bbl: Boltzmann Bayes Learner for High-Dimensional Inference with Discrete Predictors in \mathbf{R}

Jun Woo
University of Minnesota, Minneapolis

Jinhua Wang
University of Minnesota, Minneapolis

Abstract

Non-regression-based inferences, such as discriminant analysis, can account for the effect of predictor distributions that may be significant in big data modeling. We describe bbl, an R package for Boltzmann Bayes learning, which enables a comprehensive supervised learning of the association between a large number of categorical predictors and multi-level response variables. Its basic underlying statistical model is a collection of (fully visible) Boltzmann machines inferred for each distinct response level. The algorithm reduces to the naive Bayes learner when interaction is ignored. We illustrate example use cases for various scenarios, ranging from modeling of a relatively small set of factors with heterogeneous levels to those with hundreds or more predictors with uniform levels such as image or genomic data. We show how bbl explicitly quantifies the extra power provided by interactions via higher predictive performance of the model. In comparison to deep learning-based methods such as restricted Boltzmann machines, bbl-trained models can be interpreted directly via their bias and interaction parameters.

Keywords: Supervised learning, Boltzmann machine, naive Bayes, discriminant analysis, R.

1. Introduction

Many supervised learning tasks involve modeling discrete response variables y using predictors x that can occupy categorical factor levels (Hastie, Tibshirani, and Friedman 2009). Ideally, it would be best to model the joint distribution $P(\mathbf{x}, y)$ via maximum likelihood,

$$
\begin{equation*}
\hat{\Theta}=\underset{\Theta}{\arg \max }[\ln P(\mathbf{x}, y \mid \Theta)], \tag{1}
\end{equation*}
$$

to find parameters Θ. Regression-based methods use $P(\mathbf{x}, y)=P(y \mid \mathbf{x}) P(\mathbf{x}) \simeq P(y \mid \mathbf{x})$. Their advantages include the wealth of information provided for significance of fit coefficients from rigorous formal results. An alternative is to use $P(\mathbf{x}, y)=P(\mathbf{x} \mid y) P(y)$ and fit $P(\mathbf{x} \mid y)$. Since y is low-dimensional, this approach could capture extra information not accessible from regression when there are many covarying predictors. To make predictions for y using $P(\mathbf{x} \mid y)$, one uses the Bayes' formula. Examples include linear and quadratic discriminant analyses (Hastie et al. 2009, pp. 106-119) for continuous x. For discrete x, naive Bayes is the simplest approach, where the covariance among \mathbf{x} is ignored via

$$
\begin{equation*}
P(\mathbf{x} \mid y) \simeq \prod_{i} P\left(x_{i} \mid y\right) \tag{2}
\end{equation*}
$$

with $\mathbf{x}=\left(x_{1}, \cdots, x_{m}\right)$.
In this paper, we focus on supervised learners taking into account the high-dimensional nature of $P(\mathbf{x} \mid y)$ beyond the naive Bayes-level description given by Eq. (2). Namely, a suitable parametrization is provided by the Boltzmann machine (Ackley, Hinton, and Sejnowski 1985), which for the simple binary predictor $x_{i}=0,1$,

$$
\begin{equation*}
P(\mathbf{x} \mid y)=\frac{1}{Z_{y}} \exp \left(\sum_{i} h_{i}^{(y)} x_{i}+\sum_{i<j} J_{i j}^{(y)} x_{i} x_{j}\right) \tag{3}
\end{equation*}
$$

where Z_{y} is the normalization constant, or partition function. Equation (3) is the Gibbs distribution for Ising-type models in statistical mechanics (Chandler 1987). The two sets of parameters $h_{i}^{(y)}$ and $J_{i j}^{(y)}$ each represent single variable and two-point interaction effects, respectively. When the latter vanishes, the model leads to the naive Bayes classifier. Although exact inference of Eq. (3) from data is in general not possible, recent developments led to many accurate and practically usable approximation schemes (Hyvärinen 2006; Morcos, Pagnani, Lunt, Bertolino, Marks, Sander, Zecchina, Onuchic, Hwa, and Weigt 2011; Nguyen, Zecchina, and Berg 2017; Nguyen and Wood 2016; Nguyen and Wood 2016), making its use in supervised learning a viable alternative to regression methods. Two approximation methods available for use are pseudo-likelihood inference (Besag 1975) and mean field theory (Chandler 1987; Nguyen et al. 2017).
A recently described package BoltzMM can fit the ('fully visible') Boltzmann machine given by Eq. (3) to data using pseudo-likelihood inference (Jones, Nguyen, and Bagnall 2019b; Jones, Bagnall, and Nguyen 2019a). In contrast, classifiers based on this class of models remain largely unexplored. Supervised learners using statistical models of the type (3) usually take the form of the restricted Boltzmann machines instead (Hinton 2012), where (visible) predictors are augmented by hidden units and interactions are zero except between visible and hidden units. The main drawback of such layered Boltzmann machine learners, as is common in all deep learning algorithms, is the difficulty in interpreting trained models. In contrast, with the fully visible architecture, $J_{i j}^{(y)}$ in Eq. (3), if inferred with sufficient power while avoiding overfitting, has direct interpretation of interaction between two variables.
We refer to such learning/prediction algorithms using a generalized version of Eq. (3) as Boltzmann Bayes inference. An implementation specific to genomic single-nucleotide polymorphism (SNP) data (two response groups, e.g., case and control, and uniform three-level predictors, i.e., allele counts of $x_{i}=0,1,2$) has been reported previously (Woo, Yu, Kumar, Gold, and Reifman 2016). However, this C++ software was geared specifically toward genome-wide association studies and is not suitable for use in more general settings. We introduce an R package bbl (Boltzmann Bayes Learner), which uses both R and $\mathrm{C}++$ for usability and performance, allowing the user to train and test statistical models in a variety of different usage settings.

2. Model and algorithm

For completeness and for reference to software features described in Section 3, we summarize in this section key relevant formulas (Woo et al. 2016) used by bbl, generalized such that predictors each can have varying number of factor levels.

2.1. Model description

The discrete response y_{k} for an instance k takes factor values y among $K \geq 2$ groups; e.g., $y=$ case, control; $k=1, \cdots, n$ denotes sample (or configuration) index. We also introduce weights w_{k}, each of which is integral number of times each configuration was observed in data, such that $\sum_{k} w_{k}=n_{s}$ is the total sample size. If the data take the form of one entry per obserbation, $w_{k}=1$ and $n=n_{s}$. The use of frequency w_{k} can lead to more efficient learning when the number of predictors is relatively small. We use symbol y for a particular factor value and generic response variables interchangeably.
The overall likelihood is

$$
\begin{equation*}
L=\sum_{k} w_{k} \ln P\left(\mathbf{x}^{k}, y_{k}\right)=\sum_{y} \sum_{k \in y} w_{k} \ln P\left(\mathbf{x}^{k}, y\right) \equiv \sum_{y} L_{y} \tag{4}
\end{equation*}
$$

where the second summation is over all k for which $y_{k}=y$. The inference is first performed for each group y separately, maximizing L_{y} given by

$$
\begin{equation*}
L_{y}=\sum_{k \in y} w_{k}\left[\ln P\left(\mathbf{x}^{k} \mid y\right)+\ln P(y)\right]=\sum_{k \in y} w_{k} \ln P\left(\mathbf{x}^{k} \mid y\right)+n_{y} \ln p_{y} \tag{5}
\end{equation*}
$$

where $p_{y} \equiv P(y)$ is the marginal distribution of y and $n_{y}=\sum_{k \in y} w_{k}$ is the size of group y.
In parametrizing the first term in Eq. (5), we assume that predictor variables take discrete factor levels, each with distinct effect on responses, e.g., $x_{i}=\mathrm{a}, \mathrm{t}, \mathrm{g}, \mathrm{c}$ for DNA sequence data. The group-specific predictor distribution can then be written as

$$
\begin{equation*}
P(\mathbf{x} \mid y)=\frac{1}{Z_{y}} \exp \left[\sum_{i} h_{i}^{(y)}\left(x_{i}\right)+\sum_{i<j} J_{i j}^{(y)}\left(x_{i}, x_{j}\right)\right] \tag{6}
\end{equation*}
$$

The number of parameters (d.f.) per group y in $\Theta_{y}=\left\{h_{i}^{(y)}(x), J_{i j}^{(y)}\left(x, x^{\prime}\right)\right\}$ is

$$
\begin{equation*}
\text { d.f. }=\sum_{i}\left(L_{i}-1\right)+\sum_{i<j}\left(L_{i}-1\right)\left(L_{j}-1\right) \tag{7}
\end{equation*}
$$

where L_{i} is the total number of levels in factor x_{i}, which contributes one less parameters to d.f. because one of the factors can be taken as reference with the rest measured against it. Internally, $\mathbf{b b l}$ orders factors, assigns codes $a_{i}=0, \cdots, L_{i}-1$, and set $h_{i}^{(y)}\left(a_{i}\right)=J_{i j}^{(y)}\left(a_{i}, a_{j}\right)=$ 0 whenever $a_{i}=0$ or $a_{j}=0$. We refer to $h_{i}^{(y)}(x)$ and $J_{i j}^{(y)}\left(x, x^{\prime}\right)$ as bias and interaction parameters, respectively.
In the special case where predictor levels are binary $\left(x_{i}=0,1\right)$, one may use the spin variables $s_{i}=2 x_{i}-1= \pm 1$, as in the package BoltzMM (Jones et al. 2019a,b). Its distribution (Jones et al. 2019a)

$$
\begin{equation*}
P(\mathbf{s}) \propto \exp \left(\frac{1}{2} \mathbf{s}^{\top} \mathbf{M} \mathbf{s}+\mathbf{b}^{\top} \mathbf{s}\right) \tag{8}
\end{equation*}
$$

is then related to Eq. (3) by

$$
\begin{align*}
b_{i} & =\frac{h_{i}}{2}+\frac{1}{4} \sum_{j \neq i} J_{i j} \tag{9a}\\
M_{i j} & =\frac{1}{4} J_{i j} \tag{9b}
\end{align*}
$$

where parameter superscripts were omitted because response group is not present.

