel=ESTIMATE (myModel)

#DYNAMIC SIMULATION

#si

mulate model

myModel1=SIMULATE (myModel

)
#

#S1
#..

, TSRANGE=c(1923,1,1941,1)
,simConvergence=0.00001
,simIterLimit=100

mulation: 100.00%
.SIMULATE OK

#get simulated time series "cn” and "y"
TABIT(myModel$simulation$cn)

#
#
#
#
#
#

DATE, PER, myModel$simulation$cn

1923, 1 50.338
1924, 1 , 55.6994
1925, 1 , 56.7111

SIMULATE 141

1940, 1 , 66.7799
1941, 1 75.451

ETgE

TABIT (myModel$simulation$y)

#

DATE, PER, myModel$simulation$y
#

1923, 1 56.0305

1924, 1 , 65.8526

1925, 1, 64.265

R

1940, 1 , 76.8049

1941, 1, 93.4459

#

#get latest simulation parameters
print(myModel$simulation$'__SIM_PARAMETERS__')
#$TSRANGE

#[11 1923 11941 1

#

#$simType

#[11 "DYNAMIC"

#

#$simConvergence

#[1] 1e-05

#

#$simIterLimit

#[1] 100

#

#$ZeroErrorAC

#[1] FALSE

#

#...etc etc

#RESCHECK SIMULATION

#simulate model

myModel1=SIMULATE (myModel
,SimType="'RESCHECK'
, TSRANGE=c(1923,1,1941,1)
,simConvergence=0.00001
,simIterLimit=100

)

#

#Simulation: 100.00%

#...SIMULATE OK

#get consumption simulated vs historical differences
TABIT(myModel$simulation$cn-myModel$modelDatas$cn)

#

DATE, PER, myModel$simulation$cn - myModel$modelData$cn

142 SIMULATE

#
1923, 1, 1.56574
1924, 1 , 0.493503
1925, 1 , -0.0076079
...

1939, 1 , -0.989201
1940, 1 , -0.785077
1941, 1, 2.17345
#

#FORECAST GNP in 1942 and 1943

#we need to extend exogenous variables in 1942 and 1943

myModel$modelData$w2 = TSEXTEND(myModel$modelData$w2, UPTO=c(1943,1))
myModel$modelData$t = TSEXTEND(myModel$modelData$t, UPTO=c(1943,1))
myModel$modelData$g = TSEXTEND (myModel$modelDatas$g, UPT0=c(1943,1))

myModel$modelData$time = TSEXTEND(myModel$modelData$time,UPTO=c(1943,1)
,EXTMODE="LINEAR")

#simulate model

myModel=SIMULATE (myModel
,simType="'FORECAST'
, TSRANGE=c(1940,1,1943,1)
,SsimConvergence=0.00001
,simIterLimit=100

)

#

#Simulation: 100.00%

#...SIMULATE OK

#get forecasted GNP
TABIT(myModel$simulation$y)

#

DATE, PER, myModel$simulation$y
#

1940, 1 , 74.5781

1941, 1, 94.0153

1942, 1 133.969

1943, 1, 199.913

#

#STATIC SIMULATION WITH EXOGENIZATION AND CONSTANT ADJUSTMENTS

#define exogenization list
#'cn' exogenized in 1923-1925
#'i' exogenized in the whole TSRANGE
exogenizelList=1list(
cn = ¢(1923,1,1925,1),
i TRUE

)

#define add factor list
constantAdjList=list(

SIMULATE

cn = TIMESERIES(1,-1,START=c(1923,1),FREQ="A"),

TIMESERIES(0.1,-0.1,-0.5,START=c(1926,1) ,FREQ="A")

<
1

)

#simulate model
myModel=SIMULATE (myModel

,simType="'STATIC'

,TSRANGE=c(1923,1,1941,1)

,SsimConvergence=0.00001

,simIterLimit=100

,Exogenize=exogenizelist

,ConstantAdjustment=constantAdjList

)

#Endogenous variable cn has been exogenized from year-period 1923-1 to 1925-1
#Endogenous variable i has been exogenized from year-period 1923-1 to 1941-1
#Endogenous variable i has a constant adjustment from year-period 1923-1 to 1924-1
#Endogenous variable i has a constant adjustment from year-period 1926-1 to 1928-1
#
#Simulation: 100.00%
#...SIMULATE OK

#VERBOSE SIMULATION

myModel=SIMULATE (myModel
, TSRANGE=c(1923,1,1941,1)
,simConvergence=0.00001
,SsimIterLimit=100
,verbose=TRUE
,verboseSincePeriod=19
,verboseVars=c('cn"')

)
#CHECK_MODEL_DATA(): warning, there are missing values in series "time”.
#
#Simulation: 5.26%
#Prd 1 convergence reached in iter 34
#Simulation: 10.53%
#Prd 2 convergence reached in iter 42
#Simulation: 15.79%
#Prd 3 convergence reached in iter 40
#Simulation: 21.05%
#
#...
#
#Prd 17 convergence reached in iter 40
#Simulation: 94.74%
#Prd 18 convergence reached in iter 37
#Simulation: 100.00%
#VPRE eval
#Prd 19 Iter [} cn 69.7
#VSIM eval
#Prd 19 Iter 1 cn 71.7197097805143
#VSIM eval

#Prd 19 Iter 2 cn 72.7386970702054

143

144 summary.BIMETS_MODEL

#... etc etc

#Prd 19 Iter 39 cn 75.4510243396176
#VSIM eval

#Prd 19 Iter 40 cn 75.4510298916399
#VPOST eval

#Prd 19 Iter 40 cn 75.4510299

#Prd 19 convergence reached in iter 40

#

#...SIMULATE OK

summary.BIMETS_MODEL Print basic information about a BIMETS model

Description

This function prints basic information about a BIMETS model, e.g. behaviorals and identities count,
coefficients count, the presence of estimated coefficients or simulated time series.

Usage
S3 method for class 'BIMETS_MODEL'
summary (object,...)
S3 method for class 'BIMETS_MODEL'
print(x,...)

Arguments
object A BIMET model.
X A BIMET model.

Arguments list for the generic method.

