Package ‘bayestestR’

July 20, 2020

Type Package

Title Understand and Describe Bayesian Models and Posterior
Distributions

Version 0.7.2

Maintainer Dominique Makowski <dom.makowski@gmail.com>
URL https://easystats.github.io/bayestestR/

BugReports https://github.com/easystats/bayestestR/issues

Description Provides utilities to describe posterior distributions and Bayesian models. It in-
cludes point-estimates such as Maximum A Posteriori (MAP), measures of dispersion (High-
est Density Interval - HDI; Kruschke, 2015 <doi:10.1016/C2012-0-00477-2>) and in-
dices used for null-hypothesis testing (such as ROPE percentage, pd and Bayes factors).

License GPL-3

Encoding UTF-8

LazyData true

Depends R (>=3.0)

Imports insight (>= 0.8.4), methods, stats, utils

Suggests BayesFactor, bayesQR, bridgesampling, brms, broom, covr,
dplyr, emmeans, GGally, ggplot2, ggridges, KernSmooth, knitr,
MASS, mclust, modelbased, Ime4, logspline, mediation,
parameters, performance, rmarkdown, rstan, rstanarm, see,
stringr, testthat, tidyr, tweedie

RoxygenNote 7.1.1
Language en-GB
VignetteBuilder knitr
NeedsCompilation no

Author Dominique Makowski [aut, cre] (<https://orcid.org/0000-0001-5375-9967>),
Daniel Liidecke [aut] (<https://orcid.org/0000-0002-8895-3206>),
Mattan S. Ben-Shachar [aut] (<https://orcid.org/0000-0002-4287-4801>),
Michael D. Wilson [aut] (<https://orcid.org/0000-0003-4143-7308>),
Paul-Christian Biirkner [rev],

https://easystats.github.io/bayestestR/
https://github.com/easystats/bayestestR/issues

2 R topics documented:

Tristan Mahr [rev] (<https://orcid.org/0000-0002-8890-5116>),
Henrik Singmann [ctb] (<https://orcid.org/0000-0002-4842-3657>),
Quentin F. Gronau [ctb] (<https://orcid.org/0000-0001-5510-6943>)

Repository CRAN
Date/Publication 2020-07-20 09:30:03 UTC

R topics documented:

area_under_CUIVE v v v i i e e e e e e e e e 3
as.data.frame.density 4
as.numeric.map_estimateo e e 4
bayesfactor L 5
bayesfactor_inclusion 6
bayesfactor_models L 8
bayesfactor_parameters 11
bayesfactor_restricted L 17
check_prior 21
Cl o e e e e 22
CONIELDAYES v o i e e e e e e e e 25
convert_bayesian_as_frequentist L. o oo 26
density_at e 27
describe_posterior L. e e e 28
describe_prioro e 32
diagnostiC_POStEeTiOr v v i i e e e e e e e e e e e e e 33
distribution L e e e e 35
effective_sample 37
equivalence_test e e e e 39
estimate_density e e 42
6 44
hdi . . . e 48
Map_estimate vttt e e e e e e e e e e e e 51
INCSE .« . v v v e 53
mediation L e e e e e e e e e e e e e e e e e 54
mhdior e e e 57
overlap L 59
PA_tO_P . o o e e e 61
POINt_estimate e e e e e e e e e e e e 61
p_direction 64
PoMAD . . . L e e e e e 67
P_TOPE . o o v e e e e e e e e e e e e e 70
p_significance 71
reshape_Ci e e e 74
TOPE o v v v e 74
TOPE_TANZE .+« o v v o o e 78
SENSItIVILY_tO_PIiOT o o o o e e e e e e e e e e 79
) 80

simulate_correlation L 84

area_under _curve 3

simulate_prior e e e e e e e e e e 85
update.bayesfactor_models 86
weighted_posteriors 87
Index 91
area_under_curve Area under the Curve (AUC)
Description

Based on the DescTools AUC function. It can calculate the area under the curve with a naive algo-
rithm or a more elaborated spline approach. The curve must be given by vectors of xy-coordinates.
This function can handle unsorted x values (by sorting x) and ties for the x values (by ignoring

duplicates).
Usage
area_under_curve(x, y, method = c("trapezoid”, "step"”, "spline"), ...)
auc(x, y, method = c("trapezoid”, "step”, "spline"”), ...)
Arguments
X Vector of x values.
y Vector of y values.
method Method to compute the Area Under the Curve (AUC). Can be "trapezoid” (de-
fault), "step” or "spline”. If "trapezoid", the curve is formed by connecting
all points by a direct line (composite trapezoid rule). If "step” is chosen then
a stepwise connection of two points is used. For calculating the area under a
spline interpolation the splinefun function is used in combination with integrate.
Arguments passed to or from other methods.
See Also
DescTools
Examples
library(bayestestR)

posterior <- distribution_normal(1000)

dens <- estimate_density(posterior)
dens <- dens[dens$x > 0,]
x <- dens$x

y <- dens$y
area_under_curve(x, y, method = "trapezoid”)
area_under_curve(x, y, method = "step")

area_under_curve(x, y, method = "spline")

as.numeric.map_estjmate

as.data.frame.density Coerce to a Data Frame

Description

Coerce to a Data Frame

Usage
S3 method for class 'density'
as.data.frame(x, ...)

Arguments
X any R object.

additional arguments to be passed to or from methods.

as.numeric.map_estimate

Convert to Numeric

Description

Convert to Numeric

Usage
S3 method for class 'map_estimate’
as.numeric(x, ...)
S3 method for class 'mhdior'
as.numeric(x, ...)
S3 method for class 'p_direction'
as.numeric(x, ...)
S3 method for class 'p_map'
as.numeric(x, ...)
S3 method for class 'p_significance'
as.numeric(x, ...)

Arguments
X object to be coerced or tested.

further arguments passed to or from other methods.

bayesfactor

bayesfactor

Bayes Factors (BF)

Description

This function compte the Bayes factors (BFs) that are appropriate to the input. For vectors or
single models, it will compute BFs for single parameters, or is hypothesis is specified, BFs
for restricted models. For multiple models, it will return the BF corresponding to comparison
between models and if a model comparison is passed, it will compute the inclusion BF.

For a complete overview of these functions, read the Bayes factor vignette.

Usage
bayesfactor(
prior = NULL,
direction = "two-sided”,
null = 9,
hypothesis = NULL,
effects = c("fixed”, "random”, "all"),
verbose = TRUE,
denominator = 1,

match_models = FALSE,
prior_odds = NULL

Arguments

prior

direction

null
hypothesis

effects

verbose

denominator

match_models

prior_odds

A numeric vector, model object(s), or the output from bayesfactor_models.
An object representing a prior distribution (see ’Details’).

Test type (see 'Details’). One of 0, "two-sided” (default, two tailed), -1,
"left” (left tailed) or 1, "right” (right tailed).

Value of the null, either a scalar (for point-null) or a range (for a interval-null).

A character vector specifying the restrictions as logical conditions (see examples
below).

Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

Toggle off warnings.

Either an integer indicating which of the models to use as the denominator, or a
model to be used as a denominator. Ignored for BFBayesFactor.

See details.

Optional vector of prior odds for the models. See BayesFactor: :priorOdds<-.

https://easystats.github.io/bayestestR/articles/bayes_factors.html

6 bayesfactor_inclusion

Value
Some type of Bayes factor, depending on the input. See bayesfactor_parameters, bayesfactor_models
or bayesfactor_inclusion

Note

There is also a plot ()-method implemented in the see-package.

Examples
library(bayestestR)
Vectors
prior <- distribution_normal(1000, mean = @, sd = 1)
posterior <- distribution_normal(1000, mean = .5, sd = .3)

bayesfactor(posterior, prior = prior)
Not run:
rstanarm models

if (require(”"rstanarm”)) {
model <- stan_lmer(extra ~ group + (1 | ID), data = sleep)

bayesfactor (model)
}

End(Not run)

Frequentist models

mo <- Im(extra ~ 1, data = sleep)

ml <- Im(extra ~ group, data = sleep)

m2 <- Im(extra ~ group + ID, data = sleep)

comparison <- bayesfactor(m@, m1, m2)
comparison

bayesfactor (comparison)

bayesfactor_inclusion Inclusion Bayes Factors for testing predictors across Bayesian models

Description

The bf_x function is an alias of the main function.

For more info, see the Bayes factors vignette.

https://easystats.github.io/see/articles/bayestestR.html
https://easystats.github.io/see/
https://easystats.github.io/bayestestR/articles/bayes_factors.html

bayesfactor_inclusion 7

Usage
bayesfactor_inclusion(models, match_models = FALSE, prior_odds = NULL, ...)
bf_inclusion(models, match_models = FALSE, prior_odds = NULL, ...)
Arguments
models An object of class bayesfactor_models or BFBayesFactor.

match_models See details.
prior_odds Optional vector of prior odds for the models. See BayesFactor: :prior0Odds<-.

Arguments passed to or from other methods.

Details

Inclusion Bayes factors answer the question: Are the observed data more probable under models
with a particular effect, than they are under models without that particular effect? In other words,
on average - are models with effect X more likely to have produced the observed data than models
without effect X ?

Match Models: If match_models=FALSE (default), Inclusion BFs are computed by comparing
all models with a term against all models without that term. If TRUE, comparison is restricted
to models that (1) do not include any interactions with the term of interest; (2) for interaction
terms, averaging is done only across models that containe the main effect terms from which the
interaction term is comprised.

Value

a data frame containing the prior and posterior probabilities, and BF for each effect.

Note

Random effects in the 1mer style are converted to interaction terms: i.e., (X|G) will become the
terms 1:G and X:G.

Author(s)
Mattan S. Ben-Shachar

References

* Hinne, M., Gronau, Q. F,, van den Bergh, D., and Wagenmakers, E. (2019, March 25). A
conceptual introduction to Bayesian Model Averaging. doi: 10.31234/osf.io/wgb64

e Clyde, M. A., Ghosh, J., & Littman, M. L. (2011). Bayesian adaptive sampling for variable
selection and model averaging. Journal of Computational and Graphical Statistics, 20(1), 80-
101.

* Mathot, S. (2017). Bayes like a Baws: Interpreting Bayesian Repeated Measures in JASP
[Blog post]. Retrieved from https://www.cogsci.nl/blog/interpreting-bayesian-repeated-measures-
in-jasp

https://doi.org/10.31234/osf.io/wgb64

8 bayesfactor_models

See Also

weighted_posteriors for Bayesian parameter averaging.

Examples

library(bayestestR)
Using bayesfactor_models:

mo@ <- 1lm(Sepal.Length ~ 1, data = iris)

mol <- 1lm(Sepal.Length ~ Species, data = iris)

mo2 <- 1m(Sepal.Length ~ Species + Petal.lLength, data = iris)
mo3 <- 1lm(Sepal.Length ~ Species * Petal.Length, data = iris)

BFmodels <- bayesfactor_models(mol, mo2, mo3, denominator = mo@)
bayesfactor_inclusion(BFmodels)

Not run:

BayesFactor

library(BayesFactor)

BF <- generalTestBF(len ~ supp * dose, ToothGrowth, progress = FALSE)

bayesfactor_inclusion(BF)

compare only matched models:
bayesfactor_inclusion(BF, match_models = TRUE)

End(Not run)

bayesfactor_models Bayes Factors (BF) for model comparison

Description

This function computes or extracts Bayes factors from fitted models.

The bf_x function is an alias of the main function.

Usage

bayesfactor_models(..., denominator = 1, verbose = TRUE)

bf_models(..., denominator = 1, verbose = TRUE)

bayesfactor_models 9

Arguments
Fitted models (see details), all fit on the same data, or a single BFBayesFactor
object (see *Details’).
denominator Either an integer indicating which of the models to use as the denominator, or a
model to be used as a denominator. Ignored for BFBayesFactor.
verbose Toggle off warnings.
Details

If the passed models are supported by insight the DV of all models will be tested for equality (else
this is assumed to be true), and the models’ terms will be extracted (allowing for follow-up analysis
with bayesfactor_inclusion).