2.2. Pseudo-likelihood inference

One option for fitting Eq. (6) to data is pseudo-likelihood maximization (Besag 1975):

$$
\begin{equation*}
L_{y}-n_{y} \ln p_{y}=\sum_{k \in y} w_{k} \ln P\left(\mathbf{x}^{k} \mid y\right) \simeq \sum_{k \in y} w_{k} \sum_{i} \ln P_{i}\left(x_{i}^{k} \mid y, x_{j \backslash i}^{k}\right) \equiv \sum_{i} L_{i y} \tag{10}
\end{equation*}
$$

where the effective univariate distribution is conditional to all other predictor values:

$$
\begin{gather*}
P_{i}\left(x \mid y, x_{j \backslash i}\right)=\frac{e^{\bar{h}_{i}^{(y)}\left(x \mid x_{j \backslash i}\right)}}{Z_{i y}\left(x_{j \backslash i}\right)}, \tag{11}\\
Z_{i y}\left(x_{j \backslash i}\right)=\sum_{x} e^{\bar{h}_{i}^{(y)}\left(x \mid x_{j \backslash i}\right)}=1+\sum_{a=1}^{L_{i}-1} e^{\bar{h}_{i}^{(y)}\left(a \mid x_{j \backslash i}\right)}, \tag{12}
\end{gather*}
$$

and

$$
\begin{equation*}
\bar{h}_{i}^{(y)}\left(x \mid x_{j \backslash i}\right)=h_{i}^{(y)}(x)+\sum_{j \neq i} J_{i j}^{(y)}\left(x, x_{j}\right) \tag{13}
\end{equation*}
$$

Including L_{2} penalizers $\left(\lambda_{h}, \lambda\right), L_{i y}$ in Eq. (10) becomes

$$
\begin{equation*}
L_{i y}=\sum_{k \in y} w_{k}\left[\bar{h}_{i}^{(y)}\left(x_{i}^{k} \mid x_{j \backslash i}^{k}\right)-\ln Z_{i y}\left(x_{j \backslash i}^{k}\right)\right]-\frac{\lambda_{h}}{2} \sum_{x} h_{i}^{(y)}(x)^{2}-\frac{\lambda}{2} \sum_{j, x, x^{\prime}} J_{i j}^{(y)}\left(x, x^{\prime}\right)^{2} \tag{14}
\end{equation*}
$$

with first derivatives

$$
\begin{align*}
\frac{\partial L_{i y} / n_{y}}{\partial h_{i}^{(y)}(x)} & =\hat{f}_{i}^{(y)}(x)-\frac{1}{n_{y}} \sum_{k \in y} w_{k} P_{i}\left(x \mid y, x_{l \backslash i}^{k}\right)-\lambda_{h} h_{i}^{(y)}(x) \tag{15a}\\
\frac{\partial L_{i y} / n_{y}}{\partial J_{i j}^{(y)}\left(x, x^{\prime}\right)} & =\hat{f}_{i j}^{(y)}\left(x, x^{\prime}\right)-\frac{1}{n_{y}} \sum_{k \in y} w_{k} \mathbb{1}\left(x_{j}^{k}=x^{\prime}\right) P_{i}\left(x \mid y, x_{l \backslash i}^{k}\right)-\lambda J_{i j}^{(y)}\left(x, x^{\prime}\right), \tag{15b}
\end{align*}
$$

where

$$
\begin{align*}
\hat{f}_{i}^{(y)}(x) & =\frac{1}{n_{y}} \sum_{k \in y} w_{k} \mathbb{1}\left(x_{i}^{k}=x\right), \tag{16a}\\
\hat{f}_{i j}^{(y)}\left(x, x^{\prime}\right) & =\frac{1}{n_{y}} \sum_{k \in y} w_{k} \mathbb{1}\left(x_{i}^{k}=x\right) \mathbb{1}\left(x_{j}^{k}=x^{\prime}\right) \tag{16b}
\end{align*}
$$

are the first and second moments of predictor values and $\mathbb{1}(x)$ is the indicator function. In bbl, Eqs. (15) are solved in $\mathrm{C}++$ functions using the quasi-Newton optimization function gsl_multimin_fdfminimizer_vector_bfgs2 in GNU Scientific Library (https://www.gnu. org/software/gsl). By default, $\lambda_{h}=0$ and only interaction parameters are penalized. As can be seen from the third equality of Eq. (10), the pseudo-likelihood inference decouples into individual predictors, and the inference for each i in $\mathbf{b b l}$ is performed sequentially. The resulting interaction parameters, however, do not satisfy the required symmetry,

$$
\begin{equation*}
J_{i j}\left(x, x^{\prime}\right)=J_{j i}\left(x^{\prime}, x\right) \tag{17}
\end{equation*}
$$

After pseudo-likelihood inference, therefore, the interaction parameters are symmetrized as follows:

$$
\begin{equation*}
J_{i j}\left(x, x^{\prime}\right) \leftarrow \frac{1}{2}\left[J_{i j}\left(x, x^{\prime}\right)+J_{j i}\left(x^{\prime}, x\right)\right] . \tag{18}
\end{equation*}
$$

In bbl, the input data are filtered such that predictors with only one factor level (no variation in observed data) are removed. Nevertheless, in cross-validation of the processed data, subdivisions into training and validation sets may lead to instances where factor levels observed for a given predictor within x_{i} in Eq. (15) are only a subset of those in the whole data. It is thus possible that optimization based on Eqs. (15) is ill-defined when any of the predictors are constant. In such cases, we augment the training data by an extra instance, in which constant predictors take other factor levels.

2.3. Mean field inference

The other option for predictor distribution inference is mean field approximation. In datadriven inference, the interaction parameters are approximated as (Nguyen et al. 2017)

$$
\begin{equation*}
\hat{J}_{i j}^{(y)}\left(x, x^{\prime}\right)=-\left[\mathrm{C}^{(y)}\right]_{i j}^{-1}\left(x, x^{\prime}\right), \tag{19}
\end{equation*}
$$

i.e., negative inverse of the covariance matrix,

$$
\begin{equation*}
\mathrm{C}_{i j}^{(y)}\left(x, x^{\prime}\right)=\hat{f}_{i j}\left(x, x^{\prime}\right)-\hat{f}_{i}(x) \hat{f}_{j}\left(x^{\prime}\right) . \tag{20}
\end{equation*}
$$

Equation (19) can be interpreted as treating discrete \mathbf{x} as if it were multivariate normal: Eq. (6) would then be the counterpart of the multivariate normal p.d.f. with $-J_{i j}^{(y)}\left(x, x^{\prime}\right)$ corresponding to the precision matrix. In real data where $n \sim$ d.f. or less, the matrix inversion is often ill-behaved. It is regularized by interpolation of $\mathrm{C}^{(y)}$ between non-interacting (naive Bayes) $(\epsilon=0)$ and fully interacting limits $(\epsilon=1)$:

$$
\begin{equation*}
\mathrm{C}^{(y)} \leftarrow \overline{\mathrm{C}}^{(y)}=(1-\epsilon) \frac{\operatorname{Tr} \mathrm{C}^{(y)}}{\operatorname{Tr} \mathrm{I}} \mathrm{I}+\epsilon \mathrm{C}^{(y)}, \tag{21}
\end{equation*}
$$

where \mathbf{I} is the identity matrix of the same dimension as $\mathbf{C}^{(y)}$. The parameter ϵ serves as a good handle for probing the relative importance of interaction effects.
The bias parameters are given in mean field by an analog of Eq. (13),

$$
\begin{equation*}
\hat{h}_{i}^{(y)}(x)=\bar{h}_{i}^{(y)}(x)-\sum_{j \neq i} \sum_{x^{\prime}} \hat{J}_{i j}^{(y)}\left(x, x^{\prime}\right) \hat{f}_{j}^{(y)}\left(x^{\prime}\right), \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{h}_{i}^{(y)}(x)=\ln \left[\hat{f}_{i}^{(y)}(x) / \hat{f}_{i}^{(y)}(0)\right], \tag{23}
\end{equation*}
$$

where $\hat{f}_{i}^{(y)}(0)$ is the frequency of (reference) factor x_{i} for which the parameters are zero ($a_{i}=0$). Equation (22) relates the effective bias for predictor x_{i} (the first term on the right) as the sum of univariate bias (left-hand side) and combined mean effects of interactions with other variables (the second term on the right) (Chandler 1987). The effective bias is related to frequency via Eq. (23) because

$$
\begin{equation*}
\hat{f}_{i}^{(y)}(x)=\frac{e^{\overline{\bar{h}}_{i}^{(y)}(x)}}{Z_{i y}}=\hat{f}_{i}^{(y)}(0) e^{\overline{\bar{h}}_{i}^{(y)}(x)} \tag{24}
\end{equation*}
$$

where the fact that $\bar{h}_{i}^{(y)}(0)=0$ was used in the second equality.
As in pseudo-likelihood maximization, mean field inference also may encounter non-varying predictors during cross-validation. To apply the same inference scheme using Eqs. (20), (22) and (23) to such cases, the single-variable frequency $\hat{f}_{i}^{(y)}(x)$ and covariance $\hat{f}_{i j}^{(y)}\left(x, x^{\prime}\right)$ are computed using data augmented by a prior count of 1 uniformly distributed among all L_{i} factor levels for each predictor.

