Package ‘behaviorchange’

March 1, 2020
Type Package
Title Tools for Behavior Change Researchers and Professionals
Version 0.2.2
Date 2020-02-29
Maintainer Gjalt-Jorn Peters gjalt-jorn@a-bc.eu
License GPL (>= 3)
Description Contains specialised analyses and
visualisation tools for behavior change science.
These facilitate conducting determinant studies
(for example, using confidence interval-based
estimation of relevance, CIBER, or CIBERlite
plots), systematically developing, reporting,
and analysing interventions (for example, using
acyclic behavior change diagrams), and reporting about intervention effectiveness (for example, using the Numbers Needed for Change), and computing the required sample size (using the Meaningful Change
Definition). This package is especially useful for
researchers in the field of behavior change or
health psychology and to behavior change
professionals such as intervention developers and
prevention workers.
URL https://r-packages.gitlab.io/behaviorchange
BugReports https://gitlab.com/r-packages/behaviorchange/issues
Encoding UTF-8
LazyData true
RoxygenNote 7.0.2
Depends R (>=3.0.0)
Imports BiasedUrn ($>=1.07$), data.tree ($>=0.7 .5$), DiagrammeR ($>=$ 1.0.0), DiagrammeRsvg ($>=0.1 .0$), ggplot2 ($>=2.2 .1$), googlesheets $(>=0.3 .0)$, gridExtra ($>=2.3$), gtable $(>=0.2 .0)$, magrittr ($>=0.1 .5$), png $(>=0.1)$, ufs ($>=0.3 .1$), viridis ($>=$ 0.5 .1), yum ($>=0.0 .1$)
Suggests kableExtra, knitr, rmarkdown, rsvg, webshotVignetteBuilder knitr
NeedsCompilation no
Author Gjalt-Jorn Peters [aut, cre] (https://orcid.org/0000-0002-0336-9589),Rik Crutzen [ctb] (https://orcid.org/0000-0002-3731-6610),Stefan Gruijters [ctb] (https://orcid.org/0000-0003-0141-0071)
Repository CRAN
Date/Publication 2020-03-01 21:30:06 UTC
R topics documented:
abcd 2
abcd_specs_examples 6
apply_graph_theme 7
CIBER 8
CIBERIIte 13
complecs 15
convert.threshold.to.er 16
determinantStructure 20
detStructAddVarLabels 22
dMCD 24
lm_rSq_ci 26
nnc 27
opts 30
partypanelData 31
vecTxt 32
Index 34
abcd

Description

This function generates an acyclic behavior change diagram (ABCD) from a specification in a google sheet or .csv file. An ABCD is a logic model that illustrates the assumptions underlying a behavior change intervention. Specifically, the ABCD shows the assumed causal and structural assumptions, thereby showing what is assumed to cause what (e.g. which elements of the intervention are assumed to influence which aspects of the target population's psychology?) and what is assumed to consist of what (e.g. which determinants are assumed to contain which specific aspects of the target population's psychology?).

Usage

```
    abcd(
        specs,
        specCols = c("bcps", "cnds", "apps", "sdts", "dets", "pobs", "behs"),
        localBackup = NULL,
        title = "Acyclic Behavior Change Diagram\n\n",
        outputFile = NULL,
        outputWidth = 3000,
        outputHeight = 1500,
        includeColNames = TRUE,
        maxLabelLength = 30,
        nodeFontSize = 10,
        edgeFontSize = 8,
        colNameFontSize = nodeFontSize,
        penWidth = 1,
        silent = FALSE,
        returnGraphOnly = FALSE,
        returnSvgOnly = FALSE,
        regExReplacements = list(c("\\\"", "`"), c("\\'", "`"), c("\\\\", "/"))
)
    ## S3 method for class 'abcdiagram'
    print(
        x,
        width = x$input$width,
        height = x$input$height,
        title = DiagrammeR::get_graph_name(x$output$graph),
)
```


Arguments

specs The specifications: either a google sheets URL, the path to a local file, a character vector with both, or a matrix or data frame
specCols The order of the columns. This character vector specified the order of the elements of an ABCD . In the default order, from left to right, these are (see below for definitions and more details):

- bcps = Behavior Change Principles (BCPs);
- cnds = Conditions for effectiveness;
- apps = Applications;
- sdts = Sub-determinants;
- dets = Determinants;
- pobs = Performance Objectives;
- behs = Behaviors;
localBackup Whether to write the specifications to a local backup
title The title of the diagram

```
outputFile If specified, the ABCD is written to this file using DiagrammeR::export_graph.
outputWidth, outputHeight
    If an outputFile is specified, these determine its width and height (in pixels)
includeColNames
    Whether to include the column names as titles/legend for the entities in each
    'column' of the ABCD.
maxLabelLength At which width to word wrap the labels.
nodeFontSize, edgeFontSize, colNameFontSize
    Font sizes of the nodes (i.e. the text in boxes), edges (basically the conditions
    for effectiveness) and the column names (at the bottom).
penWidth The width of the pen to draw the strokes.
silent Whether to suppress (TRUE) or show (FALSE) more detailed information.
returnGraphOnly, returnSvgOnly
    Whether to return the full results object or only either the DiagrammeR::DiagrammeR
    graph or a one-value character vector containing a Scalable Vector Graphic as
    produced by DiagrammeRsvg::export_svg().
regExReplacements
    A list of pairs of regular expressions that will be applied to the specifications
    before generating the ABCD. This can be used to sanitize problematic characters
    (e.g. ', " and \).
x The ABCD object to print (as generated by a call to abcd).
width, height Width and height to use when printing the ABCD.
... Any additional arguments are passed on to DiagrammeR::render_graph().
```


Details

Specifically, a full ABCD is a model that shows the following elements:

