Package ‘bdpar’

February 20, 2020

Type Package
Title Big Data Preprocessing Architecture
Version 2.0.0

Description Provide a tool to easily build customized data flows to pre-process large volumes
of information from different sources. To this end, 'bdpar’ allows to (i) easily use and
create new functionalities and (ii) develop new data source extractors according to the
user needs. Additionally, the package provides by default a predefined data flow
to extract and pre-process the most relevant information (tokens, dates, ...) from some textual
sources (SMS, Email, tweets, YouTube comments).

Date 2020-02-20
License GPL-3

URL https://github.com/miferreiro/bdpar

BugReports https://github.com/miferreiro/bdpar/issues
Depends R (>=3.5.0)
Imports magrittr, pipeR, purrr, R6, rlist, tools, utils

Suggests cld2, knitr, readr, rex, rjson, rmarkdown, rtweet, stringi,
stringr, testthat (>= 2.3.1), textutils, tuber

VignetteBuilder knitr

RoxygenNote 6.1.1
SystemRequirements Python (>=2.7)
Encoding UTF-8

NeedsCompilation no

Author Miguel Ferreiro-Diaz [aut, cre],

David Ruano-Ordas [aut, ctr],

Tomas R. Cotos-Yafez [aut, ctr],

University of Vigo [cph]
Maintainer Miguel Ferreiro-Diaz <miguel.ferreiro.diaz@gmail.com>
Repository CRAN

Date/Publication 2020-02-20 10:40:03 UTC

https://github.com/miferreiro/bdpar
https://github.com/miferreiro/bdpar/issues

2 AbbreviationPipe

R topics documented:
AbbreviationPipe L 2
Bdpar 5
bdpar.Options oL e e e e 6
bdparData L 8
COoNNECtioNS v v v vt e e e e e e e e 9
ContractionPipe e e e 10
DefaultPipeline 13
DynamicPipeline e 14
ExtractorEml L 16
ExtractorFactory L 17
ExtractorSms 18
ExtractorTwtid 19
ExtractorYtbid 20
File2Pipe e 22
FindEmojiPipe 23
FindEmoticonPipe e 24
FindHashtagPipe e 26
FindUrlPipe e 28
FindUserNamePipe e 30
GenericPipe 32
GenericPipeline 33
GuessDatePipe e 34
GuessLanguagePipe 35
Instance L e 37
InterjectionPipe 39
MeasureLengthPipe L 41
OPETALOT-PIPE .« v v v o v e 43
ResourceHandler L 44
runPipelineo 45
SlangPipe 46
StopWordPipe 48
StoreFileExtPipe e e e 50
TargetAssigningPipe 51
TeeCSVPipe o o e 53
ToLowerCasePipe e 54

Index 56

AbbreviationPipe Class to find and/or replace the abbreviations on the data field of an
Instance
Description

AbbreviationPipe class is responsible for detecting the existing abbreviations in the data field of
each Instance. Identified abbreviations are stored inside the abbreviation field of Instance class.
Moreover if needed, is able to perform inline abbreviations replacement.

AbbreviationPipe 3

Usage

AbbreviationPipe

Constructor

AbbreviationPipe$new(propertyName = "abbreviation”,

propertyLanguageName = "language”,
alwaysBeforeDeps = list("GuessLanguagePipe”),
notAfterDeps = list(),

replaceAbbreviations = TRUE,
resourcesAbbreviationsPath = NULL)

* Arguments:

Details

propertyName: (character) name of the property associated with the Pipe.
propertyLanguageName: (character) name of the language property.

alwaysBeforeDeps: (/ist) the dependences alwaysBefore (Pipes that must be executed
before this one).

notAfterDeps: (list) the dependences notAfter (Pipes that cannot be executed after this
one).

replaceAbbreviations: (logical) indicates if the abbreviations are replaced or not.

resourcesAbbreviationsPath: (character) path of resource files (in json format) con-
taining the correspondence between abbreviations and meaning.

AbbreviationPipe class requires the resource files (in json format) containing the correspondence
between abbreviations and meaning. To this end, the language of the text indicated in the property-
LanguageName should be contained in the resource file name (ie. abbrev.xxx.json where xxx is the
value defined in the propertyLanguageName). The location of the resources should be defined in
the ''resources.abbreviations.path' field of bdpar.Options variable.

Note

AbbreviationPipe will automatically invalidate the Instance whenever the obtained data is empty.

Inherit

This class inherits from GenericPipe and implements the pipe abstract function.

Methods

* pipe: preprocesses the Instance to obtain/replace the abbreviations. The abbreviations found
in the Pipe are added to the list of properties of the Instance.

Usage: pipe(instance)
Value: the Instance with the modifications that have occurred in the pipe.

— Arguments:

+ instance: (Instance) Instance to preproccess.

4 AbbreviationPipe

* findAbbreviation: checks if the abbreviation is in the data.
— Usage: findAbbreviation(data,abbreviation)
— Value: boolean, depending on whether the abbreviation is in the data.
— Arguments:
+ data: (character) text where abbreviation will be searched.
+ abbreviation: (character) indicates the abbreviation to find.
* replaceAbbreviation: replaces the abbreviation in the data for the extended Abbreviation.
— Usage: replaceAbbreviation(abbreviation,extendedAbbreviation,data)
— Value: the data with the abbreviatons replaced.
— Arguments:
« abbreviation: (character) indicates the abbreviation to replace.

+ extendedAbbreviation: (character) indicates the string to replace for the abbrevia-
tions found.

+ data: (character) text where abbreviation will be replaced.
* getPropertyLanguageName: gets of name of property language.

— Usage: getPropertylLanguageName()
— Value: value of name of property language.

» getResourcesAbbreviationsPath: gets of path of abbreviations resources.

— Usage: getResourcesAbbreviationsPath()
— Value: value of path of abbreviations resources.

 setResourcesAbbreviationsPath: sets the path of abbreviations resources.

— Usage: setResourcesAbbreviationsPath(path)
— Arguments:
+ path: (character) the new value of the path of abbreviations resources.

Private fields

* propertyLanguageName: (character) the name of property about language.

* resourcesAbbreviationsPath: (character) path of resource files (in json format) containing
the correspondence between abbreviations and meaning.

* replaceAbbreviations: (logical) indicates if the abbreviations are replaced or not.

See Also

bdpar.Options, ContractionPipe, File2Pipe, FindEmojiPipe, FindEmoticonPipe, FindHashtagPipe,
FindUrlPipe, FindUserNamePipe, GuessDatePipe, GuessLanguagePipe, Instance, InterjectionPipe,
MeasurelLengthPipe, GenericPipe, ResourceHandler, SlangPipe, StopWordPipe, StoreFileExtPipe,
TargetAssigningPipe, TeeCSVPipe, ToLowerCasePipe

Bdpar 5

Bdpar Class to manage the preprocess of the files throughout the flow of pipes

Description

Bdpar class provides the static variables required to perform the whole data flow process. To this
end Bdpar is in charge of (i) initialize the objects of handle the connections to APIs (Connections)
and handles json resources (ResourceHandler) and (ii) executing the flow of pipes (inherited from
GenericPipeline class) passed as argument.

Usage

Bdpar

Constructor

Bdpar$new()

Details

In the case that some pipe, defined on the workflow, needs some type of configuration, it can be
defined throught bdpar.Options variable which have differents methods to support the funcionality
of different pipes.

Static variables

 connections: (Connections) object that handles the connections with YouTube and Twitter.

* resourceHandler: (ResourceHandler) object that handles the json resources files.

Methods

 execute: preprocess files through the indicated flow of pipes.
— Usage:
execute(path,

extractors = ExtractorFactory$new(),
pipeline = GenericPipeline$new())

— Value: list of Instances that have been preprocessed.
— Arguments:
« path: (character) path where the files to be processed are located.

+ extractors: (ExtractorFactory) class which implements the createInstance method
to choose which type of Instance is created.

+ pipeline: (GenericPipeline) subclass of GenericPipeline, which implements the
execute method.

6 bdpar.Options

See Also

bdpar.Options, Connections, DefaultPipeline, DynamicPipeline, GenericPipeline,Instance,
ExtractorFactory, ResourceHandler, runPipeline

Examples

Not run:

#If it is necessary to indicate any existing configuration key, do it through:
#bdpar.Options$set(key, value)

#If the key is not initialized, do it through:

#bdpar.Options$add(key, value)

#Folder with the files to preprocess
path <- system.file(file.path("example"),
package = "bdpar")

#Object which decides how creates the instances
extractors <- ExtractorFactory$new()

#0bject which indicates the pipes' flow
pipeline <- DefaultPipeline$new()

objectBdpar <- Bdpar$new()
#Starting file preprocessing...
objectBdpar$execute(path = path,

extractors = extractors,

pipeline = pipeline)

End(Not run)

bdpar.Options Object to handle the keys/attributes/options common to all pipeline

flow

Description

This class provides the necessary methods to manage a list of keys or options used along the pipe
flow, both those provided by the default library and those implemented by the user.

Usage

bdpar.Options

bdpar.Options 7

Details
By default, the application initializes the object named bdpar.Options of type BdparOptions
which is in charge of initializing the options used in the defined pipes.
The default fields on bdpar.Options are initialized, if needed, as shown bellow:
[eml]
-bdpar.Options$set ("extractorEML.mpaPartSelected”,<<PartSelectedOnMPAlternative>>)
[resources]
- bdpar.Options$set("resources.abbreviations.path”, <<abbreviation.path>>)
- bdpar.Options$set("resources.contractions.path”,<<contractions.path>>)
- bdpar.Options$set("resources.interjections.path”,<<interjections.path>>)
- bdpar.Options$set("resources.slangs.path”,<<slangs.path>>)
- bdpar.Options$set("resources.stopwords.path”, <<stopwords.path>>)
[twitter]
- bdpar.Options$set("twitter.consumer.key"”,<<consumer_key>>)
- bdpar.Options$set("twitter.consumer.secret”,<<consumer_secret>>)
- bdpar.Options$set("twitter.access.token", <<access_token>>)
- bdpar.Options$set("twitter.access.token.secret"”,<<access_token_secret>>)
- bdpar.Options$set(”cache.twitter.path”,<<cache.path>>)
[teeCSVPipe]
- bdpar.Options$set(”"teeCSVPipe.output.path”,<<outputh.path>>)
[youtube]
- bdpar.Options$set("youtube.app.id",<<app_id>>)
- bdpar.Options$set(”youtube. app.password”,<<app_password>>)

- bdpar.Options$set(”cache.youtube.path”,<<cache.path>>)

Methods

* get: obtains a specific option.
— Usage: get(key)
— Value: the value of the specific option.
— Arguments:
* key: (character) the name of the option to obtain.
» add: adds a option to the list of options
— Usage: add(key,value)
— Arguments:
key: (character) the name of the new option.
+ propertyName: (Object) the value of the new option.
* set: modifies the value of the one option.