2.4. Naive Bayes

When interaction is ignored $\left(J_{i j}^{(y)}=0\right)$, the model can be solved analytically. From Eqs. (22) and (23),

$$
\begin{equation*}
\hat{h}_{i}^{(y)}(x)=\ln \left[\hat{f}_{i}^{(y)}(x) / \hat{f}_{i}^{(y)}(0)\right] \tag{25}
\end{equation*}
$$

and (Woo et al. 2016)

$$
\begin{equation*}
L_{y}-n_{y} \ln p_{y}=\sum_{k \in y} w_{k} \ln P\left(\mathbf{x}^{k} \mid y\right)=n_{y} \sum_{i, x} \hat{f}_{i}^{(y)}(x) \ln \hat{f}_{i}^{(y)}(x) \tag{26}
\end{equation*}
$$

The likelihood ratio statistic for each predictor, where the null hypothesis is $h_{i}^{(y)}(x)=h_{i}(x)$ with $h_{i}(x)$ the "pooled" inference parameters (same values for all response groups), is then

$$
\begin{equation*}
q_{i}=2 \sum_{y} n_{y} \sum_{x}\left[\hat{f}_{i}^{(y)}(x) \ln \hat{f}_{i}^{(y)}(x)-\hat{f}_{i} \ln \hat{f}_{i}(x)\right] . \tag{27}
\end{equation*}
$$

The statistic $q_{i} \sim \chi^{2}$ with d.f. $=(K-1)\left(L_{i}-1\right)$.

2.5. Classification

For prediction, we combine predictor distributions for all response groups via Bayes formula:

$$
\begin{equation*}
P(y \mid \mathbf{x})=\frac{P(\mathbf{x} \mid y) p_{y}}{\sum_{y^{\prime}} P\left(\mathbf{x} \mid y^{\prime}\right) p_{y^{\prime}}}=\frac{1}{1+\sum_{y^{\prime} \neq y} P\left(\mathbf{x} \mid y^{\prime}\right) p_{y^{\prime}} / P(\mathbf{x} \mid y) p_{y}}=\frac{1}{1+e^{-F_{y}(\mathbf{x})}}, \tag{28}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{y}(\mathbf{x})=\ln \left[\frac{P(\mathbf{x} \mid y) p_{y}}{\sum_{y^{\prime} \neq y} P\left(\mathbf{x} \mid y^{\prime}\right) p_{y^{\prime}}}\right] \tag{29}
\end{equation*}
$$

For binary response coded as $y=0,1$, Eq. (29) reduces to

$$
\begin{align*}
F_{1}(\mathbf{x}) & =\ln P(\mathbf{x} \mid y=1)-\ln P(\mathbf{x} \mid y=0)+\ln \left(p_{1} / p_{0}\right) \\
& =\sum_{i}\left[h_{i}^{(1)}\left(x_{i}\right)-h_{i}^{(0)}\left(x_{i}\right)\right]+\sum_{i<j}\left[J_{i j}^{(1)}\left(x_{i}, x_{j}\right)-J_{i j}^{(0)}\left(x_{i}, x_{j}\right)\right]+\ln \frac{Z_{0} p_{1}}{Z_{1} p_{0}} \tag{30}
\end{align*}
$$

Therefore, if $J_{i j}^{(y)}\left(x, x^{\prime}\right)=0$ (naive Bayes), Eq. (28) takes the form of the logistic regression formula. However, the actual naive Bayes parameter values differ from logistic regression fit. No expression for $P(y \mid \mathbf{x})$ simpler than Eq. (28) exists for data with more than two groups. In pseudo-likelihood maximization inference, Z_{y} can be approximated by

$$
\begin{equation*}
\ln Z_{y}=\frac{1}{n_{y}} \sum_{k \in y} \sum_{i} \ln \left\{\sum_{x}\left[e^{h_{i}^{(y)}(x)+\sum_{j \neq i} J_{i j}\left(x, x_{j}^{k}\right) / 2}\right]\right\} \tag{31}
\end{equation*}
$$

or with the same expression without the factor of $1 / 2$ in the interaction term in the exponent (default). This quantity can be conveniently computed during the optimization process. With the mean field option, the following expression is used:

$$
\begin{equation*}
\ln Z_{y}=-\ln \hat{f}^{(y)}(0)-\frac{1}{2} \sum_{i \neq j} \sum_{x, x^{\prime}} J_{i j}\left(x, x^{\prime}\right) \hat{f}_{i}(x) \hat{f}_{j}\left(x^{\prime}\right) \tag{32}
\end{equation*}
$$

For a test data set for which the actual group identity y_{k} of data instances are known, the prediction score (accuracy) may be defined as

$$
\begin{equation*}
s=\frac{1}{n} \sum_{k} \mathbb{1}\left[\hat{y}\left(\mathbf{x}^{k}\right)=y_{k}\right], \tag{33}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{y}(\mathbf{x})=\underset{y}{\arg \max } P(y \mid \mathbf{x}) \tag{34}
\end{equation*}
$$

If response is binary, the score defined by Eq. (33) is sensitive to marginal distributions of the two groups via Eq. (30). The area under curve (AUC) of receiver operating characteristic is a more robust performance measure independent of probability cutoff. In bbl, the prediction score given by Eqs. (33) and (34) is used in general with the option to use AUC for binary response using R package pROC (Robin, Turck, Hainard, Tiberti, Lisacek, Sanchez, and Müller 2011; Robin, Turck, Hainard, Tiberti, Lisacek, Sanchez, Müller, Siegert, and Doering 2019).

3. Software Usage and Tests

3.1. Logistic regression

To motivate the use of bbl and highlight differences, we first consider the use of logistic regression using glm. We use the base R data Titanic as an example:

R> titanic <- as.data.frame (Titanic)				
$R>$	titanic			
	Class	Sex Age Survived Freq		
1	1st	Male Child	No	0
2	2nd	Male Child	No	0
3	3rd	Male Child	No	35
4	Crew	Male Child	No	0
5	1st Female Child	No	0	
6	2nd Female Child	No	0	
7	3rd Female Child	No	17	
8	Crew Female Child	No	0	
9	1st	Male Adult	No	118
10	2nd	Male Adult	No	154
11	3rd	Male Adult	No	387
12	Crew	Male Adult	No	670

13	1st Female Adult	No	4
14	2nd Female Adult	No	13
15	3rd Female Adult	No	89
16	Crew Female Adult	No	3
17	1st	Male Child	Yes
18	2nd	Male Child	Yes
19	3rd	Male Child	Yes
20	Crew	13	
21	Male Child	Yes	0
22	2nd Female Child	Yes	1
23	3rd Female Child	Yes	13
24	Crew Female Child	Yes	14
25	1st \quad Male Adult	Yes	57
26	2nd	Male Adult	Yes
27	3rd	Male Adult	Yes
28	Crew	Male Adult	Yes
192			
29	1st Female Adult	Yes	140
30	2nd Female Adult	Yes	80
31	3rd Female Adult	Yes	76
32	Crew Female Adult	Yes	20
$R>$	freq <- titanic\$Freq		
$R>$	titanic <- titanic[, $1: 4]$		

Although more detailed versions of the same data set are available [see, e.g., titanic (Hendricks 2015) or stablelearner (Philipp, Strobl, Zeileis, Rusch, and Hornik 2018b; Philipp, Rusch, Hornik, and Strobl 2018a)], the simpler version above only including factor variables suffices for our purposes because bbl requires discrete factors as predictors. Input data can either be of the form above with unique combinations of predictors in each row along with frequency (input to weights argument of glm) or raw data (one observation per row) we generate using the utility function freq2raw:

```
R> library('bbl')
R> titanic_raw <- freq2raw(data = titanic, freq = freq)
R> head(titanic_raw)
    Class Sex Age Survived
1 3rd Male Child No
2 3rd Male Child No
3 3rd Male Child No
4 3rd Male Child No
5 3rd Male Child No
6 3rd Male Child No
R> summary(titanic_raw)
\begin{tabular}{cccc} 
Class & \multicolumn{2}{c}{ Sex } & Age
\end{tabular} Survived
```