- Behavior Change Principles (BCPs): The specific psychological principles engaged to influence the relevant sub-determinants, usually selected using the determinants to which the sub-determinants 'belong'. These are also known as methods of behavior change in the Intervention Mapping framework, or behavior change techniques, BCTs, in the Behavior Change Wheel approach. For a list of 99 BCPs, see Kok et al. (2016).
- Conditions for effectiveness: The conditions that need to be met for a Behavior Change Principle (BCP) to be effective. These conditions depend on the specific underlying Evolutionary Learning Processes (ELPs) that the BCP engages (Crutzen \& Peters, 2018). If the conditions for effectiveness (called parameters for effectiveness in the Intervention Mapping framework) are not met, the method will likely not be effective, or at least, not achieve its maximum effectiveness.
- Applications: Since BCP's describe aspects of human psychology in general, they are necessarily formulated on a generic level. Therefore, using them in an intervention requires translating them to the specific target population, culture, available means, and context. The result of this translation is the application of the BCP. Multiple BCPs can be combined into one application; and one BCP can be applied in multiple applications (see Kok, 2014).
- Sub-determinants: Behavior change interventions engage specific aspects of the human psychology (ideally, they specifically, target those aspects found most important in predicting the target behavior, as can be established with CIBER plots. These aspects are called subdeterminants (the Intervention Mapping framework references Change Objectives, which are sub-determinants formulated according to specific guidelines). In some theoretical traditions, sub-determinants are called beliefs.
- Determinants: The overarching psychological constructs that are defined as clusters of specific aspects of the human psychology that explain humans' behavior (and are targeted by behavior change interventions). Psychological theories contain specific definitions of such determinants, and make statements about how they relate to each other and to human behavior. There are also theories (and exists empirical evidence) on how these determinants can be changed (i.e. BCPs), so althought the sub-determinants are what is targeted in an intervention, the selection of feasible BCPs requires knowing to which determinants those sub-determinants belong.
- Performance objectives: The specific sub-behaviors that often underlie (or make up) the ultimate target behavior. These are distinguished from the overarching target behavior because the relevant determinants of these sub-behaviors can be different: for example, the reasons why people do or do not buy condoms can be very different from the reasons why they do or do not carry condoms or why they do or do not negotiate condom use with a sexual partner.
- Behavior: The ultimate target behavior of the intervention, usually an umbrella that implicitly contains multiple performance objectives.

For details, see Peters et al. (2019).

Value

A list consisting of an input, intermediate, and output list, where the ABCD is stored in the output list as a DiagrammeR::DiagrammeR called graph.

Author(s)

Gjalt-Jorn Peters, gjalt-jorn@a-bc.eu, with contributions from Matti Heino and Sander Eggers.

References

Crutzen, R., \& Peters, G.-J. Y. (2018). Evolutionary learning processes as the foundation for behaviour change. Health Psychology Review, 12(1), 43-57. https://doi.org/10.1080/17437199.2017.1362569
Kok, G. (2014). A practical guide to effective behavior change: How to apply theory- and evidencebased behavior change methods in an intervention. European Health Psychologist, 16(5), 156-170. https://doi.org/10.31234/osf.io/r78wh
Kok, G., Gottlieb, N. H., Peters, G.-J. Y., Mullen, P. D., Parcel, G. S., Ruiter, R. A. C., ... Bartholomew, L. K. (2016). A taxonomy of behavior change methods: an Intervention Mapping approach. Health Psychology Review, 10(3), 297-312. https://doi.org/10.1080/17437199.2015.1077155
Peters, G.-J. Y., et al. (2019) The core of behavior change: introducing the Acyclic Behavior Change Diagram to report and analyze interventions.

Examples

```
### Load one of the ABCD matrices supplied
### with the behaviorchange package
data(abcd_specification_example_xtc);
### Create ABCD matrix (using 'print' to allow pkgdown() to print properly).
print(behaviorchange::abcd(abcd_specification_example_xtc));
```

```
abcd_specs_examples Simple example datasets for ABCDs
```


Description

This are three (nested) datasets illustrating the logic model of change for a simple condom use intervention in a way that can be visualised using the abcd function. The full dataset is abcd_specs_full, a subset that does not explicitly include the conditions for effectiveness (instead showing letters that can then be explained in, for example, the manuscript text) is called abcd_specs_without_conditions, and a version that only contains the information about one sub-behavior (performance objective) is available as abcd_specs_single_po_without_conditions. The variables in the full dataset are:

Usage

data(abcd_specs_complete)
data(abcd_specs_without_conditions)
data(abcd_specs_single_po_without_conditions)
data(abcd_specification_example_xtc)
data(abcd_specs_dutch_xtc)
data(abcd_specification_empty)

Format

For abcd_specs_complete, a data frame with 7 variables and 7 rows; for abcd_specs_without_conditions, a data frame with 6 variables and 7 rows; for abcd_specs_single_po_without_conditions, a data frame with 5 variables and 4 rows; for abcd_specification_example_xtc and abcd_specs_dutch_xtc, a data frame with 7 variables and 5 rows' and for abcd_specification_empty, a data frame with 7 variables and 1 row.

Details

- Behavior Change Principles: The behavior change principles (BCPs), also known as methods for behavior change or 'behavior change techniques' (BCTs), that describe the psychological principles that are assumed to realise the change in the (sub-)determinants.
- Conditions for effectiveness \backslash n(e.g. parameters for use): The conditions for effectiveness that describe the constraints and considerations taken into account in the translation of the BCPs to practical applications for the relevant target population, context, culture, etc.
- Applications: The applications of these BCPs. Where the BCPs describe theoretical principles, the applications are more or less tangible intervention elements.
- Sub-determinants $\backslash \backslash n($ e.g. beliefs; can be formulated as Change Objectives): The specific aspects of teh target population's psychology that are targeted by the BCPs (e.g. beliefs, or in Intervention Mapping vocabulary, Change Objectives).
- Determinants: The determinants, psychological constructs, that the targeted sub-determinants are a part of, and that together predict the Performance Objectives (sub-behaviors).
- Performance Objectives: Explicitly defined sub-behaviors at a level of specificity that distinguishes them from other sub-behaviors, and that together form the target behavior.
- Target Behavior: The ultimate target behavior, usually defined at a relatively general level.

In addition to these three datasets, a Dutch example specification is included named abcd_specs_dutch_xtc, and the same in English as abcd_specification_example_xtc.

Finally, abcd_specification_empty is an empty 'template' ABCD matrix.
apply_graph_theme Apply multiple DiagrammeR global graph attributes

Description

Apply multiple DiagrammeR global graph attributes

Usage

apply_graph_theme(graph, ...)

Arguments

graph The DiagrammeR::DiagrammeR graph to apply the attributes to.
$\ldots \quad$ One or more character vectors of length three, where the first element is the attribute, the second the value, and the third, the attribute type (graph, node, or edge).

Value
The DiagrammeR::DiagrammeR graph.

Examples

```
abcd_complete <- behaviorchange::abcd(behaviorchange::abcd_specs_complete)$output$graph;
abcd_complete <- apply_graph_theme(abcd_complete,
    c("penwidth", 5, "node"),
    c("penwidth", 15, "edge"));
```


Description

This function generates a high-level plot consisting of several diamond plots. This function is useful for estimating the relative relevance of a set of determinants of, for example, behavior. The plot in the left hand panel shows each determinant's distribution with a diamond representing the confidence interval. The right hand plot shows the determinants' associations to one or more 'target' variables, such as behavior or determinants of behavior.