— Usage: set(key,value)

8 bdparData

— Arguments:
* key: (character) the name of the new option.
* propertyName: (Object) the value of the new option.

* remove: removes a specific option.

— Usage: remove(key)
— Arguments:
key: (character) the name of the option to remove.

 getAll: gets the list of options.

— Usage: getAll()
— Value: Value of options.
* remove: resets the option list to the initial state.
— Usage: reset()
* isSpecificOption: checks for the existence of an specific option.
— Usage: isSpecificProperty(key)
— Value: A boolean results according to the existence of the specific option in the list of
options
— Arguments:
* key: (character) the key of the option to check.

See Also

AbbreviationPipe, Connections, ContractionPipe, ExtractorEml, ExtractorTwtid, ExtractorYtbid,
GuessLanguagePipe, SlangPipe, StopWordPipe, TeeCSVPipe

bdparData Example of the content of the files to be preprocessed.

Description

A manually collected data set containing e-mails and SMS messages from the nutritional and health
domain classified as spam and non-spam (with a ratio of 50%). In addition the dataset contains two
variables: (i) path which indicates the location of the target file and, (ii) source which contains the
raw text comprising each file.

Usage
data(bdparData)

Format
A data frame with 20 rows and 2 variables:

path File path.

source File content.

Connections 9

Connections Class to manage the connections with Twitter and YouTube

Description

The tasks of the functions that the Connections class has are to establish the connections and
control the number of requests that have been made with the APIs of Twitter and YouTube.

Usage

Connections

Constructor

Connections$new()

Details

The way to indicate the keys of YouTube and Twitter has to be through fields of bdpar.Options
variable:

[twitter]

- bdpar.Options$set("twitter.consumer.key",<<consumer_key>>)

- bdpar.Options$set("twitter.consumer.secret"”, <<consumer_secret>>)

- bdpar.Options$set("twitter.access.token",h <<access_token>>)

- bdpar.Options$set("twitter.access.token.secret”, 6 <<access_token_secret>>)
[youtube]

- bdpar.Options$set ("youtube.app.id"”, <<app_id>>)

- bdpar.Options$set ("youtube.app.password”,<<app_password>>)

Note

Fiels of unused connections will be automatically ignored by the platform.

Methods

» getTwitterToken: gets the Twitter token ID.

— Usage: getTwitterToken()
— Value: value of twitterToken.

« startConnectionWithTwitter: is responsible of establishing the connection to Twitter.
— Usage: startConnectionWithTwitter()

* checkRequestToTwitter function in charge of handling the connection with Twitter.
— Usage: checkRequestToTwitter()

« startConnectionWith Youtube function able to establish the connection with YouTube.

10 ContractionPipe

— Usage: startConnectionWithYoutube()

* addNumRequestToYoutube function that increases in one the number of request to YouTube.
— Usage: addNumRequestToYoutube()

* checkRequestToYoutube handles the connection with YouTube.
— Usage: checkRequestToYoutube()

» getNumRequestMaxTo Youtube gets the number of maximum requests allowed by YouTube
APL

— Usage: getNumRequestMaxToYoutube ()

— Value: value of number maximun of request to YouTube.

Private fields

* keys: (list) the keys of Twitter and YouTube.
* numRequestToYoutube: (numeric) indicates the number of requests made to YouTube.

* numRequestMaxToYoutube: (numeric) indicates the maximum number of requests with
YouTube.

¢ connectionWithYoutube: (logical) indicates if the connection has been established with
YouTube.

* connectionWithTwitter: (logical) indicates if the connection has been established with Twit-
ter.

« twitterToken: (7oken) token to establish the connection to Twitter.

See Also

bdpar.Options, ExtractorTwtid, ExtractorYtbid

ContractionPipe Class to find and/or replace the contractions on the data field of a
Instance

Description

ContractionPipe class is responsible for detecting the existing contractions in the data field of
each Instance. Identified contractions are stored inside the contraction field of Instance class.
Moreover if needed, is able to perform inline contractions replacement.

Usage

ContractionPipe

ContractionPipe

Constructor

11

ContractionsPipe$new(propertyName = "contractions”,

* Arguments:

propertyLanguageName = "language”,
alwaysBeforeDeps = list("GuessLanguagePipe"”),
notAfterDeps = list(),

replaceContractions = TRUE,
resourcesContractionsPath = NULL)

— propertyName: (character) name of the property associated with the Pipe.

— propertyLanguageName: (character) name of the language property.

— alwaysBeforeDeps: (list) the dependences alwaysBefore (Pipes that must be executed
before this one).

— notAfterDeps: (list) the dependences notAfter (Pipes that cannot be executed after this

one).

— replaceContractions: (logical) indicates if the contractions are replace or not.

— resourcesContractionsPath: (character) path of resource files (in json format) contain-
ing the correspondence between contractions and meaning.

Details

ContractionPipe class requires the resource files (in json format) containing the correspondence
between contractions and meaning. To this end, the language of the text indicated in the property-
LanguageName should be contained in the resource file name (ie. contr.xxx.json where xxx is the
value defined in the propertyLanguageName). The location of the resources should be defined in
the ''resources.contractions.path' field of bdpar. Options variable.

Note

ContractionPipe will automatically invalidate the Instance whenever the obtained data is empty.

Inherit

This class inherits from GenericPipe and implements the pipe abstract function.

Methods

* pipe: preprocesses the Instance to obtain/replace the contractions. The contractions found
in the Pipe are added to the list of properties of the Instance.

— Usage: pipe(instance)

— Value: the Instance with the modifications that have occurred in the Pipe.

— Arguments:

* instance: (Instance) Instance to preproccess.

 findContraction: checks if the contractions is in the data.

— Usage: findContraction(data,contraction)

— Value: boolean, depending on whether the contraction is on the data.

12 ContractionPipe

— Arguments:
+ data: (character) text where contraction will be searched.

+ contraction: (character) indicates the contraction to find.
* replaceContraction: replaces the contraction in the data for the extendedContraction.

— Usage: replaceContraction(contraction,extendedContraction,data)
— Value: the data with the contractions replaced.
— Arguments:

% contraction: (character) indicates the contraction to remove.

+ extendedContraction: (character) indicates the string to replace for the contraction
found.

+ data: (character) text where contraction will be replaced.
* getPropertyLanguageName:. gets of name of property language.

— Usage: getPropertylLanguageName()

— Value: value of name of property language.
» getResourcesContractionsPath: gets of path of contractions resources.

— Usage: getResourcesContractionsPath()

— Value: value of path of contractions resources.
 setResourcesContractionsPath: sets the path of contractions resources.

— Usage: setResourcesContractionsPath(path)
— Arguments:

+ path: (character) the new value of the path of contractions resources.

Private fields

 propertyLanguageName: (character) the name of property about language.

* resourcesContractionsPath: (character) path of resource files (in json format) containing
the correspondence between contractions and meaning.

* replaceContractions: (logical) indicates if the contractions are replace or not.

See Also

AbbreviationPipe, bdpar.Options, File2Pipe, FindEmojiPipe, FindEmoticonPipe, FindHashtagPipe,
FindUrlPipe, FindUserNamePipe, GuessDatePipe, GuessLanguagePipe, Instance, InterjectionPipe,
MeasurelLengthPipe, GenericPipe, ResourceHandler, SlangPipe, StopWordPipe, StoreFileExtPipe,
TargetAssigningPipe, TeeCSVPipe, ToLowerCasePipe

DetaultPipeline 13

DefaultPipeline Class implementing a default pipelining proccess.

Description

This DefaultPipeline class inherits from the GenericPipeline class. Includes the execute
method which provides a default pipelining implementation.

Usage
DefaultPipeline

Constructor

DefaultPipeline$new()

Details
The default flow is:

instance %>|%
TargetAssigningPipe$new() %>|%
StoreFileExtPipe$new() %>|%
GuessDatePipe$new() %>|%
File2Pipe$new() %>|%
MeasurelLengthPipe$new(propertyName = "length_before_cleaning_text") %>|%
FindUserNamePipe$new() %>|%
FindHashtagPipe$new() %>|%
FindUrlPipe$new() %>|%
FindEmoticonPipe$new() %>|%
FindEmojiPipe$new() %>|%
GuessLanguagePipe$new() %>|%
ContractionPipe$new() %>|%

AbbreviationPipe$new() %>|%

14 DynamicPipeline

SlangPipe$new() %>|%

ToLowerCasePipe$new() %>|%

InterjectionPipe$new() %>|%

StopWordPipe$new() %>|%

MeasurelLengthPipe$new(propertyName = "length_after_cleaning_text") %>|%

TeeCSVPipe$new()

Inherit

This class inherits from GenericPipeline and implements the execute abstract function.

Methods

* execute: function where is implemented the flow of the pipes.

— Usage: execute(instance)
— Value: the preprocessed Instance.
— Arguments:
+ instance: (Instance) the Instance that is going to be processed.

 get: gets a list with containinig the set of pipes of the pipeline,
— Usage: get()
— Value: the set of pipes containing the pipeline.

See Also

Instance, DynamicPipeline, GenericPipeline, GenericPipe, %>|%

DynamicPipeline Class implementing a dynamic pipelining proccess.

Description
This DynamicPipeline class inherits from the GenericPipeline class. Includes the execute
method which provides a dynamic pipelining implementation.

Usage

DynamicPipeline

Constructor

DynamicPipeline$new(pipeline = NULL)

DynamicPipeline 15

Inherit

This class inherits from GenericPipeline and implements the execute abstract function.