We train a logistic regression model using glm:

```
R> gfitO <- glm(Survived ~ Class + Sex + Age, family = binomial(),
+ data = titanic, weights=freq)
R> gfit0
Call: glm(formula = Survived ~ Class + Sex + Age, family = binomial(),
    data = titanic, weights = freq)
Coefficients:
\begin{tabular}{rrrrr} 
(Intercept) & Class2nd & Class3rd & ClassCrew & SexFemale \\
0.6853 & -1.0181 & -1.7778 & -0.8577 & 2.4201 \\
AgeAdult & & & & \\
-1.0615 & & & &
\end{tabular}
Degrees of Freedom: 23 Total (i.e. Null); 18 Residual
Null Deviance:
    2769
Residual Deviance: 2210 AIC: 2222
R> summary(gfit0)
Call:
glm(formula = Survived ~ Class + Sex + Age, family = binomial(),
    data = titanic, weights = freq)
Deviance Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & 3Q & Max \\
-18.505 & -4.247 & 0.000 & 4.747 & 23.915
\end{tabular}
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.6853 0.2730 2.510 0.0121*
Class2nd -1.0181 0.1960 -5.194 2.05e-07 ***
Class3rd -1.7778 0.1716 -10.362 < 2e-16 ***
ClassCrew -0.8577 0.1573 -5.451 5.00e-08 ***
SexFemale 2.4201 0.1404 17.236 < 2e-16 ***
AgeAdult -1.0615 0.2440 -4.350 1.36e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 2769.5 on 23 degrees of freedom
```

Residual deviance: 2210.1 on 18 degrees of freedom
AIC: 2222.1

Number of Fisher Scoring iterations: 5
The fit above included linear terms only. It indicates that survival was strongly associated with class status, sex (female heavily favored), and age. The model below includes all interactions:

```
R> gfit1 <- glm(Survived ~ (Class + Sex + Age)^2, family = binomial(),
+ data = titanic, weights = freq)
R> summary(gfit1)
Call:
glm(formula = Survived ~ (Class + Sex + Age)^2, family = binomial(),
    data = titanic, weights = freq)
Deviance Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & 3Q & Max \\
-18.375 & -4.565 & 0.000 & 3.286 & 24.014
\end{tabular}
Coefficients: (1 not defined because of singularities)
\begin{tabular}{lrrrrr} 
& Estimate & Std. Error z value \(\operatorname{Pr}(>|z|)\) \\
(Intercept) & 14.77920 & 437.96770 & 0.034 & 0.97308 \\
Class2nd & 0.26021 & 549.29444 & 0.000 & 0.99962 \\
Class3rd & -15.76960 & 437.96782 & -0.036 & 0.97128 \\
ClassCrew & -0.52215 & 0.18088 & -2.887 & \(0.00389 \quad * *\) \\
SexFemale & 3.59619 & 0.74781 & 4.809 & \(1.52 \mathrm{e}-06 \quad * * *\) \\
AgeAdult & -15.50683 & 437.96773 & -0.035 & 0.97176 \\
Class2nd:SexFemale & -0.06801 & 0.67120 & -0.101 & 0.91929 \\
Class3rd:SexFemale & -2.79995 & 0.56875 & -4.923 & \(8.52 \mathrm{e}-07\) & \(* * *\) \\
ClassCrew:SexFemale & -1.13608 & 0.82048 & -1.385 & 0.16616 & \\
Class2nd:AgeAdult & -1.93047 & 549.29453 & -0.004 & 0.99720 \\
Class3rd:AgeAdult & 14.85629 & 437.96787 & 0.034 & 0.97294 \\
ClassCrew:AgeAdult & NA & NA & NA & NA \\
SexFemale:AgeAdult & 0.68679 & 0.52541 & 1.307 & 0.19116
\end{tabular}
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 2769.5 on 23 degrees of freedom
Residual deviance: 2097.5 on 12 degrees of freedom
AIC: 2121.5
```

Number of Fisher Scoring iterations: 13

The summary of interacting model suggests that class status association arose from the linear effect of being Crew and interaction effect of Female 3rd-class passengers.

To illustrate training and prediction, we divide the sample into train and test sets:

```
R> set.seed(159)
R> nsample <- NROW(titanic_raw)
R> flag <- rep(TRUE, nsample)
R> flag[sample(nsample, nsample/2)] <- FALSE
R> dtrain <- titanic_raw[flag,]
R> dtest <- titanic_raw[!flag,]
```

We train glm model with interactions, omitting interaction Class:Age because it was rankdeficient, and make prediction on test data:

```
R> gfit2 <- glm(Survived ~ Class * Sex + Sex * Age, family = binomial(),
+ data = dtrain)
R> prl <- predict(gfit2, newdata = dtest)
R> yhat <- ifelse(prl > O, 'Yes', 'No')
R> mean(yhat == dtest$Survived)
```

[1] 0.7718182

R> gauc <- pROC: :roc(response = dtest\$Survived, predictor = prl,

```
+ direction = '<')$auc
```

R> gauc

Area under the curve: 0.7699

For comparison with bbl, which by default includes regularization, we also consider penalized logistic regression fit using glmnet (Friedman, Hastie, and Tibshirani 2010; Friedman, Hastie, Tibshirani, Narasimhan, Simon, and Qian 2019)

```
R> if(!require('glmnet'))
+ install.packages('glmnet')
R> library('glmnet')
R> xdat <- data.matrix(dtrain[, 1:3])
R> y <- dtrain[, 4]
R> gnet <- cv.glmnet(x = xdat, y = y, family = 'binomial', alpha = 1,
+ nfolds = 5, type.measure = 'auc')
R> plot(gnet)
```

Note that the above fit used the non-interacting model of three predictors and L_{1} penalization $(\alpha=1)$. The input matrix contains integer-coded terms in the linear model (columns):
$R>$ head (xdat)

	Class	Sex	Age
4	3	1	1
5	3	1	1

Figure 1: Cross-validation run of glmnet on Titanic data.

7	3	1	1
8	3	1	1
13	3	1	1
14	3	1	1

Figure 1 indicates that the effect of regularization is minimal for this model.

3.2. Boltzmann Bayes learning

The logistic regression shown in Section 3.1 allowed for inference and significance testing of linear and interaction coefficients in association with the response variable. However, the regression fit did not provide any further information regarding the source of association: in the examples in Section 3.1, the survival of Titanic passengers was seen to be associated with being Female and not being Crew members or Female 3rd-class passengers. The corresponding linear regression coefficients, which have the same functional form as in Eq. (30), are measures of the difference in enrichment in the two response groups, while the two terms whose difference yielded the coefficient remained unknown. How were the sub-groups distributed among survivor and non-survivor groups? Were there very few Female 3rd-class passengers among the survivor group compared to non-survivor, or were they found in both groups but more so among non-survivors?
The bbl inference estimates the individual distributions of predictors in response groups separately and subsequently combines them to make predictions. For binary response, this inference provides estimates of the two coefficients whose difference corresponds to the logistic regression outcome. More generally, the availability of the direct estimates of predictor
distributions in each response group given by Eq. (6) facilitates model interpretations in a way not possible for regression-based models, as we show below in this section and Section 3.5.
With this comparison in mind, we use the same Titanic data below to illustrate the Boltzmann Bayes inference. As in glm, bbl uses formula input to train an S 3 object of class bbl:

```
R> bfit0 <- bbl(Survived ~ Class + Sex + Age, data = titanic, weights = freq,
+ prior.count = 0)
```

which by default triggers a pair of pseudo-likelihood inferences, solving the maximum pseudolikelihood equations (15) first under the alternative hypothesis (individual groups have distinct distributions) and then the null hypothesis (all samples have the same distribution). The print method on bbl shows the structure of model and (subsets) of inferred parameters:

```
R> bfit0
Call:
    bbl(formula = Survived ~ Class + Sex + Age, data = titanic, weights = freq,
        prior.count = 0)
    3 predictor states:
        Class = 1st 2nd 3rd Crew
        Sex = Female Male
        Age = Adult Child
    Responses:
        Survived = No Yes
Coefficients:
dh_[Class]^(No):
        2nd 3rd Crew
0.4451514 0.6891838 0.7058579
dh_[Class]^(Yes):
            2nd 3rd Crew
-0.4112553-0.9072555 -0.9584859
dh_[Sex]^(No):
        Male
1.078173
dh_[Sex]^(Yes):
        Male
-1.238999
dh_[Age]^(No):
        Child
-0.3651582
dh_[Age]^(Yes):
```

```
    Child
0.5145496
```