Usage

```
CIBER(
    data,
    determinants,
    targets,
    conf.level = list(means = 0.9999, associations = 0.95),
    subQuestions = NULL,
    leftAnchors = rep("Lo", length(determinants)),
    rightAnchors = rep("Hi", length(determinants)),
    outputFile = NULL,
    outputWidth = NULL,
    outputHeight = NULL,
    outputUnits = "in",
    outputParams = list(),
    orderBy = NULL,
    decreasing = NULL,
    numberSubQuestions = FALSE,
generateColors = list(means = c("red", "blue", "green"), associations = c("red",
            "grey", "green")),
    strokeColors = viridis::viridis(length(targets)),
    vLines = c(-0.5, 0, 0.5),
    vLineColors = "grey",
    titlePrefix = "Means and associations (r) with",
    titleVarLabels = NULL,
    titleSuffix = "",
    fullColorRange = NULL,
    associationsAlpha = 0.5,
    returnPlotOnly = TRUE,
    drawPlot = TRUE,
    baseSize = 0.8,
    dotSize = 2.5 * baseSize,
    baseFontSize = 10 * baseSize,
    theme = ggplot2::theme_bw(base_size = baseFontSize),
    xbreaks = NULL,
```

```
)
binaryCIBER(
    data,
    determinants,
    targets,
    conf.level = list(means = 0.9999, associations = 0.95),
    subQuestions = NULL,
    leftAnchors = rep("Lo", length(determinants)),
    rightAnchors = rep("Hi", length(determinants)),
    outputFile = NULL,
    outputWidth = NULL,
    outputHeight = NULL,
    outputUnits = "in",
    outputParams = list(),
    orderBy = NULL,
    decreasing = NULL,
    numberSubQuestions = FALSE,
    comparisonColors = viridis::viridis(2, end = 0.5),
    categoryLabels = NULL,
    generateColors = list(means = c("red", "blue", "green"), associations = c("red",
        "grey", "green")),
    strokeColors = viridis::viridis(length(targets)),
    vLines = c(-0.8, 0, 0.8),
    vLineColors = "grey",
    titlePrefix = "Means and associations (d) with",
    titleVarLabels = NULL,
    titleSuffix = "",
    fullColorRange = NULL,
    associationsAlpha = 0.5,
    returnPlotOnly = TRUE,
    drawPlot = TRUE,
    baseSize = 0.8,
    dotSize = 2.5 * baseSize,
    baseFontSize = 10 * baseSize,
    theme = ggplot2::theme_bw(base_size = baseFontSize),
    xbreaks = NULL,
)
detStructCIBER(
    determinantStructure,
    data,
    conf.level = list(means = 0.9999, associations = 0.95),
    subQuestions = NULL,
    leftAnchors = rep("Lo", length(determinants)),
    rightAnchors = rep("Hi", length(determinants)),
    orderBy = 1,
```

```
    decreasing = NULL,
generateColors = list(means = c("red", "blue", "green"), associations = c("red",
    "grey", "green")),
    strokeColors = NULL,
    titlePrefix = "Means and associations with",
    titleVarLabels = NULL,
    titleSuffix = "",
    fullColorRange = NULL,
    associationsAlpha = 0.5,
    baseSize = 0.8,
    dotSize = 2.5 * baseSize,
    baseFontSize = 10 * baseSize,
    theme = ggplot2::theme_bw(base_size = baseFontSize),
)
```


Arguments

data	
determinants	The dataframe containing the variables. The 'determinants': the predictors (or 'covariates') of the target variables(s) (or 'criteria').
targets	The 'targets' or 'criteria' variables: the variables predicted by the determinants. The confidence levels for the confidence intervals: has to be a named list with two elements: means and associations, specifying the desired confidence lev- els for the means and associations, respectively. The confidence level for the associations is also used for the intervals for the proportions of explained vari- ance.
subQuestions \quadThe subquestions used to measure each determinants. This can also be used to provide pretty names for the variables if the determinants were not measured by one question each. Must have the same length as determinants.	
leftAnchors \quadThe anchors to display on the left side of the left hand panel. If the deter- minants were measured with one variable each, this can be used to show the anchors that were used for the respective scales. Must have the same length as determinants.	
rightAnchorsThe anchors to display on the left side of the left hand panel. If the deter- minants were measured with one variable each, this can be used to show the anchors that were used for the respective scales. Must have the same length as determinants.	
outputFile \quadThe file to write the output to (the plot is not stored to disk if nULL). The exten- sion can be specified to change the file type.	
outputParams outputheight, outputUnits	
The width, height, and units for the output file.	
More advanced parameters for the output file. This can be used to pass argu-	
ments to ggplot2: :ggsave(), such as passing outputParams=list(type="cairo-png")	
to use anti-aliasing when saving a PNG file.	

orderBy Whether to sort the determinants. Set to NULL to not sort at all; specify the name or index of one of the targets to sort by the point estimates of the associations with that target variable. Use decreasing to determine whether to sort in ascending or descending order. For convenience, if orderBy is not NULL, but decreasing is, the determinants are sorted in descending (decreasing) order.
decreasing Whether to sort the determinants. Specify NULL to not sort at all, TRUE to sort in descending order, and FALSE to sort in ascending order. If decreasing is nor NULL, but orderBy is NULL, the determinants are sorted by their means. For convenience, if orderBy is not NULL, but decreasing is, the determinants are sorted in descending (decreasing) order.
numberSubQuestions
Whether or not to number the subquestions. If they are numbered, they are numbered from the top to the bottom.
generateColors The colors to use to generate the gradients for coloring the diamonds representing the confidence intervals. Has to be a named list with two elements: means and associations, specifying the desired colors for the means and associations, respectively.
strokeColors The palette to use to color the stroke of the confidence intervals for the associations between the determinants and the targets. Successive colors from this palette are used for the targets.
vLines, vLineColors
In the association plot, vertical lines can be plotted to facilitate interpretation. Specify their locations and colors here, or set one or both to NULL to eliminate them.
titlePrefix Text to add before the list of target names and the proportions of explained variance for each target. This plot title also serves as legend to indicate which target 'gets' which each color.
titleVarLabels Optionally, variable labels to use in the plot title. Has to be the exact same length as targets.
titleSuffix Text to add after the list of target names and the proportions of explained variance for each target.
fullColorRange If colors are specified, this can be used to specify which values, for the determinant confidence intervals in the left hand panel, are the minimum and maximum. This is useful if those scores are not actually in the data (e.g. for extremely skewed distributions). If NULL, the range of all individual scores on the determinants is used. For the associations, $c(-1,1)$ is always used as fullColorRange.
associationsAlpha
The alpha level (transparency) of the confidence interval diamonds in the right hand plot. Value between 0 and 1 , where 0 signifies complete transparency (i.e. invisibility) and 1 signifies complete 'opaqueness'.
returnPlotOnly Whether to return the entire object that is generated (including all intermediate objects) or only the plot.
drawPlot Whether the draw the plot, or only return it.
baseSize This can be used to efficiently change the size of most plot elements.

```
dotSize This is the size of the points used to show the individual data points in the left
    hand plot.
baseFontSize This can be used to set the font size separately from the baseSize.
theme This is the theme that is used for the plots.
xbreaks Which breaks to use on the X axis (can be useful to override ggplot2's defaults).
... These arguments are passed on to biAxisDiamondPlot (for the left panel) and
    diamondPlot (for the right panel). Note that all argument are passed to both
    those functions.
comparisonColors
    Colors to use for the two groups in a binary CIBER plot with one (dichotomous)
    target.
categoryLabels Labels for the two values of the target.
determinantStructure
When using detStructCIBER, the determinant structure as generated by determinantStructure is included here. determinants, targets, subQuestions, leftAnchors, and rightAnchors are then read from the determinantStructure object. In other words: once a determinantStructure has been generated, only dat and determinantStructure have to be provided as argument to generate a CIBER diamond plot.
```


Details

Details are explained in Crutzen \& Peters (2017).