» Forbrmsfit or stanreg models, Bayes factors are computed using the bridgesampling pack-
age.

— brmsfit models must have been fitted with save_all_pars = TRUE.

— stanreg models must have been fitted with a defined diagnostic_file.
» For BFBayesFactor, bayesfactor_models() is mostly a wraparoud BayesFactor: :extractBF ().

* For all other model types (supported by insight), BIC approximations are used to compute
Bayes factors.

In order to correctly and precisely estimate Bayes factors, a rule of thumb are the 4 P’s: Proper
Priors and Plentiful Posterior (i.e. probably at leat 40,000 samples instead of the default of 4,000).

A Bayes factor greater than 1 can be interpereted as evidence against the compared-to model (the
denominator). One convention is that a Bayes factor greater than 3 can be considered as "sub-
stantial" evidence against the denominator model (and vice versa, a Bayes factor smaller than 1/3
indicates substantial evidence in favor of the denominator model) (Wetzels et al. 2011).

See also the Bayes factors vignette.

Value
A data frame containing the models’ formulas (reconstructed fixed and random effects) and their
BFs, that prints nicely.

Note

There is also a plot ()-method implemented in the see-package.

Author(s)

Mattan S. Ben-Shachar

https://CRAN.R-project.org/package=bridgesampling
https://CRAN.R-project.org/package=insight
https://easystats.github.io/bayestestR/articles/bayes_factors.html
https://easystats.github.io/see/articles/bayestestR.html
https://easystats.github.io/see/

10 bayesfactor_models

References

* Gronau, Q. F.,, Wagenmakers, E. J., Heck, D. W., and Matzke, D. (2019). A simple method
for comparing complex models: Bayesian model comparison for hierarchical multinomial
processing tree models using Warp-III bridge sampling. Psychometrika, 84(1), 261-284.

* Kass, R. E., and Raftery, A. E. (1995). Bayes Factors. Journal of the American Statistical
Association, 90(430), 773-795.

* Robert, C. P. (2016). The expected demise of the Bayes factor. Journal of Mathematical
Psychology, 72, 33-37.

* Wagenmakers, E. J. (2007). A practical solution to the pervasive problems of p values. Psy-
chonomic bulletin & review, 14(5), 779-804.

* Wetzels, R., Matzke, D., Lee, M. D., Rouder, J. N., Iverson, G. J., and Wagenmakers, E.-J.
(2011). Statistical Evidence in Experimental Psychology: An Empirical Comparison Using
855 t Tests. Perspectives on Psychological Science, 6(3), 291-298. doi: 10.1177/1745691611406923

Examples

With 1m objects:

Im1 <- Im(Sepal.Length ~ 1, data = iris)

Im2 <- Im(Sepal.Length ~ Species, data = iris)

Im3 <- Im(Sepal.Length ~ Species + Petal.Length, data = iris)

Im4 <- Im(Sepal.Length ~ Species x Petal.Length, data = iris)
bayesfactor_models(lml, 1m2, 1m3, 1lm4, denominator = 1)
bayesfactor_models(1lm2, 1m3, 1lm4, denominator = Im1) # same result
bayesfactor_models(1lml, 1lm2, 1m3, 1lm4, denominator = 1Im1) # same result

Not run:
With lmerMod objects:

if (require(”"1me4")) {
Imer1 <- lmer(Sepal.Length ~ Petal.lLength + (1 | Species), data = iris)
Imer2 <- lmer(Sepal.Length ~ Petal.Length + (Petal.Length | Species), data = iris)
Imer3 <- lmer(
Sepal.Length ~ Petal.Length + (Petal.Length | Species) + (1 | Petal.Width),
data = iris
)
bayesfactor_models(lmer1, lmer2, lmer3, denominator = 1)
bayesfactor_models(lmer1, lmer2, lmer3, denominator = lmer1)

3

rstanarm models

(note that a unique diagnostic_file MUST be specified in order to work)
if (require(”rstanarm”)) {
stan_m@ <- stan_glm(Sepal.Length ~ 1,
data = iris,
family = gaussian(),
diagnostic_file = file.path(tempdir(), "df@.csv")
)
stan_m1 <- stan_glm(Sepal.Length ~ Species,

https://doi.org/10.1177/1745691611406923

bayesfactor_parameters 11

data = iris,
family = gaussian(),
diagnostic_file = file.path(tempdir(), "df1.csv")
)
stan_m2 <- stan_glm(Sepal.Length ~ Species + Petal.lLength,
data = iris,
family = gaussian(),
diagnostic_file = file.path(tempdir(), "df2.csv")
)
bayesfactor_models(stan_m1, stan_m2, denominator = stan_m@)

}

brms models

(note the save_all_pars MUST be set to TRUE in order to work)
if (require("brms")) {
brm1 <- brm(Sepal.Length ~ 1, data = iris, save_all_pars = TRUE)
brm2 <- brm(Sepal.Length ~ Species, data = iris, save_all_pars = TRUE)
brm3 <- brm(
Sepal.Length ~ Species + Petal.Length,
data = iris,
save_all_pars = TRUE
)

bayesfactor_models(brm1, brm2, brm3, denominator = 1)

3

BayesFactor

if (require("BayesFactor")) {
data(puzzles)
BF <- anovaBF(RT ~ shape * color + ID,
data = puzzles,
whichRandom = "ID", progress = FALSE
)
BF
bayesfactor_models(BF) # basically the same

}

End(Not run)

bayesfactor_parameters
Bayes Factors (BF) for a Single Parameter

Description

This method computes Bayes factors against the null (either a point or an interval), based on prior
and posterior samples of a single parameter. This Bayes factor indicates the degree by which the

12 bayesfactor_parameters

mass of the posterior distribution has shifted further away from or closer to the null value(s) (rela-
tive to the prior distribution), thus indicating if the null value has become less or more likely given
the observed data.

When the null is an interval, the Bayes factor is computed by comparing the prior and posterior
odds of the parameter falling within or outside the null interval (Morey & Rouder, 2011; Liao et
al., 2020); When the null is a point, a Savage-Dickey density ratio is computed, which is also an
approximation of a Bayes factor comparing the marginal likelihoods of the model against a model
in which the tested parameter has been restricted to the point null (Wagenmakers et al., 2010; Heck,
2019).

Note that the logspline package is used for estimating densities and probabilities, and must be
installed for the function to work.

bayesfactor_pointnull() and bayesfactor_rope() are wrappers around bayesfactor_parameters
with different defaults for the null to be tested against (a point and a range, respectively). Aliases
of the main functions are prefixed with bf_x, like bf_parameters() or bf_pointnull()

For more info, in particular on specifying correct priors for factors with more than 2 levels,
see the Bayes factors vignette.

Usage

bayesfactor_parameters(
posterior,
prior = NULL,
direction = "two-sided”,
null = 9,
verbose = TRUE,

)

bayesfactor_pointull(
posterior,
prior = NULL,
direction = "two-sided”,
null = 9,
verbose = TRUE,

)

bayesfactor_rope(
posterior,
prior = NULL,
direction = "two-sided”,
null = rope_range(posterior),
verbose = TRUE,

https://easystats.github.io/bayestestR/articles/bayes_factors.html

bayesfactor_parameters

bf_parameters(
posterior,
prior = NULL,
direction = "two-sided”,
null = 9@,
verbose = TRUE,

bf_pointull(
posterior,
prior = NULL,
direction = "two-sided”,
null = 9,
verbose = TRUE,

bf_rope(
posterior,
prior = NULL,
direction = "two-sided”,
null = rope_range(posterior),
verbose = TRUE,

S3 method for class 'numeric'
bayesfactor_parameters(
posterior,
prior = NULL,
direction = "two-sided”,
null = 9,
verbose = TRUE,

)

S3 method for class 'stanreg'
bayesfactor_parameters(
posterior,
prior = NULL,
direction = "two-sided”,
null = 9,
verbose = TRUE,
effects = c("fixed"”, "random”, "all"),
component = c("conditional”, "zi", "zero_inflated”, "all"),
parameters = NULL,

13

14 bayesfactor_parameters
)
S3 method for class 'brmsfit'
bayesfactor_parameters(
posterior,
prior = NULL,
direction = "two-sided”,
null = 9,
verbose = TRUE,
effects = c("fixed”, "random”, "all"),
component = c("conditional”, "zi", "zero_inflated”, "all"),
parameters = NULL,
)
S3 method for class 'emmGrid'
bayesfactor_parameters(
posterior,
prior = NULL,
direction = "two-sided”,
null = 9@,
verbose = TRUE,
)
S3 method for class 'data.frame'
bayesfactor_parameters(
posterior,
prior = NULL,
direction = "two-sided”,
null = 9,
verbose = TRUE,
)
Arguments
posterior A numerical vector, stanreg / brmsfit object, emmGrid or a data frame - rep-
resenting a posterior distribution(s) from (see ’Details’).
prior An object representing a prior distribution (see ’Details’).
direction Test type (see ’Details’). One of @, "two-sided” (default, two tailed), -1,
"left"” (left tailed) or 1, "right" (right tailed).
null Value of the null, either a scalar (for point-null) or a range (for a interval-null).
verbose Toggle off warnings.

Arguments passed to and from other methods. (Can be used to pass arguments
to internal logspline.)

bayesfactor_parameters 15

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like 1p__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary () are returned. Use parameters to
select specific parameters for the output.

Details

This method is used to compute Bayes factors based on prior and posterior distributions.

For the computation of Bayes factors, the model priors must be proper priors (at the very least
they should be not flat, and it is preferable that they be informative); As the priors for the alternative
get wider, the likelihood of the null value(s) increases, to the extreme that for completely flat priors
the null is infinitely more favorable than the alternative (this is called the Jeffreys-Lindley-Bartlett
paradox). Thus, you should only ever try (or want) to compute a Bayes factor when you have an
informed prior.

(Note that by default, brms: :brm() uses flat priors for fixed-effects; See example below.)

Setting the correct prior: Itis important to provide the correct prior for meaningful results.

e When posterior is a numerical vector, prior should also be a numerical vector.
e When posterior is a data.frame, prior should also be a data.frame, with matching
column order.
e When posterior is a stanreg or brmsfit model:
— prior can be set to NULL, in which case prior samples are drawn internally.
— prior can also be a model equivalent to posterior but with samples from the priors
only.
e When posterior is an emmGrid object:
— prior should be the stanreg or brmsfit model used to create the emmGrid objects.
— prior can also be an emmGrid object equivalent to posterior but created with a model
of priors samples only.
— Note: When the emmGrid has undergone any transformations ("log", "response”, etc.),
or regriding, then prior must be an emmGrid object, as stated above.

One-sided Tests (setting an order restriction): One sided tests (controlled by direction) are
conducted by restricting the prior and posterior of the non-null values (the "alternative") to one
side of the null only (Morey & Wagenmakers, 2014). For example, if we have a prior hypothesis
that the parameter should be positive, the alternative will be restricted to the region to the right of
the null (point or interval).

Interpreting Bayes Factors: A Bayes factor greater than 1 can be interpreted as evidence
against the null, at which one convention is that a Bayes factor greater than 3 can be considered as
"substantial" evidence against the null (and vice versa, a Bayes factor smaller than 1/3 indicates
substantial evidence in favor of the null-model) (Wetzels et al. 2011).

16 bayesfactor_parameters

Value

A data frame containing the Bayes factor representing evidence against the null.

Note

There is also a plot ()-method implemented in the see-package.

Author(s)
Mattan S. Ben-Shachar

References

* Wagenmakers, E. J., Lodewyckx, T., Kuriyal, H., and Grasman, R. (2010). Bayesian hypothe-
sis testing for psychologists: A tutorial on the Savage-Dickey method. Cognitive psychology,
60(3), 158-189.

* Heck, D. W. (2019). A caveat on the Savage—Dickey density ratio: The case of computing
Bayes factors for regression parameters. British Journal of Mathematical and Statistical Psy-
chology, 72(2), 316-333.

* Morey, R. D., & Wagenmakers, E. J. (2014). Simple relation between Bayesian order-restricted
and point-null hypothesis tests. Statistics & Probability Letters, 92, 121-124.

