Package 'bcf'

August 28, 2019

Type Package
Title Causal Inference for a Binary Treatment and Continuous Outcome using Bayesian Causal Forests
Version 1.3
Date 2019-08-27
Author P. Richard Hahn, Jared S. Murray, and Carlos Carvalho
Maintainer Jared S. Murray <jared.murray@mccombs.utexas.edu></jared.murray@mccombs.utexas.edu>
Description Causal inference for a binary treatment and continuous outcome us- ing Bayesian Causal Forests. See Hahn, Murray and Car- valho (2017) <arxiv:1706.09523> for additional information. This implementation re- lies on code originally accompanying Pratola et. al. (2013) <arxiv:1309.1906>.</arxiv:1309.1906></arxiv:1706.09523>
License GPL-3
Depends Rcpp (>= 0.10.4)
LinkingTo Rcpp, RcppArmadillo
NeedsCompilation yes
RoxygenNote 6.0.1
Repository CRAN
Date/Publication 2019-08-28 05:10:02 UTC

R topics documented:

	bcf	 	 	 •••	 •••	 	 • •	 		2
Index										5

Description

Fit Bayesian Causal Forests

Usage

```
bcf(y, z, x_control, x_moderate = x_control, pihat, nburn, nsim, nthin = 1,
update_interval = 100, ntree_control = 200, sd_control = 2 * sd(y),
base_control = 0.95, power_control = 2, ntree_moderate = 50,
sd_moderate = sd(y), base_moderate = 0.25, power_moderate = 3, nu = 3,
lambda = NULL, sigq = 0.9, sighat = NULL, include_pi = "control",
use_muscale = TRUE, use_tauscale = TRUE)
```

Arguments

У	Response variable
z	Treatment variable
x_control	Design matrix for the "prognostic" function mu(x)
x_moderate	Design matrix for the covariate-dependent treatment effects tau(x)
pihat	Length n estimates of
nburn	Number of burn-in MCMC iterations
nsim	Number of MCMC iterations to save after burn-in
nthin	Save every nthin'th MCMC iterate. The total number of MCMC iterations will be nsim*nthin + nburn.
update_interval	
	Print status every update_interval MCMC iterations
ntree_control	Number of trees in mu(x)
sd_control	$SD(mu(x))$ marginally at any covariate value (or its prior median if use_muscale=TRUE)
base_control	Base for tree prior on mu(x) trees (see details)
power_control	Power for the tree prior on mu(x) trees
ntree_moderate	Number of trees in tau(x)
sd_moderate	$SD(tau(x))\ marginally\ at\ any\ covariate\ value\ (or\ its\ prior\ median\ if\ use_tauscale=TRUE)$
base_moderate	Base for tree prior on tau(x) trees (see details)
<pre>power_moderate</pre>	Power for the tree prior on tau(x) trees (see details)
nu	Degrees of freedom in the chisq prior on $sigma^2$
lambda	Scale parameter in the chisq prior on $sigma^2$
sigq	Calibration quantile for the chisq prior on $sigma^2$
sighat	Calibration estimate for the chisq prior on $sigma^2$

bcf

include_pi	Takes values "control", "moderate", "both" or "none". Whether to include pihat in mu(x) ("control"), tau(x) ("moderate"), both or none. Values of "control" or
	"both" are HIGHLY recommended with observational data.
use_muscale	Use a half-Cauchy hyperprior on the scale of mu.
use_tauscale	Use a half-Normal prior on the scale of tau.

Details

Fits the Bayesian Causal Forest model (Hahn et. al. 2018): For a response variable y, binary treatment z, and covariates x,

$$y_i = \mu(x_i, \pi_i) + \tau(x_i, \pi_i)z_i + \epsilon_i$$

where π_i is an (optional) estimate of the propensity score $\Pr(Z_i = 1 | X_i = x_i)$ and $\epsilon_i \sim N(0, \sigma^2)$ Some notes:

- x_control and x_moderate must be numeric matrices. See e.g. the makeModelMatrix function in the dbarts package for appropriately constructing a design matrix from a data.frame
- sd_control and sd_moderate are the prior SD(mu(x)) and SD(tau(x)) at a given value of x (respectively). If use_muscale = FALSE, then this is the parameter σ_{μ} from the original BART paper, where the leaf parameters have prior distribution $N(0, \sigma_{\mu}/m)$, where m is the number of trees. If use_muscale=TRUE then sd_control is the prior median of a half Cauchy prior for SD(mu(x)). If use_tauscale = TRUE, then sd_moderate is the prior median of a half Normal prior for SD(tau(x)).
- By default the prior on σ^2 is calibrated as in Chipman, George and McCulloch (2008).

Value

A list with elements

tau	nsim by n matrix of posterior samples of individual treatment effects
mu	nsim by n matrix of posterior samples of individual treatment effects
sigma	Length nsim vector of posterior samples of sigma

References

Hahn, Murray, and Carvalho(2017). Bayesian regression tree models for causal inference: regularization, confounding, and heterogeneous effects. https://arxiv.org/abs/1706.09523. (Call citation("bcf") from the command line for citation information in Bibtex format.)

Examples

```
# data generating process
p = 3 #two control variables and one moderator
n = 250
#
set.seed(1)
```

4

```
x = matrix(rnorm(n*p), nrow=n)
# create targeted selection
q = -1*(x[,1]>(x[,2])) + 1*(x[,1]<(x[,2]))
# generate treatment variable
pi = pnorm(q)
z = rbinom(n,1,pi)
# tau is the true (homogeneous) treatment effect
tau = (0.5*(x[,3] > -3/4) + 0.25*(x[,3] > 0) + 0.25*(x[,3]>3/4))
# generate the response using q, tau and z
mu = (q + tau*z)
# set the noise level relative to the expected mean function of Y
sigma = diff(range(q + tau*pi))/8
# draw the response variable with additive error
y = mu + sigma*rnorm(n)
# If you didn't know pi, you would estimate it here
pihat = pnorm(q)
bcf_fit = bcf(y, z, x, x, pihat, nburn=2000, nsim=2000)
# Get posterior of treatment effects
tau_post = bcf_fit$tau
tauhat = colMeans(tau_post)
plot(tau, tauhat); abline(0,1)
```

Index

bcf, <mark>2</mark>