Methods

add: adds a pipe or a pipe list to the pipeline

— Usage: add(pipe,pos)
— Arguments:
x pipe: (GenericPipe) pipe objects or a list of pipes to add

* pos: (numeric) the value of the pos to add. If it is NULL, pipe is appended to the
pipeline

removeByPos: removes pipes by the position on the pipeline

— Usage: removeByPos(pos)
— Arguments:

x pos: (numeric) the pipe positions to remove.

removeByPipe: removes pipes by its name on the pipeline

— Usage: removeByPipe(pipe.name)
— Arguments:

pipe.name: (character) the pipe name to remove.

removeAll: removes all pipes included on pipeline
— Usage: removeAll()
* execute: function where is implemented the flow of the pipes.

— Usage: execute(instance)
— Value: the preprocessed Instance.
— Arguments:

+ instance: (Instance) the Instance that is going to be processed.
 get: gets a list with containinig the set of pipes of the pipeline,

— Usage: get()

— Value: the set of pipes containing the pipeline.

See Also

Instance, DefaultPipeline, GenericPipeline, GenericPipe, %>|%

16 ExtractorEml

ExtractorEml Class to handle email files with eml extension

Description

This class inherits from the Instance class and implements the functions of extracting the text and
the date from an eml type file.

Usage

ExtractorEml

Constructor

ExtractorEml$new(path)

* Arguments:

— path: (character) path of the eml type file.

— PartSelectedOnMPAlternative: (character) configuration to read the eml files. If it
is NULL, checks if is defined in the "extractorEML.mpaPartSelected' field of bd-
par.Options variable.

Details

The way to indicate which part to choose in the email, when is a multipart email, is through the
"extractorEML.mpaPartSelected" field of bdpar.Options variable.

Note

To be able to use this class it is necessary to have Python installed.

Inherit

This class inherits from Instance and implements the obtainSource and obtainDate abstracts
functions.

Methods

* obtainDate: obtains the date of the eml file. Calls the function read_emails and obtains the
date of the file indicated in the path and then transforms it into the generic date format, that is
"%a %b %d %H:%M:%S %Z %Y" (Example: "Thu May 02 06:52:36 UTC 2013").

— Usage: obtainDate()

¢ obtainSource: obtains the source of the eml file. Calls the function read_emails and obtains
the source of the file indicated in the path. In addition, it initializes the data with the initial
source.

— Usage: obtainSource()

ExtractorFactory 17

» getPartSelectedOnMPAlternative: gets of PartSelectedOnMPAlternative variable.

— Usage: getPartSelectedOnMPAlternative()
— Value: value of PartSelectedOnMPAlternative variable.

¢ setPartSelectedOnMPAlternative: sets of PartSelectedOnMPAlternative variable.

— Usage: setPartSelectedOnMPAlternative(PartSelectedOnMPAlternative)
— Arguments:

+ PartSelectedOnMPAlternative (character) the new value of PartSelectedOnMPAlternative
variable.

Private fields

* PartSelectedOnMPAlternative: (character) configuration to read the eml files. Indicates
whether the text/plain part or the text/html part is read in multipart emails.

See Also

bdpar.Options, ExtractorSms, ExtractorTwtid, ExtractorYtbid, Instance

ExtractorFactory Class to handle the creation of Instance types

Description

ExtractorFactory class builds the appropriate Instance object according to the file extension.

Usage

ExtractorFactory

Constructor

ExtractorFactory$new()

Methods
#’
registerExtractor: adds an extractor to the list of extensions

- Usage: registerExtractor(extension,extractor)
— Arguments:
+ extension: (character) the name of the extension option.
+ extractor: (Object) the extractor of the new extension.
 setExtractor: modifies the extractor of the one extension.

— Usage: setExtractor(extension,extractor)
— Arguments:

18 ExtractorSms

x extension: (character) the name of the new extension.

+ extractor: (Instance) the value of the new extractor.
* removeExtractor: removes a specific extractor throught the extension.

— Usage: removeExtractor(extension)
— Arguments:
+ extension: (character) the name of the extension to remove.

» getAllExtractors: gets the list of extractors.

— Usage: getAllExtractors()
— Value: Value of extractors.

* createlnstance: builds the Instance object according to the file extension.

— Usage: createlnstance(path)
— Value: the Instance corresponding object according to the file extension.
— Arguments:

« path: (character) path of the file to create an Instance.

See Also

ExtractorEml, ExtractorSms, ExtractorTwtid, ExtractorYtbid, Instance

ExtractorSms Class to handle SMS files with tsms extension

Description
This class that inherits from the Instance class and implements the functions of extracting the text
and the date of an tsms type file.

Usage

ExtractorSms

Constructor

ExtractorSms$new(path)

* Arguments:

— path: (character) path of the tsms type file.

Details

Due to the fact that the creation date of the message can not be extracted from the text of an SMS,
the date will be initialized to empty.

ExtractorTwtid 19

Inherit
This class inherits from Instance and implements the obtainSource and obtainDate abstracts
functions.

Methods

¢ obtainDate: function that obtains the date of the SMS file.
— Usage: obtainDate()

* obtainSource: obtains the source of the SMS file. Reads the file indicated in the path. In
addition, it initializes the data with the initial source.

— Usage: obtainSource()

See Also

ExtractorEml, ExtractorTwtid, ExtractorYtbid, Instance

ExtractorTwtid Class to handle tweets files with twtid extension

Description

This class inherits from the Instance class and implements the functions of extracting the text and
the date of an twtid type file.

Usage

ExtractorTwtid

Constructor

ExtractorTwtid$new(path,cachePath = NULL)

* Arguments:

— path: (character) path of the twtid type file.

— cachePath: (character) path of the cache location. If it is NULL, checks if is defined in
the ""cache.twitter.path' field of bdpar.Options variable.

Details

Twitter connection is handled through the Connections class which loads the Twitter API creden-
tials from the bdpar.Options object. Additionally, to increase the processing speed, each twitter
query is stored in a cache to avoid the execution of duplicated queries. To enable this option, cache
location should be in the "cache.twitter.path'' field of bdpar.Options variable. This variable has
to be the path to store the tweets and it is neccesary that it has two folder named: "_spam_" and
"_ham_"

20 ExtractorYtbid

Inherit

This class inherits from Instance and implements the obtainSource and obtainDate abstracts
functions.

Methods

* obtainld: obtains the ID of an specific tweet. Reads the ID of the file indicated in the variable
path.

— Usage: obtainId()
 getld: gets the ID of an specific tweet.
— Usage: getId()

— Value: value of tweet ID.

 obtainDate: obtains the date from a specific tweet ID. If the tweet has been previously cached
the tweet date is loaded from cache path. Otherwise, the request is performed using Twitter
API and the date is automatically formatted to "

— Usage: obtainDate()

 obtainSource: obtains the source from a specific tweet ID. If the tweet has previously been
cached the source is loaded from cache path. Otherwise, the request is performed using on
Twitter APL.

— Usage: obtainSource()

Private fields

¢ id: (character) ID of tweet.

See Also

bdpar.Options, Connections, ExtractorEml, ExtractorSms, ExtractorYtbid, Instance,

ExtractorYtbid Class to handle comments of YouTube files with ytbid extension

Description

This class inherits from the Instance class and implements the functions of extracting the text and
the date of an ytbid type file.

Usage

ExtractorYtbid

ExtractorYtbid 21

Constructor
ExtractorYtbid$new(path,cachePath = NULL)

* Arguments:

— path: (character) path of the ytbid type file.

— cachePath: (character) path of the cache location. If it is NULL, checks if is defined in
the "'cache.youtube.path" field of bdpar.Options variable.

Details

YouTube conection is handled through the Connections class which loads the YouTube API cre-
dentials from the bdpar.Options object. Additionally, to increase the processing speed, each youtube
query is stored in a cache to avoid the execution of duplicated queries. To enable this option, cache
location should be in the ''cache.youtube.path" field of bdpar.Options variable. This variable has
to be the path to store the comments and it is neccesary that it has two folder named: "_spam_" and
"_ham_"

Inherit

This class inherits from Instance and implements the obtainSource and obtainDate abstracts
functions.

Methods

* obtainld: obtains the id of the ytbid. Read the id of the file indicated in the variable path.
— Usage: obtainId()
» getld: gets of comment ID.

— Usage: getId()
— Value: value of comment ID.

* obtainDate: obtains the date from a specific comment ID. If the comment has been previously
cached the comment date is loaded from cache path. Otherwise, the request is perfomed using
YouTube API and the date is then formatted to the established standard.

— Usage: obtainDate()

 obtainSource: obtains the source from a specific comment ID. If the comment has previously
been cached the source is loaded from cache path. Otherwise, the request is performed using
on YouTube API.

— Usage: obtainSource()

Private fields

e id: (character) ID of comment.

See Also

bdpar.Options, Connections, ExtractorEml, ExtractorSms, ExtractorTwtid, Instance

22 File2Pipe

File2Pipe Class to obtain the source field of an Instance

Description

Obtains the source using the method which implements the subclass of Instance.

Usage
File2Pipe

Constructor

File2Pipe$new(propertyName = "source”,
alwaysBeforeDeps = list("TargetAssigningPipe”),
notAfterDeps = list())

» Arguments:

— propertyName: (character) name of the property associated with the Pipe.

— alwaysBeforeDeps: (list) the dependences alwaysBefore (Pipes that must be executed
before this one).

— notAfterDeps: (list) the dependences notAfter (Pipes that cannot be executed after this
one).

Note
File2Pipe will automatically invalidate the Instance whenever the obtained source is empty or
not in UTF-8 format.

Inherit

This class inherits from GenericPipe and implements the pipe abstract function.

Methods

* pipe: preprocesses the Instance to obtain the source.
— Usage: pipe(instance)
— Value: the Instance with the modifications that have occurred in the Pipe.
— Arguments:
+ instance: (Instance) Instance to preproccess.

See Also

AbbreviationPipe, ContractionPipe, FindEmojiPipe, FindEmoticonPipe, FindHashtagPipe,
FindUrlPipe, FindUserNamePipe, GuessDatePipe, GuessLanguagePipe, Instance, InterjectionPipe,
MeasurelLengthPipe, GenericPipe, SlangPipe, StopWordPipe, StoreFileExtPipe, TargetAssigningPipe,
TeeCSVPipe, ToLowerCasePipe

FindEmojiPipe 23

FindEmojiPipe Class to find and/or replace the emoji on the data field of an Instance

Description

This class is responsible of detecting the existing emojis in the data field of each Instance. Iden-
tified emojis are stored inside the emoji field of Instance class. Moreover if required, is able to
perform inline emoji replacement.