* Morey, R. D., & Rouder, J. N. (2011). Bayes factor approaches for testing interval null hy-
potheses. Psychological methods, 16(4), 406.

* Liao, J. G, Midya, V., & Berg, A. (2020). Connecting and contrasting the Bayes factor and
a modified ROPE procedure for testing interval null hypotheses. The American Statistician,
1-19.

* Wetzels, R., Matzke, D., Lee, M. D., Rouder, J. N., Iverson, G. J., and Wagenmakers, E.-J.

(2011). Statistical Evidence in Experimental Psychology: An Empirical Comparison Using
855 t Tests. Perspectives on Psychological Science, 6(3), 291-298. doi: 10.1177/1745691611406923

Examples

library(bayestestR)

prior <- distribution_normal(1000, mean = @, sd = 1)
posterior <- distribution_normal(100@, mean = .5, sd = .3)

bayesfactor_parameters(posterior, prior)
Not run:
rstanarm models

if (require(”"rstanarm”) && require("emmeans”)) {
contrasts(sleep$group) <- contr.bayes # see vingette
stan_model <- stan_lmer(extra ~ group + (1 | ID), data = sleep)
bayesfactor_parameters(stan_model)
bayesfactor_parameters(stan_model, null = rope_range(stan_model))

emmGrid objects

https://easystats.github.io/see/articles/bayestestR.html
https://easystats.github.io/see/
https://doi.org/10.1177/1745691611406923

bayesfactor_restricted 17

group_diff <- pairs(emmeans(stan_model, ~group))
bayesfactor_parameters(group_diff, prior = stan_model)

}

brms models

if (require("brms")) {
contrasts(sleep$group) <- contr.bayes # see vingette
my_custom_priors <-
set_prior("student_t(3, @, 1)", class = "b") +
set_prior("student_t(3, @, 1)", class = "sd", group = "ID")

brms_model <- brm(extra ~ group + (1 | ID),
data = sleep,
prior = my_custom_priors

)

bayesfactor_parameters(brms_model)

}

End(Not run)

bayesfactor_restricted
Bayes Factors (BF) for Order Restricted Models

Description

This method computes Bayes factors for comparing a model with an order restrictions on its param-
eters with the fully unrestricted model. Note that this method should only be used for confirmatory
analyses.

The bf_x function is an alias of the main function.

For more info, in particular on specifying correct priors for factors with more than 2 levels,
see the Bayes factors vignette.

Usage

bayesfactor_restricted(
posterior,
hypothesis,
prior = NULL,
verbose = TRUE,

bf_restricted(posterior, hypothesis, prior = NULL, verbose = TRUE, ...)

https://easystats.github.io/bayestestR/articles/bayes_factors.html

18

S3 method for class 'stanreg'
bayesfactor_restricted(

)

posterior,

hypothesis,

prior = NULL,

verbose = TRUE,

effects = c("fixed”, "random”, "all"),

component = c("conditional”, "zi", "zero_inflated”, "all"),

S3 method for class 'brmsfit'
bayesfactor_restricted(

)

posterior,
hypothesis,
prior = NULL,
verbose = TRUE,
effects = c("fixed”, "random”, "all"),
component = c("conditional”, "

S3 method for class 'emmGrid'
bayesfactor_restricted(

posterior,
hypothesis,
prior = NULL,
verbose = TRUE,

zi", "zero_inflated”, "all"),

bayesfactor_restricted

)
Arguments

posterior A stanreg/brmsfit object, emmGrid or a data frame - representing a posterior
distribution(s) from (see Details).

hypothesis A character vector specifying the restrictions as logical conditions (see examples
below).

prior An object representing a prior distribution (see Details).

verbose Toggle off warnings.
Currently not used.

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

component Should results for all parameters, parameters for the conditional model or the

zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

bayesfactor_restricted 19

Details

This method is used to compute Bayes factors for order-restricted models vs un-restricted models by
setting an order restriction on the prior and posterior distributions (Morey & Wagenmakers, 2013).

(Though it is possible to use bayesfactor_restricted() to test interval restrictions, it is more
suitable for testing order restrictions; see examples).

For the computation of Bayes factors, the model priors must be proper priors (at the very least
they should be not flat, and it is preferable that they be informative); As the priors for the alternative
get wider, the likelihood of the null value(s) increases, to the extreme that for completely flat priors
the null is infinitely more favorable than the alternative (this is called the Jeffreys-Lindley-Bartlett
paradox). Thus, you should only ever try (or want) to compute a Bayes factor when you have an
informed prior.

(Note that by default, brms: :brm() uses flat priors for fixed-effects.)

Setting the correct prior: Itis important to provide the correct prior for meaningful results.
e When posterior is a data.frame, prior should also be a data.frame, with matching
column order.
¢ When posterior is a stanreg or brmsfit model:
— prior can be set to NULL, in which case prior samples are drawn internally.
— prior can also be a model equvilant to posterior but with samples from the priors only.
* When posterior is an emmGrid object:
— prior should be the stanreg or brmsfit model used to create the emmGrid objects.

— prior can also be an emmGrid object equvilant to posterior but created with a model
of priors samples only.

n o n

— Note: When the emmGrid has undergone any transformations ("log", "response”, etc.),
or regriding, then prior must be an emmGrid object, as stated above.

Interpreting Bayes Factors: A Bayes factor greater than 1 can be interpereted as evidence
against the null, at which one convention is that a Bayes factor greater than 3 can be considered as
"substantial" evidence against the null (and vice versa, a Bayes factor smaller than 1/3 indicates
substantial evidence in favor of the null-hypothesis) (Wetzels et al. 2011).

Value

A data frame containing the Bayes factor representing evidence against the un-restricted model.

References

* Morey, R. D., & Wagenmakers, E. J. (2014). Simple relation between Bayesian order-restricted
and point-null hypothesis tests. Statistics & Probability Letters, 92, 121-124.

* Morey, R. D., & Rouder, J. N. (2011). Bayes factor approaches for testing interval null hy-
potheses. Psychological methods, 16(4), 406.

* Morey, R. D. (Jan, 2015). Multiple Comparisons with BayesFactor, Part 2 — order restrictions.
Retrived from https://richarddmorey.org/category/order-restrictions/.

20

bayesfactor_restricted

Examples

library(bayestestR)
prior <- data.frame(

)

X = rnorm(100),
X1 = rnorm(100),
X3 = rnorm(100)

posterior <- data.frame(

X = rnorm(100, .4),
X1 = rnorm(100, -.2),
X3 = rnorm(100)

)

hyps <- c(
"X > X1 & X1 > X3",
"X o> X1"

)

bayesfactor_restricted(posterior, hypothesis = hyps, prior = prior)
Not run:

#

rstanarm models

if (require(”rstanarm”) && require(”emmeans")) {

#

#

N R

fit_stan <- stan_glm(mpg ~ wt + cyl + am,
data = mtcars

)

hyps <- c(
"am > 0 & cyl < 0",
”Cy]_ < @VI,
"wt - cyl > 0"

)

bayesfactor_restricted(fit_stan, hypothesis = hyps)

emmGrid objects
replicating http://bayesfactor.blogspot.com/2015/01/multiple-comparisons-with-bayesfactor-2.html
disgust_data <- read.table(url("http://www.learnbayes.org/disgust_example.txt"), header = TRUE)

contrasts(disgust_data$condition) <- contr.bayes # see vignette
fit_model <- stan_glm(score ~ condition, data = disgust_data, family = gaussian())

em_condition <- emmeans(fit_model, ~condition)
hyps <- c(”lemon < control & control < sulfur")

bayesfactor_restricted(em_condition, prior = fit_model, hypothesis = hyps)
Bayes Factor (Order-Restriction)

Hypothesis P(Prior) P(Posterior) Bayes Factor
lemon < control & control < sulfur 0.17 0.75 4.49

>
>
>
>
>
>

Bayes factors for the restricted model vs. the un-restricted model.

check_prior 21

}

End(Not run)

check_prior Check if Prior is Informative

Description

Performs a simple test to check whether the prior is informative to the posterior. This idea, and the
accompanying heuristics, were discussed in this blogpost.

Usage
check_prior(model, method = "gelman", simulate_priors = TRUE, ...)
Arguments
model A stanreg, stanfit, or brmsfit object.
method Can be "gelman" or "lakeland". For the "gelman" method, if the SD of the

posterior is more than 0.1 times the SD of the prior, then the prior is considered
as informative. For the "lakeland" method, the prior is considered as informative
if the posterior falls within the 95% HDI of the prior.

simulate_priors

Should prior distributions be simulated using simulate_prior (default; faster)
or sampled (slower, more accurate).

Currently not used.

References

https://statmodeling.stat.columbia.edu/2019/08/10/

Examples

Not run:

library(bayestestR)

if (require(”rstanarm”)) {
model <- stan_glm(mpg ~ wt + am, data = mtcars, chains = 1, refresh = 0)
check_prior(model, method = "gelman")
check_prior(model, method = "lakeland")

An extreme example where both methods diverge:

model <- stan_glm(mpg ~ wt, data = mtcars[1:3,],
prior = normal(-3.3, 1, FALSE),
prior_intercept = normal(@, 1000, FALSE),
refresh = 0)

check_prior(model, method = "gelman")

check_prior(model, method = "lakeland")

https://statmodeling.stat.columbia.edu/2019/08/10/

22

plot(si(model)) # can provide visual confirmation to the Lakeland method

}

End(Not run)

ci

ci Confidence/Credible/Compatibility Interval (CI)

Description

Compute Confidence/Credible/Compatibility Intervals (CI) or Support Intervals (SI) for Bayesian

and frequentist models. The Documentation is accessible for:

Usage

ci(x, ...)

S3 method for class 'numeric'

ci(x, ci = 0.89, method = "ETI", verbose = TRUE, BF = 1, ...)
S3 method for class 'data.frame'

ci(x, ci = 0.89, method = "ETI", verbose = TRUE, BF =1, ...)
S3 method for class 'emmGrid'

ci(x, ci = 0.89, method = "ETI", verbose = TRUE, BF = 1, ...)

S3 method for class 'sim.merMod'

ci(
X,
ci = 0.89,
method = "ETI",
effects = c("fixed”, "random”, "all"),

parameters = NULL,
verbose = TRUE,

)

S3 method for class 'sim'
ci(x, ci = 0.89, method = "ETI", parameters = NULL, verbose = TRUE,

S3 method for class 'stanreg'

ci(
X,
ci = 0.89,
method = "ETI",
effects = c("fixed"”, "random”, "all"),

parameters = NULL,

.2

ci 23

verbose = TRUE,
BF =1,

)...

S3 method for class 'brmsfit'
ci(
X,
ci = 0.89,
method = "ETI",
effects = c("fixed"”, "random”, "all"),
component = c("conditional”, "zi", "zero_inflated”, "all"),
parameters = NULL,
verbose = TRUE,
BF =1,

)

S3 method for class 'BFBayesFactor'
ci(x, ci = 0.89, method = "ETI", verbose = TRUE, BF = 1, ...)

S3 method for class 'MCMCglmm'

ci(x, ci = 0.89, method = "ETI", verbose = TRUE, ...)
Arguments
X A stanreg or brmsfit model, or a vector representing a posterior distribution.
Currently not used.
ci Value or vector of probability of the CI (between O and 1) to be estimated. De-
fault to . 89 (89%) for Bayesian models and . 95 (95%) for frequentist models.
method Can be "ETT’ (default), "HDI’ or ’SI’.
verbose Toggle off warnings.
BF The amount of support required to be included in the support interval.
effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.
parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like 1p__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.
component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.
Details

* Bayesian models

* Frequentist models

https://easystats.github.io/bayestestR/articles/credible_interval.html
https://easystats.github.io/parameters/reference/ci.merMod.html

24 ci

Value

A data frame with following columns:

* Parameter The model parameter(s), if x is a model-object. If x is a vector, this column is
missing.

* CI The probability of the credible interval.

* CI_low, CI_high The lower and upper credible interval limits for the parameters.

Note

When it comes to interpretation, we recommend thinking of the CI in terms of an "uncertainty" or
"compatibility” interval, the latter being defined as “Given any value in the interval and the back-
ground assumptions, the data should not seem very surprising” (Gelman & Greenland 2019).

