bigsplines: Smoothing Splines for Large Samples

Fits smoothing spline regression models using scalable algorithms designed for large samples. Seven marginal spline types are supported: linear, cubic, different cubic, cubic periodic, cubic thin-plate, ordinal, and nominal. Random effects and parametric effects are also supported. Response can be Gaussian or non-Gaussian: Binomial, Poisson, Gamma, Inverse Gaussian, or Negative Binomial.

Version: 1.1-1
Depends: quadprog
Imports: stats, graphics, grDevices
Published: 2018-05-25
Author: Nathaniel E. Helwig
Maintainer: Nathaniel E. Helwig <helwig at umn.edu>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: yes
Materials: ChangeLog
CRAN checks: bigsplines results

Downloads:

Reference manual: bigsplines.pdf
Package source: bigsplines_1.1-1.tar.gz
Windows binaries: r-devel: bigsplines_1.1-1.zip, r-release: bigsplines_1.1-1.zip, r-oldrel: bigsplines_1.1-1.zip
macOS binaries: r-release: bigsplines_1.1-1.tgz, r-oldrel: bigsplines_1.1-1.tgz
Old sources: bigsplines archive

Reverse dependencies:

Reverse depends: eegkit

Linking:

Please use the canonical form https://CRAN.R-project.org/package=bigsplines to link to this page.