Usage

FindEmojiPipe

Constructor

FindEmojiPipe$new(propertyName = "emoji”,
alwaysBeforeDeps = list(),
notAfterDeps = list(),
replaceEmojis = TRUE)

* Arguments:

— propertyName: (character) name of the property associated with the Pipe.

— alwaysBeforeDeps: (list) the dependences alwaysBefore (Pipes that must be executed
before this one).

— notAfterDeps: (list) the dependences notAfter (Pipes that cannot be executed after this
one).
— replaceEmojis: (logical) indicates if the emojis are replaced.
Details

FindEmojiPipe use the emoji list provided by rtweet package.

Note

FindEmojiPipe will automatically invalidate the Instance whenever the obtained data is empty.

Inherit

This class inherits from GenericPipe and implements the pipe abstract function.

Methods

* pipe: preprocesses the Instance to obtain/replace the emojis.
— Usage: pipe(instance)
— Value: the Instance with the modifications that have occurred in the Pipe.
— Arguments:

24 FindEmoticonPipe

+ instance: (Instance) Instance to preproccess.
* findEmoji: checks for the existence of an specific emoji.
— Usage: findEmoji(data,emoji)
— Value: boolean, depending on whether the emoji is on the data.
— Arguments:
x data: (character) text to search the emoji.

emoji: (character) indicates the emoji to find.
* replaceEmoji: replaces the emoji in the data for the extendedEmoji.

— Usage: replaceEmoji(emoji,extendedEmoji,data)
— Value: the data with emoji replaced.
— Arguments:
* emaoji: (character) indicates the emoji to remove.
+ extendedEmoji: (character) determines the text source to replace the emoji found.

+ data: (character) text where emojis will be replaced.

Private fields

» replaceEmojis: (logical) indicates if the emojis are replaced.

See Also

AbbreviationPipe, ContractionPipe, File2Pipe, FindEmoticonPipe, FindHashtagPipe, FindUrlPipe,
FindUserNamePipe, GuessDatePipe, GuessLanguagePipe, Instance, InterjectionPipe, MeasurelLengthPipe,
GenericPipe, SlangPipe, StopWordPipe, StoreFileExtPipe, TargetAssigningPipe, TeeCSVPipe,

ToLowerCasePipe
FindEmoticonPipe Class to find and/or remove the emoticons on the data field of an In-
stance
Description

This class is responsible of detecting the existing emoticons in the data field of each Instance.
Identified emoticons are stored inside the emoticon field of Instance class. Moreover if required,
is able to perform inline emoticon removement.

Usage

FindEmoticonPipe

FindEmoticonPipe 25

Constructor

FindEmoticonPipe$new(propertyName = "emoticon”,
alwaysBeforeDeps = list(),
notAfterDeps = list("FindHashtagPipe"),
removeEmoticons = TRUE)

* Arguments:

— propertyName: (character) name of the property associated with the Pipe.

— alwaysBeforeDeps: (list) the dependences alwaysBefore (Pipes that must be executed
before this one).

— notAfterDeps: (list) the dependences notAfter (Pipes that cannot be executed after this
one).
— removeEmoticons: (logical) indicates if the emoticons are replaced.

Details

The regular expression indicated in the emoticonPattern variable is used to identify emoticons.

Note

FindEmoticonPipe will automatically invalidate the Instance whenever the obtained data is empty.

Inherit

This class inherits from GenericPipe and implements the pipe abstract function.

Methods

* pipe: preprocesses the Instance to obtain/remove the emoticons.
— Usage: pipe(instance)
— Value: the Instance with the modifications that have occurred in the Pipe.
— Arguments:
* instance: (Instance) Instance to preproccess.

¢ findEmoticon: finds the emoticons in the data.

— Usage: findEmoticon(data)

— Value: list with emoticons found.

— Arguments:

+ data: (character) text to search the emoticons.

* removeEmoticon: removes the emoticons in the data.

— Usage: removeEmoticon(data)

— Value: the data with emoticons removed.

— Arguments:

+ data: (character) text in which emoticons will be removed.

26 FindHashtagPipe

Public fields

* emoticonPattern: (character) regular expression to detect emoticons.

Private fields

* removeEmoticons: (logical) indicates if the emoticons are replaced.

See Also

AbbreviationPipe, ContractionPipe, File2Pipe, FindEmojiPipe, FindHashtagPipe, FindUrlPipe,
FindUserNamePipe, GuessDatePipe, GuessLanguagePipe, Instance, InterjectionPipe, MeasurelLengthPipe,
GenericPipe, SlangPipe, StopWordPipe, StoreFileExtPipe, TargetAssigningPipe, TeeCSVPipe,

ToLowerCasePipe
FindHashtagPipe Class to find and/or remove the hashtags on the data field of an In-
stance
Description

This class is responsible of detecting the existing hashtags in the data field of each Instance.
Identified hashtags are stored inside the hashtag field of Instance class. Moreover if required, is
able to perform inline hashtag removement.

Usage

FindHashtagPipe

Constructor

FindHashtagPipe$new(propertyName = "hashtag”,
alwaysBeforeDeps = list(),
notAfterDeps = list(),
removeHashtags = TRUE)

* Arguments:

propertyName: (character) name of the property associated with the Pipe.

alwaysBeforeDeps: (list) the dependences alwaysBefore (Pipes that must be executed
before this one).

notAfterDeps: (/ist) the dependences notAfter (Pipes that cannot be executed after this
one).

removeHashtag: (logical) indicates if the hashstags are removed.

Details

The regular expression indicated in the hashtagPattern variable is used to identify hashtags.

FindHashtagPipe 27

Note

FindHashtagPipe will automatically invalidate the Instance whenever the obtained data is empty.

Inherit

This class inherits from GenericPipe and implements the pipe abstract function.

Methods

* pipe: preprocesses the Instance to obtain/remove the hashtags.

— Usage: pipe(instance)
— Value the Instance with the modifications that have occurred in the Pipe.
— Arguments:

* instance: (Instance) Instance to preproccess.
* findHashtag: finds the hashtags in the data.

— Usage: findHashtag(data)

— Value: list with hashtags found.

— Arguments:

+ data: (character) text to search the hashtags.

* removeHashtag: removes the hashtags in the data.

— Usage: removeHashtag(data)

— Value: the data with hashtags removed.

— Arguments:

+ data: (character) text to remove the hashtags.

Public fields

* hashtagPattern: (character) regular expression to detect hashtags.

Private fields

* removeHashtags: (logical) indicates if the hashstags are removed.

See Also

AbbreviationPipe, ContractionPipe, File2Pipe, FindEmojiPipe, FindEmoticonPipe, FindUrlPipe
FindUserNamePipe, GuessDatePipe, GuessLanguagePipe, Instance, InterjectionPipe, MeasurelLengthPipe,
GenericPipe, SlangPipe, StopWordPipe, StoreFileExtPipe, TargetAssigningPipe, TeeCSVPipe,
ToLowerCasePipe

28 FindUrlPipe

FindUrlPipe Class to find and/or remove the URLs on the data field of an Instance

Description

This class is responsible of detecting the existing URLSs in the data field of each Instance. Iden-
tified URLs are stored inside the URLSs field of Instance class. Moreover if required, is able to
perform inline URLs removement.

Usage

FindUrlPipe

Constructor

FindUrlPipe$new(propertyName = "URLs",
alwaysBeforeDeps = list(),
notAfterDeps = list(),
removeUrls = TRUE,
URLPatterns = list(self$URLPattern, self$EmailPattern),
namesURLPatterns = list("UrlPattern”,"EmailPattern”))

* Arguments:

— propertyName: (character) name of the property associated with the Pipe.

— alwaysBeforeDeps: (list) the dependences alwaysBefore (Pipes that must be executed
before this one).

— notAfterDeps: (list) the dependences notAfter (Pipes that cannot be executed after this
one).

— removeUrls: (logical) indicates if the URLs are removed.
— URLPatterns: (list) the regex to find URLs.
— namesURLPatterns: (/ist) the names of regex.

Details

The regular expressions indicated in the URLPatterns variable are used to identify URLs.

Note

FindUrlPipe will automatically invalidate the Instance whenever the obtained data is empty.

Inherit

This class inherits from GenericPipe and implements the pipe abstract function.

FindUrlPipe

Methods

* pipe: preprocesses the Instance to obtain/remove the users.
— Usage:
pipe(instance)
— Value:
the Instance with the modifications that have occurred in the Pipe.
— Arguments:
+ instance: (Instance) Instance to preproccess.

findUrl: finds the URLSs in the data.

— Usage: findHashtag(pattern,data)
— Value: list with URLSs found.
— Arguments:

* pattern: (character) regex to find URLs.
+ data: (character) text to search the URLs.
* removeUrl: removes the URLs in the data.
— Usage: removeUrl(pattern,data)
— Value: the data with URLs removed.
— Arguments:
pattern: (character) regex to find URLs.
+ data: (character) text to remove the URLs.
* putNamesURLPattern: sets the names to URL patterns result.

— Usage: putNamesURLPattern(resultOfURLPatterns)

— Value: Value of resultOfURLPatterns variable with the names of URL pattern.

— Arguments:
+ resultOfURLPatterns: (/ist) list with URLs found.

getURLPatterns: gets of URL patterns.

— Usage: getURLPatterns()
— Value: value of URL patterns.

» getNamesURLPatterns: gets of name of URLs.

— Usage: getNamesURLPatterns()
— Value: value of name of URLs.

¢ setNamesURLPatterns: sets the name of URLs.

— Usage: setNamesURLPatterns(namesURLPatterns)
— Arguments:
+ namesURLPatterns: (character) the new value of the name of URLSs.

Public fields

o URLPattern: (character) regular expression to detect URLSs.

* EmailPattern: (character) regular expression to detect emails.

29

30 FindUserNamePipe

Private fields

* URLPatterns: (list) regular expressions used to detect URLs.
* namesURLPatterns: (/ist) names of regular expressions that are used to identify URLSs.

e removeUrls: (logical) indicates if the URLs are removed.