Value

This function prints basic information about a BIMETS model, i.e.:

- the name of the model,

- the behaviorals count;

- the identities count;

- the coefficients count;

- the check for the compliance of the model data;

- the check for the coefficients definition in all the behaviorals;

- the check for the definition of a simulated time series for each related endogenous variable of the
model;

summary.BIMETS_MODEL 145

See Also

MDL

LOAD_MODEL

SIMULATE

MULTMATRIX

RENORM

TIMESERIES

BIMETS indexing
BIMETS configuration

Examples

#define model

myModelDefinition=

"MODEL

COMMENT> Modified Klein Model 1 of the U.S. Economy with PDL,
COMMENT> autocorrelation on errors, restrictions and conditional evaluations
COMMENT> Consumption

BEHAVIORAL> cn

TSRANGE 1925 1 1941 1

EQ> cn = al + a2*p + a3*TSLAG(p,1) + ad*x(wl+w2)
COEFF> a1l a2 a3 a4

ERROR> AUTO(2)

COMMENT> Investment

BEHAVIORAL> i

TSRANGE 1923 1 1941 1

EQ> i = b1 + b2%p + b3*TSLAG(p,1) + b4xTSLAG(k,1)
COEFF> b1 b2 b3 b4

RESTRICT> b2 + b3 =1

COMMENT> Demand for Labor

BEHAVIORAL> w1

TSRANGE 1925 1 1941 1

EQ> wl = c1 + c2*x(y+t-w2) + c3*TSLAG(y+t-w2,1) + cd*time
COEFF> c1 c2 c3 c4

PDL> c3 1 3

COMMENT> Gross National Product

IDENTITY> y

EQ>y=cn+1i+g-1t

COMMENT> Profits

IDENTITY> p

EQ> p =y - (wi+w2)

COMMENT> Capital Stock with switches

IDENTITY> k

EQ> k = TSLAG(k,1) + i

IF>i >0

IDENTITY> k

EQ> k = TSLAG(k,1)

IF> i <=0

146

summary.BIMETS_MODEL

END"

#define model data
myModelData=1list(

cn

=TIMESERIES(39.8,41.9,45,49.2,50.6,52.6,55.1,56.2,57.3,57.8,55,50.9,
45.6,46.5,48.7,51.3,57.7,58.7,57.5,61.6,65,69.7,
START=c(1920,1),FREQ=1),

g

=TIMESERIES(4.6,6.6,6.1,5.7,6.6,6.5,6.6,7.6,7.9,8.1,9.4,10.7,10.2,9.3,10,
10.5,10.3,11,13,14.4,15.4,22.3,
START=c(1920,1),FREQ=1),

i

=TIMESERIES(2.7,-.2,1.9,5.2,3,5.1,5.6,4.2,3,5.1,1,-3.4,-6.2,-5.1,-3,-1.3,
2.1,2,-1.9,1.3,3.3,4.9,
START=c(1920,1),FREQ=1),

k

=TIMESERIES(182.8,182.6,184.5,189.7,192.7,197.8,203.4,207.6,210.6,215.7,
216.7,213.3,207.1,202,199,197.7,199.8,201.8,199.9,
201.2,204.5,209.4,
START=c(1920,1),FREQ=1),

p

=TIMESERIES(12.7,12.4,16.9,18.4,19.4,20.1,19.6,19.8,21.1,21.7,15.6,11.4,
7,11.2,12.3,14,17.6,17.3,15.3,19,21.1,23.5,
START=c(1920,1),FREQ=1),

wl

=TIMESERIES(28.8,25.5,29.3,34.1,33.9,35.4,37.4,37.9,39.2,41.3,37.9,34.5,
29,28.5,30.6,33.2,36.8,41,38.2,41.6,45,53.3,
START=c(1920,1),FREQ=1),

y

=TIMESERIES(43.7,40.6,49.1,55.4,56.4,58.7,60.3,61.3,64,67,57.7,50.7,41.3,
45.3,48.9,53.3,61.8,65,61.2,68.4,74.1,85.3,
START=c(1920,1),FREQ=1),

t
=TIMESERIES(3.4,7.7,3.9,4.7,3.8,5.5,7,6.7,4.2,4,7.7,7.5,8.3,5.4,6.8,7.2,
8.3,6.7,7.4,8.9,9.6,11.6,
START=c(1920,1),FREQ=1),
time

=TIMESERIES(NA,-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,
START=c(1920,1),FREQ=1),

w2
=TIMESERIES(2.2,2.7,2.9,2.9,3.1,3.2,3.3,3.6,3.7,4,4.2,4.8,5.3,5.6,6,6.1,
7.4,6.7,7.7,7.8,8,8.5,
START=c(1920,1),FREQ=1)

#load model
myModel=LOAD_MODEL (modelText=myModelDefinition)

#model summary
summary (myModel)

TABIT

#BIMETS MODEL

#name: myModelDefinition
#behaviorals: 3

#identities: 3

#coefficients: 12

#model data: not OK

#.CHECK_MODEL_DATA(): model has no data. Please use LOAD_MODEL_DATA().

#fully

#simulated:

estimated: FALSE

FALSE

#load data into the model

myMode1=LOAD_MODEL_DATA(myModel,myModelData, showWarnings = TRUE)

#testimate the model
myModel1=ESTIMATE (myModel)

#model

summary

print(myModel)

#BIMETS MODEL

147

#name: myModelDefinition

#behaviorals: 3

#identities: 3

#coefficients: 12

#model data: OK

#fully estimated: TRUE

#simulated: FALSE

TABIT Print Time Series Data

Description

This function prints, in an human-readable format, the content of a list of time series. Time series

can be subsetted with the projection argument TSRANGE.

Usage
TABIT(

Arguments

ce ey

TSRANGE=NULL,

digits=getOption('digits'),
avoidCompliance=FALSE)

Input list of time series that must satisfy the compliance control check defined
inis.bimets.

148 TABIT

TSRANGE Optional date range of data presentation. TSRANGE must be specified as a nu-
merical array composed by starting year, staring period, ending year and ending
period of projection,

i.e. TSRANGE=c (START_YEAR, START_PERIOD,END_YEAR,END_PERIOD).

digits Controls the number of digits to print out. Valid values are 1 to 22 with a default
of 7.
avoidCompliance
If TRUE, compliance control check of input time series will be skipped. See
is.bimets
Value

This function prints out time series data and returns a NULL value.

See Also

TSPROJECT
MOVAVG
TSDELTA
TSLAG
TSPROJECT
TSEXTEND
TSLEAD

Examples

#create monthly series
ts1=TSERIES(INTS(1,15),START=c(2000,1),FREQ=12)
ts2=TSERIES(INTS(1,15),START=c(2001,1),FREQ=12)
ts3=TSERIES(rnorm(15),START=c(2002,1),FREQ=12)
ts4=TSERIES(rep(NA,15),START=c(2001,4),FREQ=12)

TABIT(ts1,ts2,ts3,ts4)

print...

#

DATE, PER, tsi , ts2 , ts3 , ts4
#

Jan 2000, 1 , 1 , , ,

Feb 2000, 2 , 2 , , s

Mar 2000, 3 , 3 , ,)

...

Dec 2000, 12 , 12 , , s

Jan 2001, 1 , 13 , 1 , s

Feb 2001, 2 , 14 , 2 , ,

...

