'bbo' Package

Sarvesh Nikumbh

April 19, 2013

snikumbh@mpi-inf.mpg.de

Contents

1	Licensing	1
2	Introduction	1
3	Usage	1

1 Licensing

This package is licensed under GNU General Public License version 3 (GPLv3).

2 Introduction

This package is an R implementation of the 'Biogeography-Based Optimization' technique invented by Prof. D. Simon, Cleveland State University, Ohio. More details of this method can be looked up at http://embeddedlab.csuohio.edu/BBO/and in [1]

The core function of this package is bbo which outputs a list object of bbo. This list contains the details of the final best computed solution and the best habitat leading to the best solution in addition to habitats leading to best solutions at each iteration of the optimization loop. The function summary and plot present more information about this object.

3 Usage

The bbo function takes as input the following:

- the objective function
- the lower limit for each parameter/variable; a scalar real value for each parameter
- the upper limit for each parameter/variable; a scalar real value for each parameter

¹http://embeddedlab.csuohio.edu/BBO/

- a display flag denoting verbose output
- boolean variable to plot results
- a random seed
- control parameters for the biogeography-based optimization technique

The control parameters to be set for the optimization technique are:

- probability that a habitat gets modified
- habitat mutation probability
- habitat elitism parameter
- population size (#habitats)
- #generations
- number of variables to be optimized (dimensionality of the problem)
- whether order dependency of the parameters is TRUE?

These control parameters can be set by a call to *bbo.control*. More information about the default values for these parameters can be seen in the help for these individual functions.

```
> library(bbo)
> Rosenbrock <- function(x){
           x1 <- x[1]
            x2 < -x[2]
            return( 100 * (x2 - x1 * x1)^2 + (1 - x1)^2)
> output.of.bbo <- bbo(Rosenbrock, -1, 2,
                       control = bbo.control(pMutate = 0.4, numVar = 2,
                                             popSize = 50, KEEP = 10, maxGen = 10))
The best and mean of Generation #
                                           0.3544278
                                                      and
                                                           91.50572
                                      are
The best and mean of Generation #
                                                      and
                                  2
                                           0.1882359
                                                          48.30919
                                      are
The best and mean of Generation #
                                   3
                                      are
                                           0.1275867
                                                      and
                                                           33.25449
The best and mean of Generation #
                                  4
                                      are
                                           0.1275867
                                                      and
                                                           62.90403
The best and mean of Generation # 5
                                      are
                                           0.1202008
                                                      and
                                                           48.7407
The best and mean of Generation # 6
                                     are
                                          0.007957836
                                                       and
                                                             44.07037
The best and mean of Generation # 7
                                     are
                                          0.007957836
                                                        and
                                                             40.51833
The best and mean of Generation # 8 are
                                           0.007957836
                                                        and
The best and mean of Generation # 9 are
                                          0.007957836
                                                       and
                                                             22, 10273
The best and mean of Generation # 10 are 0.007957836 and 22.3925
>
```

The summary of this bbo object can be obtained with the summary function.

```
The best and mean of Generation \# 1 are 1.006137 and 67.62126
The best and mean of Generation # 2 are 0.4022633 and 33.64258
The best and mean of Generation \# 3 are 0.4022633 and 20.85658 The best and mean of Generation \# 4 are 0.1383486 and 19.10128
The best and mean of Generation # 5 are 0.009620684 and 23.11816
The best and mean of Generation # 6 are 0.009620684 and 21.3208
The best and mean of Generation # 7 are 0.009620684 and 35.51638
The best and mean of Generation # 8 are 0.009620684 and 11.71189
The best and mean of Generation # 9 are 0.009620684 and 26.93531
The best and mean of Generation # 10 are 0.009620684 and 19.70622
> bbo:::summary.bbo(output.of.bbo)
 ::summary of BBO run::
_____
Properties:
-----
numVar: 2
popSize: 50
maxGen: 10
Keep: 10
pMutate: 0.4
pModify: 1
orderDep: TRUE
Best Solution:
_____
Best habitat:
[1] 0.98683 0.98356
Best value/minimum cost:
[1] 0.00962
_____
Generations:
_____
Average population value for each generation:
 [1] 67.62126 33.64258 20.85658 19.10128 23.11816 21.32080 35.51638 11.71189
 [9] 26.93531 19.70622
Best habitat for each generation:
         [,1]
                [,2]
 [1,] 0.34173 0.04109
 [2,] 0.85401 0.79105
 [3,] 0.85401 0.79105
 [4,] 1.35458 1.82365
 [5,] 0.98683 0.98356
 [6,] 0.98683 0.98356
 [7,] 0.98683 0.98356
 [8,] 0.98683 0.98356
 [9,] 0.98683 0.98356
```

[10,] 0.98683 0.98356

Best(minimum) function cost for each generation:

[1] 1.00614 0.40226 0.40226 0.13835 0.00962 0.00962 0.00962 0.00962 [10] 0.00962

And the plot function can be used to visualize the results of the optimization.

> bbo:::plot.bbo(output.of.bbo, plot.type = c("itersBestValue"))

BBO: Best cost among population members at each generation

References

[1] D. Simon. Biogeography-based optimization. *IEEE Transactions on Evolutionary Computation*, 12(6):702–713, 2008.