See Also

AbbreviationPipe, ContractionPipe, File2Pipe, FindEmojiPipe, FindEmoticonPipe, FindHashtagPipe
FindUserNamePipe, GuessDatePipe, GuessLanguagePipe, Instance, InterjectionPipe, MeasurelLengthPipe,
GenericPipe, SlangPipe, StopWordPipe, StoreFileExtPipe, TargetAssigningPipe, TeeCSVPipe,
ToLowerCasePipe

FindUserNamePipe Class to find and/or remove the users on the data field of an Instance

Description

This class is responsible of detecting the existing use names in the data field of each Instance.
Identified user names are stored inside the userName field of Instance class. Moreover if required,
is able to perform inline user nanme removement.

Usage

FindUserNamePipe

Constructor

FindUserNamePipe$new(propertyName = "userName",
alwaysBeforeDeps = list(),
notAfterDeps = list(),
removeUser = TRUE)

* Arguments:

— propertyName: (character) name of the property associated with the Pipe.

— alwaysBeforeDeps: (list) the dependences alwaysBefore (Pipes that must be executed
before this one).

— notAfterDeps: (l/ist) the dependences notAfter (Pipes that cannot be executed after this
one).
— removeUser: (logical) indicates if the users are removed.

Details

The regular expressions indicated in the userPattern variable are used to identify user names.

Note

FindUserNamePipe will automatically invalidate the Instance whenever the obtained data is empty.

FindUserNamePipe 31

Inherit

This class inherits from GenericPipe and implements the pipe abstract function.

Methods

* pipe: preprocesses the Instance to obtain/remove the name users.

— Usage: pipe(instance)
— Value: the Instance with the modifications that have occurred in the Pipe.
— Arguments:

+ instance: (Instance) Instance to preproccess.
* findUserName: finds the name users in the data.

— Usage: findHashtag(data)
— Value: list with users names found.
— Arguments:

+ data: (character) text to search the user names.
¢ removeUserName: removes the users in the data.

— Usage: removeUserName(data)
— Value: the data with name users removed.
— Arguments:

+ data: (character) text to remove the user names.

Public fields

* userPattern: (character) regular expression to detect users.

Private fields

* removeUser: (logical) indicates if the users are removed.

See Also

AbbreviationPipe, ContractionPipe, File2Pipe, FindEmojiPipe, FindEmoticonPipe, FindHashtagPipe
FindUrlPipe, GuessDatePipe, GuessLanguagePipe, Instance, InterjectionPipe, MeasureLengthPipe,
GenericPipe, SlangPipe, StopWordPipe, StoreFileExtPipe, TargetAssigningPipe, TeeCSVPipe,
ToLowerCasePipe

32

GenericPipe

GenericPipe Abstract super classs that handles the management of the Pipes

Description

Provides the required methods to succesfully handle each GenericPipe class.

Usage

GenericPipe

Constructor

GenericPipe$new(propertyName,

alwaysBeforeDeps,
notAfterDeps)

* Arguments:

Methods

— propertyName: (character) name of the property associated with the Pipe.

— alwaysBeforeDeps: (list) the dependences alwaysBefore (Pipes that must be executed
before this one).

— notAfterDeps: (/ist) the dependences notAfter (Pipes that cannot be executed after this
one).

pipe: abstract method to preprocess the Instance.
— Usage: pipe(instance)
— Arguments:
+ instance: (Instance) Instance to preprocess.

getPropertyName: gets of name of property.

— Usage: getPropertyName()
— Value: value of name of property.

getAlwaysBeforeDeps: gets of the dependences always before.
— Usage: getAlwaysBeforeDeps()
— Value: value of dependences always before.
getNotAfterDeps: gets of the dependences not after.
— Usage: getNotAfterDeps()
— Value: value of dependences not after.
setPropertyName: changes the value of property’s name.
— Usage: setPropertyName(propertyName)
— Arguments:
propertyName: (character) the new value of the property’s name.

GenericPipeline 33

» setAlwaysBeforeDeps: changes the value of dependencies always before.

— Usage: setAlwaysBeforeDeps(alwaysBeforeDeps)
— Arguments:
+ alwaysBeforeDeps: (list) the new value of the dependencies always before.

 setNotAfterDeps: changes the value of dependencies not after.

— Usage: setNotAfterDeps(notAfterDeps)
— Arguments:

+ notAfterDeps: (l/ist) the new value of the dependencies not after.

Private fields

* propertyName: (character) the name of property.

» alwaysBeforeDeps: (list) dependencies of the type alwaysBefore. These dependences indi-
cate what Pipes must be executed before the current one.

* notAfterDeps: (list) dependencies of the type notAfter. These dependences indicate what
Pipes must not be executed after the current one.

See Also

AbbreviationPipe, ContractionPipe, File2Pipe, FindEmojiPipe, FindEmoticonPipe, FindHashtagPipe,
FindUrlPipe, FindUserNamePipe, GuessDatePipe, GuessLanguagePipe, Instance, InterjectionPipe,
MeasurelLengthPipe, ResourceHandler, SlangPipe, StopWordPipe, StoreFileExtPipe, TargetAssigningPipe,
TeeCSVPipe, ToLowerCasePipe

GenericPipeline Absctract super class implementing the pipelining proccess.

Description

Abstract super class to establish the flow of Pipes.

Usage

GenericPipeline

Constructor

GenericPipeline$new()

34 GuessDatePipe

Methods

* execute: function where is implemented the flow of the pipes.

— Usage: execute(instance)
— Value: the preprocessed Instance.
— Arguments:

+ instance: (Instance) the Instance that is going to be processed.
* get: gets a list with containinig the set of pipes of the pipeline,

— Usage: get()
— Value: the set of pipes containing the pipeline.

See Also

DefaultPipeline, DynamicPipeline, Instance, GenericPipe, %>|%

GuessDatePipe Class to obtain the date field of an Instance

Description

Obtains the date using the method which implements the subclass of Instance

Usage

GuessDatePipe

Constructor

GuessDatePipe$new(propertyName = "date",
alwaysBeforeDeps = list("TargetAssigningPipe”),
notAfterDeps = list())

* Arguments:

— propertyName: (character) name of the property associated with the Pipe.

— alwaysBeforeDeps: (list) the dependences alwaysBefore (Pipes that must be executed
before this one).

— notAfterDeps: (list) the dependences notAfter (Pipes that cannot be executed after this
one).

Inherit

this class inherit from GenericPipe and implements the pipe abstract function.

GuessLanguagePipe 35

Methods

* pipe: preprocesses the Instance to obtain the date.
— Usage: pipe(instance)
— Value: the Instance with the modifications that have occurred in the Pipe.
— Arguments:

+ instance: (Instance) Instance to preproccess.

See Also

AbbreviationPipe, ContractionPipe, File2Pipe, FindEmojiPipe, FindEmoticonPipe, FindHashtagPipe
FindUrlPipe, FindUserNamePipe, GuessLanguagePipe, Instance, InterjectionPipe, MeasureLengthPipe,
GenericPipe, SlangPipe, StopWordPipe, StoreFileExtPipe, TargetAssigningPipe, TeeCSVPipe,
ToLowerCasePipe

GuesslLanguagePipe Class to guess the language of an Instance

Description

This class allows guess the language by using language detector of library cld2. Creates the lan-
guage property which indicates the idiom text. Optionally, it is possible to choose the language
provided by Twitter.

Usage

GuesslLanguagePipe

Constructor

GuessLanguagePipe$new(propertyName = "language",
alwaysBeforeDeps = list("StoreFileExtPipe”,
"TargetAssigningPipe"),
notAfterDeps = list(),
languageTwitter = TRUE)

* Arguments:

— propertyName: (character) name of the property associated with the Pipe.

— alwaysBeforeDeps: (list) the dependences alwaysBefore (Pipes that must be executed
before this one).

— notAfterDeps: (list) the dependences notAfter (Pipes that cannot be executed after this
one).

— languageTwitter: (logical) indicates whether for the Instances of type twtid the language
that returns the api is obtained or the detector is applied.

36 GuessLanguagePipe

Details

To obtain the language of the tweets, it will be verified that there is a json file with the information
stored in memory. On the other hand, it is necessary define the '"cache.twitter.path' field of
bdpar.Options variable to know where the information of tweets are saved.

Note

The Pipe will invalidate the Instance if the language of the data can not be detect.

Inherit

This class inherits from GenericPipe and implements the pipe abstract function.

Methods

* pipe: preprocesses the Instance to obtain the language of the data.
— Usage: pipe(instance)
— Value: the Instance with the modifications that have occurred in the Pipe.
— Arguments:

* instance: (Instance) Instance to preproccess.
» getLanguage: guesses the language of data.

— Usage: getlLanguage(data)
— Value: the language guesser. Format: see ISO 639-3:2007.
— Arguments:

* data: (character) text to guess the language.

Private fields

* languageTwitter: (logical) indicates whether for the Instances of type twtid the language that
returns the api is obtained or the detector is applied.

See Also

AbbreviationPipe, bdpar.Options, ContractionPipe, File2Pipe, FindEmojiPipe, FindEmoticonPipe,
FindHashtagPipe, FindUrlPipe, FindUserNamePipe, GuessDatePipe, Instance, InterjectionPipe,
MeasurelLengthPipe, GenericPipe, SlangPipe, StopWordPipe, StoreFileExtPipe, TargetAssigningPipe,
TeeCSVPipe, ToLowerCasePipe

Instance 37

Instance Abstract super class that handles the management of the Instances

Description

Provides the required methods to succesfully handle each Instance class.

Usage

Instance

Constructor
Instance$new(path)

* Arguments:

— path: (character) path of the file.

Methods

 obtainDate: abstract function responsible for obtainining the date of the Instance.
* obtainSource: abstract function in charge of determining the source of the Instance.
» getDate: gets of date.

— Usage: getDate()
— Value: Value of date.

e setDate: sets of date.

— Usage: setDate(date)
— Arguments:
+ date: (character) the new value of date.

* getSource: gets of source.

— Usage: getSource()
— Value: value of source.

* setSource: modifies the source value.

— Usage: setSource(source)

— Arguments:

+ source: (character) the new value of source.

 getPath: gets of path.

— Usage: getPath()

— Value: value of path.
 getProperties: gets the list of properties.

— Usage: getProperties()

— Value: Value of properties.