Dec 2001, 12 , , 12 , , NA
Jan 2002, 1 , 13 , —1.419782 , NA
Feb 2002, 2 , 14 , —1.070188 , NA

TSDELTA

#create quarterly series, set TSRANGE then print with 3 digits

Mar 2002,
Apr 2002,
Feb 2003,
Mar 2003,

, 15 , 0.889571
, , 0.9583392

, , -0.3444237
, , -0.3073225

ts1=TSERIES(INTS(1,15), START=c(2000, 1) ,FREQ=4)
ts2=TSERIES(INTS(1,15),START=c(2001,1) ,FREQ=4)
ts3=TSERIES(rnorm(15),START=c(2002,1) ,FREQ=4)
ts4=TSERIES(rep(NA, 15), START=c(2001,4) ,FREQ=4)

TABIT(ts1,ts2,ts3,ts4, TSRANGE=c (1991, 3,2003,2),digits=3)

H+
©
4
-
>
=

2001
2001
2001
2001
2002
2002
2002
2002
2003
2003

e E E E E E E E E

DATE,

2000 01,
2000 Q2,
2000 03,
2000 04,

Q1,
Q2,
Q3,
Q4,
Q1,
Q2,
Qs3,
Q4,
Q1,
Qz,

PER,

N = B WN = B WN—=DDwNn-=

tsi

0 N U AW N =

—a a4 a4
AW N2,

, ts2 , ts3

= W 0O NO Ul b WN =
[

#create daily series and set TSRANGE

ts1=TSERIES(INTS(1,25),START=c(2000,1),FREQ=366)
ts2=TSERIES(INTS(1,25),START=c(2000,10),FREQ=366)
ts3=TSERIES(rnorm(25),START=c(2000,20) ,FREQ=366)
ts4=TSERIES(rep(NA, 25),START=c(2000,30) ,FREQ=366)

TABIT(ts1,ts2,ts3,ts4, TSRANGE=c (2000, 5, 2000, 35))

#...print data

, 0.729 ,
.923 ,
, -0.81 ,
, -0.0748
, 0.248)
) , -0.347 ,

ts4

NA
NA
NA
NA
NA
NA
NA

’

NA
NA

149

TSDELTA

Time Series Lag Differences (Delta)

150 TSDELTA

Description

This function returns the O-order, L-lag differences of the input time series.

Usage
TSDELTA(x = NULL, L =1, 0 = 1, avoidCompliance = FALSE, ...)
Arguments
X Input time series that must satisfy the compliance control check defined in is.bimets.
L Lag.
0 Order of the difference.
avoidCompliance
If TRUE, compliance control check of input time series will be skipped. See
is.bimets
Backward compatibility.
Value

This function returns a BIMETS time series.

See Also

TSDELTAP
TSDELTALOG
TSLAG
MOVAVG
INTS
CUMSUM

Examples

#random TS

n=10

XArr=rnorm(n)

tsT1=TSERIES(xArr,START=c(2000,1),FREQ="A")
TABIT(ts1,TSDELTA(ts1,1,1),TSDELTA(ts1,1,2),TSDELTA(ts1,1,3))

TSDELTALOG 151

TSDELTALOG Time Series Lag Logarithmic Differences

Description

This function returns the L-lag logarithmic differences of the input time series.

Usage
TSDELTALOG(x = NULL, L =1, avoidCompliance = FALSE, ...)
Arguments
X Input time series that must satisfy the compliance control check definedin is.bimets.
L Lag.
avoidCompliance
If TRUE, compliance control check of input time series will be skipped. See
is.bimets
Backward compatibility.
Value

This function returns a BIMETS time series.

See Also

TSDELTAP
TSLAG
MOVAVG
INTS
CUMSUM

Examples

#trandom TS

n=10
ts1=TSERIES(1:n,START=c(2000,1),FREQ="A")
TABIT(ts1,TSDELTALOG(ts1,1))

152 TSDELTAP

TSDELTAP Time Series Percentage Lag Differences (Delta Percentage)

Description

This function returns the O-order, L-lag percentage differences of the input time series. If the input
time series frequency is a multiple of the L lag argument, then it is possible to set the argument
ANNUALIZE=TRUE in order to have the percent changes returned at annual rates, i.e. raised to power
of frequency/L.

Usage
TSDELTAP(x = NULL, L = 1, ANNUALIZE = FALSE, avoidCompliance = FALSE, ...)
Arguments
X Input time series that must satisfy the compliance control check definedin is.bimets.
L Lag.
ANNUALIZE If TRUE the percent changes are returned as annual rates, i.e. raised to the power
of frequency/L
avoidCompliance
If TRUE, compliance control check of input time series will be skipped. See
is.bimets
Backward compatibility.
Value

This function returns a BIMETS time series.

See Also

TSDELTA
TSLAG
MOVAVG
INDEXNUM

Examples

#TS Q

n=10;

tsT1=TSERIES(n:@, START=c(2000,1) ,FREQ='Q")
TABIT(ts1,TSDELTAP(ts1,1))

#TS 366
ts1=TSERIES(seq(1, length=10,by=-0.001) , START=c (2000, 1), FREQ=366)

TSERIES

153

TABIT(ts1,TSDELTAP(ts1,1,ANNUALIZE=TRUE))

TSERIES

Create a Time Series

Description

This function returns a time series that is compliant with BIMETS compliance control defined in
is.bimets. Users can provide observation values, frequency and the starting period. Moreover
users can provide metadata information that will be stored into the time series object as attributes.

TIMESERIES is an alias for TSERIES.

Usage

TIMESERIES(..., START = c(2000,1), FREQ = 1,

SOURCE = NULL, TITLE = NULL, UNITS = NULL, SCALEFAC = o,
class=NULL, avoidCompliance = FALSE)

TSERIES(..., START = c(2000,1), FREQ = 1,

Arguments

START

FREQ

SOURCE

TITLE

SOURCE = NULL, TITLE = NULL, UNITS = NULL, SCALEFAC = 0,
class=NULL, avoidCompliance = FALSE)

List of values to be inserted into the output time series. This function accepts
arguments of class ts() and xts(), that must be BIMETS compliant as defined
in is.bimets, and also accepts numerical arrays. Please note that for daily and
weekly time series, as in the default R time series class ts(), this function will
insert provided values always filling up to the 366th period in the daily case and
up to the 53rd period in the weekly case. (see examples)

This argument defines the start of the time series. Starting period can be speci-
fied as c(YEAR,PERIOD), or as Date(), or as yearmon() if the frequency FREQ=12,
or as yearqtr() if the frequency FREQ=4. Please note that the time series must
lie in the years range 1800-2199.