Value

Depending on the value of returnPlotOnly, either the plot only (a gtable object) or an object containing most objects created along the way (in which case the plot is stored in \$output\$plot).
The plot has width and height attributes which can be used when saving the plot.

References

Crutzen, R., Peters, G.-J. Y., \& Noijen, J. (2017). How to Select Relevant Social-Cognitive Determinants and Use them in the Development of Behaviour Change Interventions? Confidence Interval-Based Estimation of Relevance. http://dx.doi.org/

See Also

determinantStructure

Examples

```
### This example uses the determinant study Party Panel 17.1;
### see ?behaviorchange::BBC_data for more information.
data(BBC_pp17.1);
behaviorchange::CIBER(data=BBC_pp17.1,
determinants=c('epw_AttExpect_hearingDamage',
    'epw_AttExpect_highTone',
    'epw_AttExpect_musicVolume',
```

```
    'epw_AttExpect_musicFidelity',
    'epw_AttExpect_loudConversation',
    'epw_AttExpect_musicFocus',
    'epw_AttExpect_musicEnjoy'),
targets=c('epw_attitude'));
```

\#\#\# With a binary target
data(BBC_pp17.1);
behaviorchange:: binaryCIBER(data=BBC_pp17.1,
determinants=c('epGeneralBeliefs_loudnessPreference',
'epGeneralBeliefs_loudnessGenre',
'epGeneralBeliefs_loudnessTooMuch',
'epGeneralBeliefs_priceFoam',
'epGeneralBeliefs_priceSilicon',
'epGeneralBeliefs_priceCustom'),
targets=c('epPossession'),
categoryLabels $=c\left({ }^{\prime} n o '\right.$,
'yes')) ;
CIBERlite CIBERlite

Description

CIBERlite plots can be used to quickly get an idea of means and correlations of a small number of determinants. They were developed to facilitate conducting and interpreting determinant studies by prevention professionals.

Usage

```
CIBERlite(
    data,
    determinants,
    targets,
    determinantOrder = NULL,
    determinantLabels = NULL,
    subDeterminantLabels = NULL,
    title = NULL,
    conf.level = 0.95,
    scaleRange = NULL,
    determinantAesthetics = list(fill = "black", color = NA, alpha = 0.5),
    subDeterminantAesthetics = list(fill = "black", color = NA, alpha = 0.5),
    rDiamondAesthetics = list(fill = "#c4c4c4", color = NA, alpha = 0.75)
)
```


Arguments

data The dataframe containing the variables.
determinants Either a character vector with the names of the determinants, or a list of named character vectors, where each vector contains a number of subdeterminants, and each vector's name is the name of the more proximal determinant (i.e. that 'contains' those subdeterminants).
targets A character vector with the names of the targets (i.e. more proximal determinants, behavior, etc).
determinantOrder
The order in which to display the determinants (if this needs to be different from the order as provided in determinants).
determinantLabels
The labels to use for the determinants.
subDeterminantLabels
The labels to use for the subdeterminants.
title The title of the plot.
conf.level The confidence levels: a list with two named values; the confidence level for the means, named means, and the confidence level for the associations, named associations.
scaleRange The full range of the scale of the determinants/subdeterminants; the minimum and maximum values are used if this is not provided.
determinantAesthetics, subDeterminantAesthetics, rDiamondAesthetics
The aesthetics for the determinants, subdeterminants, and correlation diamonds, each a list containing three named values: fill, color, and alpha.

Details

More details will be provided in a forthcoming paper; until then, see https://CIBERlite.com

Value

A ggplot.

Examples

```
### This example uses the determinant study Party Panel 15.1;
### see ?behaviorchange::BBC_data for more information.
data(BBC_pp15.1);
CIBERlite(data=BBC_pp15.1,
    determinants=c('highDose_attitude',
                            'highDose_perceivedNorm',
                            'highDose_pbc'),
        targets=c('highDose_intention'));
```


Description

COMPLECS was developed to help make sense of complex systems. It reads data from a number of worksheets in a spreadsheet and generates a diagram according to those specifications. Originally, COMPLECS was developed to visualise a problem during the needs assessment phase of intervention development.

Usage

complecs(
input,
title = "COMPLECS overview",
layout = "neato",
outputFile = NULL,
outputWidth = NULL,
outputHeight = NULL,
returnSvgOnly = FALSE,
maxLabelLength $=20$
)
\#\# S3 method for class 'complecs' print
x,
width = x\$input\$width,
height = x\$input\$height,
title = DiagrammeR::get_graph_name(x\$output\$graph),
)

Arguments

input Either a link to a Google Sheet, or a path to an Excel file.
title The title of the COMPLECS graph.
layout The layout to use; has to be one of the DiagrammeR layout types (dot, neato, circo and twopi).
outputFile A character vector where each element is one path (including filename) to write the graph to.
outputWidth, outputHeight
If not NULL, a way to override the width and height when calling complecs to generate a COMPLECS overview.
returnSvgOnly Whether to only return the SVG in a character vector.
maxLabelLength The number of characters where to wrap the labels.

X
The object to print (i.e. a result of a call to complecs).
width, height If not NULL, a way to override the width and height when calling print to print a COMPLECS overview.
... Any additional arguments for the print() method are passed to DiagrammeR: : render_graph().

Details

COMPLECS is a recursive acronym for COMPLECS Organises Multiple Players \& Linked Environments using Connected Specifications.

Value

A complecs object that includes the graph and the graph in SVG in output\$graph and output\$graphSvg.

Examples

complecs(paste0("https://docs.google.com/spreadsheets/d/", "1WM015xroy4a0RfpuZ8GhT-NfDoxwS34w9PrWp8rGjjk"));

```
convert.threshold.to.er
```

Visualising Numbers Needed for Change

Description

These functions can be used to visualise Numbers Needed for Change (or Numbers Needed to Treat). erDataSeq is a helper function to generate an Event Rate Data Sequence, and it uses convert.threshold.to.er and convert.er.to.threshold to convert thresholds to event rates and vice versa.