38

Instance

setProperties: modifies the list of properties.
— Usage: setProperties(properties)
— Arguments:
+ properties: (/isf) containing the new properties.
addProperties: adds a property to the list of properties.
— Usage: addProperties(propertyValue, propertyName)
— Arguments:
+ propertyValue: (Object) the value of the new property.
* propertyName: (character) the name of the new property.
getSpecificProperty: obtains a specific property.
— Usage: getSpecificProperty(propertyName)
— Value: the value of the specific property.
— Arguments:
* propertyName: (character) the name of the property to obtain.
isSpecificProperty: checks for the existence of an specific property.
— Usage: isSpecificProperty(propertyName)
— Value: A boolean results according to the existence of the specific property in the list of
properties.

— Arguments:
* propertyName: (character) the name of the property to check.

setSpecificProperty: modifies the value of the one property.

— Usage: setSpecificProperty(propertyName,propertyValue)
— Arguments:

propertyName: (Object) the new value of the property.

x propertyValue: (character) the name of the property.

getNamesOfProperties: gets of the names of all properties.

— Usage: getNamesOfProperties()
— Value: the names of properties.

isInstanceValid: checks if the Instance is valid.

— Usage: isInstanceValid()
— Value: value of isValid.

invalidate: forces the invalidation of an specific Instance.
— Usage: invalidate()
getFlowPipes: gets the list of the flow of Pipes.
— Usage: getNamesOfProperties()
— Value: names of the Pipes used.
addFlowPipes: adds a new Pipe to the flow of Pipes.
— Usage: addFlowPipes(namePipe)
— Arguments:
+ namePipe: (character) name of the new Pipe to be added in the Pipe flow.

InterjectionPipe 39

» getBanPipes: gets an array with contaning all the Pipes.

— Usage: getBanPipes()
— Value: value of Pipe ban array.

» addBanPipes: added the name of the Pipe to the array that keeps the track of Pipes having
running after restrictions.

— Usage: addBanPipes(namePipe)
— Arguments:

+ namePipe: (character) Pipe name to be introduced into the ban array.
* checkCompatibility: Check compability between Pipes.

— Usage: checkCompatibility(namePipe,alwaysBefore)
— Value: boolean, depends if the compability between Pipes is correctly or not.
— Arguments:

+ namePipe: (character) name of the Pipe to check the compatibility.

+ alwaysBefore: (list) pipes that the Instance had to go through.

Private fields

 date: (character) the date on which the source was generated or sent.
* source: (character) the text of the file without modifications.

* path: (character) identifier of the Instance, in this case it will be the path of the file from
which the properties are extracted.

e data: (character) the text of the file with modifications.

 properties: (/ist) contains a list of properties extracted from the text that is being processed.
e isValid: (logical) indicates if the Instance is valid or not.

 flowPipes: (list) the list contains the Pipes that the Instance has passed through.

* banPipes: (array) the list contains the Pipes that can not be executed from that moment.

InterjectionPipe Class to find and/or remove the interjections on the data field of an
Instance

Description

InterjectionPipe class is responsible for detecting the existing interjections in the data field of
each Instance. Identified interjections are stored inside the interjection field of Instance class.
Moreover if needed, is able to perform inline interjections removement.

Usage

InterjectionPipe

40 InterjectionPipe

Constructor

InterjectionPipe$new(propertyName = "interjection”,
propertyLanguageName = "language”,
alwaysBeforeDeps = list("GuesslLanguagePipe"),
notAfterDeps = list(),
removelnterjections = TRUE)

* Arguments:

— propertyName: (character) name of the property associated with the Pipe.
— propertyLanguageName: (character) name of the language property.

— alwaysBeforeDeps: (list) the dependences alwaysBefore (Pipes that must be executed
before this one).

— notAfterDeps: (list) the dependences notAfter (Pipes that cannot be executed after this
one).
— removelnterjections: (logical) indicates if the interjections are removed or not.

Details

InterjectionPipe class requires the resource files (in json format) containing the list of interjec-
tions. To this end, the language of the text indicated in the propertyLanguageName should be con-
tained in the resource file name (ie. interj.xxx.json where xxx is the value defined in the property-
LanguageName). The location of the resources should be defined in the ''resources.interjections.path"
field of bdpar.Options variable.

Note

InterjectionPipe will automatically invalidate the Instance whenever the obtained data is empty.

Inherit

This class inherits from GenericPipe and implements the pipe abstract function.

Methods

* pipe Preprocesses the Instance to obtain/remove the interjections. The interjections found in
the Pipe are added to the list of properties of the Instance.
— Usage:
pipe(instance)
— Value: the Instance with the modifications that have occurred in the Pipe.
— Arguments:
+ instance: (Instance) Instance to preproccess.
* findInterjection: checks if the interjection is in the data.
— Usage: findInterjection(data,interjection)
— Value: boolean, depending on whether the interjection is on the data.
— Arguments:
« data: (character) text where interjection will be replaced.

MeasureLengthPipe 41

* interjection: (character) indicate the interjection to find.
* removelnterjection: removes the interjection in the data.
— Usage:
removelnterjection(interjection,data)

— Value: the data with interjection removed.

— Arguments:
+ interjection: (character) indicates the interjection to remove.
+ data: (character) text where interjection will be removed.

* getPropertyLanguageName: gets of name of property language.

— Usage: getPropertylLanguageName()
— Value: value of name of property language.

» getResourcesInterjectionsPath: gets of path of interjections resources.

— Usage: getResourcesInterjectionsPath()
— Value: value of path of interjections resources.

* setResourcesInterjectionsPath: sets the path of interjections resources.

— Usage: setResourcesInterjectionsPath(path)
— Arguments:
x path: (character) the new value of the path of interjections resources.

Private fields

 propertyLanguageName: (character) the name of property about language.
* resourcesInterjectionsPath: (character) the path where are the resources.

* removelnterjections: (logical) indicates if the interjections are removed or not.

See Also

AbbreviationPipe, bdpar.Options, ContractionPipe, File2Pipe, FindEmojiPipe, FindEmoticonPipe,
FindHashtagPipe, FindUrlPipe, FindUserNamePipe, GuessDatePipe, GuessLanguagePipe, Instance,
MeasurelLengthPipe, GenericPipe, ResourceHandler, SlangPipe, StopWordPipe, StoreFileExtPipe,
TargetAssigningPipe, TeeCSVPipe, ToLowerCasePipe

MeasurelLengthPipe Class to obtain the length of the data field of an Instance

Description

This class is responsible of obtain the length of thedata field of each Instance. Creates the length
property which indicates the length of the text. The property’s name is customize throught the class
constructor.

Usage

MeasurelLengthPipe

42 MeasureLengthPipe

Constructor

MeasurelLengthPipe$new(propertyName = "length”,
alwaysBeforeDeps = list(),
notAfterDeps = list(),
nchar_conf = TRUE)

* Arguments:

propertyName: (character) name of the property associated with the Pipe.

alwaysBeforeDeps: (list) the dependences alwaysBefore (Pipes that must be executed
before this one).

notAfterDeps: (/ist) the dependences notAfter (Pipes that cannot be executed after this
one).

nchar_conf (logical) indicates if the Pipe uses nchar or object.size.

Inherit

This class inherits from GenericPipe and implements the pipe abstract function.

Methods

* pipe: preprocesses the Instance to obtain the length of data.
— Usage: pipe(instance)
— Value: the Instance with the modifications that have occurred in the Pipe.
— Arguments:
+ instance: (Instance) Instance to preproccess.
» getLength: obtains the length of the data.
— Usage: getLength(data,nchar_conf = TRUE)
— Value: the Instance with the modifications that have occurred in the Pipe.
— Arguments:
* data: (character) text to preproccess.

+ nchar_conf: (logical) indicates if the Pipe uses nchar or object.size.

Private fields

* nchar_conf: (logical) indicates if the Pipe uses nchar or object.size.

See Also

AbbreviationPipe, ContractionPipe, File2Pipe, FindEmojiPipe, FindEmoticonPipe, FindHashtagPipe,
FindUrlPipe, FindUserNamePipe, GuessDatePipe, GuessLanguagePipe, Instance, InterjectionPipe,
GenericPipe, ResourceHandler, SlangPipe, StopWordPipe, StoreFileExtPipe, TargetAssigningPipe,
TeeCSVPipe, ToLowerCasePipe

operator-pipe 43

operator-pipe bdpar customized fordward-pipe operator

Description

Defines a customized fordward pipe operator extending the features of classical %>%. Concretely
%>1% is able to stop the pipelining process whenever an Instance has been invalidated. This issue,
avoids executing the whole pipelining proccess for the invalidated Instance and therefore reduce
the time and resources used to complete the whole proccess.

Usage

lhs %>|% rhs

Arguments

lhs an Instance object.

rhs a function call using the bdpar semantics.
Value

The Instance modified by the methods it has traversed.

Details

This is the %>% operator of the modified magrittr library to both (i) to stop the flow when the
Instance is invalid and (ii) automatically call the pipe function of the R6 objects passing through
it and (iii) check the dependencies of the Instance.

The usage structure would be as shown below:

instance %>|%
pipeObject$new() %>|%
pipeObject$new(<<argument1>>, <<argument2>, ...) %>|%

pipeObject$new()

Note

Pipelining proccess is automatically stopped if the Instance is invalid.

See Also

Instance, GenericPipe

44 ResourceHandler

ResourceHandler Class that handles different types of resources

Description

Class that handles different types of resources.

Usage

ResourceHandler

Constructor

ResourceHandler$new()

Details

It is a class that allows store the resources that are needed in the Pipes to avoid having to repeatedly
read from the file. File resources of type json are read and stored in memory.

Methods

* isLoadResource: from the resource path, it is checked if they have already been loaded. In
this case, the list of the requested resource is returned. Otherwise, the resource variable is
added to the list of resources, and the resource list is returned. In the event that the resource
file does not exist, NULL is returned.

— Usage: islLoadResource(pathResource)
— Arguments:
+ pathResource: (character) resource file path.

» getResources: gets of resources variable.

— Usage: getResources()
— Value: value of resources variable.

« setResources: sets of resources.

— Usage: setResources(resources)
— Arguments:
+ resources: (list) the new value of resources.

» getNamesResources: gets of names of resources.

— Usage: getNamesResources()
— Value: value of names of resources.