The frequency of the time series. Frequency can be
FREQ=1,2,3,4,12,24,36,53,0r 366. Frequency can also be defined by using
the char 'A' for annual, 'S' for semiannual, 'Q" for quarterly, '"M' for monthly,
'W' for weekly, and 'D' for daily time series.

Set the metadata string that represents the source of the data. Metadata will be
lost if the time series is transformed by any function that changes its values.

Set the metadata string that represents the description of the data. Metadata will
be lost if the time series is transformed by any function that changes its values.

154

UNITS

SCALEFAC

class

avoidCompliance

Value

TSERIES

Set the metadata string that represents the unit of measure of the data. Metadata
will be lost if the time series is transformed by any function that changes its
values.

Set the metadata numerical value that represents the scale factor of the data.
Users may eventually use this value in calculation. Metadata will be lost if the
time series is transformed by any function that changes its values.

If class="'XTS' this function will return a time series based on the xts() class.
If class="TS' this function will return a time series based on the ts() class. If
class=NULL (default) the output base class will be the one defined in the global
BIMETS option 'BIMETS_CONF_CCT' (see BIMETS configuration). Please
note that package functions only accept time series of the same class as the one
defined in the global option 'BIMETS_CONF_CCT'. Users can change any global
option directly in the code.

Please note that BIMETS package performs better with class='TS' or more
generally with BIMETS_CONF_CCT="TS’

If TRUE, compliance control check of input time series will be skipped. See
is.bimets

This function returns a BIMETS time series that is compliant with the BIMETS compliance control
defined in is.bimets.

See Also

is.bimets
as.bimets
BIMETS indexing

BIMETS configuration

fromBIMETStoTS
fromBIMETStoXTS
NOELS

TSDATES

INTS

TABIT

Examples

#day and month
Sys.setlocale('
Sys.setlocale('

#create ts
n=10

names can change depending on locale
LC_ALL",'C")
LC_TIME','C")

ts1=ts((1:n),start=c(2000,1),frequency=1)

TSEXTEND 155

#create ts annual with metadata
out_tseries=TIMESERIES(5,ts1,NA,8, START=c(2020,1),FREQ=T1,
SOURCE='mySource’,TITLE="myTitle' ,UNITS="'myUnits"', SCALEFAC=2)

#print out
TABIT(out_tseries)

#use Date() as start date

TABIT(TIMESERIES(1:10,START=as.Date('2000-01-01"'),FREQ="A"))
TABIT(TIMESERIES(1:10,START=as.Date('2000-07-08"') ,FREQ='D"))
TABIT(TIMESERIES(1:10,START=as.Date('2018-01-01'),FREQ="W"))

#use yearmon()/yearqtr() as start date
TABIT(TIMESERIES(1:10,START=as.yearmon('Mar 2001'),FREQ='M"))
TABIT(TIMESERIES(1:10,START=as.yearqtr('2000 Q3'),FREQ='Q"'))

#create ts monthly with metadata
out_tseries=TIMESERIES(5,ts1,NA,8,START=c(2020,1),FREQ="M",
SOURCE="mySource',TITLE="myTitle' ,UNITS="myUnits', SCALEFAC=2)

#print out
TABIT(out_tseries)

#create daily
out_tseries=TSERIES(5,ts1,NA,8,START=c(2000,1),FREQ=366,
SOURCE="mySource' , TITLE="myTitle',UNITS="myUnits',6 SCALEFAC=2)

#print out
TABIT(out_tseries)

#insert values skipping 366 in non-bissextile

myLength=400

myValues=1:mylLength

myDates=as.Date('2001-01-01')+0: (myLength-1)
ts=as.bimets(xts(myValues,order.by = myDates))

TABIT(ts) #366 observation will be a duplicated of 365, see as.bimets() help

TSEXTEND Extend Time Series

Description
This function extends the time series definition range by using a specified criteria. Values of time se-
ries extension are calculated by using the directives specified in the arguments EXTMODE and FACTOR.
Usage

TSEXTEND(x = NULL, BACKTO = NULL, UPTO = NULL, EXTMODE = "GROWTH",
FACTOR = NA, avoidCompliance = FALSE, ...)

156 TSEXTEND

Arguments

X Input time series that must satisfy the compliance control check defined in is.bimets.

BACKTO Define the new start of the time series, that must be provided as c (YEAR, PERIOD).
It is possible to convert a Date (), or a yearmon(), or a yearqtr() to the related
c(YEAR,PERIOD) by using the functions date2yp, ym2yp, and yq2yp.

UPTO Define the new end of the time series, that must be provided as c (YEAR, PERIOD).
It is possible to convert a Date (), or a yearmon(), or a yearqtr() to the related
c(YEAR,PERIOD) by using the functions date2yp, ym2yp, and yq2yp.

EXTMODE It must be one of the following:
MISSING: extend the time series using missings values NA.
ZERO: extend the time series by using 0 (zero) values.
CONSTANT: extend the time series by using the closest non-missing observa-
tion.
MEAN4: extend the time series by using the mean of the closest four non-
missing observations.
LINEAR: extend the time series by using the same increment of the closest
couple of observations.
QUADRATIC: extend the time series by using the same quadratic increment of
the closest eight observations.
GROWTH: extends the time series by using the closest growth rate.
GROWTHA4: extend the time series by using the factor
r=(mean(x[-1:-4])/mean(x[-5:-81))*x(1/4)
MYCONST: extend the time series by using the value defined in FACTOR
MYRATE: extend the time series by using the increment defined in FACTOR

FACTOR User-defined value used by some options of the EXTMODE argument.

avoidCompliance
If TRUE, compliance control check of input time series will be skipped. See
is.bimets

Backward compatibility.

Value

This function returns a BIMETS time series built by extending the input time series.

See Also

TSLAG
TSJOIN
TSMERGE
TSPROJECT
CUMSUM
INDEXNUM
TSTRIM

TSINFO

Examples

n=10;

157

tsT1=TIMESERIES(1:n, START=c(2000,1) ,FREQ="A")
ts2=TSEXTEND(ts1,BACKTO=c(1990,1),UPTO=c (2020, 1) ,EXTMODE="'GROWTH4 ")

TABIT(ts1,ts2)

xArr=c(0.5,5.6,4.8,3.8,7.3,9.9,7.8,3.7,8.2,10)
ts1=TIMESERIES (XArr,START=c(2000,1) ,FREQ="A")
ts2=TSEXTEND(ts1,BACKTO=c(1990, 1) ,UPT0=c (2020, 1) ,EXTMODE="'QUADRATIC"')

TABIT(ts1,ts2)

xArr=(1:n)

dateArr=seq(as.Date('2000/12/31"'),by="year"', length=n)
dataF=data.frame(dateArr,xArr)

ts1=TIMESERIES(XArr, START=c(2000,1),FREQ="A")
ts2=TSEXTEND(ts1,BACKTO=c(1990,1),UPT0O=c(2020,1) ,EXTMODE="MYRATE' ,FACTOR=2.5)

TABIT(ts1,ts2)

TSINFO

Get Time Series Info

Description

This function returns detailed information about the input time series list. Requested information is
defined in the argument MODE.