There is also a plot ()-method implemented in the see-package.

References

Gelman A, Greenland S. Are confidence intervals better termed "uncertainty intervals"? BMJ
2019;15381. doi: 10.1136/bm;j.15381

Examples

library(bayestestR)

posterior <- rnorm(1000)
ci(posterior, method = "ETI")
ci(posterior, method = "HDI")

df <- data.frame(replicate(4, rnorm(100)))
ci(df, method = "ETI", ci = c(.80, .89, .95))
ci(df, method = "HDI", ci = c(.80, .89, .95))

Not run:
if (require(”rstanarm”)) {
model <- stan_glm(mpg ~ wt, data = mtcars, chains = 2, iter = 200, refresh = 0)
ci(model, method = "ETI", ci = c(.80, .89))
ci(model, method = "HDI", ci = c(.80, .89))
ci(model, method = "SI")
3

if (require("brms")) {
model <- brms::brm(mpg ~ wt + cyl, data = mtcars)
ci(model, method = "ETI")
ci(model, method "HDI")
ci(model, method = "SI")
3

if (require("BayesFactor”)) {
bf <- ttestBF(x = rnorm(100, 1, 1))
ci(bf, method = "ETI")

https://easystats.github.io/see/articles/bayestestR.html
https://easystats.github.io/see/
https://doi.org/10.1136/bmj.l5381

contr.bayes 25

ci(bf, method = "HDI")
3

if (require(”emmeans”)) {
model <- emtrends(model, ~1, "wt")
ci(model, method = "ETI")
ci(model, method = "HDI")
ci(model, method = "SI")

3

End(Not run)

contr.bayes Orthonormal Contrast Matrices for Bayesian Estimation

Description

Returns a design or model matrix of orthonormal contrasts such that the marginal prior on all ef-
fects is identical. Implementation from Singmann \& Gronau’s bfrms, following the description in
Rouder, Morey, Speckman, \& Province (2012, p. 363).

Usage

contr.bayes(n, contrasts = TRUE)

Arguments
n a vector of levels for a factor, or the number of levels.
contrasts logical indicating whether contrasts should be computed.
Details

Though using this factor coding scheme might obscure the interpretation of parameters, it is essen-
tial for correct estimation of Bayes factors for contrasts and multi-level order restrictions. See info
on specifying correct priors for factors with more than 2 levels in the Bayes factors vignette.

Value

A matrix with n rows and k columns, with k=n-1 if contrasts is TRUE and k=n if contrasts is FALSE.

References

Rouder, J. N., Morey, R. D., Speckman, P. L., \& Province, J. M. (2012). Default Bayes factors for
ANOVA designs. *Journal of Mathematical Psychology*, 56(5), 356-374. https://doi.org/10.1016/j.jmp.2012.08.001

https://github.com/bayesstuff/bfrms/
https://easystats.github.io/bayestestR/articles/bayes_factors.html

26 convert_bayesian_as_frequentist

Examples

Not run:

contr.bayes(2) # Q_2 in Rouder et al. (2012, p. 363)
[,11]

-0.7071068

0.7071068

’

[1,]
[2,]

contr.bayes(5) # equivalent to Q_5 in Rouder et al. (2012, p. 363)

[,1] [,2] [,3] [,4]
[1,] 0.0000000 ©.8944272 0.0000000 0.0000000
[2,] 0.0000000 -0.2236068 -0.5000000 ©.7071068
[3,] 0.7071068 -0.2236068 -0.1666667 -0.4714045
[4,] -0.7071068 -0.2236068 -0.1666667 -0.4714045
[5,] 0.0000000 -0.2236068 ©.8333333 0.2357023

check decomposition

Q3 <- contr.bayes(3)

Q3 %*% t(Q3)

[,1] [,2] [,3]

[1,] 0.6666667 -0.3333333 -0.3333333

[2,] -0.3333333 0.6666667 -0.3333333

[3,] -0.3333333 -0.3333333 0.6666667

2/3 on diagonal and -1/3 on off-diagonal elements

End(Not run)

convert_bayesian_as_frequentist
Convert (refit) a Bayesian model to frequentist

Description

Refit Bayesian model as frequentist. Can be useful for comparisons.

Usage

convert_bayesian_as_frequentist(model, data = NULL)

bayesian_as_frequentist(model, data = NULL)

Arguments

model A Bayesian model.

data Data used by the model. If NULL, will try to extract it from the model.

density_at 27
Examples

Rstanarm -----------=----—---—---
if (require("rstanarm”)) {
Simple regressions
model <- stan_glm(Sepal.Length ~ Petal.Length x Species,
data = iris, chains = 2, refresh = 0@
)

bayesian_as_frequentist(model)

model <- stan_glm(vs ~ mpg,
family = "binomial”,
data = mtcars, chains = 2, refresh = 0

)

bayesian_as_frequentist(model)

Mixed models

model <- stan_glmer(Sepal.Length ~ Petal.Length + (1 | Species),
data = iris, chains = 2, refresh = 0@

)

bayesian_as_frequentist(model)

model <- stan_glmer(vs ~ mpg + (1 | cyl),

family = "binomial”,
data = mtcars, chains = 2, refresh = 0
)
bayesian_as_frequentist(model)
3
density_at Density Probability at a Given Value
Description

Compute the density value at a given point of a distribution (i.e., the value of the y axis of a value x
of a distribution).

Usage
density_at(posterior, x, precision = 2*10, method = "kernel”, ...)
Arguments
posterior Vector representing a posterior distribution.
X The value of which to get the approximate probability.
precision Number of points of density data. See the n parameter in density.
method Density estimation method. Can be "kernel” (default), "logspline” or "KernSmooth".

Currently not used.

28 describe_posterior

Examples

library(bayestestR)

posterior <- distribution_normal(n = 10)
density_at(posterior, 0)
density_at(posterior, c(0, 1))

describe_posterior Describe Posterior Distributions

Description

Compute indices relevant to describe and characterize the posterior distributions.

Usage
describe_posterior(
posteriors,
centrality = "median”,
dispersion = FALSE,
ci = 0.89,
ci_method = "hdi”,
test = c("p_direction”, "rope"),
rope_range = "default”,

rope_ci = 0.89,

)

S3 method for class 'numeric'
describe_posterior(

posteriors,

centrality = "median”,
dispersion = FALSE,

ci = 0.89,

ci_method = "hdi”,

test = c("p_direction”, "rope"),
rope_range = "default”,

rope_ci = 0.89,
bf_prior = NULL,
BF = 1,

S3 method for class 'stanreg'
describe_posterior(
posteriors,
centrality = "median”,
dispersion = FALSE,

describe_posterior

ci = 0.89,

ci_method = "hdi”,

test = c("p_direction”, "rope"),
rope_range = "default”,

rope_ci = 0.89,
bf_prior = NULL,
diagnostic = c("ESS", "Rhat"),
priors = FALSE,

effects = c("fixed"”, "random”, "all"),
parameters = NULL,
BF =1,

)

S3 method for class 'stanmvreg'
describe_posterior(

posteriors,

centrality = "median”,
dispersion = FALSE,

ci = 0.89,

ci_method = "hdi”,

test = "p_direction”,
rope_range = "default”,

rope_ci = 0.89,

bf_prior = NULL,

diagnostic = c("ESS", "Rhat"),

priors = FALSE,

effects = c("fixed”, "random”, "all"),
parameters = NULL,

)

S3 method for class 'MCMCglmm'
describe_posterior(

posteriors,

centrality = "median”,
dispersion = FALSE,

ci = 0.89,

ci_method = "hdi”,

test = c("p_direction”, "rope"),
rope_range = "default”,

rope_ci = 0.89,
diagnostic = "ESS",
parameters = NULL,

)

S3 method for class 'brmsfit'

30 describe_posterior

describe_posterior(

posteriors,

centrality = "median”,
dispersion = FALSE,

ci = 0.89,

ci_method = "hdi”,

test = c("p_direction”, "rope"),
rope_range = "default”,

rope_ci = 0.89,
bf_prior = NULL,
diagnostic = c("ESS", "Rhat"),

effects = c("fixed”, "random”, "all"),

component = c("conditional”, "zi", "zero_inflated”, "all"),
parameters = NULL,

BF = 1,

S3 method for class 'BFBayesFactor'
describe_posterior(

posteriors,

centrality = "median”,
dispersion = FALSE,

ci = 0.89,

ci_method = "hdi",

test = c("p_direction”, "rope”, "bf"),
rope_range = "default”,

rope_ci = 0.89,

priors = TRUE,

)
Arguments

posteriors A vector, data frame or model of posterior draws.

centrality The point-estimates (centrality indices) to compute. Character (vector) or list
with one or more of these options: "median”, "mean”, "MAP" or "all".

dispersion Logical, if TRUE, computes indices of dispersion related to the estimate(s) (SD
and MAD for mean and median, respectively).

ci Value or vector of probability of the CI (between 0 and 1) to be estimated. De-
fault to . 89 (89%) for Bayesian models and . 95 (95%) for frequentist models.

ci_method The type of index used for Credible Interval. Can be "HDI" (default, see hdi),
"ETI" (see eti) or "SI"” (see si).

test The indices of effect existence to compute. Character (vector) or list with one or

non non

more of these options: "p_direction” (or "pd"), "rope”, "p_map”, "equivalence_test
(or "equitest”), "bayesfactor” (or "bf") or "all” to compute all tests. For

each "test", the corresponding bayestestR function is called (e.g. rope or p_direction)
and its results included in the summary output.

describe_posterior 31

rope_range ROPE’s lower and higher bounds. Should be a list of two values (e.g., c(-0.1,0.1))

or "default”. If "default”, the bounds are set to x +-0.1xSD(response).

rope_ci The Credible Interval (CI) probability, corresponding to the proportion of HDI,
to use for the percentage in ROPE.

Additional arguments to be passed to or from methods.

bf_prior Distribution representing a prior for the computation of Bayes factors / SI. Used
if the input is a posterior, otherwise (in the case of models) ignored.

BF The amount of support required to be included in the support interval.

diagnostic Diagnostic metrics to compute. Character (vector) or list with one or more of
these options: "ESS”, "Rhat"”, "MCSE" or "all".

priors Add the prior used for each parameter.

effects Should results for fixed effects, random effects or both be returned? Only applies

to mixed models. May be abbreviated.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like 1p__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

Details

One or more components of point estimates (like posterior mean or median), intervals and tests can
be omitted from the summary output by setting the related argument to NULL. For example, test =
NULL and centrality = NULL would only return the HDI (or CI).

References

e Comparison of Point-Estimates
* Region of Practical Equivalence (ROPE)

* Bayes factors

Examples

library(bayestestR)

X <= rnorm(1000)

describe_posterior(x)

describe_posterior(x, centrality = "all”, dispersion = TRUE, test = "all")
describe_posterior(x, ci = c(0.80, 0.90))

df <- data.frame(replicate(4, rnorm(100)))

describe_posterior(df)

describe_posterior(df, centrality = "all”, dispersion = TRUE, test = "all")
describe_posterior(df, ci = c(0.80, 0.90))

Not run:

https://easystats.github.io/bayestestR/articles/indicesEstimationComparison.html
https://easystats.github.io/bayestestR/articles/region_of_practical_equivalence.html
https://easystats.github.io/bayestestR/articles/bayes_factors.html

32 describe_prior

rstanarm models

if (require(”"rstanarm”) && require("emmeans”)) {
model <- stan_glm(mpg ~ wt + gear, data = mtcars, chains = 2, iter = 200, refresh = 0)
describe_posterior(model)
describe_posterior(model, centrality = "all", dispersion = TRUE, test = "all")
describe_posterior(model, ci = c(0.80, 0.90))

emmeans estimates

describe_posterior(emtrends(model, ~1, "wt"))

}

brms models

if (require("brms")) {
model <- brms::brm(mpg ~ wt + cyl, data = mtcars)
describe_posterior(model)
describe_posterior(model, centrality = "all", dispersion = TRUE, test = "all")
describe_posterior(model, ci = c(0.80, 0.90))

3

BayesFactor objects

if (require("”BayesFactor”)) {
bf <- ttestBF(x = rnorm(100, 1, 1))
describe_posterior(bf)
describe_posterior(bf, centrality = "all”, dispersion = TRUE, test = "all")
describe_posterior(bf, ci = c(0.80, 0.90))

3

End(Not run)

describe_prior Describe Priors

Description

Returns a summary of the priors used in the model.