Private fields

* resources: (/ist) variable that stores the lists of the different types of resources.

runPipeline 45

runPipeline Initiates the pipelining process

Description

runPipeline is responsible for easily initialize the pipelining preprocessing proccess.

Usage

runPipeline(path, extractors = ExtractorFactory$new(),
pipeline = DefaultPipeline$new())

Arguments
path (character) path where the files to be preprocessed are located.
extractors (ExtractorFactory) object implementing the method createInstance to choose
which type of Instance is created.
pipeline (GenericPipeline) subclass of GenericPipeline, which implements the whole
pipeling process.
Value

List of Instance that have been preprocessed.

Details

In the case that some pipe, defined on the workflow, needs some type of configuration, it can be
defined throught bdpar.Options variable which have differents methods to support the funcionality
of different pipes.

See Also

Bdpar, bdpar.Options, Connections,DefaultPipeline, DynamicPipeline, GenericPipeline,
Instance, ExtractorFactory, ResourceHandler

Examples

Not run:

#If it is necessary to indicate any existing configuration key, do it through:
#bdpar.Options$set(key, value)

#If the key is not initialized, do it through:

#bdpar.Options$add(key, value)

#Folder with the files to preprocess
path <- system.file(file.path("example"),
package = "bdpar")

46 SlangPipe

#Object which decides how creates the instances
extractors <- ExtractorFactory$new()

#Object which indicates the pipes' flow
pipeline <- DefaultPipeline$new()

#Starting file preprocessing...
runPipeline(path = path,
extractors = extractors,
pipeline = pipeline)

End(Not run)

SlangPipe Class to find and/or replace the slangs on the data field of an Instance

Description

SlangPipe class is responsible for detecting the existing slangs in the data field of each Instance.
Identified slangs are stored inside the slang field of Instance class. Moreover if needed, is able to
perform inline slangs replacement.

Usage
SlangPipe

Constructor

SlangPipe$new(propertyName = "langpropname”,
propertyLanguageName = "language",
alwaysBeforeDeps = list("GuessLanguagePipe"),
notAfterDeps = list(),
replaceSlangs = TRUE)

* Arguments:

— propertyName: (character) name of the property associated with the Pipe.
propertyLanguageName: (character) name of the language property.
alwaysBeforeDeps: (list) the dependences alwaysBefore (Pipes that must be executed
before this one).
notAfterDeps: (/ist) the dependences notAfter (Pipes that cannot be executed after this
one).
replaceSlangs: (logical) indicates if the slangs are replace or not.

Details

SlangPipe class requires the resource files (in json format) containing the correspondence between
slangs and meaning. To this end, the language of the text indicated in the propertyLanguage-
Name should be contained in the resource file name (ie. slang.xxx.json where xxx is the value
defined in the propertyLanguageName). The location of the resources should be defined in the
""resources.slangs.path" field of bdpar.Options variable.

SlangPipe 47

Note

SlangPipe will automatically invalidate the Instance whenever the obtained data is empty.

Inherit

This class inherits from GenericPipe and implements the pipe abstract function.

Methods

* pipe: preprocesses the Instance to obtain/replace the slangs. The slangs found in the Pipe
are added to the list of properties of the Instance.
— Usage: pipe(instance)
— Value: the Instance with the modifications that have occurred in the Pipe.
— Arguments:
+ instance: (Instance) Instance to preproccess.
* findSlang: checks if the slang is in the data.
— Usage: findSlang(data,slang)
— Value: boolean, depending on whether the slang is on the data.
— Arguments:
+ data: (character) text where slang will be searched. slang: (character) indicates the
slang to find.
* replaceSlang: replaces the slang in the data for the extendedSlang.
— Usage:
replaceSlang(slang,extendedSlang,data)
— Value: the data with slangs replaced.
— Arguments:
+ slang: (character) indicates the slang to replace.
x extendedSlang: (character) indicates the string to replace for the slangs found.
* data: (character) text where slang will be replaced.
» getPropertyLanguageName: gets of name of property language.
— Usage:
getPropertylLanguageName ()
— Value: value of name of property language.
» getResourcesSlangsPath: gets of path of slangs resources.
— Usage:
getResourcesSlangsPath()

— Value:
value of path of slangs resources.

* setResourcesSlangsPath: sets the path of slangs resources.

— Usage: setResourcesSlangsPath(path)
— Arguments:
path: (character) the new value of the path of slangs resources.

48 StopWordPipe

Private fields

 propertyLanguageName: (character) the name of property about language.
* resourcesSlangsPath: (character) the path where are the resources.

* replaceSlangs: (logical) indicates if the slangs are replace or not.

See Also

AbbreviationPipe, bdpar.Options, ContractionPipe, File2Pipe, FindEmojiPipe, FindEmoticonPipe,
FindHashtagPipe, FindUrlPipe, FindUserNamePipe, GuessDatePipe, GuessLanguagePipe, Instance,
InterjectionPipe, MeasurelLengthPipe, GenericPipe, ResourceHandler, StopWordPipe, StoreFileExtPipe,
TargetAssigningPipe, TeeCSVPipe, ToLowerCasePipe

StopWordPipe Class to find and/or remove the stop words on the data field of an
Instance

Description

StopWordPipe class is responsible for detecting the existing stop words in the data field of each
Instance. Identified stop words are stored inside the contraction field of Instance class. More-
over if needed, is able to perform inline stop words removement.

Usage

StopWordPipe

Constructor

StopWordPipe$new(propertyName = "stopWord",
propertyLanguageName = "language”,
alwaysBeforeDeps = list("GuessLanguagePipe”),
notAfterDeps = list("AbbreviationPipe”),
removeStopWords = TRUE)

* Arguments:

— propertyName: (character) name of the property associated with the Pipe.
— propertyLanguageName: (character) name of the language property.

— alwaysBeforeDeps: (list) the dependences alwaysBefore (Pipes that must be executed
before this one).

— notAfterDeps: (l/ist) the dependences notAfter (Pipes that cannot be executed after this
one).

— removeStopWords: (logical) indicates if the stop words are removed or not.

StopWordPipe 49

Details

StopWordPipe class requires the resource files (in json format) containing the list of stop words. To
this end, the language of the text indicated in the propertyLanguageName should be contained in
the resource file name (ie. xxx.json where xxx is the value defined in the propertyLanguageName
). The location of the resources should be defined in the ''resources.stopwords.path' field of
bdpar.Options variable.

Note

StopWordPipe will automatically invalidate the Instance whenever the obtained data is empty.

Inherit

This class inherits from GenericPipe and implements the pipe abstract function.

Methods

* pipe: preprocesses the Instance to obtain/remove the stop words. The stop words found in
the pipe are added to the list of properties of the Instance.

— Usage: pipe(instance)

— Value: the Instance with the modifications that have occurred in the Pipe.

— Arguments:

instance: (Instance) Instance to preproccess.

findStopWord: checks if the stop word is in the data.

— Usage: findStopWord(data, stopWord)

— Value: boolean, depending on whether the stop word is on the data.

— Arguments:
+ data: (character) text where stop words will be searched.
stopWord: (character) Indicates the stop word to find.
* removeStopWord: removes the stop word in the data.
— Usage: removeStopWord(stopWord,data)
— Value: the data with stop word removed.
— Arguments:
x stopWord: (character) indicates the stop word to remove.
+ data: (character) text where stop words will be removed.
* getPropertyLanguageName: gets of name of property language.
— Usage: getPropertylLanguageName()
— Value: value of name of property language.
» getPathResourcesStopWords: gets of path of stop words resources.
— Usage: getPathResourcesStopWords()
— Value: value of path of stop words resources.
* setPathResourcesStopWords: sets the path of stop words resources.
— Usage: setPathResourcesStopWords(path)
— Arguments:
path: (character) the new value of the path of stop words resources.

50 StoreFileExtPipe

Private fields

 propertyLanguageName: (character) the name of property about language.
» pathResourcesStopWords: (character) the path where are the resources.

* removeStopWords: (logical) indicates if the stop words are removed or not.

See Also

AbbreviationPipe, bdpar.Options, ContractionPipe, File2Pipe, FindEmojiPipe, FindEmoticonPipe,
FindHashtagPipe, FindUrlPipe, FindUserNamePipe, GuessDatePipe, GuessLanguagePipe, Instance,
InterjectionPipe, MeasurelLengthPipe, GenericPipe, ResourceHandler, SlangPipe, StoreFileExtPipe,
TargetAssigningPipe, TeeCSVPipe, ToLowerCasePipe

StoreFileExtPipe Class to get the file’s extension field of an Instance

Description

Gets the extension of a file. Creates the extension property which indicates extension of the file.

Usage

StoreFileExtPipe

Constructor

StoreFileExtPipe$new(propertyName = "extension”,
alwaysBeforeDeps = list(),
notAfterDeps = list())

* Arguments:

— propertyName: (character) name of the property associated with the Pipe.

— alwaysBeforeDeps: (l/ist) the dependences alwaysBefore (Pipes that must be executed
before this one).

— notAfterDeps: (list) the dependences notAfter (Pipes that cannot be executed after this
one).

Note

StoreFileExtPipe will automatically invalidate the Instance if it is not able to find the extension
from the path field.

Inherit

This class inherits from GenericPipe and implements the pipe abstract function.

TargetAssigningPipe 51

Methods

* pipe: preprocesses the Instance to obtain the extension of Instance.
— Usage: pipe(instance)
— Value: the Instance with the modifications that have occurred in the Pipe.
— Arguments:
* instance: (Instance) Instance to preprocess.
* obtainExtension: gets of extension of the path.
— Usage: obtainExtension(path)
— Value: extension of the path.
— Arguments:
* path: (character) path of the file to get the extension.

See Also

AbbreviationPipe, ContractionPipe, File2Pipe, FindEmojiPipe, FindEmoticonPipe, FindHashtagPipe,
FindUrlPipe, FindUserNamePipe, GuessDatePipe, GuessLanguagePipe, Instance, InterjectionPipe,
MeasurelLengthPipe, GenericPipe, ResourceHandler, SlangPipe, StopWordPipe, TargetAssigningPipe,
TeeCSVPipe, ToLowerCasePipe

TargetAssigningPipe Class to get the target field of the Instance

Description

This class allows searching in the path the target of the Instance.