where dh represents parameters $\Delta h_{i}^{(y)}=h_{i}^{(y)}-h_{i}$; i.e., individual group parameters offset by the pooled values. Internally, the parameters $h_{i}^{(y)}$ and $J_{i j}^{(y)}$ are stored as lists with argument order (y, i) and (y, i, j), respectively. The inner-most elements of the lists are vectors and matrices of dimension $L_{i}-1=c(3,1,1)$ and $\left(L_{i}-1, L_{j}-1\right)$, respectively. The summary method on bbl object prints out parameters and their significance test outcomes under the naive Bayes approximation (no interactions) as a rough overview of model under consideration:

```
R> summary(bfit0)
Call:
    bbl(formula = Survived ~ Class + Sex + Age, data = titanic, weights = freq,
        prior.count = 0)
    3 predictor states:
        Class = 1st 2nd 3rd Crew
        Sex = Female Male
        Age = Adult Child
    Responses:
        Survived = No Yes
Fit method: mf
naive Bayes coefficients:
h_Class:
\begin{tabular}{lrrr} 
& 2nd & 3rd & Crew \\
No & 0.3139728 & 1.4650752 & 1.7077243 \\
Yes & -0.5425214 & -0.1314224 & 0.0433803 \\
pooled & -0.1313360 & 0.7757901 & 1.0017625 \\
chisq \(=\) & 180.9014, df \(=3, \operatorname{Pr}(>\) chisq \()=5.633919 \mathrm{e}-39\)
\end{tabular}
```

h_Sex:
Male
No 2.38189493
Yes 0.06472019
pooled 1.30372186
chisq $=434.4688, \mathrm{df}=1, \operatorname{Pr}(>c h i s q)=1.730842 \mathrm{e}-96$
h_Age:
Child
No -3.319765
Yes -2.440056
pooled -2.954528
chisq $=19.5606, \mathrm{df}=1, \operatorname{Pr}(>c h i s q)=9.745843 \mathrm{e}-06$

The test results are those from likelihood ratio test applied to the naive Bayes result, Eq. (27), with the null hypothesis $h_{i}^{(y)}(a)=h_{i}(a)$. The tables of bias parameters shown above include
those for two survival status groups, which clearly indicate the enrichment of lower Class status and Male among non-survivors. Child are few among both survivors and non-survivors; hence highly negative bias parameters in all groups, although less so in survivor group, as expected. We note that the summary method displays naive Bayes results, for which simple analytic expressions for test results are available, even for models containing interactions.
We now fit an interacting model using bbl:

```
R> bfit <- bbl(Survived ~ Class * Sex + Sex * Age, data = titanic,
+ weights = freq)
R> bfit
Call:
    bbl(formula = Survived ~ Class * Sex + Sex * Age, data = titanic,
        weights = freq)
    3 predictor states:
        Class = 1st 2nd 3rd Crew
        Sex = Female Male
        Age = Adult Child
    Responses:
        Survived = No Yes
Coefficients:
dh_[Class]^(No):
        2nd 3rd Crew
1.486735 2.970887 1.554137
dh_[Class]^(Yes):
    2nd 3rd Crew
-0.1035350 -0.7508419 -0.1143958
dh_[Sex]^(No):
            Male
3.153765
dh_[Sex]^(Yes):
    Male
-1.07586
dh_[Age]^(No):
        Child
0.3864377
dh_[Age]^(Yes):
    Child
-0.177389
```

```
dJ_[Class,Sex]^(No):
    Male
2nd -1.232254
3rd -2.720539
Crew -1.379198
dJ_[Class,Sex]~(Yes):
    Male
2nd -0.90344239
3rd -0.01468673
Crew -0.30251248
dJ_[Sex,Age]^(No):
    Child
Male -0.4942682
dJ_[Sex,Age]^(Yes):
    Child
Male 1.167093
```

The parameters printed include those for interactions. The plot method shows a barplot of bias parameters and a heatmap of interaction parameters (Fig. 2). Note that Male members were predominant (bias parameters; top), while Male 3rd-class passengers were underrepresented (interactions; bottom left), among non-survivors. In addition, Male-Child class had enhanced survival (bottom right).

We now fit the training data and make prediction on test data:

```
R> bfit2 <- bbl(Survived ~ Class * Sex + Sex * Age, data = dtrain)
R> pr <- predict(bfit2, newdata = dtest, type = 'prob')
R> head(pr)
```

	No	Yes	yhat
1	0.8155651	0.1844349	No
2	0.8155651	0.1844349	No
3	0.8155651	0.1844349	No
4	0.8155651	0.1844349	No
5	0.8155651	0.1844349	No
6	0.8155651	0.1844349	No

```
R> auc <- pROC::roc(response = dtest$Survived, predictor = pr[, 2],
+ direction = '<')$auc
R> auc
```

Area under the curve: 0.7707

Here, Eq. (28) was used with \mathbf{x} from the supplied newdata. The predict method returns a data frame containing predicted group probabilities and the most likely group for each row.

Figure 2: Plot of bbl object displays bias (top) and interaction parameters (bottom). All parameters are offset by their pooled (singe-group) values.

One can do cross-validation applied to dtrain data, dividing it into nfold $=5$ train/validation subsets of $4: 1$ proportion, and aggregating predictions for validation sets using the trained model:

```
R> cv <- crossVal(Survived ~ . `2, data = dtrain, method = 'pseudo',
+ lambda = 10^seq(-5, -2, 0.2), verbose = 0)
R> cv
```

Optimal lambda $=0.001584893$
Max. score: 0.7376235
lambda AUC ci1 ci2
$1 \quad 1.000000 \mathrm{e}-050.70654580 .67398020 .7391114$
$21.584893 \mathrm{e}-050.71201400 .67951000 .7445180$
$3 \quad 2.511886 \mathrm{e}-050.72864830 .69613000 .7611665$
$4 \quad 3.981072 \mathrm{e}-050.72552680 .69339770 .7576559$
$5 \quad 6.309573 \mathrm{e}-050.72665750 .69416100 .7591540$

Figure 3: Cross-validation run of Titanic data in bbl.

```
6 1.000000e-04 0.7310320 0.6986319 0.7634321
7 1.584893e-04 0.7337642 0.7015270 0.7660015
8 2.511886e-04 0.7359441 0.7039356 0.7679526
9 3.981072e-04 0.7260199 0.6934862 0.7585535
10 6.309573e-04 0.7092299 0.6758527 0.7426070
11 1.000000e-03 0.7333824 0.7012088 0.7655560
12 1.584893e-03 0.7376235 0.7059812 0.7692657
13 2.511886e-03 0.6840430 0.6482426 0.7198435
14 3.981072e-03 0.7229799 0.6907310 0.7552288
15 6.309573e-03 0.6898782 0.6560010 0.7237554
16 1.000000e-02 0.6293653 0.5912795 0.6674510
```

R> plot(cv, mar=c(4, 4, 3, 3), tck $\left.=-0.04, \operatorname{bty}={ }^{\prime} n '\right)$
Here, the model included all interaction terms and returned an object with a data.frame of AUCs for multiple lambda values as well as 95% confidence intervals and optimal values with maximum AUC. We use this information to make prediction as follows:

```
R> model <- bbl(Survived ~ . ^2, data = dtrain, lambda = cv$regstar)
R> pr2 <- predict(model, newdata = dtest)
R> bscore <- mean(dtest$Survived == pr2$yhat)
R> bscore
```

```
R> bauc <- pROC::roc(response = dtest$Survived, predictor = pr2[,2],
+ direction = '<')$auc
R> bauc
```

Area under the curve: 0.7709

Alternatively, predict (cv, ...) will apply the optimal model within cross-validation to test data. The difference compared to the re-training step above is that the optimal model stored in cv was trained on $4 / 5$ of the sample, while model above used the whole training set.
A major advantage of the bbl fit compared to regression is the availability of predictor distributions in each response group, $P(\mathbf{x} \mid y)$, given by Eq. (6). In addition to using the model to make predictions of response groups, one can also examine the predictor distributions and identify configurations dominant in each response group. Since the total number of configurations \mathbf{x} grows exponentially with the number of predictors, Markov chain Monte Carlo (MCMC) sampling is necessary for exploration of these distributions except for very low dimensions. The function mcSample performs Gibbs sampling of the predictor distributions using bbl parameters and outputs the most likely configuration in each response group:

```
R> map <- mcSample(bfit, nstep = 1000, progress.bar = FALSE)
R> map
$xmax
Class "3rd" \begin{tabular}{ll} 
No & Yes \\
Clist"
\end{tabular}
Sex "Male" "Female"
Age "Adult" "Adult"
$emax
    No Yes
3.381014 0.000000
```

The return value is a list containing the predictor configurations with the highest probability in each response group (columns in map\$xmax above) and the corresponding "energy" values, which are exponents of Eq. (6).