Usage

describe_prior(model, ...)
Arguments

model A Bayesian model.

Currently not used.

diagnostic_posterior 33

Examples

Not run:
library(bayestestR)

rstanarm models

if (require(”rstanarm”)) {
model <- rstanarm::stan_glm(mpg ~ wt + cyl, data = mtcars)
describe_prior(model)

}

brms models

if (require("brms”)) {
model <- brms::brm(mpg ~ wt + cyl, data = mtcars)
describe_prior(model)

3
BayesFactor objects
if (require("”BayesFactor”)) {
bf <- ttestBF(x = rnorm(100, 1, 1))

describe_prior(bf)
3

End(Not run)

diagnostic_posterior Posteriors Sampling Diagnostic

Description
Extract diagnostic metrics (Effective Sample Size (ESS), Rhat and Monte Carlo Standard Error
MCSE).

Usage

diagnostic_posterior(posteriors, diagnostic = c("ESS", "Rhat”), ...)

S3 method for class 'stanreg'
diagnostic_posterior(

posteriors,
diagnostic = "all",
effects = c("fixed”, "random”, "all"),

parameters = NULL,

34 diagnostic_posterior

S3 method for class 'brmsfit'
diagnostic_posterior(

posteriors,

diagnostic = "all"”,

effects = c("fixed”, "random”, "all"),

component = c("conditional”, "zi", "zero_inflated”, "all"),

parameters = NULL,

Arguments
posteriors A stanreg or brms model.
diagnostic Diagnostic metrics to compute. Character (vector) or list with one or more of
these options: "ESS", "Rhat”, "MCSE" or "all".
Currently not used.
effects Should parameters for fixed effects, random effects or both be returned? Only
applies to mixed models. May be abbreviated.
parameters Regular expression pattern that describes the parameters that should be returned.
component Should all parameters, parameters for the conditional model, the zero-inflated
part of the model, the dispersion term, the instrumental variables or marginal
effects be returned? Applies to models with zero-inflated and/or dispersion for-
mula, or to models with instrumental variables (so called fixed-effects regres-
sions), or models with marginal effects from mfx. May be abbreviated. Note
that the conditional component is also called count or mean component, depend-
ing on the model.
Details

Effective Sample (ESS) should be as large as possible, although for most applications, an effective
sample size greater than 1000 is sufficient for stable estimates (Biirkner, 2017). The ESS corre-
sponds to the number of independent samples with the same estimation power as the N autocorre-
lated samples. It is is a measure of “how much independent information there is in autocorrelated
chains” (Kruschke 2015, p182-3).

Rhat should be the closest to 1. It should not be larger than 1.1 (Gelman and Rubin, 1992) or
1.01 (Vehtari et al., 2019). The split R-hat statistic quantifies the consistency of an ensemble of
Markov chains.

Monte Carlo Standard Error (MCSE) is another measure of accuracy of the chains. It is de-
fined as standard deviation of the chains divided by their effective sample size (the formula for
mcse () is from Kruschke 2015, p. 187). The MCSE “provides a quantitative suggestion of how big
the estimation noise is”.

References

e Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple se-
quences. Statistical science, 7(4), 457-472.

distribution 35

e Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., \& Biirkner, P. C. (2019). Rank-
normalization, folding, and localization: An improved Rhat for assessing convergence of
MCMC. arXiv preprint arXiv:1903.08008.

* Kruschke, J. (2014). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan. Aca-
demic Press.

Examples

Not run:
rstanarm models

if (require(”rstanarm”, quietly = TRUE)) {
model <- stan_glm(mpg ~ wt + gear, data = mtcars, chains = 2, iter = 200, refresh = 0)
diagnostic_posterior(model)

3
brms models
if (require("brms”, quietly = TRUE)) {
model <- brms::brm(mpg ~ wt + cyl, data = mtcars)

diagnostic_posterior(model)

}

End(Not run)

distribution Empirical Distributions

Description

Generate a sequence of n-quantiles, i.e., a sample of size n with a near-perfect distribution.

Usage
distribution(type = "normal”, ...)
distribution_normal(n, mean = @, sd = 1, random = FALSE, ...)
distribution_binomial(n, size = 1, prob = 0.5, random = FALSE, ...)
distribution_cauchy(n, location = @, scale = 1, random = FALSE, ...)
distribution_poisson(n, lambda = 1, random = FALSE, ...)
distribution_student(n, df, ncp, random = FALSE, ...)

distribution_chisquared(n, df, ncp = @, random = FALSE, ...)

36 distribution
distribution_uniform(n, min = @, max = 1, random = FALSE, ...)
distribution_beta(n, shapel, shape2, ncp = @, random = FALSE, ...)
distribution_tweedie(n, xi = NULL, mu, phi, power = NULL, random = FALSE, ...)
distribution_gamma(n, shape, scale = 1, random = FALSE, ...)
distribution_custom(n, type = "norm”, ..., random = FALSE)
distribution_mixture_normal(n, mean = c(-3, 3), sd = 1, random = FALSE, ...)

rnorm_perfect(n, mean = @, sd = 1)

Arguments

type

mean
sd

random

size
prob
location
scale
lambda
df

ncp

max
shape1
shape2
xi

mu

phi
power

shape

n o n

Can be any of the names from base R’s Distributions, like "cauchy”, "pois” or
"beta”.

Arguments passed to or from other methods.
the number of observations

vector of means.

vector of standard deviations.

Generate near-perfect or random (simple wrappers for the base R r* functions)
distributions.

number of trials (zero or more).

probability of success on each trial.

location and scale parameters.

location and scale parameters.

vector of (non-negative) means.

degrees of freedom (> 0, maybe non-integer). df = Inf is allowed.

non-centrality parameter ¢§; currently except for rt(), only for abs(ncp) <=
37.62. If omitted, use the central t distribution.

lower and upper limits of the distribution. Must be finite.
lower and upper limits of the distribution. Must be finite.
non-negative parameters of the Beta distribution.
non-negative parameters of the Beta distribution.

the value of ¢ such that the variance is var[Y] = ¢u¢

the mean

the dispersion

a synonym for £

shape and scale parameters. Must be positive, scale strictly.

effective_sample

Examples

library(bayestestR)
x <- distribution(n = 10)
plot(density(x))

x <- distribution(type = "gamma”, n = 100, shape = 2)
plot(density(x))

37

effective_sample Effective Sample Size (ESS)

Description

This function returns the effective sample size (ESS).

Usage

effective_sample(model, ...)

S3 method for class 'brmsfit'
effective_sample(

model,
effects = c("fixed”, "random”, "all"),
component = c("conditional”, "zi", "zero_inflated”, "all"),

parameters = NULL,

)

S3 method for class 'stanreg'
effective_sample(
model,
effects = c("fixed"”, "random”, "all"),
parameters = NULL,

)

S3 method for class 'MCMCglmm'
effective_sample(
model,
effects = c("fixed”, "random”, "all"),
parameters = NULL,

38

Arguments

model

effects

component

parameters

Details

effective_sample

A stanreg, stanfit, or brmsfit object.
Currently not used.

Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like 1p__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

Effective Sample (ESS) should be as large as possible, altough for most applications, an effective
sample size greater than 1,000 is sufficient for stable estimates (Biirkner, 2017). The ESS corre-
sponds to the number of independent samples with the same estimation power as the N autocorre-
lated samples. It is is a measure of “how much independent information there is in autocorrelated
chains” (Kruschke 2015, p182-3).

Value

A data frame with two columns: Parameter name and effective sample size (ESS).

References

* Kruschke, J. (2014). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan. Aca-

demic Press.

e Biirkner, P. C.

(2017). brms: An R package for Bayesian multilevel models using Stan. Journal

of Statistical Software, 80(1), 1-28

Examples

Not run:
library(rstanarm)

model <- stan_glm(mpg ~ wt + gear, data = mtcars, chains = 2, iter = 200, refresh = 0)
effective_sample(model)

End(Not run)

equivalence_test

39

equivalence_test

Test for Practical Equivalence

Description

Perform a Test for Practical Equivalence for Bayesian and frequentist models.

Usage

equivalence_test(x, ...)

Default S3 method:
equivalence_test(x, ...)

S3 method for class 'numeric'

TRUE,

TRUE,

TRUE,

TRUE,

equivalence_test(x, range = "default”, ci = 0.89, verbose
S3 method for class 'data.frame'
equivalence_test(x, range = "default”, ci = 0.89, verbose
S3 method for class 'emmGrid'
equivalence_test(x, range = "default”, ci = 0.89, verbose
S3 method for class 'BFBayesFactor'
equivalence_test(x, range = "default”, ci = 0.89, verbose
S3 method for class 'stanreg'
equivalence_test(

X)

range = "default”,

ci = 0.89,

effects = c("fixed”, "random”, "all"),

parameters = NULL,

verbose = TRUE,
)
S3 method for class 'brmsfit'
equivalence_test(

X,

range = "default”,

ci = 0.89,

effects = c("fixed”, "random”, "all"),

component = c("conditional”, "zi", "zero_inflated”, "all"),

parameters = NULL,
verbose = TRUE,

40 equivalence_test

)
Arguments

X Vector representing a posterior distribution. Can also be a stanreg or brmsfit
model.
Currently not used.

range ROPE’s lower and higher bounds. Should be a vector of length two (e.g.,
c(-0.1,0.1)) or "default”. If "default”, the range is set to c(-0.1,0.1) if
input is a vector, and based on rope_range() if a Bayesian model is provided.

ci The Credible Interval (CI) probability, corresponding to the proportion of HDI,
to use for the percentage in ROPE.

verbose Toggle off warnings.

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like 1p__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

Details

Documentation is accessible for:

* Bayesian models

* Frequentist models

For Bayesian models, the Test for Practical Equivalence is based on the "HDI+ROPE decision
rule" (Kruschke, 2014, 2018) to check whether parameter values should be accepted or rejected
against an explicitly formulated "null hypothesis" (i.e., a ROPE). In other words, it checks the
percentage of the 89% HDI that is the null region (the ROPE). If this percentage is sufficiently low,
the null hypothesis is rejected. If this percentage is sufficiently high, the null hypothesis is accepted.

Using the ROPE and the HDI, Kruschke (2018) suggests using the percentage of the 95% (or 89%,
considered more stable) HDI that falls within the ROPE as a decision rule. If the HDI is completely
outside the ROPE, the "null hypothesis" for this parameter is "rejected". If the ROPE completely
covers the HDI, i.e., all most credible values of a parameter are inside the region of practical equiv-
alence, the null hypothesis is accepted. Else, it’s undecided whether to accept or reject the null
hypothesis. If the full ROPE is used (i.e., 100% of the HDI), then the null hypothesis is rejected or
accepted if the percentage of the posterior within the ROPE is smaller than to 2.5% or greater than
97.5%. Desirable results are low proportions inside the ROPE (the closer to zero the better).

Some attention is required for finding suitable values for the ROPE limits (argument range). See
’Details’ in rope_range () for further information.

https://easystats.github.io/bayestestR/reference/equivalence_test.html
https://easystats.github.io/parameters/reference/equivalence_test.lm.html

equivalence_test 41

Multicollinearity: Non-independent covariates

When parameters show strong correlations, i.e. when covariates are not independent, the joint
parameter distributions may shift towards or away from the ROPE. In such cases, the test for prac-
tical equivalence may have inappropriate results. Collinearity invalidates ROPE and hypothesis
testing based on univariate marginals, as the probabilities are conditional on independence. Most
problematic are the results of the "undecided" parameters, which may either move further towards
"rejection” or away from it (Kruschke 2014, 340f).

equivalence_test() performs a simple check for pairwise correlations between parameters, but
as there can be collinearity between more than two variables, a first step to check the assumptions
of this hypothesis testing is to look at different pair plots. An even more sophisticated check is the
projection predictive variable selection (Piironen and Vehtari 2017).