Usage
TSINFO(..., MODE = NULL, avoidCompliance=FALSE)
Arguments
Input time series list. Each time series must satisfy the compliance control check
defined in is.bimets.
MODE Select the information to be retrieved from the list of time series. MODE can be

set to:

STARTY: the output will be a numerical array built with the starting year of
each time series in the input list.

ENDY: the output will be a numerical array built with the ending year of each
time series in the input list.

STARTP: the output will be a numerical array built with the starting period of
each time series in the input list.

ENDP: the output will be a numerical array built with the ending period of each
time series in the input list.

START: the output will be a numerical array built with the value
x=START_YEAR+START_PERIOD/FREQ calculated on each time series in the input

158

avoidCompliance

Value

TSINFO

list, where FREQ is the time series frequency.

END: the output will be a numerical array built with the value
x=END_YEAR+END_PERIOD/FREQ calculated on each time series in the input list.
START?2: the output will be a numerical matrix. For each time series in the in-
put list the matrix will have a row=c(START_YEAR, START_PERIOD) with related
values.

END?2: the output will be a numerical matrix. For each time series in the input
list the matrix will have a row=c (END_YEAR,END_PERIOD) with related values.
FREQ: the output will be a numerical array built with the frequency of each
time series in the input list.

FACTOR: the output will be a numerical array built with the SCALEFAC meta-
data value of each time series in the input list.

UNITS: the output will be a string array built with the UNITS metadata string
of each time series in the input list.

TITLE: the output will be a string array built with the TITLE metadata string
of each time series in the input list.

SOURCE: the output will be a string array built with the SOURCE metadata
string of each time series in the input list.

If TRUE, compliance control check of input time series will be skipped. See
is.bimets

This function returns an array built with requested information about the input time series list. In
the case of MODE=START2 or MODE=END2 the output will be of class matrix().

See Also

NOELS

is.bimets
BIMETS indexing
fromBIMETStoTS
fromBIMETStoXTS
GETYEARPERIOD
INTS

TSLOOK

TABIT

Examples

#create ts

ts1=TIMESERIES(INTS(1,10),START=c(2004,2),FREQ=2,
UNITS="myUnits',TITLE="myTitle', SOURCE="mySource")
ts2=TIMESERIES(INTS(1,20),START=c(2006,3),FREQ=4, SCALEFAC=1)
ts3=TIMESERIES(INTS(1,30),START=c(2008,7),FREQ=12)

TSJOIN 159

print (TSINFO(ts1,ts2,ts3,MODE="STARTY ")) #print ... c(2004,2006,2008)
print(TSINFO(ts1,ts2,ts3,MODE='ENDP')) #print ... c(1,2,12)
print(TSINFO(ts1,ts2,ts3,MODE="FREQ')) #print ... c(2,4,12)

print(TSINFO(ts1,ts2,ts3,MODE='START2"'))
#print ...

#[,11 [, 2]

#[1,] 2004 2

#[2,] 2006 3

#[3,] 2008 7

print(TSINFO(ts1,ts2,ts3,MODE='END')) #print ... c(2009.5, 2011.5, 2011.0)
print(TSINFO(ts1,ts2,ts3,MODE="'FACTOR')) #print ... <¢(0,1,0)
print(TSINFO(ts1,ts2,ts3,MODE="UNITS"')) #print ... c('myUnits','',"'")
TSJOIN Join Time Series
Description

This function returns the join of the two input time series. If the first time series overlaps the second
time series, output data is taken from the first time series up to the starting date of the second time
series, the remainder of the data being taken from the second time series.

A different joining period can be specified by using the JPRD argument.

The two time series must have the same frequency.

Usage
TSJOIN(x = NULL, y = NULL, JPRD = NULL, ALLOWGAP = FALSE,
WARN = FALSE, avoidCompliance = FALSE, ...)
Arguments

X First input time series that must satisfy the compliance control check defined in
is.bimets.

y Second input time series that must satisfy the compliance control check defined
inis.bimets.

JPRD This arguments is for defining a joining period other than the starting period
of the second time series, that is the default joining period. It must be de-
fined as JPRD=c (YEAR,PERIOD) and must lie in the time range of the second
time series. Users can convert a Date(), or a yearmon() or a yearqtr() to a
c(YEAR,PERIOD) by using date2yp, ym2yp, yq2yp.

ALLOWGAP if TRUE, the possible gap between the two time series is filled with missing values
NA, otherwise if the two time ranges do not overlap an error will be thrown.

WARN Print a warning message if the two time series do not overlap or if the first time

series starts after the JPRD. The warning is shown only if ALLOWGAP=TRUE.

160 TSLAG

avoidCompliance

If TRUE, compliance control check of input time series will be skipped. See
is.bimets

Backward compatibility.

Value

This function returns a BIMETS time series that is built by joining the two input time series.

See Also

TSLAG
TSEXTEND
TSMERGE
TSPROJECT

Examples

#day and month names can change depending on locale
Sys.setlocale('LC_ALL','C")
Sys.setlocale('LC_TIME','C")

#TS
ts1=TSERIES((1:10),START=c(1985,1),FREQ=1)
ts2=TSERIES((1:10),START=c(2000,1),FREQ=1)
TABIT(ts1,ts2,TSJOIN(ts1,ts2,ALLOWGAP=TRUE))

#XTS

setBIMETSconf ('BIMETS_CONF_CCT', 'XTS")
n=10

XArr=(0:n)

dateArr=as.yearqtr('1997 Q1')+ 0:n/4
dataF=data.frame(dateArr, xArr)
ts1=xts(dataF[,2],order.by=dataF[,1])
dateArr=as.yearqtr('2000 Q1')+ 0:n/4
dataF=data.frame(dateArr, xArr)
ts2=xts(dataF[,2],order.by=dataF[,1])
TABIT(ts1,ts2,TSTOIN(ts1,ts2, ALLOWGAP=TRUE, JPRD=yq2yp(as.yearqgtr("2001 Q3"))))

#restore default
setBIMETSconf ('BIMETS_CONF_CCT','TS")

TSLAG Lag Time Series

TSLAG 161

Description

This function lags the input time series by the specified number of time periods.