Usage

convert.threshold.to.er (threshold, mean, sd, eventIfHigher = TRUE, pdist = stats::pnorm
)
convert.er.to.threshold(
er,
mean,
sd,
eventIfHigher = TRUE,
qdist = stats::qnorm
)

```
erDataSeq(
    er = NULL,
    threshold = NULL,
    mean = NULL,
    sd = NULL,
    eventIfHigher = TRUE,
    pRange = c(1e-06, 0.99999),
    xStep = 0.01
)
ggNNC(
    cerDataSeq,
    d = NULL,
    eventDesirable = TRUE,
    r = 1,
    xlab = "Continuous outcome",
    plotTitle = c("Numbers Needed for Change = ", ""),
    theme = ggplot2::theme_bw(),
    lineSize = 1,
    cerColor = "#EBF2F8",
    eerColor = "#172F47",
    cerLineColor = "#888888",
    eerLineColor = "#000000",
    dArrowColor = "#000000",
    cerAlpha = 0.66,
    eerAlpha = 0.66,
    xLim = NULL,
    xLimAutoDensityTolerance = 0.001,
    showLegend = TRUE,
    verticalLineColor = "#172F47",
    desirableColor = "#00FF00",
    desirableAlpha = 0.2,
    undesirableColor = "#FF0000",
    undesirableAlpha = 0.2,
    desirableTextColor = "#009900",
    undesirableTextColor = "#990000",
    dArrowDistance = 0.04 * max(cerDataSeq$density),
    dLabelDistance = 0.08 * max(cerDataSeq$density)
)
```


Arguments

threshold If the event rate is not available, a threshold value can be specified instead, which is then used in conjunction with the mean (mean) and standard deviation (sd) and assuming a normal distribution to compute the event rate.
mean The mean of the control group distribution.
sd
The standard deviation (of the control distribution, but assumed to be the same

	for both distributions).
eventIfHigher	Whether scores above or below the threshold are considered 'an event'.
pdist, qdist	Distributions to use when converting thresholds to event rates and vice versa; defaults to the normal distribution.
er	Event rate to visualise (or convert).
pRange	The range of probabilities for which to so the distribution.
xStep	Precision of the drawn distribution; higher values mean lower precision/granularity/resolution.
cerDataSeq	The cerDataSeq object.
d	The value of Cohen's d.
eventDesirable	Whether an event is desirable or undesirable.
r	The correlation between the determinant and behavior (for mediated NNC's).
xlab	The label to display for the X axis.
plotTitle	The title of the plot; either one character value, this value if used; if two, they are considered a prefix and suffix to be pre/appended to the NNC value.
theme	The theme to use for the plot.
lineSize	The thickness of the lines in the plot.
cerColor	The color to use for the event rate portion of the control group distribution.
eerColor	The color to use for the event rate portion of the experimental group distribution.
cerLineColor	The line color to use for the control group distribution.
eerLineColor	The line color to use for the experimental group distribution.
dArrowColor	The color of the arrow to show the effect size.
cerAlpha	The alpha value (transparency) to use for the control group distribution.
eerAlpha	The alpha value (transparency) to use for the control group distribution.
xLim	This can be used to manually specify the limits for the X axis; if NULL, sensible limits will be derived using xLimAutoDensityTolerance.
xLimAutoDensity	Tolerance
	If x Lim is NULL, the limits will be set where the density falls below this proportion of its maximum value.
showLegend	Whether to show the legend (only if showing two distributions).
verticalLineCol	
	The color of the vertical line used to indicate the threshold.
desirableColor	The color for the desirable portion of the X axis.
desirableAlpha undesirableCol	The alpha for the desirable portion of the X axis.
	The color for the undesirable portion of the X axis.
undesirableAlph	
	The color for the undesirable portion of the X axis.
desirableTextCo	
undesirableTex	The color for the text to indicate the desirable portion of the X axis. Color
	The color for the text to indicate the undesirable portion of the X axis.
dArrowDistance	The distance of the effect size arrow from the top of the distributions.
dLabelDistance	The distance of the effect size label from the top of the distributions.

Details

These functions are used by nnc() to show the distributions, and event rates. They probably won't be used much on their own.

Value

erDataSeq returns a data sequence; ggNNC a ggplot2: :ggplot().

Author(s)

Gjalt-Jorn Peters \& Stefan Gruijters
Maintainer: Gjalt-Jorn Peters gjalt-jorn@userfriendlyscience.com

References

Gruijters, S. L., \& Peters, G. Y. (2019). Gauging the impact of behavior change interventions: A tutorial on the Numbers Needed to Treat. PsyArXiv. doi:10.31234/osf.io/2bau7

See Also

```
nnc()
```


Examples

```
### Show distribution for an event rate value of }12
behaviorchange::ggNNC(behaviorchange::erDataSeq(threshold=125, mean=90, sd=30));
### If the event occurs under the threshold instead of
### above it
behaviorchange::ggNNC(behaviorchange::erDataSeq(threshold=125,
                                    mean=90, sd=30,
    eventIfHigher = FALSE));
### ... And for undesirable events (note how
### desirability is an argument for ggNNC, whereas
### whether an event occurs 'above' or 'below' the
### threshold is an argument for erDataSeq):
behaviorchange::ggNNC(behaviorchange::erDataSeq(threshold=125,
                                    mean=90, sd=30,
    eventIfHigher = FALSE),
    eventDesirable = FALSE);
### Show event rate for both experimental and
### control conditions, and show the numbers
### needed for change
behaviorchange::ggNNC(behaviorchange::erDataSeq(threshold=125,
                                    mean=90, sd=30),
    d=.5);
### Illustration of how even with very large effect
```

```
### sizes, if the control event rate is very high,
### you'll still need a high number of NNC
behaviorchange::ggNNC(behaviorchange::erDataSeq(er=.9),
    d=1);
```

 determinantStructure Determinant Structure specification

Description

These functions can be used to specify a determinant structure: a hierarchical structure of determinants that can then be conveniently plotted and analysed, for example using detStructCIBER. These functions are made to be used together; see the example and the forthcoming article for more information.

Usage

```
    determinantStructure(name, selection = NULL, ...)
```

 determinantVar(name, selection = NULL, ...)
 subdeterminants(name, selection = NULL, ...)
 subdeterminantProducts(name, selection = NULL, ...)
 \#\# S3 method for class 'determinantStructure'
 plot(x, useDiagrammeR = FALSE, ...)
 \#\# S3 method for class 'determinantStructure'
 print(x, ...)

Arguments

name
selection A regular expression to use to select the variables in a dataframe that are considered items that together form this variable. For determinantStructure, a list can be provided that also contains a named regular expression with the name 'behaviorRegEx', which specifies the name of the behavior to which this determinant structure pertains.
... Any additional arguments are other determinant structure building functions. These are used to construct the determinant structure 'tree'.
x
useDiagrammeR The determinantStructure object to print or plot.
Whether to simply use print (plot (x)) (if FALSE) or whether to use data.tree::ToDiagrammeRGraph, tweak it a bit, by setting global graph attributes, and then using DiagrammeR::render_graph (if TRUE).