Value

A data frame with following columns:
* Parameter The model parameter(s), if x is a model-object. If x is a vector, this column is
missing.
* CI The probability of the HDI.
* ROPE_low, ROPE_high The limits of the ROPE. These values are identical for all parameters.
* ROPE_Percentage The proportion of the HDI that lies inside the ROPE.

* ROPE_Equivalence The "test result”, as character. Either "rejected", "accepted” or "unde-
cided".

* HDI_low, HDI_high The lower and upper HDI limits for the parameters.

Note

There is a print ()-method with a digits-argument to control the amount of digits in the output,
and there is a plot ()-method to visualize the results from the equivalence-test (for models only).

References

* Kruschke, J. K. (2018). Rejecting or accepting parameter values in Bayesian estimation.
Advances in Methods and Practices in Psychological Science, 1(2), 270-280. doi: 10.1177/
2515245918771304

* Kruschke, J. K. (2014). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan.
Academic Press

* Piironen, J., & Vehtari, A. (2017). Comparison of Bayesian predictive methods for model
selection. Statistics and Computing, 27(3), 711-735. doi: 10.1007/s112220169649y

Examples

library(bayestestR)

rnorm(1000, @, 0.01), range = c(-0.1, 0.1))
rnorm(1000, @, 1), range = c(-0.1, 0.1))

equivalence_test(x
equivalence_test(x

https://easystats.github.io/see/articles/bayestestR.html
https://doi.org/10.1177/2515245918771304
https://doi.org/10.1177/2515245918771304
https://doi.org/10.1007/s11222-016-9649-y

42

equivalence_test(x = rnorm(1000, 1, 0.01), range = c(-0.1, 0.1))

equivalence_test(x = rnorm(1000, 1, 1), ci = c(.50, .99))

print more digits

test <- equivalence_test(x = rnorm(1000, 1, 1), ci = c(.50,

print(test, digits = 4)

Not run:

library(rstanarm)

model <- rstanarm::stan_glm(mpg ~ wt + cyl, data = mtcars)
equivalence_test(model)

equivalence_test(model, ci = c(.50, 1))

plot result
test <- equivalence_test(model)
plot(test)

library(emmeans)
equivalence_test(emtrends(model, ~1, "wt"))

library(brms)

model <- brms::brm(mpg ~ wt + cyl, data = mtcars)
equivalence_test(model)

equivalence_test(model, ci = c(.50, .99))

library(BayesFactor)

bf <- ttestBF(x = rnorm(100, 1, 1))
equivalence_test(bf)
equivalence_test(bf, ci = c(.50, .99))

End(Not run)

.99))

estimate_density

estimate_density Density Estimation

Description

This function is a wrapper over different methods of density estimation. By default, it uses the base
R density with by default uses a different smoothing bandwidth ("SJ") from the legacy default
implemented the base R density function ("nrd@"). However, Deng \& Wickham suggest that

method = "KernSmooth" is the fastest and the most accurate.

Usage

estimate_density(
X’
method = "kernel”,

precision = 2*10,
extend = FALSE,

estimate_density 43

extend_scale = 0.1,
bw = "SJ",

)

S3 method for class 'data.frame'
estimate_density(

X,

method = "kernel”,

precision = 2*10,

extend = FALSE,

extend_scale = 0.1,

bw = "SJ",

group_by = NULL,

)
Arguments

X Vector representing a posterior distribution, or a data frame of such vectors. Can
also be a Bayesian model (stanreg, brmsfit, MCMCglmm, mcmc or bcplm) or a
BayesFactor model.

method Density estimation method. Can be "kernel” (default), "logspline” or "KernSmooth".

precision Number of points of density data. See the n parameter in density.

extend Extend the range of the x axis by a factor of extend_scale.

extend_scale Ratio of range by which to extend the x axis. A value of @.1 means that the x
axis will be extended by 1/1@ of the range of the data.

bw See the eponymous argument in density. Here, the default has been changed
for "SJ", which is recommended.

Currently not used.

group_by Optional character vector. If not NULL and x is a data frame, density estimation
is performed for each group (subset) indicated by group_by.

Note

There is also a plot ()-method implemented in the see-package.

References

Deng, H., & Wickham, H. (2011). Density estimation in R. Electronic publication.
Examples
library(bayestestR)

set.seed(1)
X <= rnorm(250, 1)

https://easystats.github.io/see/articles/bayestestR.html
https://easystats.github.io/see/

44

Methods

density_kernel <- estimate_density(x, method = "kernel”)
density_logspline <- estimate_density(x, method = "logspline")
density_KernSmooth <- estimate_density(x, method = "KernSmooth")
density_mixture <- estimate_density(x, method = "mixture")

hist(x, prob = TRUE)

lines(density_kernel$x, density_kernel$y, col = "black”, lwd = 2)
lines(density_logspline$x, density_logspline$y, col = "red”, lwd = 2)
lines(density_KernSmooth$x, density_KernSmooth$y, col = "blue”, lwd = 2)
lines(density_mixture$x, density_mixture$y, col = "green”, lwd = 2)

Extension
density_extended <- estimate_density(x, extend = TRUE)
density_default <- estimate_density(x, extend = FALSE)

hist(x, prob = TRUE)
lines(density_extended$x, density_extended$y, col = "red”, lwd
lines(density_default$x, density_default$y, col = "black”, lwd

3)
3)

df <- data.frame(replicate(4, rnorm(100)))
head(estimate_density(df))

Not run:

rstanarm models

library(rstanarm)

eti

model <- stan_glm(mpg ~ wt + gear, data = mtcars, chains = 2, iter = 200, refresh = 0)

head(estimate_density(model))

library(emmeans)
head(estimate_density(emtrends(model, ~1, "wt")))

brms models
library(brms)
model <- brms::brm(mpg ~ wt + cyl, data = mtcars)

estimate_density(model)

End(Not run)

eti Equal-Tailed Interval (ETI)

Description

Compute the Equal-Tailed Interval (ETI) of posterior distributions using the quantiles method.
The probability of being below this interval is equal to the probability of being above it. The ETI
can be used in the context of uncertainty characterisation of posterior distributions as Credible

Interval (CI).

eti

Usage
eti(x, ...)

S3 method for class 'numeric'
eti(x, ci = 0.89, verbose = TRUE, ...)

S3 method for class 'data.frame'
eti(x, ci = 0.89, verbose = TRUE, ...)

S3 method for class 'MCMCglmm'
eti(x, ci = 0.89, verbose = TRUE, ...)

S3 method for class 'bayesQR'
eti(x, ci = 0.89, verbose = TRUE, ...)

S3 method for class 'sim.merMod'

eti(
X,
ci = 0.89,
effects = c("fixed"”, "random”, "all"),

parameters = NULL,
verbose = TRUE,

)

S3 method for class 'sim'
eti(x, ci = 0.89, parameters = NULL, verbose = TRUE, ...)

S3 method for class 'emmGrid'
eti(x, ci = 0.89, verbose = TRUE, ...)

S3 method for class 'stanreg'

eti(
X,
ci = 0.89,
effects = c("fixed"”, "random”, "all"),

parameters = NULL,
verbose = TRUE,

)
S3 method for class 'brmsfit'
eti(
X,
ci = 0.89,
effects = c("fixed”, "random”, "all"),
component = c("conditional”, "zi", "zero_inflated”, "all"),

parameters = NULL,

45

46 eti
verbose = TRUE,
)
S3 method for class 'BFBayesFactor'
eti(x, ci = 0.89, verbose = TRUE, ...)
Arguments
X Vector representing a posterior distribution, or a data frame of such vectors. Can

also be a Bayesian model (stanreg, brmsfit, MCMCglmm, mcmc or bcplm) or a
BayesFactor model.

Currently not used.

ci Value or vector of probability of the (credible) interval - CI (between 0 and 1) to
be estimated. Default to .89 (89%).

verbose Toggle off warnings.

effects Should results for fixed effects, random effects or both be returned? Only applies

to mixed models. May be abbreviated.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like 1p__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

Details

Unlike equal-tailed intervals (see eti()) that typically exclude 2.5% from each tail of the distribu-
tion and always include the median, the HDI is not equal-tailed and therefore always includes the
mode(s) of posterior distributions.

By default, hdi() and eti() return the 89% intervals (ci = @.89), deemed to be more stable than,
for instance, 95% intervals (Kruschke, 2014). An effective sample size of at least 10.000 is recom-
mended if 95% intervals should be computed (Kruschke, 2014, p. 183ff). Moreover, 89 indicates
the arbitrariness of interval limits - its only remarkable property is being the highest prime number
that does not exceed the already unstable 95% threshold (McElreath, 2015).

A 90% equal-tailed interval (ETI) has 5% of the distribution on either side of its limits. It indi-
cates the 5th percentile and the 95h percentile. In symmetric distributions, the two methods of
computing credible intervals, the ETI and the HDI, return similar results.

This is not the case for skewed distributions. Indeed, it is possible that parameter values in the
ETT have lower credibility (are less probable) than parameter values outside the ETI. This property

seems undesirable as a summary of the credible values in a distribution.

On the other hand, the ETI range does change when transformations are applied to the distribution

eti 47

(for instance, for a log odds scale to probabilities): the lower and higher bounds of the transformed
distribution will correspond to the transformed lower and higher bounds of the original distribution.
On the contrary, applying transformations to the distribution will change the resulting HDI.

Value

A data frame with following columns:

* Parameter The model parameter(s), if x is a model-object. If x is a vector, this column is
missing.

* CI The probability of the credible interval.

* CI_low, CI_high The lower and upper credible interval limits for the parameters.

Examples
library(bayestestR)
posterior <- rnorm(1000)
eti(posterior)

eti(posterior, ci = c(.80, .89, .95))

df <- data.frame(replicate(4, rnorm(100)))

eti(df)

eti(df, ci = c(.80, .89, .95))

Not run:

library(rstanarm)

model <- stan_glm(mpg ~ wt + gear, data = mtcars, chains = 2, iter = 200, refresh = 0)
eti(model)

eti(model, ci = c(.80, .89, .95))

library(emmeans)
eti(emtrends(model, ~1, "wt"))

library(brms)

model <- brms::brm(mpg ~ wt + cyl, data = mtcars)
eti(model)

eti(model, ci = c(.80, .89, .95))

library(BayesFactor)
bf <- ttestBF(x = rnorm(100, 1, 1))
eti(bf)

eti(bf, ci = c(.80, .89, .95))

End(Not run)

48 hdi

hdi Highest Density Interval (HDI)

Description

Compute the Highest Density Interval (HDI) of posterior distributions. All points within this
interval have a higher probability density than points outside the interval. The HDI can be used in
the context of uncertainty characterisation of posterior distributions as Credible Interval (CI).

Usage
hdi(x, ...)

S3 method for class 'numeric'
hdi(x, ci = .89, verbose = TRUE, ...)

S3 method for class 'data.frame'
hdi(x, ci = 0.89, verbose = TRUE, ...)

S3 method for class 'MCMCglmm'
hdi(x, ci = .89, verbose = TRUE, ...)

S3 method for class 'bayesQR'
hdi(x, ci = 0.89, verbose = TRUE, ...)

S3 method for class 'sim.merMod'

hdi(
X,
ci = 0.89,
effects = c("fixed"”, "random”, "all"),

parameters = NULL,
verbose = TRUE,

)

S3 method for class 'sim'
hdi(x, ci = .89, parameters = NULL, verbose = TRUE, ...)

S3 method for class 'emmGrid'
hdi(x, ci = 0.89, verbose = TRUE, ...)

S3 method for class 'stanreg'

hdi(
X,
ci = 0.89,
effects = c("fixed"”, "random”, "all"),

parameters = NULL,

hdi 49

verbose = TRUE,

)

S3 method for class 'brmsfit'
hdi (
X,
ci = 0.89,
effects = c("fixed", "random”, "all"),
component = c("conditional”, "zi", "zero_inflated”, "all"),

parameters = NULL,
verbose = TRUE,

)

S3 method for class 'BFBayesFactor'
hdi(x, ci = 0.89, verbose = TRUE, ...)
Arguments
X Vector representing a posterior distribution, or a data frame of such vectors. Can

also be a Bayesian model (stanreg, brmsfit, MCMCglmm, mcmc or bcplm) or a
BayesFactor model.