3.3. Simulated data

We next demonstrate the reliability of bbl inference using simulated data.

```
R> predictors <- list()
R> m <- 5
R> L <- 3
R> for(i in 1:m) predictors[[i]] <- seq(0, L-1)
R> par <- randompar(predictors)
R> names(par)
[1] "h" "J"
```

The utility function randompar generates random parameters for predictors. We have set the total number of predictors as $m=5$, each taking values $0,1,2\left(L_{i}=L=3\right)$.

```
R> xi <- sample_xi(nsample = 10000, predictors = predictors, h = par$h,
+ J = par$J, code_out = TRUE)
R> head(xi)
```

1	0	1	2	2	0
2	0	1	2	0	2
3	0	0	2	1	1
4	1	0	2	1	1
5	1	2	2	2	2
6	1	1	2	0	1

The function sample_xi will list all possible predictor states and sample configurations based on the distribution (6). The total number of states here is $L^{m}=3^{5}$, which is amenable for exhaustive enumeration. However, this is possible only for small m and L. If either are even moderately larger, sample_xi will hang.
Because there is only one response group, we call the main engine mlestimate of bbl inference directly instead of bbl:

```
R> fit <- mlestimate(xi = xi, method = 'pseudo', lambda = 0)
```

```
Predictor 1: 54 iterations, likelihood = 0.902882
Predictor 2: 74 iterations, likelihood = 0.880671
Predictor 3: 44 iterations, likelihood = 0.475724
Predictor 4: 56 iterations, likelihood = 0.860684
Predictor 5: 56 iterations, likelihood = 0.996739
```

In contrast to bbl function, which fits a model of multiple response groups and predictors in factors, mlestimate is for a single group and requires input matrix xi whose elements are integral codes of factors: $a_{i}=0, \cdots, L_{i}-1$. Figure 4 compares the true and inferred parameters. Here, the sample size was large enough that no regularization was necessary.
We next simulate a full binary response data set with four-level predictors:

```
R> nt <- c('a', 'c', 'g', 't')
R> set.seed(135)
R> for(i in 1:m) predictors[[i]] <- nt
R> names(predictors) <- pasteO('v', 1:m)
R> par <- list()
R> par[[1]] <- randompar(predictors)
R> par[[2]] <- randompar(predictors, h0 = 0.1, JO = 0.1)
R> dat <- randomsamp(predictors, response = c('ctrl', 'case'), par = par,
+ nsample = 1000)
```

The function randomsamp generates random samples of predictor-response pairs using the supplied par. We perform a cross-validation using mean field inference,

Figure 4: Comparison of true parameters and those inferred from pseudo-likelihood Boltzmann Bayes inference. See the text for conditions.

```
R> cv <- crossVal(y ~ . `2, data = dat, method = 'mf', eps = seq(0, 1, 0.1),
+ verbose=0)
R> cv
Optimal epsilon = 0.7
Max. score: 0.8845219
\begin{tabular}{rrrr} 
epsilon & AUC & ci1 & ci2 \\
0.0 & 0.7849546 & 0.7568076 & 0.8131017 \\
0.1 & 0.8392593 & 0.8149947 & 0.8635240 \\
0.2 & 0.8610941 & 0.8386831 & 0.8835051 \\
0.3 & 0.8708767 & 0.8493991 & 0.8923543 \\
0.4 & 0.8773411 & 0.8565066 & 0.8981756 \\
0.5 & 0.8812357 & 0.8608067 & 0.9016647 \\
0.6 & 0.8831850 & 0.8629906 & 0.9033795 \\
0.7 & 0.8845219 & 0.8644845 & 0.9045594 \\
0.8 & 0.8840456 & 0.8639740 & 0.9041172 \\
0.9 & 0.8815880 & 0.8612527 & 0.9019232 \\
1.0 & 0.8724978 & 0.8511909 & 0.8938047
\end{tabular}
```

Here, bbl is called inside crossVal as before but with method = 'mf', which triggers mean field inference with Eqs. (19) and (22).
As shown in Fig. 5a, prediction AUC is optimized near $\epsilon=0.7$. The difference between AUC at $\epsilon=0$ (naive Bayes limit) and the maximum is a measure of the overall effect of interaction. We select three values of ϵ and examine the fit:

Figure 5: Regularized mean field inference using simulated data. (a) Cross-validation AUC with respect to regularization parameter ϵ. (b-d) Comparison of true and inferred parameters under three ϵ values. Best fit is achieved when AUC is maximum.

```
R> fit <- list()
R> eps <- c(0.2, 0.7, 1.0)
R> for(i in seq_along(eps))
+ fit[[i]] <- bbl(y ~ . -2, data = dat, method = 'mf', eps = eps[i],
+ verbose = 0)
```

Figure 5b-d compares the three inferred parameter sets (coef (fit[[i]])\$h, coef (fit [[i]]) \$J) with the true values (par[[iy]]\$h, $\operatorname{par}[[i y]] \$ J)$. As ϵ increases from 0 to 1 , interaction parameter J grows from zero to large, usually overfit levels. We verify that the bias and variance strike the best balance under $\epsilon=0.7$ (Fig. 5c), as suggested by cross-validation AUC in Fig. 5a.

3.4. Genetic code

We consider a different learning task example with a much larger space of response groups, namely those of amino acides; $K=21$, which include 20 amino acids plus stop signal (**'), encoded by DNA sequences ($x_{i}=\mathrm{a}, \mathrm{c}, \mathrm{g}, \mathrm{t}$). In DNA sequences, three nucleotides combine to encode specific amino acids. We will train a model attempting to discover this genetic code from data.

```
R> set.seed(351)
R> n <- 2000
R> dat <- data.frame(b1 = sample(nt, size = n, replace = TRUE),
+ b2 = sample(nt, size = n, replace = TRUE),
+ b3 = sample(nt, size = n, replace = TRUE))
R> head(dat)
b1 b2 b3
1 t a g
2 g t c
3 t a a
c g g
5 a a c
c c t g
```

In the above, we generated random instances of triplet codons for training. We use the package Biostrings (Pagès, Aboyoun, Gentleman, and DebRoy 2019) to translate it into amino acids:

```
R> if(!require('Biostrings')){
+ if(!require('BiocManager'))
+ install.packages('BiocManager')
+ BiocManager::install('Biostrings')
+ }
R> aa <- Biostrings::DNAString(paste(t(dat), collapse = ''))
R> aa
6000-letter DNAString object
seq: TAGGTCTAACGGAACCTGGCGATTATACTTG. . . AGTAAACTCGACAGTGACCGAAGGTACGGGC
```

R> aa <- strsplit(as.character(Biostrings::translate(aa)), split = '') [[1]]
$R>$ xdat <- cbind(data.frame(aa = aa), dat)
$R>$ head (xdat)
aa b1 b2 b3
1 * t a g
2 V g t c
3 * t a a
4 R C g g
5 N a a c
6 L c t g

We now cross-validate using bbl:

```
R>cv <- crossVal(aa ~ .^2, data = xdat, lambda = 10^ seq(-3, 1, 0.5),
+ verbose = 0)
R> CV
```

```
Optimal lambda = 0.3162278
Max. score: 1
\begin{tabular}{rrr} 
& lambda & score \\
1 & 0.001000000 & 0.9195 \\
2 & 0.003162278 & 0.9195 \\
3 & 0.010000000 & 0.9875 \\
4 & 0.031622777 & 0.9875 \\
5 & 0.100000000 & 0.9925 \\
6 & 0.316227766 & 1.0000 \\
& 1.000000000 & 0.9930 \\
& 3.162277660 & 0.9770 \\
\hline & 10.000000000 & 0.9770
\end{tabular}
```

Note that with the multinomial response group, the score used is Eq. (33). The class cv.bbl extends bbl and stores the model with the optimal λ. In contrast to Section 3.2, we do not refit the model under this λ because the score is maximum. Testing can use all possible codon sequences $\left(4^{3}=64\right.$ total $)$:

```
R> panel <- expand.grid(b1 = nt, b2 = nt, b3 = nt)
R> head(panel)
    b1 b2 b3
1 a a a
2 c a a
g g a a
4 t a a
5 a c a
c c a
```

$R>\operatorname{dim}(p a n e l)$
[1] 643
R> p <- predict(cv, panel)
$R>$ ap <- Biostrings::DNAString(paste(t(panel), collapse = ''))
$R>$ ap <- strsplit(as.character (Biostrings: translate (ap)), split = '')[[1]]
$R>$ score <- mean (ap == p\$yhat)
$R>$ score

[1] 1

The trained model has perfect prediction score of 1 and will not make mistakes in any translation of DNA sequences.

3.5. Image data

Figure 6: Cross-validation of Boltzmann Bayes inference on MNIST data using mean field option.