Details

This family of functions will be explained more in detail in a forthcoming paper.
plot and print methods plot and print a determinantStructure object.

Value

A determinantStructure object, which is a data.tree object.

Author(s)

Gjalt-Jorn Peters, gjalt-jorn@a-bc.eu

See Also

detStructAddVarLabels, detStructAddVarNames, detStructComputeProducts, detStructComputeScales, detStructCIBER

Examples

```
determinantStructure('using R',
    list('using R',
            behaviorRegEx = 'some RegEx'),
    determinantVar("Intention",
        "another RegEx",
        determinantVar("Attitude",
            "third RegEX",
            subdeterminants("Likelihood",
                            "4th RegEx"),
                            subdeterminants("Evaluation",
                            "5th RegEx"),
                            subdeterminantProducts("attProduct",
                                    c("4th RegEx",
                                    "5th RegEx"))),
            determinantVar("perceivedNorm",
                        "6th RegEx",
                        subdeterminants("Approval",
                            "7th RegEx"),
        subdeterminants("Motivation to comply",
                            "8th RegEx"),
            subdeterminantProducts("normProduct",
                                    c("7th RegEx",
                                    "8th RegEx"))),
        determinantVar("pbc",
                            "9th RegEx",
        subdeterminants("Control beliefs",
            "10th RegEx"))));
```


Description

These functions are used in conjunction with the determinantStructure family of funtions to conveniently work with determinant structures.

```
Usage
    detStructAddVarLabels(
        determinantStructure,
        varLabelDf,
        varNameCol = "varNames.cln",
        leftAnchorCol = "leftAnchors",
        rightAnchorCol = "rightAnchors",
        subQuestionCol = "subQuestions",
        questionTextCol = "questionText"
    )
    detStructAddVarNames(determinantStructure, names)
    detStructComputeProducts(determinantStructure, data, append = TRUE)
    detStructComputeScales(
        determinantStructure,
        data,
        append = TRUE,
        separator = "_"
    )
```


Arguments

determinantStructure
The determinantStructure object.
varLabelDf The variable label dataframe as generated by the processLSvarLabels in the userfriendlyscience package. It is also possible to specify a 'homemade' dataframe, in which case the column names have to specified (see the next arguments).
varNameCol The name of the column of the varLabelDf that contains the variable name. Only needs to be changed from the default value if varLabelDf is not a dataframe as produced by processLSvarLabels.
leftAnchorCol The name of the column of the varLabelDf that contains the left anchor. Only needs to be changed from the default value if varLabelDf is not a dataframe as produced by processLSvarLabels.

```
rightAnchorCol The name of the column of the varLabelDf that contains the right anchor. Only
    needs to be changed from the default value if varLabelDf is not a dataframe as
    produced by processLSvarLabels.
subQuestionCol The name of the column of the varLabelDf that contains the subquestion. Only
    needs to be changed from the default value if varLabelDf is not a dataframe as
    produced by processLSvarLabels.
questionTextCol
The name of the column of the varLabelDf that contains the question text. Only needs to be changed from the default value if varLabelDf is not a dataframe as produced by processLSvarLabels.
names A character vector with the variable names. These are matched against the regular expressions as specified in the determinantStructure object, and any matches will be stored in the determinantStructure object.
data The dataframe containing the data; the variables names specified in names (when calling detStructAddVarNames) must be present in this dataframe.
append Whether to only return the products or scales, or whether to append these to the dataframe and return the entire dataframe.
separator The separator to use when constructing the scale variables names.
```


Details

This family of functions will be explained more in detail in a forthcoming paper.

Value

detStructAddVarLabels and detStructAddVarNames just change the determinantStructure object; detStructComputeProducts and detStructComputeScales return either the dataframe with the new variables appended (if append $=$ TRUE) or just a dataframe with the new variables (if append $=$ FALSE).

References

(Forthcoming)

See Also

determinantStructure, determinantVar, subdeterminants, subdeterminantProducts, detStructCIBER

Examples

```
### Create some bogus determinant data
detStudy <- mtcars[, c(1, 3:7)];
names(detStudy) <- c('rUse_behav',
    'rUse_intention',
    'rUse_attitude1',
    'rUse_attitude2',
    'rUse_expAtt1',
    'rUse_expAtt2');
```

```
### Specify the determinant structure
### First a subdeterminant
expAtt <-
    behaviorchange::subdeterminants("Subdeterminants",
                        "expAtt");
### Then two determinants
attitude <-
    behaviorchange::determinantVar("Determinant",
                                    "attitude",
                                    expAtt);
intention <-
    behaviorchange::determinantVar("ProximalDeterminant",
                                    "intention",
                                    attitude);
### Then the entire determinant strcture
detStruct <-
    behaviorchange::determinantStructure('Behavior',
                                    list('behav',
                                    behaviorRegEx = 'rUse'),
                    intention);
### Add the variable names
behaviorchange::detStructAddVarNames(detStruct,
                    names(detStudy));
### Add the determinant scale variable to the dataframe
detStudyPlus <-
    behaviorchange::detStructComputeScales(detStruct,
                data=detStudy);
### Show its presence
names(detStudyPlus);
mean(detStudyPlus$rUse_Determinant);
```

 dMCD

Description

This function uses a base rate (Control Event Rate, argument cer) and a Meaningful Change Definitions (MCD, argument mcd) to compute the corresponding Cohen's d. See Gruijters \& Peters (2019) for details.

```
Usage
    dMCD(
        cer,
        mcd = NULL,
        eer = NULL,
        plot = TRUE,
        mcdOnX = FALSE,
    plotResultValues = TRUE,
    resultValueLineColor = "blue",
    resultValueLineSize = 1,
    returnLineLayerOnly = FALSE,
    theme = ggplot2::theme_bw(),
    highestPossibleEER = 0.999999999,
    xLab = ifelse(mcdOnX, "Meaningful Change Definition", "Control Event Rate"),
    yLab = "Cohen's d",
)
```


Arguments

cer	The Control Event Rate (or base rate): how many people already perform the target behavior in the population (as a proportion)?
mcd	The Meaningful Change Definitions: by which percentage (as a proportion) should the event rate increase to render an effect meaningful?
eer	Instead of the MCD, it is also possible to specify the Experimental Event Rate (EER), in which case the MCD is computed by taking the difference with the CER.
plot	Whether to show a plot.
mcdOnX	Whether to plot the Meaningful Change Definition on the X axis (by default, the CER is plotted on the X axis).
plotResultValues	
	Whether to plot the result values.
resultValueLineColor, resultValueLineSize	
	If plotting the result values, lines of this color and size are used.
returnLineLayerOnly	
	Whether to only return a layer with the plotted line (which can be used to quickly stack lines for different MCDs).
theme	The ggplot2 theme to use.
highestPossibleEER	
	The highest possible EER to include in the plot.
xLab, yLab	The labels for the X and Y axes.
	Any additional arguments are passed on to the ggplot2:: geom_line used to draw the line showing the different Cohen's d values as a function of the base rate (or MCD) on the X axis.