Currently not used.

ci Value or vector of probability of the (credible) interval - CI (between 0 and 1) to
be estimated. Default to .89 (89%).

verbose Toggle off warnings.

effects Should results for fixed effects, random effects or both be returned? Only applies

to mixed models. May be abbreviated.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like 1p__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

Details

Unlike equal-tailed intervals (see eti()) that typically exclude 2.5% from each tail of the distribu-
tion and always include the median, the HDI is not equal-tailed and therefore always includes the
mode(s) of posterior distributions.

By default, hdi() and eti() return the 89% intervals (ci = @.89), deemed to be more stable than,
for instance, 95% intervals (Kruschke, 2014). An effective sample size of at least 10.000 is recom-
mended if 95% intervals should be computed (Kruschke, 2014, p. 183ff). Moreover, 89 indicates
the arbitrariness of interval limits - its only remarkable property is being the highest prime number

50

hdi

that does not exceed the already unstable 95% threshold (McElreath, 2015).

A 90% equal-tailed interval (ETI) has 5% of the distribution on either side of its limits. It indi-
cates the 5th percentile and the 95h percentile. In symmetric distributions, the two methods of
computing credible intervals, the ETI and the HDI, return similar results.

This is not the case for skewed distributions. Indeed, it is possible that parameter values in the
ETI have lower credibility (are less probable) than parameter values outside the ETI. This property
seems undesirable as a summary of the credible values in a distribution.

On the other hand, the ETI range does change when transformations are applied to the distribution
(for instance, for a log odds scale to probabilities): the lower and higher bounds of the transformed
distribution will correspond to the transformed lower and higher bounds of the original distribution.
On the contrary, applying transformations to the distribution will change the resulting HDI.

Value

A data frame with following columns:

* Parameter The model parameter(s), if x is a model-object. If x is a vector, this column is
missing.
 CI The probability of the credible interval.

* CI_low, CI_high The lower and upper credible interval limits for the parameters.

Note

There is also a plot ()-method implemented in the see-package.

Author(s)

Credits go to ggdistribute and HDInterval.

References

* Kruschke, J. (2014). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan. Aca-
demic Press.

* McElreath, R. (2015). Statistical rethinking: A Bayesian course with examples in R and Stan.
Chapman and Hall/CRC.

Examples

library(bayestestR)

posterior <- rnorm(1000)
hdi(posterior, ci = .89)
hdi(posterior, ci = c(.80, .90, .95))

df <- data.frame(replicate(4, rnorm(100)))
hdi (df)
hdi(df, ci = c(.80, .90, .95))

https://easystats.github.io/see/articles/bayestestR.html
https://easystats.github.io/see/
https://rdrr.io/cran/ggdistribute/src/R/stats.R
https://github.com/mikemeredith/HDInterval

map_estimate

Not run:

library(rstanarm)

model <- stan_glm(mpg ~ wt + gear, data
hdi(model)
hdi(model, ci = c(.80, .90, .95))
library(emmeans)

hdi(emtrends(model, ~1, "wt"))

library(brms)

model <- brms::brm(mpg ~ wt + cyl, data
hdi(model)

hdi(model, ci = c(.80, .90, .95))
library(BayesFactor)

bf <- ttestBF(x = rnorm(100, 1, 1))
hdi(bf)

hdi(bf, ci = c(.80, .90, .95))

End(Not run)

51

mtcars, chains = 2, iter = 200, refresh = 0)

mtcars)

map_estimate

Maximum A Posteriori probability estimate (MAP)

Description

Find the Highest Maximum A Posteriori probability estimate (MAP) of a posterior, i.e., the
value associated with the highest probability density (the "peak" of the posterior distribution). In
other words, it is an estimation of the mode for continuous parameters. Note that this function relies
on estimate_density, which by default uses a different smoothing bandwidth (”"SJ") compared to
the legacy default implemented the base R density function ("nrd@").

Usage

map_estimate(x, precision = 210, method =

S3 method for class 'numeric'
map_estimate(x, precision =

S3 method for class 'bayesQR'

map_estimate(x, precision = 2710, method =

S3 method for class 'stanreg'
map_estimate(

X’
precision = 210,
method = "kernel”,

2”10, method =

"kernel”, ...)
"kernel”, ...)
"kernel”, ...)

effects = c("fixed"”, "random”, "all"),

52

parameters = NULL,

S3 method for class 'brmsfit'
map_estimate(

X!

precision = 210,

method = "kernel”,

effects = c("fixed”, "random”, "all"),

component = c("conditional”, "zi", "zero_inflated”, "all"),

parameters = NULL,

S3 method for class 'data.frame'
map_estimate(x, precision = 2*10, method = "kernel”,

S3 method for class 'emmGrid'

map_estimate

map_estimate(x, precision = 210, method = "kernel”,
Arguments
X Vector representing a posterior distribution, or a data frame of such vectors. Can

also be a Bayesian model (stanreg, brmsfit, MCMCglmm, mcmc or bcplm) or a

BayesFactor model.

precision Number of points of density data. See the n parameter in density.

method Density estimation method. Can be "kernel” (default), "logspline” or "KernSmooth".

Currently not used.

effects Should results for fixed effects, random effects or both be returned? Only applies

to mixed models. May be abbreviated.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like 1p__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to

select specific parameters for the output.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies

to brms-models.

Value

A numeric value if posterior is a vector. If posterior is a model-object, returns a data frame

with following columns:

* Parameter The model parameter(s), if x is a model-object. If x is a vector, this column is

missing.

* MAP_Estimate The MAP estimate for the posterior or each model parameter.

mcse 53

Examples

Not run:
library(bayestestR)

posterior <- rnorm(10000)
map_estimate(posterior)

plot(density(posterior))
abline(v = map_estimate(posterior), col = "red")

library(rstanarm)
model <- rstanarm::stan_glm(mpg ~ wt + cyl, data = mtcars)
map_estimate(model)

library(brms)
model <- brms::brm(mpg ~ wt + cyl, data = mtcars)

map_estimate(model)

End(Not run)

mcse Monte-Carlo Standard Error (MCSE)

Description

This function returns the Monte Carlo Standard Error (MCSE).

Usage

mcse(model, ...)

S3 method for class 'stanreg'

mcse(model, effects = c("fixed”, "random”, "all"), parameters = NULL, ...)
Arguments
model A stanreg, stanfit, or brmsfit object.

Currently not used.

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like 1p__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

54 mediation

Details

Monte Carlo Standard Error (MCSE) is another measure of accuracy of the chains. It is defined
as standard deviation of the chains divided by their effective sample size (the formula for mcse ()
is from Kruschke 2015, p. 187). The MCSE “provides a quantitative suggestion of how big the
estimation noise is”.

References

Kruschke, J. (2014). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan. Academic
Press.

Examples

Not run:
library(bayestestR)
library(rstanarm)

model <- stan_glm(mpg ~ wt + am, data = mtcars, chains = 1, refresh = 0)
mcse(model)

End(Not run)

mediation Summary of Bayesian multivariate-response mediation-models

Description

mediation() is a short summary for multivariate-response mediation-models, i.e. this function
computes average direct and average causal mediation effects of multivariate response models.

Usage

mediation(model, ...)

S3 method for class 'brmsfit'
mediation(

model,

treatment,

mediator,

response = NULL,

centrality = "median”,

ci = 0.89,

method = "ETI",

S3 method for class 'stanmvreg'

mediation

mediation(
model,

treatment,
mediator,

response

55

NULL,

centrality = "median”,

ci =0.89,

method = "ETI",

Arguments

model

treatment

mediator

response

centrality

ci

method

Details

A brmsfit or stanmvreg object.
Not used.

Character, name of the treatment variable (or direct effect) in a (multivariate
response) mediator-model. If missing, mediation() tries to find the treatment
variable automatically, however, this may fail.

Character, name of the mediator variable in a (multivariate response) mediator-
model. If missing, mediation() tries to find the treatment variable automati-
cally, however, this may fail.

A named character vector, indicating the names of the response variables to be
used for the mediation analysis. Usually can be NULL, in which case these vari-
ables are retrieved automatically. If not NULL, names should match the names
of the model formulas, names(insight: :find_response(model, combine =
TRUE)). This can be useful if, for instance, the mediator variable used as pre-
dictor has a different name from the mediator variable used as response. This
might occur when the mediator is transformed in one model, but used "as is"
as response variable in the other model. Example: The mediator m is used as
response variable, but the centered version m_center is used as mediator vari-
able. The second response variable (for the treatment model, with the mediator
as additional predictor), y, is not transformed. Then we could use response like
this: mediation(model,response = c(m= "m_center”,y ="y")).

The point-estimates (centrality indices) to compute. Character (vector) or list
with one or more of these options: "median”, "mean”, "MAP" or "all".

Value or vector of probability of the CI (between 0 and 1) to be estimated. De-
fault to . 89 (89%) for Bayesian models and . 95 (95%) for frequentist models.

Can be ETT’ (default), "HDI’ or ’SI’.

mediation() returns a data frame with information on the direct effect (mean value of posterior
samples from treatment of the outcome model), mediator effect (mean value of posterior samples
from mediator of the outcome model), indirect effect (mean value of the multiplication of the pos-
terior samples from mediator of the outcome model and the posterior samples from treatment
of the mediation model) and the total effect (mean value of sums of posterior samples used for the
direct and indirect effect). The proportion mediated is the indirect effect divided by the total effect.

56 mediation

For all values, the 89% credible intervals are calculated by default. Use ci to calculate a differ-
ent interval.

The arguments treatment and mediator do not necessarily need to be specified. If missing,
mediation() tries to find the treatment and mediator variable automatically. If this does not work,
specify these variables.

The direct effect is also called average direct effect (ADE), the indirect effect is also called av-
erage causal mediation effects (ACME). See also Tingley et al. 2014 and Imai et al. 2010.

Value

A data frame with direct, indirect, mediator and total effect of a multivariate-response mediation-
model, as well as the proportion mediated. The effect sizes are median values of the posterior
samples (use centrality for other centrality indices).

Note

There is an as.data. frame() method that returns the posterior samples of the effects, which can
be used for further processing in the different bayestestR package.

References

* Imai, K., Keele, L. and Tingley, D. (2010) A General Approach to Causal Mediation Analysis,
Psychological Methods, Vol. 15, No. 4 (December), pp. 309-334.

* Tingley, D., Yamamoto, T., Hirose, K., Imai, K. and Keele, L. (2014). mediation: R package
for Causal Mediation Analysis, Journal of Statistical Software, Vol. 59, No. 5, pp. 1-38.

See Also

The mediation package for a causal mediation analysis in the frequentist framework.