We next consider learning examples with data sets containing predictors numbering ~ 100 or more. The MNIST data set (http://yann.lecun.com/exdb/mnist/), widely used for benchmarking classification algorithms (Lecun, Bottou, Bengio, and Haffner 1998), contains image data of grayscale levels $\left(x_{i}=[0,255]\right)$ derived from hand-written digits ($y_{k}=0, \cdots, 9$) for $m=28 \times 28=784$ pixels. We use down-sampled training ($n=1,000$) and test $(n=500)$ data sets, where grayscale has been transformed into binary predictors ($x_{i}=0,1$):

```
R> datO <- read.csv(system.file('extdata/mnist_train.csv', package = 'bbl'))
R> dat <- removeConst(dat0)
R> dat[1:5, 1:10]
    y X40 X41 X45 X46 X47 X64 X65 X66 X67
```



```
2 7
3 1
48}0
5 1 0}0000000\mp@code{0
R> cv <- crossVal(y ~ .^2, data = dat, method = 'mf', eps = 0.05)
```

Note that before calling crossVal, we removed predictors without factor variations (pixels that are always empty) using the utility function removeConst. By default, error will occur inside crossVal otherwise.
The above run will take a few minutes. By feeding a vector of ϵ values, one can obtain the profile shown in Fig. 6. The jump in performance under $\epsilon^{*} \sim 0.05$ over $\epsilon \rightarrow 0$ (naive Bayes) limit gives a measure of interaction effects. The relatively small value of ϵ^{*} at the optimal condition, compared to e.g., Fig. 5a, reflects the sparseness of image data.
We now retrain the model without cross-validation under ϵ^{*} and classify test set images:

Algorithm	Method	Error rate (\%)	Reference/package
Linear classifier	1-layer NN	12.0	Lecun et al. (1998)
K-nearest neighbors	Euclidean (L2)	5.0	Lecun et al. (1998)
2-layer NN	300 hidden units	4.7	Lecun et al. (1998)
RBM	2-layer	0.95	Salakhutdinov and Hinton (2009)
Naive Bayes	Mean field $(\epsilon=0)$	15.7	bbl
BB	Mean field $(\epsilon=0.05)$	8.5	bbl

Table 1: Performance comparison of BB inference and other models on MNIST data set. The bbl inferences used the full MNIST training and test data sets (see text). BB, Boltzmann Bayes; NN, neural network; RBM, restricted Boltzmann machine.

```
R> mnist <- bbl(y ~ . `2, data = dat, method = 'mf', eps = 0.05)
R> dtest <- read.csv(system.file('extdata/mnist_test.csv', package = 'bbl'))
R> dtest <- dtest[, colnames(dtest) %in% colnames(dat)]
R> pr <- predict(mnist, newdata = dtest[, -1], progress.bar = TRUE)
R> score <- mean(pr$yhat == dtest$y)
R> score
```

Since mnist dropped a subset of original predictors, the test data must be filtered accordingly. Note the increase in test score compared to cross-validation score because of the use of full training data.
We performed similar cross-validation and test analyses of the full MNIST data (training $n=60,000$ and test $n=10,000$) and obtained the test score of 0.915 (classification error rate 8.5%), which compares favorably with other large-scale neural network algorithms (Table 1).
As with Titanic data, we leverage the unique advantage of bbl fit of providing predictor distributions and estimate dominant configurations of each response group (Fig. 7):

```
R> mnist_map <- mcSample(mnist, nstep = 20, progress.bar = TRUE)
R> oldpar <- par(mfrow = c(2, 5), mar = c(1, 1, 1, 1))
R> xvar <- colnames(dat0[, -1])
R> xmap <- apply(mnist_map$xmax, 1:2, as.numeric)
R> xf <- matrix(0, nrow = length(xvar), ncol = 10)
R> rownames(xf) <- xvar
R> for(i in 1:10) xf[rownames(xmap), i] <- xmap[, i]
R> for(i in 1:10){
+ mat <- matrix(t(xf[, i]), nrow = 28, ncol = 28)
+ image(x = 1:28, y = 1:28, z = mat[, 28:1], col = c('white', 'black'),
+ xaxt = 'n', yaxt = 'n', xlab = '', ylab = '')
+ }
R> par(oldpar)
```

It is interesting to note that the model for handwritten digit " 1 " is a combination of two versions, one slated forward and the other backward. The images shown in Fig. 7 illustrate examples of model interpretation made possible by the Bayesian formulation used by bbl, a significant advantage compared to regression-based methods and other deep learning models whose interpretations are challenging (Montavon, Samek, and K.-R. Müller 2018).

Figure 7: Maximum probability configurations of digits $(0, \cdots, 9)$ estimated from bbl fit coefficients using Gibbs sampling.

3.6. Transcription factor binding site data

One of machine learning tasks of considerable interest in biomedical applications is the detection of transcription factor binding sites within genomic sequences (Wasserman and Sandelin 2004). Transcription factors are proteins that bind to specific DNA sequence segments and regulate gene expression programs. Public databases, such as JASPAR (Khan, Fornes, Stigliani, Gheorghe, Castro-Mondragon, van der Lee, Bessy, Chéneby, Kulkarni, Tan, Baranasic, Arenillas, Sandelin, Vandepoele, Lenhard, Ballester, Wasserman, Parcy, and Mathelier 2018), host known transcription factors and their binding sequence motifs. Supervised learners allow users to leverage these data sets and search for binding motifs among candidate sequences.
Here, we illustrate such an inference using an example set (MA0014.3) of binding motif sequences from JASPAR (http://jaspar.genereg.net):
$R>$ seq <- readFasta(system.file('extdata/MA0014.3.fasta', package = 'bbl')) $R>$ head (seq)

	1	2	3	4	5	6	7	8	9	10	11	12
1	G	G	G	C	G	T	G	A	C	T	T	C
2	C	A	G	C	G	T	G	A	C	G	C	G
3	G	C	G	C	G	T	C	A	C	G	C	T
4	C	A	G	C	T	T	G	A	C	C	A	G
5	G	A	C	C	G	T	G	A	C	C	A	C
6	A	G	G	C	G	C	G A	A	G	C	C	

$R>\operatorname{dim}(s e q)$

Figure 8: Cross-validation of transcription factor binding motif model using bbl with control sequences generated by 3 nucleotide mutations. Data set is from Khan et al. (2018) (sample ID MA0014.3; see text). (a) Pseudo-likelihood and (b) mean field inferences.

The data set consists of common nucleotide segments from $n=948$ raw sequences used for motif discovery. We simulate a training set by generating non-binding sequences with random mutation of 3 nucleotides:

```
R> set.seed(561)
R> nsample <- NROW(seq)
R> m <- NCOL(seq)
R> nt <- c('A', 'C', 'G', 'T')
R> ctrl <- as.matrix(seq)
R> for(k in seq_len(nsample))
+ ctrl[k, sample(m, 3)] <- sample(nt, 3, replace = TRUE)
R> colnames(ctrl) <- 1:m
R> data <- rbind(data.frame(y = rep('Binding', nsample), seq),
+ data.frame(y = rep('Non-binding', nsample), ctrl))
R> data <- data[sample(NROW(data)), ]
```

We assess the performance of pseudo-likelihood and mean field inferences below using crossvalidation:

```
R> ps <- crossVal(y ~ . -2, data = data, method = 'pseudo',
+ lambda = 10^seq(-2, -1, 0.2), verbose = 0)
R> ps
Optimal lambda = 0.02511886
Max. score: 0.8530473
    lambda AUC ci1 ci2
```

```
1 0.01000000 0.8492874 0.8317559 0.8668189
2 0.01584893 0.8519023 0.8345052 0.8692994
3 0.02511886 0.8530473 0.8357333 0.8703613
4 0.03981072 0.8527524 0.8354370 0.8700678
5 0.06309573 0.8517443 0.8343818 0.8691068
6 0.10000000 0.8501086 0.8326675 0.8675497
R> mf <- crossVal(y ~ . `2, data = data, method = 'mf',
+ eps = seq(0.1, 0.4, 0.1), verbose = 0)
R> mf
Optimal epsilon = 0.2
Max. score: 0.8530829
    epsilon AUC ci1 ci2
1 0.1 0.8523296 0.8350451 0.8696140
2 0.2 0.8530829 0.8357946 0.8703712
3 0.3 0.8518778 0.8344548 0.8693008
4 0.4 0.8498872 0.8322967 0.8674777
```

In both cases, there is an optimal, intermediate range of regularization with maximum AUC (Fig. 8). The level of performance attainable with non-interacting models, such as position frequency matrix (Wasserman and Sandelin 2004), corresponds to the $\epsilon=0$ limit in Fig. 8b. The AUC range obtained above is representative of the sensitivity and specificity levels one would get when scanning a genomic segment using a trained model for detection of a binding site to within resolution of ~ 3 base pairs.

We analyzed 684 data sets with at least 30 sequences from JASPAR database of varying sample sizes and segment lengths with the same protocol. Differences between fully optimized AUC scores and those from non-interacting models (naive Bayes) were most pronounced above the intermediate range of AUC (Fig. 9).