Value

The Cohen's d value, optionally with a ggplot 2 plot stored in an attribute (which is only a ggplot2 layer if returnLineLayerOnly=TRUE).

References

Gruijters, S. L. K., \& Peters, G.-J. Y. (2019). Meaningful change definitions: Sample size planning for experimental intervention research. PsyArXiv. doi: 10.31234/osf.io/jc295

Examples

$\mathrm{dMCD}(.2, .05)$;

$$
\begin{array}{ll}
\text { lm_rSq_ci } & \begin{array}{l}
\text { Obtaining an } R \text { squared confidence interval estimate for an lm regres- } \\
\text { sion }
\end{array}
\end{array}
$$

Description

The lm_rSq_ci function uses the base R lm function to conduct a regression analysis and then computes the confidence interval for R squared.

Usage

lm_rSq_ci(
formula, data $=$ NULL, conf.level = 0.95, ci.method = c("widest", "r.con", "olkinfinn"), env = parent.frame()
)

Arguments

formula	The formula of the regression analysis, of the form $y \sim x 1+x 2$, where y is the dependent variable and $x 1$ and $x 2$ are the predictors.
data	If the terms in the formula aren't vectors but variable names, this should be the dataframe where those variables are stored.
conf.level	The confidence of the confidence interval around the regression coefficients.
ci.method	Which method to use for the confidence interval around R squared.
env	The enviroment where to evaluate the formula.

Value

The confidence interval

Author(s)

Gjalt-Jorn Peters
Maintainer: Gjalt-Jorn Peters gjalt-jorn@a-bc.eu

Examples

\#\#\# Do a simple regression analysis
lm_rSq_ci (age ~ circumference, dat=Orange);

Description

This function computes the Numbers Needed for Change, and shows a visualisation to illustrate them. Numbers Needed for Change is the name for a Numbers Needed to Treat estimate that was computed for a continuous outcome as is common in behavior change research.

```
Usage
    nnc(
        d = NULL,
    cer = NULL,
    r = 1,
    n = NULL,
    threshold = NULL,
    mean = 0,
    sd = 1,
    poweredFor = NULL,
    thresholdSensitivity = NULL,
    eventDesirable = TRUE,
    eventIfHigher = TRUE,
    conf.level = 0.95,
    dReliability = 1,
    d.ci = NULL,
    cer.ci = NULL,
    r.ci = NULL,
    d.n = NULL,
    cer.n = NULL,
    r.n = NULL,
    plot = TRUE,
    returnPlot = TRUE,
    silent = FALSE
)
```

```
## S3 method for class 'nnc'
print(x, digits = 2, ...)
```


Arguments

d	
cer	The value of Cohen's d.
T	

This argument can be used to provide a vector of potential threshold values, each of which is used to compute an NNC. This enables easy inspection of whether the value chosen as threshold matters much for the NNC.
eventDesirable Whether an event is desirable or undesirable.
eventIfHigher Whether scores above or below the threshold are considered 'an event'.
conf.level The confidence level of the confidence interval.
dReliability If Cohen's d was not measured with perfect reliability, nnc can disattenuate it to correct for the resulting attenuation using ufs: :disattenuate. d() before computating the Experimental Event Rate. Use this argument to specify the reliability of the outcome measure. By default, the setting of 1 means that no disattenuation is applied.

d.ci	Instead of providing a point estimate for Cohen's d, a confidence interval can be provided.
cer.ci	Instead of providing a point estimate for the Control Event Rate, a confidence interval can be provided.
r.ci	Instead of providing a point estimate for the correlation, a confidence interval can be provided.
d.n	In addition to providing a point estimate for Cohen's d, a sample size can be provided; if it is, the confidence interval is computed.
cer.n	In addition to providing a point estimate for the Control Event Rate, a sample size can be provided; if it is, the confidence interval is computed.

r.n	In addition to providing a point estimate for the correlation, a sample size can be provided; if it is, the confidence interval is computed.
plot	Whether to generate and show the plot.
returnPlot	Whether to return the plot (as an attribute), or to only display it.
silent	Whether to suppress notifications.
x	The nnc object to print.
digits	The number of digits to round to.
\ldots	Any additional arguments are passed to the print function.

Details

Numbers Needed to Treat is a common and very useful effect size measure in use in the medical sciences. It is computed based on the Control Event Rate (CER) and the Experimental Event Rate (EER), and expresses how many people would need to received a treatment to yield a beneficial result for one person. In behavior change research, a similar measure would be useful, but the outcome is normally not dichotomous as is common in the medical literature (i.e. whether a participants survives or is cured), but continuous. Numbers Needed for Change fills this lacuna: it is simply the Numbers Needed to Treat, but converted from a Cohen's d value. nnt is an alias for nnc.
For more details, see Gruijters \& Peters (2019) for details.

Value

The Numbers Needed for Change (NNC), potentially with a plot visualising the NNC in an attribute.

Author(s)

Gjalt-Jorn Peters \& Stefan Gruijters
Maintainer: Gjalt-Jorn Peters gjalt-jorn@userfriendlyscience.com

References

Gruijters, S. L., \& Peters, G. Y. (2019). Gauging the impact of behavior change interventions: A tutorial on the Numbers Needed to Treat. PsyArXiv. doi:10.31234/osf.io/2bau7

Examples

```
### Simple example
behaviorchange::nnc(d=.4, cer=.3);
### Or for a scenario where events are undesirable, and the
### intervention effective (therefore having a negative value for d):
behaviorchange::nnc(d=-.4, cer=.3, eventDesirable=FALSE);
```


Description

The behaviorchange: : opts object contains three functions to set, get, and reset options used by the escalc package. Use behaviorchange: : opts\$set to set options, behaviorchange : :opts\$get to get options, or behaviorchange: :opts\$reset to reset specific or all options to their default values.

Usage

opts

Format

An object of class list of length 4.

Details

It is normally not necessary to get or set behaviorchange options.
The following arguments can be passed:
... For behaviorchange: :opts $\$$ set, the dots can be used to specify the options to set, in the format option = value, for example, EFFECTSIZE_POINTESTIMATE_NAME_IN_DF = " $\backslash n "$. For behaviorchange: : opts\$reset, a list of options to be reset can be passed.
option For behaviorchange: : opts\$set, the name of the option to set.
default For behaviorchange: :opts $\$$ get, the default value to return if the option has not been manually specified.