Usage
TSLAG(x = NULL, L = 1, avoidCompliance = FALSE, ...)
Arguments
X Input time series that must satisfy the compliance control check defined in is.bimets.
L Lag. Must be an integer, positive or negative.
avoidCompliance
If TRUE, compliance control check of input time series will be skipped. See
is.bimets
Backward compatibility.
Value

This function returns a BIMETS time series built by lagging the input time series.

See Also

TSJOIN
TSEXTEND
TSMERGE
MOVAVG
GETYEARPERIOD
TSLEAD

Examples

#DEFINE TS

n=190
ts1=TSERIES(n:1,START=c(2000,1),FREQ=1)
ts1[5]1=NA

#print TSLAG
TABIT(ts1,TSLAG(ts1,5))

n=10
ts1=TSERIES(n:1,START=c(2000,1),FREQ='D")
ts1[5]=NA

#print TSLAG
TABIT(ts1,TSLAG(ts1,5))

162 TSLEAD

TSLEAD Lead Time Series

Description

This function leads the input time series by the specified number of time periods.

Usage
TSLEAD(x = NULL, L = 1, avoidCompliance = FALSE, ...)
Arguments
X Input time series that must satisfy the compliance control check definedin is.bimets.
L Lead. Must be an integer, positive or negative.
avoidCompliance
If TRUE, compliance control check of input time series will be skipped. See
is.bimets
Backward compatibility.
Value

This function returns a BIMETS time series built by leading the input time series.

See Also

TSJOIN
TSEXTEND
TSMERGE
MOVAVG
GETYEARPERIOD
TSLAG

Examples

#DEFINE TS
n=10

ts1=TSERIES(n:1,START=c(2000,1),FREQ=1)
ts1[5]=NA

#print TSLEAD
TABIT(ts1,TSLEAD(ts1,5))

TSLOOK 163

TSLOOK Lookup a Time Series

Description

This function returns the time range and the frequency of an input time series.

Usage
TSLOOK(x=NULL, avoidCompliance=FALSE, ...)
Arguments
X Input time series that must satisfy the compliance control check defined in is.bimets.
avoidCompliance
If TRUE, compliance control check of input time series will be skipped. See
is.bimets.
Backward compatibility.
Value

This function returns a list of numeric arrays built with the following elements:
STARTY will contain the value of the starting year

STARTP will contain the value of the starting period

ENDY will contain the value of the ending year

ENDP will contain the value of the ending period

FREQ will contain the value of the time series frequency

See Also

NOELS

is.bimets
BIMETS indexing
fromBIMETStoXTS
fromBIMETStoTS
GETYEARPERIOD
INTS

TSINFO

Examples

#create series
ts1=TSERIES(INTS(1,10),START=c(2000,1),FREQ=12)

164

TSMERGE

ts1Look=TSLOOK (ts1)

print(ts1Look$STARTY) #print...2000
print(ts1Look$STARTP) #print...1
print(ts1Look$ENDY) #print...2000
print(ts1Look$ENDP) #print...10
print(ts1Look$FREQ) #print...12

TSMERGE

Merge Time Series

Description

This function merges and concatenates two or more time series of the same frequency. The output
time series will be defined over the union of dates for which the input time series are defined, from
the earliest starting date to the latest ending date.

For each period the output value will be set equal to the first non-missing value found in the list
of the input time series, by using the order of the arguments. If all the input time series are missing
at a period, then the output time series will be set to the missing value NA in the same period. Note
that if the date spans of the input time series do not intersect, TSMERGE (X1,X2, ... ,XN) returns a
simple concatenation of X1,X2,...,XN.

By defining the argument fun, the value of the output time series in a period can also be computed
as a function of the values of the input time series in the same period.

Usage
TSMERGE(. .., fun = NULL, MV = FALSE, avoidCompliance = FALSE)
Arguments
Input list of time series that must satisfy the compliance control check defined
inis.bimets.
fun By defining the argument fun, the value of the output time series in a period can

also be computed as a function of the values of the input time series in the same
period.

fun can assume the following string values:

AVE: the value of the output time series in a period will be set equal to the av-
erage of all input time series values in the same period.

SUM: the value of the output time series in a period will be set equal to the sum
of all input time series values in the same period.

MAX: the value of the output time series in a period will be set equal to the
maximum of all input time series values in the same period.

MIN: the value of the output time series in a period will be set equal to the min-
imum of all input time series values in the same period.

TSMERGE 165

MV If FALSE, the function defined in the argument fun will skip any missing values
found in the input time series.

avoidCompliance
If TRUE, compliance control check of input time series will be skipped. See
is.bimets

Value

This function returns a BIMETS time series built by merging two or more input time series.

See Also

TSJOIN
TSEXTEND
TSLAG
TSPROJECT
TSLEAD
TSTRIM

Examples

#DEFINE TS

n=10
ts1=TSERIES(n:1,START=c(1995,1),FREQ=1)
ts2=TSERIES(n:1,START=c(2000,1),FREQ=1)

ts2[5]=NA
ts1[10]=NA

#print TSMERGE
TABIT(ts1,ts2,TSMERGE(ts1,ts2,fun="SUM' ,MV=TRUE))

#TS D

n=20
tsT1=TSERIES(n:1,START=c(1999,360),FREQ='D")
ts2=TSERIES(n:1,START=c(2000,1),FREQ='D")

ts2[5]=NA
ts1[10]1=NA

#print TSMERGE
TABIT(ts1,ts2,TSMERGE(ts1,ts2,fun="SUM' ,MV=TRUE))

166 TSPROJECT

TSPROJECT Project a Time series

Description
This function projects the input time series into a time interval. The output class can be either a
time series (default) or a one-dimensional array if the argument ARRAY=TRUE.

Usage

TSPROJECT (x=NULL, TSRANGE=NULL, ARRAY=FALSE,
EXTEND=FALSE, avoidCompliance=FALSE,...)

Arguments

X Input time series that must satisfy the compliance control check defined in is.bimets.

TSRANGE Date range of data projection. TSRANGE must be specified as a numerical array
composed by starting year, starting period, ending year and ending period of
projection,

i.e. TSRANGE=c (START_YEAR, START_PERIOD,END_YEAR,END_PERIOD).

ARRAY If TRUE this function will return a numerical array built with observation values
that lie in the specified time range. If FALSE (default) the output will be a time
series.

EXTEND If TRUE and in the case that the input time series does not overlap with the pro-
vided TSRANGE, the output time series will be extended over the TSRANGE by
inserting missing values NA into the new observations.

avoidCompliance
If TRUE, compliance control check of input time series will be skipped. See
is.bimets
Backward compatibility.

Value

This function returns a BIMETS time series, or a numerical array if the argument ARRAY=TRUE, built
by projecting the input time series into the provided TSRANGE.