4. Summary

We introduced a user-friendly R package $\mathbf{b b l}$, implementing general Boltzmann Bayes classifiers applicable to heterogeneous, multifactorial predictor data associated with a discrete multi-class response variable. The currently available R package BoltzMM is limited to fitting data into a single fully visible Boltzmann distribution without reference to response variables, and assumes binary predictors. The package bbl employs a more general statistical distribution accommodating heterogeneous, factor-valued predictors via Eq. (6), embedding it in a Bayesian classifier to build supervised learning and prediction models. The basic implementation architecture of $\mathbf{b b l}$ follows those of standard base R packages such as $\mathbf{g l m}$.
Compared to more widely applied restricted Boltzmann machine algorithms (Hinton 2012), the Boltzmann Bayes model explicitly infers interaction parameters for all pairs of predictors, making it possible to interpret trained models directly, as illustrated in Figs. 2 and 7, the latter using MCMC sampling of predictor distributions. The bbl inference is especially suited to data types where a moderate number of unordered features (such as nucleotide sequences)

Figure 9: AUC scores of bbl model trained on 684 transcription factor binding site sequence data sets from JASPAR (Khan et al. 2018) under the same protocol as in Fig. 8. Naive Bayes (NB; mean field with $\epsilon=0$) and full mean field (MF) results are compared. The symbol colors show the segment length of each binding site data (color-map in legend).
combine to determine class identity, as in transcription factor binding motifs (Section 3.6). Among the two options for inference methods, mean field (method $=$ ' $m f$ ') is faster but can become memory intensive for models with a large number of predictors. Pseudo-likelihood maximization (method $=$ 'pseudo') is slower but usually provides better performance.

Computational details

The current version of $\mathbf{b b l}$ is available at the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=bbl. Installation of bbl requires the GNU Scientific library https://www.gnu.org/software/gsl installed. The results in this paper were obtained using R 4.0.0. R itself and all packages used are available from the CRAN at https://CRAN.R-project.org and Bioconductor at https://bioconductor.org.

References

Ackley DH, Hinton GE, Sejnowski TJ (1985). "A Learning Algorithm for Boltzmann Machines." Cognitive Science, 9(1), 147-169. doi:https://doi.org/10.1016/ S0364-0213(85)80012-4. URL http://www.sciencedirect.com/science/article/ pii/S0364021385800124.

Besag J (1975). "Statistical Analysis of Non-Lattice Data." Journal of the Royal Statistical Society. Series D (The Statistician), 24(3), 179-195. doi:10.2307/2987782. URL https: //rss.onlinelibrary.wiley.com/doi/10.2307/2987782.

Chandler D (1987). Introduction to Modern Statistical Mechanics. Oxford, New York.
Friedman J, Hastie T, Tibshirani R (2010). "Regularization Paths for Generalized Linear Models via Coordinate Descent." Journal of Statistical Software, 33(1), 1-22. doi:10. 18637/jss.v033.i01. URL https://www.jstatsoft.org/v033/i01.

Friedman J, Hastie T, Tibshirani R, Narasimhan B, Simon N, Qian J (2019). glmnet: Lasso and Elastic-Net Regularized Generalized Linear Models. R package version 3.0-2, URL https://CRAN.R-project.org/package=glmnet.

Hastie T, Tibshirani R, Friedman J (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd edition. New York. URL https://web.stanford. edu/~hastie/ElemStatLearn/.

Hendricks P (2015). titanic: Titanic Passenger Survival Data Set. R package version 0.1.0, URL https://CRAN.R-project.org/package=titanic.

Hinton GE (2012). A Practical Guide to Training Restricted Boltzmann Machines, pp. 599619. Springer-Verlag, Berlin, Heidelberg. doi:10.1007/978-3-642-35289-8_32. URL https://doi.org/10.1007/978-3-642-35289-8_32.

Hyvärinen A (2006). "Consistency of Pseudolikelihood Estimation of Fully Visible Boltzmann Machines." Neural Computation, 18(10), 2283-2292. doi:10.1162/neco.2006.18.10. 2283. URL https://doi.org/10.1162/neco.2006.18.10.2283.

Jones A, Bagnall J, Nguyen H (2019a). "BoltzMM: an R Package for Maximum Pseudolikelihood Estimation of Fully-Visible Boltzmann Machines." Journal of Open Source Software, $4(34)$, 1193. doi:10.21105/joss.01193. URL http://dx.doi.org/10.21105/ joss. 01193.

Jones AT, Nguyen HD, Bagnall JJ (2019b). BoltzMM: Boltzmann Machines with MM Algorithms. R package version 0.1.4, URL https://CRAN.R-project.org/package=BoltzMM.

Khan A, Fornes O, Stigliani A, Gheorghe M, Castro-Mondragon JA, van der Lee R, Bessy A, Chéneby J, Kulkarni SR, Tan G, Baranasic D, Arenillas DJ, Sandelin A, Vandepoele K, Lenhard B, Ballester B, Wasserman WW, Parcy F, Mathelier A (2018). "JASPAR 2018: Update of the Open-Access Database of Transcription Factor Binding Profiles and Its Web Framework." Nucleic Acid Research, 46, D260-D266. doi:10.1093/nar/gkx1188. URL https://academic.oup.com/nar/article/46/D1/D260/4621338.

Lecun Y, Bottou L, Bengio Y, Haffner P (1998). "Gradient-Based Learning Applied to Document Recognition." In Proceedings of the IEEE, pp. 2278-2324. doi:10.1109/5. 726791. URL https://ieeexplore.ieee.org/document/726791.

Montavon G, Samek W, K-R Müller (2018). "Methods for Interpreting and Understanding Deep Neural Networks." Digital Signal Processing, 73, 1-15. doi:10.1016/j.dsp. 2017. 10.011. URL https://doi.org/10.1016/j.dsp.2017.10.011.

Morcos F, Pagnani A, Lunt B, Bertolino A, Marks DS, Sander C, Zecchina R, Onuchic JN, Hwa T, Weigt M (2011). "Direct-Coupling Analysis of Residue Coevolution Captures Native Contacts across Many Protein Families." Proceedings of the National Academy of Sciences, USA, 108(49), E1293-E1301. doi:10.1073/pnas.1111471108. URL https: //www.pnas.org/content/108/49/E1293.

Nguyen HC, Zecchina R, Berg J (2017). "Inverse Statistical Problems: From the Inverse Ising Problem to Data Science." Advances in Physics, 66(3), 197-261. doi:10.1080/00018732. 2017.1341604. URL https://doi.org/10.1080/00018732.2017.1341604.

Nguyen HD, Wood IA (2016). "Asymptotic Normality of the Maximum Pseudolikelihood Estimator for Fully Visible Boltzmann Machines." IEEE Transactions on Neural Networks and Learning Systems, 27(4), 897-902. doi:10.1109/TNNLS.2015.2425898. URL https: //ieeexplore.ieee.org/document/7103361.

Nguyen HD, Wood IA (2016). "A Block Successive Lower-bound Maximization Algorithm for the Maximum Pseudo-likelihood Estimation of Fully Visible Boltzmann Machines." Neural Computation, 28(3), 485-492. doi:10.1162/NECO_a_00813. URL http://dx.doi.org/ 10.1162/NECO_a_00813.

Pagès H, Aboyoun P, Gentleman R, DebRoy S (2019). Biostrings: Efficient Manipulation of Biological Strings. R package version 2.52.0, URL https://bioconductor.org/packages/ Biostrings.

Philipp M, Rusch T, Hornik K, Strobl C (2018a). "Measuring the Stability of Results From Supervised Statistical Learning." Journal of Computational and Graphical Statistics, 27(4), 685-700. doi:10.1080/10618600.2018.1473779. URL https://doi.org/ 10.1080/10618600.2018.1473779.

Philipp M, Strobl C, Zeileis A, Rusch T, Hornik K (2018b). stablelearner: Stability Assessment of Statistical Learning Methods. R package version 0.1-1, URL https://CRAN. R-project.org/package=stablelearner.

Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J, Müller M (2011). "pROC: An Open-Source Package for R and $\mathrm{S}+$ to Analyze and Compare ROC Curves." BMC Bioinformatics, 12, 77. doi:10.1186/1471-2105-12-77. URL https://bmcbioinformatics. biomedcentral.com/articles/10.1186/1471-2015-22-77.

Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Müller M, Siegert S, Doering M (2019). pROC: Display and Analyze ROC Curves. R package version 1.15.3, URL https://CRAN.R-project.org/package=pROC.

Salakhutdinov R, Hinton G (2009). "Deep Boltzmann Machines." In D van Dyk, M Welling (eds.), Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics, volume 5 of Proceedings of Machine Learning Research, pp. 448455. PMLR, Hilton Clearwater Beach Resort, Clearwater Beach, Florida USA. URL http://proceedings.mlr.press/v5/salakhutdinov09a.html.

Wasserman WW, Sandelin A (2004). "Applied Bioinformatics for the Identification of Regulatory Elements." Nature Reviews Genetics, 5, 276-287. doi:10.1038/nrg1315. URL https://nature.com/articles/nrg1315.

Woo HJ, Yu C, Kumar K, Gold B, Reifman J (2016). "Genotype Distribution-Based Inference of Collective Effects in Genome-Wide Association Studies: Insights to Age-Related Macular Degeneration Disease Mechanism." BMC Genomics, 17, 695. doi:10.1186/ s12864-016-2871-3. URL https://bmcgenomics.biomedcentral.com/articles/10. 1186/s12864-016-2871-3.

Affiliation:
Jun Woo (corresponding author), Jinhua Wang
Institute for Health Informatics
and
Masonic Cancer Center
University of Minnesota
Minneapolis, Minnesota, USA
E-mail: junwoo035@gmail.com