The following options can be set:
The name of the column with the effect size values.
The name of the column with the effect size variance.
The name of the column with the missing values.

Examples

```
### Get the default utteranceMarker
behaviorchange::opts$get(complecs_entitySheet);
### Set it to a custom version, so that every line starts with a pipe
behaviorchange::opts$set(complecs_entitySheet = "sheet_with_entities");
### Check that it worked
behaviorchange::opts$get(complecs_entitySheet);
```

```
### Reset this option to its default value
behaviorchange::opts$reset(complecs_entitySheet);
### Check that the reset worked, too
behaviorchange::opts$get(complecs_entitySheet);
```

partypanelData Subsets of Party Panel datasets

Description

These are subsets of Party Panel datasets. Party Panel is an annual semi-panel determinant study among Dutch nightlife patrons, where every year, the determinants of another nightlife-related risk behavior are mapped.

```
Usage
data(BBC_pp15.1)
data(BBC_pp16.1)
data(BBC_pp17.1)
data(BBC_pp18.1)
```


Format

For BBC_pp15.1, a data.frame with 123 columns and 829 rows. For BBC_pp16.1, a data.frame with 63 columns and 1077 rows. For BBC_pp17.1, a data. frame with 94 columns and 943 rows. For BBC_pp18.1, a data.frame with 84 columns and 880 rows. Note that many rows contain missing values; the columns and rows were taken directly from the original Party Panel datasets, and represent all participants that made it past a given behavior.

Details

The behaviors of the Party Panel waves were:

- 2015: Behaviors related to using highly dosed ecstasy pills
- 2016: Behaviors related to visiting nightlife first-aid facilities
- 2017: Behaviors related to hearing protection
- 2018: Behaviors related to flirting and boundary crossing
- 2019: Behaviors related to sleeping hygiene surrounding nightlife participation

The full datasets are publicly available through the Open Science Framework (https://osf.io/s4fmu/). Also see the GitLab repositories (https://gitlab.com/partypanel) and the website at https://partypanel.eu.

Examples

```
    data('BBC_pp17.1', package='behaviorchange');
    behaviorchange::CIBERlite(data=BBC_pp17.1,
    determinants=c("epw_attitude",
    "epw_perceivedNorm",
    "epw_pbc",
    "epw_habit"),
    targets=c("epw_intention"));
```

 vecTxt Easily parse a vector into a character value

Description

Easily parse a vector into a character value

Usage

```
vecTxt(
    vector,
    delimiter = ", ",
    useQuote = "",
    firstDelimiter = NULL,
    lastDelimiter = " & ",
    firstElements = 0,
    lastElements = 1,
    lastHasPrecedence = TRUE
)
```

vecTxtQ(vector, useQuote = "'", ...)

Arguments

vector The vector to process.
delimiter, firstDelimiter, lastDelimiter
The delimiters to use for respectively the middle, first firstElements, and last lastElements elements.
useQuote This character string is pre- and appended to all elements; so use this to quote all elements (useQuote="'"), doublequote all elements (useQuote='"'), or anything else (e.g. useQuote='|'). The only difference between vecTxt and vecTxtQ is that the latter by default quotes the elements.
firstElements, lastElements
The number of elements for which to use the first respective last delimiters
lastHasPrecedence
If the vector is very short, it's possible that the sum of firstElements and lastElements is larger than the vector length. In that case, downwardly adjust the number of elements to separate with the first delimiter (TRUE) or the number of elements to separate with the last delimiter (FALSE)?
... Any addition arguments to vecTxtQ are passed on to vecTxt.

Value

A character vector of length 1.

Examples

vecTxtQ(names(mtcars));

Index

*Topic datasets

opts, 30
$*$ Topic data
abcd_specs_examples, 6
partypanelData, 31
$*$ Topic hplot
CIBER, 8
*Topic utilities
convert.threshold.to.er, 16
detStructAddVarLabels, 22
lm_rSq_ci, 26
nnc, 27
abcd, 2, 6
abcd_specification_empty
(abcd_specs_examples), 6
abcd_specification_example_xtc
(abcd_specs_examples), 6
abcd_specs_complete
(abcd_specs_examples), 6
abcd_specs_dutch_xtc
(abcd_specs_examples), 6
abcd_specs_examples, 6
abcd_specs_single_po_without_conditions
(abcd_specs_examples), 6
abcd_specs_without_conditions
(abcd_specs_examples), 6
apply_graph_theme, 7
BBC_data (partypanelData), 31
BBC_pp15.1 (partypanelData), 31
BBC_pp16.1 (partypanelData), 31
BBC_pp17.1 (partypanelData), 31
BBC_pp18.1 (partypanelData), 31
biAxisDiamondPlot, 12
binaryCIBER (CIBER), 8
CIBER, 5, 8
CIBERlite, 13
complecs, 15
convert.er.to.threshold
(convert.threshold.to.er), 16
convert.threshold.to.er, 16
data.tree, 21
data.tree: :ToDiagrammeRGraph, 20
determinantStructure, 12, 20, 22, 23
determinantVar, 23
determinantVar (determinantStructure), 20
detStructAddVarLabels, 21, 22
detStructAddVarNames, 21
detStructAddVarNames
(detStructAddVarLabels), 22
detStructCIBER, 20, 21, 23
detStructCIBER (CIBER), 8
detStructComputeProducts, 21
detStructComputeProducts
(detStructAddVarLabels), 22
detStructComputeScales, 21
detStructComputeScales
(detStructAddVarLabels), 22
detStructPreprocessing
(detStructAddVarLabels), 22
DiagrammeR::DiagrammeR, 4, 5, 7
DiagrammeR: :export_graph, 4
DiagrammeR: :render_graph, 20
DiagrammeR::render_graph(), 4, 16
DiagrammeRsvg: :export_svg(), 4
diamondPlot, 12
dMCD, 24
erDataSeq (convert.threshold.to.er), 16
get (opts), 30
ggNNC (convert.threshold.to.er), 16
ggplot2, 12
ggplot2:: ggplot(), 19
ggplot2::ggsave(), 10
gtable, 12
lm_rSq_ci, 26
nnc, 27
nnc(), 19
nncvis (convert.threshold.to.er), 16
nnt (nnc), 27
opts, 30
partypanelData, 31
plot. determinantStructure (determinantStructure), 20
print(), 16
print.abcdiagram (abcd), 2
print.complecs (complecs), 15
print. determinantStructure (determinantStructure), 20
print.nnc (nnc), 27
reset (opts), 30
set (opts), 30
subdeterminantProducts, 23
subdeterminantProducts
(determinantStructure), 20
subdeterminants, 23
subdeterminants (determinantStructure), 20
ufs: :disattenuate.d(), 28
vecTxt, 32
vecTxtQ (vecTxt), 32