See Also

TSJOIN
TSEXTEND
TSMERGE
MOVAVG
GETYEARPERIOD
CUMSUM

TSTRIM

TSTRIM 167

Examples

#create yearly ts
ts1=TSERIES((1:10),START=c(2000,1),FREQ=1)

print (TSPROJECT (ts1, TSRANGE=c(2002,1,2005,1))) #print projected ts from 2002 to 2005
print(TSPROJECT (ts1, TSRANGE=c(2001,1,2004,1),ARRAY=TRUE)) #print c(2,3,4,5)

print (TSPROJECT (ts1, TSRANGE=c(1998,1,2002,1) ,EXTEND=TRUE, ARRAY=TRUE))
#print c(NA,NA,1,2,3)

TSTRIM Trim a Time Series

Description

This function removes trailing or leading missing values NA from the input array or the input time se-
ries. Users can provide the value to be removed other than NA missing vallue by using the argument

VALUE.
Usage
TSTRIM(x=NULL, VALUE=NA, TRAIL=TRUE, LEAD=TRUE, avoidCompliance=FALSE, ...)
Arguments
X Input numerical array or time series that must satisfy the compliance control
check defined in is.bimets.
VALUE Target value to be removed. Default to missing value NA.
TRAIL If TRUE this function will remove trailing target values from the input time series.
LEAD If TRUE this function will remove leading target values from the input time series.
avoidCompliance
If TRUE, compliance control check of input time series will be skipped. See
is.bimets
Backward compatibility.
Value

This function returns an object of the same class of the input, i.e. an array or a BIMETS time series,
built by removing leading and trailing user-defined values.

168 ym2yp

See Also

TSLAG
TSJOIN
TSMERGE
TSPROJECT
CUMSUM
INDEXNUM

Examples

#TS A

n=10
ts1=TSERIES(c(NA,1:n,NA),START=c(2000,1) ,FREQ="A")
TABIT(ts1,TSTRIM(ts1))

ts1=TSERIES(c(NA, 1:n,NA), START=c(2000,1) ,FREQ="A")
TABIT(ts1,TSTRIM(ts1,TRAIL=FALSE))

ts1=TSERIES(c(NA, 1:n,NA), START=c(2000,1) ,FREQ="A")
TABIT(ts1,TSTRIM(ts1,LEAD=FALSE))

ts1=TSERIES(c(@,@,NA,1:n,NA,0),START=c(2000,1),FREQ="A")
TABIT(ts1,TSTRIM(ts1,0))

ym2yp yearmon to Year-Period Conversion

Description

This function transforms an input variable of class yearmon() into an equivalent two-dimensional
numerical array of type c(YEAR,PERIOD).

Usage

ym2yp(x = NULL)

Arguments

X Input of class yearmon()

Value

This function returns a two-dimensional numerical array of type c (YEAR, PERIOD).

yq2yp 169

See Also

date2yp

yaz2yp
GETDATE

Examples

#day and month names can change depending on locale
Sys.setlocale('LC_ALL','C")
Sys.setlocale('LC_TIME','C")

print(ym2yp(as.yearmon("Dec 2013"))); #print c(2013,12)
print(ym2yp(c(as.yearmon('Jan 2000'),as.yearmon('Dec 1987"),
as.yearmon('Jan 2003'),as.yearmon('Mar 2012'))))

ya2yp yearqtr to Year-Period Conversion

Description
This function transforms an input variable of class yearqtr() into an equivalent two-dimensional
numerical array of type c(YEAR,PERIOD).

Usage

yq2yp(x = NULL)

Arguments

X Input of class yearmon()

Value

This function returns a two-dimensional numerical array of type c (YEAR, PERIOD).

See Also

date2yp

ym2yp
GETDATE

170 yq2yp

Examples

#day and month names can change depending on locale
Sys.setlocale('LC_ALL','C")
Sys.setlocale('LC_TIME','C")

print(yg2yp(as.yearqtr('2001 Q3'))); #print c(2001,3)
print(yg2yp(c(as.yearqtr('2000 Q2'),as.yearqtr('1987 Q4'),as.yearqtr('2003 Q1'))))

Index

A1D, 29

ANNUAL, 31,41, 106, 121, 130

as.bimets, 32, 36, 37, 59, 61, 63, 64, 70, 77,
154

bimets (bimets-package), 3
BIMETS configuration, 32, 33,48, 59, 61,
63, 64, 66, 67, 70, 76, 77, 83, 88,
100, 112, 125, 138, 145, 154
BIMETS configuration (bimetsConf), 34
BIMETS Datasets (bimetsDataset), 37
BIMETS indexing, 30, 33, 36, 37,43, 48, 58,
59,61, 63, 64,67,69,77,83,88, 91,
100, 112,116, 117, 125, 138, 145,
154, 158, 163
BIMETS indexing (idxOver), 69
BIMETS package, 81
bimets-package, 3
bimets_12_D2YP__ (bimetsDataset), 37
bimets_12F_YP2D__ (bimetsDataset), 37
bimets_12L_YP2D__ (bimetsDataset), 37
bimets_1_D2YP__ (bimetsDataset), 37
bimets_1F_YP2D__ (bimetsDataset), 37
bimets_1L_YP2D__ (bimetsDataset), 37
bimets_24_D2YP__ (bimetsDataset), 37
bimets_24F_YP2D__ (bimetsDataset), 37
bimets_24L_YP2D__ (bimetsDataset), 37
bimets_2_D2YP__ (bimetsDataset), 37
bimets_2F_YP2D__ (bimetsDataset), 37
bimets_2L_YP2D__ (bimetsDataset), 37
bimets_366_D2YP__ (bimetsDataset), 37
bimets_366_YP2D__ (bimetsDataset), 37
bimets_36_D2YP__ (bimetsDataset), 37
bimets_36F_YP2D__ (bimetsDataset), 37
bimets_36L_YP2D__ (bimetsDataset), 37
bimets_3_D2YP__ (bimetsDataset), 37
bimets_3F_YP2D__ (bimetsDataset), 37
bimets_3L_YP2D__ (bimetsDataset), 37
bimets_4_D2YP__ (bimetsDataset), 37
bimets_4F_YP2D__ (bimetsDataset), 37

171

bimets_4L_YP2D__ (bimetsDataset), 37
bimets_53_D2YP__ (bimetsDataset), 37
bimets_53F_YP2D__ (bimetsDataset), 37
bimets_53L_YP2D__ (bimetsDataset), 37
bimets_static_G90_1__ (bimetsDataset),