Usage
TargetAssigningPipe

Constructor

TargetAssigningPipe$new(targets = list("ham","spam”),
targetsName = list("_ham_","_spam_"),
propertyName = "target”,
alwaysBeforeDeps = list(),
notAfterDeps = list())

* Arguments:

— targets: (list) name of the targets property.

— targetsName: (/ist) the name of folders.

— propertyName: (character) name of the property associated with the Pipe.

— alwaysBeforeDeps: (l/ist) the dependences alwaysBefore (Pipes that must be executed
before this one).

— notAfterDeps: (l/ist) the dependences notAfter (Pipes that cannot be executed after this
one).

52 TargetAssigningPipe

Details

The targets that are searched can be controlled through the constructor of the class where farget-
sName will be the string that is searched within the path and targets has the values that the property
can take.

Inherit

This class inherits from GenericPipe and implements the pipe abstract function.

Methods

* pipe: preprocesses the Instance to obtain the target.
— Usage: pipe(instance)
— Value: The Instance with the modifications that have occurred in the Pipe.
— Arguments:
+ instance: (Instance) Instance to preproccess.
» getTarget gets the target from a path.
— Usage:
getTarget(path)
— Value: the target of the path.
— Arguments:
x path: (character) path to analize.
* checkTarget: checks if the target is in the path.

— Usage: checkTarget(target,path)
— Value: if the target is found, returns target, else returns "".
— Arguments:

x target: (character) target to find in the path.

+ path: (character) path to analize.
» getTargets: gets of targets.

— Usage: getTargets()
— Value: value of targets.

Private fields

* targets: (/ist) name of the targets property.

See Also

AbbreviationPipe, ContractionPipe, File2Pipe, FindEmojiPipe, FindEmoticonPipe, FindHashtagPipe,
FindUrlPipe, FindUserNamePipe, GuessDatePipe, GuessLanguagePipe, Instance, InterjectionPipe,
MeasurelLengthPipe, GenericPipe, ResourceHandler, SlangPipe, StopWordPipe, StoreFileExtPipe,
TeeCSVPipe, ToLowerCasePipe

TeeCSVPipe 53

TeeCSVPipe Class to handle a CSV with the properties field of the preprocessed
Instance

Description

Complete a CSV with the properties of the preprocessed Instance.

Usage

TeeCSVPipe

Constructor

nn

TeeCSVPipe$new(propertyName =
alwaysBeforeDeps = 1list(),
notAfterDeps = list(),
withData = TRUE,
withSource = TRUE)

* Arguments

— propertyName: (character) name of the property associated with the Pipe.

— alwaysBeforeDeps: (list) the dependences alwaysBefore (Pipes that must be executed
before this one).

— notAfterDeps: (list) the dependences notAfter (Pipes that cannot be executed after this
one).

— withData: (logical) indicates if the data is added to CSV.
— withSource: (logical) indicates if the source is added to CSV.

Details

The path to save the properties should be defined in the ''teeCSVPipe.output.path' field of bd-
par.Options variable.

Inherit

This class inherits from GenericPipe and implements the pipe abstract function.

Methods

* pipe: completes the CSV with the preprocessed Instance.
— Usage: pipe(instance)
— Value: the Instance with the modifications that have occurred in the Pipe.
— Arguments:
+ instance: (Instance) Instance to preproccess.

54 ToLowerCasePipe

Private fields

» withSource: (logical) indicates if the source is added to CSV.

o withData: (logical) indicates if the data is added to CSV.

See Also

AbbreviationPipe, bdpar.Options, ContractionPipe, File2Pipe, FindEmojiPipe, FindEmoticonPipe,
FindHashtagPipe, FindUrlPipe, FindUserNamePipe, GuessDatePipe, GuessLanguagePipe, Instance,
InterjectionPipe, MeasurelLengthPipe, GenericPipe, ResourceHandler, SlangPipe, StopWordPipe,
StoreFileExtPipe, TargetAssigningPipe, ToLowerCasePipe

ToLowerCasePipe Class to convert the data field of an Instance to lower case

Description

Class to convert the data field of an Instance to lower case.

Usage

ToLowerCasePipe

Constructor

ToLowerCasePipe$new(propertyName = "",
alwaysBeforeDeps = list(),
notAfterDeps = list())

* Arguments:

— propertyName: (character) name of the property associated with the Pipe.

— alwaysBeforeDeps: (list) the dependences alwaysBefore (Pipes that must be executed
before this one).

— notAfterDeps: (list) the dependences notAfter (Pipes that cannot be executed after this
one).

Inherit

This class inherits from GenericPipe and implements the pipe abstract function.

Methods

* pipe: preprocesses the Instance to convert the data to lower case.
— Usage: pipe(instance)
— Value: the Instance with the modifications that have occurred in the Pipe.
— Arguments:

+ instance: (Instance) Instance to preproccess.

ToLowerCasePipe 55

¢ toLowerCase: converts the data to lower case.

— Usage: toLowerCase(data)
— Value: data in lower case.
— Arguments:

+ data: (character) text to preproccess.

See Also

AbbreviationPipe, ContractionPipe, File2Pipe, FindEmojiPipe, FindEmoticonPipe, FindHashtagPipe,
FindUrlPipe, FindUserNamePipe, GuessDatePipe, GuessLanguagePipe, Instance, InterjectionPipe,
MeasurelLengthPipe, GenericPipe, ResourceHandler, SlangPipe, StopWordPipe, StoreFileExtPipe,
TargetAssigningPipe, TeeCSVPipe

Index

+Topic datasets
bdparData, 8

AbbreviationPipe, 2, 2, 3, 8, 12, 22, 24, 26,
27,30, 31, 33, 35, 36,41, 42, 48,
50-52, 54, 55

Bdpar, 5, 45

bdpar.Options, 3-6,6, 7, 9-12, 16, 17,
19-21, 36, 40, 41, 45, 46, 48-50, 53,
54

bdparData, 8

Connections, 5, 6, 8, 9,9, 19-21, 45

ContractionPipe, 4, 8, 10, 10, 11, 22, 24, 26,
27,30, 31, 33, 35, 36,41, 42, 48,
50-52, 54, 55

DefaultPipeline, 6, 13,13, 15, 34,45
DynamicPipeline, 6, 14, 14, 34,45

ExtractorEml, 8, 16, 18-21
ExtractorFactory, 6, 17, 17,45
ExtractorSms, 17, 18, 18, 20, 21
ExtractorTwtid, 8, 10, 17-19, 19, 21
ExtractorYtbid, 8, 10, 17-20, 20

File2Pipe, 4, 12, 22,22, 24, 26, 27, 30, 31,
33, 35, 36,41, 42,48, 50-52, 54, 55

FindEmojiPipe, 4, 12, 22, 23, 23, 26, 27, 30,
31,33, 35, 36,41, 42,48, 50-52, 54,
55

FindEmoticonPipe, 4, 12, 22, 24, 24, 25, 27,
30, 31, 33, 35, 36,41, 42,48, 50-52,
54, 55

FindHashtagPipe, 4, 12, 22, 24, 26, 26, 27,
30, 31, 33, 35, 36,41, 42, 48, 50-52,
54, 55

FindUrlPipe, 4, 12, 22, 24, 26-28, 28, 31, 33,
35, 36,41, 42,48, 50-52, 54, 55

56

FindUserNamePipe, 4, 12, 22, 24, 26, 27, 30,
30, 33, 35, 36,41, 42, 48, 50-52, 54
55

GenericPipe, 3,4, 11, 12, 14, 15, 22-28,
30-32, 32, 34-36, 40-43, 47-55

GenericPipeline, 5, 6, 13-15, 33,45

GuessDatePipe, 4, 12, 22, 24, 26, 27, 30, 31,
33,34, 36,41, 42,48, 50-52, 54, 55

GuesslLanguagePipe, 4, 8, 12, 22, 24, 26, 27,
30, 31, 33, 35, 35,41, 42, 48, 50-52,
54, 55

Instance, 2-6, 10-12, 14-37, 37, 38-43,
45-55

InterjectionPipe, 4, 12, 22, 24, 26, 27, 30,
31, 33, 35, 36, 39, 39, 40, 42, 48,
50-52, 54, 55

MeasurelLengthPipe, 4, 12, 22, 24, 26, 27, 30,
31,33, 35, 36,41, 41, 48, 50-52, 54,
55

operator-pipe, 43

ResourceHandler, 4-6, 12, 33,41, 42, 44, 45,
48, 50-52, 54, 55
runPipeline, 6, 45

SlangPipe, 4, 8, 12,22, 24, 26, 27, 30, 31, 33,
35, 36,41, 42, 46, 46, 47, 50-52, 54,
55

StopWordPipe, 4, 8, 12, 22, 24, 26, 27, 30, 31,
33, 35, 36,41, 42,48, 48,49, 51, 52,
54, 55

StoreFileExtPipe, 4, 12, 22, 24, 26, 27, 30,
31,33, 35, 36,41, 42, 48, 50, 50, 52,
54, 55

TargetAssigningPipe, 4, 12, 22, 24, 26, 27,
30, 31, 33, 35, 36,41, 42,48, 50, 51,
51, 54, 55

INDEX

TeeCSVPipe, 4, 8, 12, 22, 24, 26, 27, 30, 31,
33, 35, 36,41, 42,48, 50-52, 53, 55

TolLowerCasePipe, 4, 12, 22, 24, 26, 27, 30
31, 33, 35, 36,41, 42,48, 50-52, 54,
54

57

	AbbreviationPipe
	Bdpar
	bdpar.Options
	bdparData
	Connections
	ContractionPipe
	DefaultPipeline
	DynamicPipeline
	ExtractorEml
	ExtractorFactory
	ExtractorSms
	ExtractorTwtid
	ExtractorYtbid
	File2Pipe
	FindEmojiPipe
	FindEmoticonPipe
	FindHashtagPipe
	FindUrlPipe
	FindUserNamePipe
	GenericPipe
	GenericPipeline
	GuessDatePipe
	GuessLanguagePipe
	Instance
	InterjectionPipe
	MeasureLengthPipe
	operator-pipe
	ResourceHandler
	runPipeline
	SlangPipe
	StopWordPipe
	StoreFileExtPipe
	TargetAssigningPipe
	TeeCSVPipe
	ToLowerCasePipe
	Index