37

bimets_static_G90_2__ (bimetsDataset),
37

bimets_static_G90_3__ (bimetsDataset),
37

bimets_static_G90_4__ (bimetsDataset),
37

bimets_static_G90_5__ (bimetsDataset),
37

bimets_static_G90_6__ (bimetsDataset),
37

bimets_static_G90__ (bimetsDataset), 37

bimets_static_startYear___
(bimetsDataset), 37

bimets_static_TD90_1__ (bimetsDataset),

37

bimets_static_TD90_2__ (bimetsDataset),
37

bimets_static_TD90_3__ (bimetsDataset),
37

bimets_static_TD90_4__ (bimetsDataset),
37

bimets_static_TD90_5__ (bimetsDataset),
37

bimets_static_TD90_6__ (bimetsDataset),
37

bimets_static_TD90__ (bimetsDataset), 37

bimets_static_totallLength___
(bimetsDataset), 37

bimetsConf, 34

bimetsDataset, 37

CUMPROD, 5, 37, 40
CUMSUM, 5, 39, 74, 107, 108, 150, 151, 156,
166, 168

172

CUMULO (CUMSUM), 39

DAILY, 31, 40, 106, 121, 130
date2yp, 41, 67, 70, 156, 159, 169
DELTA (TSDELTA), 149

DELTAP (TSDELTAP), 152

ELIMELS, 30, 42, 67, 69, 70, 76, 92
ESTIMATE, 12, 19, 29, 43, 83, 88, 100, 110,
112,123, 125, 136, 138

EXTEND (TSEXTEND), 155

frequency, 58, 118, 119

fromBIMETStoTS, 33, 36, 37,59, 61, 77, 154,
158, 163

fromBIMETStoXTS, 33, 36, 37, 59, 60, 77, 154,
158, 163

fromTStoXTS, 62, 64

fromXTStoTS, 63, 64

getBIMETSconf (bimetsConf), 34
GETDATE, 42, 66, 70, 119, 169
GETYEARPERIOD, 43, 68, 74, 75,91, 116, 158,

161-163, 166

idxOver, 69

INDEXNUM, 30, 38, 40, 73, 107, 108, 152, 156,
168

INTS, 30,42, 43,75,91, 117, 150, 151, 154,
158, 163

is.bimets, 29-33, 35, 3743, 45, 59-64, 66,
68-70, 74,76, 87, 91, 105-108, 111,
116, 117,120, 123, 129, 130, 137,
138, 147, 148, 150-154, 156-167
is.bimets(), 35

LOAD_MODEL, 8-10, 29, 44, 47,79, 87, 88, 100,
112,125, 133, 138, 145

LOAD_MODEL_DATA, 10, 83, 87

LOCS, 30,43, 67,70,91, 116, 117,119

MAVE (MOVAVG), 106

MDL, 6, 810, 12, 29, 44, 46, 47, 79, 80, 82, 83,
88,92, 112, 124, 138, 145

MONTHLY, 31, 41, 104, 121, 130

MOVAVG, 5, 38, 39, 74, 75, 106, 148, 150—152,
161, 162, 166

MOVSUM, 5

MOVSUM (MOVTOT), 107

MOVTOT, 107

INDEX

MSUM (MOVTOT), 107

MTOT (MOVTOT), 107

MULTMATRIX, 24, 29, 48, 83, 88, 100, 109, 111,
112, 123-125, 137, 138, 145

NAMELIST, 30, 43,67, 70,91, 115,117,119
NOELS, 30, 43,69, 91, 116, 117, 154, 158, 163
normalizeYP, 58, 118, 119
NUMPERIOD, 58, 118, 119

print (summary.BIMETS_MODEL), 144
QUARTERLY, 31,41, 106, 120, 130

RENORM, 11, 25, 29, 48, 83, 88, 100, 112, 121,
138, 145

SEMIANNUAL, 31,41, 106, 121, 129

setBIMETSconf (bimetsConf), 34

SIMULATE, 11, 22, 24, 29, 48, 81, 83, 88, 100,
109-112, 123-125, 130, 138, 145

summary, 48, 100

summary (summary.BIMETS_MODEL), 144

summary .BIMETS_MODEL, 144

TABIT, 5, 30, 42, 43, 67, 69, 70, 76, 92, 117,
147, 154, 158

TIMESERIES, 3, 30, 33, 35, 37,43, 48, 59, 60,
62,64,77,83,88,100, 112,117
125, 138, 145

TIMESERIES (TSERIES), 153

TSDATES, 30, 117, 154

TSDATES (GETYEARPERIOD), 68

TSDELTA, 5, 38, 39, 107, 108, 148, 149, 152

TSDELTALOG, 5, 150, 151

TSDELTAP, 5, 150, 151, 152

TSERIES, 69, 91, 116, 153

TSEXTEND, 5, 38, 39, 74, 75, 107, 108, 148,
155, 160-162, 165, 166

TSINFO, 30,43, 69, 76,92, 117, 157, 163

TSJOIN, 74, 75, 156, 159, 161, 162, 165, 166,
168

TSLAG, 5, 38, 39, 75, 107, 108, 148, 150152,
156, 160, 160, 162, 165, 168

TSLEAD, 5, 38, 40, 69, 107, 108, 148, 161, 162,
165

TSLOOK, 30, 43, 67,69, 117, 158, 163

TSMERGE, 5, 74, 75, 156, 160-162, 164, 166,
168

INDEX 173

TSPROJECT, 5, 38, 39, 107, 108, 148, 156, 160,
165, 166, 168
TSTRIM, 156, 165, 166, 167

ym2yp, 42, 67, 70, 156, 159, 168, 169
ya2yp, 42, 67, 70, 156, 159, 169, 169

	bimets-package
	A1D
	ANNUAL
	as.bimets
	bimetsConf
	bimetsDataset
	CUMPROD
	CUMSUM
	DAILY
	date2yp
	ELIMELS
	ESTIMATE
	frequency
	fromBIMETStoTS
	fromBIMETStoXTS
	fromTStoXTS
	fromXTStoTS
	GETDATE
	GETYEARPERIOD
	idxOver
	INDEXNUM
	INTS
	is.bimets
	LOAD_MODEL
	LOAD_MODEL_DATA
	LOCS
	MDL
	MONTHLY
	MOVAVG
	MOVTOT
	MULTMATRIX
	NAMELIST
	NOELS
	normalizeYP
	NUMPERIOD
	QUARTERLY
	RENORM
	SEMIANNUAL
	SIMULATE
	summary.BIMETS_MODEL
	TABIT
	TSDELTA
	TSDELTALOG
	TSDELTAP
	TSERIES
	TSEXTEND
	TSINFO
	TSJOIN
	TSLAG
	TSLEAD
	TSLOOK
	TSMERGE
	TSPROJECT
	TSTRIM
	ym2yp
	yq2yp
	Index