Examples

Not run:
library(mediation)
library(brms)
library(rstanarm)

load sample data
data(jobs)
set.seed(123)

linear models, for mediation analysis

b1 <- 1lm(job_seek ~ treat + econ_hard + sex + age, data = jobs)

b2 <- 1m(depress2 ~ treat + job_seek + econ_hard + sex + age, data = jobs)
mediation analysis, for comparison with Stan models

ml <- mediate(bl, b2, sims = 1000, treat = "treat"”, mediator = "job_seek")

Fit Bayesian mediation model in brms

mhdior 57

f1 <- bf(job_seek ~ treat + econ_hard + sex + age)
f2 <- bf(depress2 ~ treat + job_seek + econ_hard + sex + age)
m2 <- brm(f1 + f2 + set_rescor(FALSE), data = jobs, cores = 4, refresh = 0)

Fit Bayesian mediation model in rstanarm
m3 <- stan_mvmer(
list(job_seek ~ treat + econ_hard + sex + age + (1 | occp),
depress2 ~ treat + job_seek + econ_hard + sex + age + (1 | occp)),
data = jobs,
cores = 4,
refresh = @

)

summary(m1)
mediation(m2, centrality = "mean”, ci = .95)
mediation(m3, centrality = "mean”, ci = .95)

End(Not run)

mhdior Maximum HDI level inside/outside ROPE (MHDIOR)

Description

The MHDIOR (pronounced "em-eich-dior’) is an exploratory and non-validated index representing
the maximum percentage of HDI that does not contain (or is entirely contained, in which case the
value is prefixed with a negative sign), in the negligible values space defined by the ROPE. It differs
from the ROPE percentage, i.e., from the proportion of a given CI in the ROPE, as it represents the
maximum CI values needed to reach a ROPE proportion of 0% or 100%. Whether the index reflects
the ROPE reaching 0% or 100% is indicated through the sign: a negative sign is added to indicate
that the probability corresponds to the probability of a not significant effect (a percentage in ROPE
of 100%). For instance, a MHDIOR of 97% means that there is a probability of .97 that a parameter
(described by its posterior distribution) is outside the ROPE. In other words, the 97% HDI is the
maximum HDI level for which the percentage in ROPE is 0%. On the contrary, a ROPE-based p of
-97% indicates that there is a probability of .97 that the parameter is inside the ROPE (percentage in
ROPE of 100%). A value close to 0% would indicate that the mode of the distribution falls perfectly
at the edge of the ROPE, in which case the percentage of HDI needed to be on either side of the
ROPE becomes infinitely small. Negative values do not refer to negative values per se, simply
indicating that the value corresponds to non-significance rather than significance.

Usage
mhdior(x, ...)

S3 method for class 'numeric'
mhdior(x, range = "default”, precision = 0.1, ...)

S3 method for class 'data.frame'

58 mhdior

mhdior(x, range = "default”, precision = 0.1, ...)

S3 method for class 'emmGrid'
mhdior(x, range = "default”, precision = 0.1, ...)

S3 method for class 'BFBayesFactor'
mhdior(x, range = "default”, precision = 0.1, ...)

S3 method for class 'stanreg'
mhdior(
X,
range = "default”,
precision = 0.1,
effects = c("fixed", "random”, "all"),
parameters = NULL,

)

S3 method for class 'brmsfit'
mhdior(
X,
range = "default”,
precision = 0.1,
effects = c("fixed”, "random”, "all"),
component = c("conditional”, "zi", "zero_inflated”, "all"),
parameters = NULL,

)
Arguments

X Vector representing a posterior distribution. Can also be a stanreg or brmsfit
model.
Currently not used.

range ROPE’s lower and higher bounds. Should be a vector of length two (e.g.,
c(-0.1,0.1)) or "default”. If "default”, the range is set to c(-0.1,0.1) if
input is a vector, and based on rope_range() if a Bayesian model is provided.

precision The precision by which to explore the ROPE space (in percentage). Lower val-
ues increase the precision of the returned p value but can be quite computation-
aly costly.

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

parameters Regular expression pattern that describes the parameters that should be returned.

Meta-parameters (like 1p__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

overlap 59

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

Examples

Not run:
library(bayestestR)

precision = 1 is used to speed up examples...

mhdior(
X = rnorm(1000, mean = 1, sd = 1),
range = c(-0.1, 0.1),
precision = 1

)

df <- data.frame(replicate(4, rnorm(100)))
mhdior(df, precision = 1)

if (require(”rstanarm”)) {
model <- stan_glm(
mpg ~ wt + gear, data = mtcars,
chains = 2,
iter = 200,
refresh = @
)
mhdior(model, precision =

}

|
—_
~

if (require("emmeans”)) {
mhdior(emtrends(model, ~1, "wt"))
3

if (require("brms”)) {
model <- brms::brm(mpg ~ wt + cyl, data = mtcars)
mhdior (model)

}

if (require("BayesFactor")) {
bf <- ttestBF(x = rnorm(100, 1, 1))
mhdior(bf)

3

End(Not run)

overlap Overlap Coefficient

60 overlap

Description

A method to calculate the overlap coefficient between two empirical distributions (that can be used
as a measure of similarity between two samples).

Usage
overlap(
X ’
Y,
method_density = "kernel”,
method_auc = "trapezoid”,

precision = 2*10,
extend = TRUE,
extend_scale = 0.1,

)

Arguments
X Vector of x values.
y Vector of x values.

method_density Density estimation method. See estimate_density.

method_auc Area Under the Curve (AUC) estimation method. See area_under_curve.
precision Number of points of density data. See the n parameter in density.
extend Extend the range of the x axis by a factor of extend_scale.

extend_scale Ratio of range by which to extend the x axis. A value of @.1 means that the x
axis will be extended by 1/10 of the range of the data.

Currently not used.

Examples
library(bayestestR)

x <- distribution_normal(1000, 2, 0.5)
y <- distribution_normal(1000, 0, 1)

overlap(x, y)
plot(overlap(x, y))

pd_to_p 61

pd_to_p Convert between Probability of Direction (pd) and p-value.

Description

Enables a conversion between Probability of Direction (pd) and p-value.

Usage
pd_to_p(pd, direction = "two-sided”, ...)
p_to_pd(p, direction = "two-sided”, ...)
convert_p_to_pd(p, direction = "two-sided”, ...)
convert_pd_to_p(pd, direction = "two-sided”, ...)
Arguments
pd A Probability of Direction (pd) value (between 0 and 1).
direction What type of p-value is requested or provided. Can be "two-sided” (default,
two tailed) or "one-sided"” (one tailed).
Arguments passed to or from other methods.
p A p-value.
Examples
pd_to_p(pd = 0.95)
pd_to_p(pd = 0.95, direction = "one-sided")
point_estimate Point-estimates of posterior distributions
Description

Compute various point-estimates, such as the mean, the median or the MAP, to describe posterior
distributions.

62

Usage

point_estimate

point_estimate(x, centrality = "all”, dispersion = FALSE, ...)

S3 method for class 'stanreg'

point_estimate(

X,

centrality = "all",
dispersion = FALSE,
effects = c("fixed”, "random”, "all"),
parameters = NULL,

S3 method for class 'brmsfit'

point_estimate(

X7
centrality = "all",
dispersion = FALSE,
effects = c("fixed”, "random”, "all"),
component = c("conditional”, "zi", "zero_inflated”, "all"),
parameters = NULL,
)
S3 method for class 'BFBayesFactor'
point_estimate(x, centrality = "all”, dispersion = FALSE, ...)
Arguments
X Vector representing a posterior distribution, or a data frame of such vectors. Can

centrality

dispersion

effects

parameters

component

also be a Bayesian model (stanreg, brmsfit, MCMCglmm, mcmc or bcplm) or a
BayesFactor model.

The point-estimates (centrality indices) to compute. Character (vector) or list
with one or more of these options: "median”, "mean”, "MAP" or "all".

Logical, if TRUE, computes indices of dispersion related to the estimate(s) (SD
and MAD for mean and median, respectively).

Additional arguments to be passed to or from methods.

Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like 1p__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

point_estimate

Note

There is also a plot ()-method implemented in the see-package.

References

Vignette In-Depth 1: Comparison of Point-Estimates

Examples

library(bayestestR)

point_estimate(rnorm(1000))
point_estimate(rnorm(1000), centrality = "all”, dispersion = TRUE)
point_estimate(rnorm(1000), centrality = c("median”, "MAP"))

df <- data.frame(replicate(4, rnorm(100)))
point_estimate(df, centrality = "all"”, dispersion = TRUE)
point_estimate(df, centrality = c("median”, "MAP"))

Not run:

rstanarm models

library(rstanarm)

model <- rstanarm::stan_glm(mpg ~ wt + cyl, data = mtcars)
point_estimate(model, centrality = "all”, dispersion = TRUE)
point_estimate(model, centrality = c("median”, "MAP"))

emmeans estimates

library(emmeans)

point_estimate(emtrends(model, ~1, "wt"), centrality = c("median”, "MAP"))

brms models

library(brms)

model <- brms::brm(mpg ~ wt + cyl, data = mtcars)
point_estimate(model, centrality = "all”, dispersion = TRUE)
point_estimate(model, centrality = c("median”, "MAP"))

BayesFactor objects

library(BayesFactor)

bf <- ttestBF(x = rnorm(100, 1, 1))

point_estimate(bf, centrality = "all"”, dispersion = TRUE)
point_estimate(bf, centrality = c("median”, "MAP"))

End(Not run)

https://easystats.github.io/see/articles/bayestestR.html
https://easystats.github.io/see/
https://easystats.github.io/bayestestR/articles/indicesEstimationComparison.html

64 p_direction

p_direction Probability of Direction (pd)

Description

Compute the Probability of Direction (pd, also known as the Maximum Probability of Effect -
MPE). It varies between 50% and 100% (i.e., .5 and 1) and can be interpreted as the probabil-
ity (expressed in percentage) that a parameter (described by its posterior distribution) is strictly
positive or negative (whichever is the most probable). It is mathematically defined as the propor-
tion of the posterior distribution that is of the median’s sign. Although differently expressed, this
index is fairly similar (i.e., is strongly correlated) to the frequentist p-value. In some rare situa-
tions, especially when using when using model averaged posteriors (see weighted_posteriors or
brms: :posterior_average), this value may be lower than 0.5.

Usage
p_direction(x, ...)
pd(x, ...)

S3 method for class 'numeric'
p_direction(x, method = "direct”, ...)

S3 method for class 'data.frame'
p_direction(x, method = "direct”, ...)

S3 method for class 'MCMCglmm'
p_direction(x, method = "direct”, ...)

S3 method for class 'emmGrid'
p_direction(x, method = "direct”, ...)

S3 method for class 'stanreg'
p_direction(

X,

effects = c("fixed"”, "random”, "all"),
parameters = NULL,

method = "direct”,

)

S3 method for class 'brmsfit'
p_direction(

X’
effects = c("fixed”, "random”, "all"),
component = c("conditional”, "zi", "zero_inflated”, "all"),

parameters = NULL,

p_direction 65

method = "direct”,
)
S3 method for class 'BFBayesFactor'
p_direction(x, method = "direct”, ...)
Arguments
X Vector representing a posterior distribution. Can also be a Bayesian model

(stanreg, brmsfit or BayesFactor).
Currently not used.

method Can be "direct” or one of methods of density estimation, such as "kernel”,
"logspline” or "KernSmooth"”. If "direct” (default), the computation is
based on the raw ratio of samples superior and inferior to 0. Else, the result
is based on the Area under the Curve (AUC) of the estimated density function.

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like 1p__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

Details

What is the pd?: The Probability of Direction (pd) is an index of effect existence, ranging from
50% to 100%, representing the certainty with which an effect goes in a particular direction (i.e.,
is positive or negative). Beyond its simplicity of interpretation, understanding and computation,
this index also presents other interesting properties:

* It is independent from the model: It is solely based on the posterior distributions and does
not require any additional information from the data or the model.

* It is robust to the scale of both the response variable and the predictors.

* It is strongly correlated with the frequentist p-value, and can thus be used to draw parallels
and give some reference to readers non-familiar with Bayesian statistics.

Relationship with the p-value: In most cases, it seems that the pd has a direct correspondence
with the frequentist one-sided p-value through the formula pypesiged = 1 — % and to the two-

sided p-value (the most commonly reported one) through the formula piyosided = 2 * (1 — %).
Thus, a two-sided p-value of respectively .1, .05, .01 and . @01 would correspond approximately

to a pd of 95%, 97.5%, 99.5% and 99.95%. See also pd_to_p.

Methods of computation: The most simple and direct way to compute the pd is to 1) look
at the median’s sign, 2) select the portion of the posterior of the same sign and 3) compute the
percentage that this portion represents. This "simple" method is the most straightforward, but its

66 p_direction

precision is directly tied to the number of posterior draws. The second approach relies on density
estimation. It starts by estimating the density function (for which many methods are available),
and then computing the area under the curve (AUC) of the density curve on the other side of 0.

Strengths and Limitations: Strengths: Straightforward computation and interpretation. Ob-
jective property of the posterior distribution. 1:1 correspondence with the frequentist p-value.

Limitations: Limited information favoring the null hypothesis.

Value

Values between 0.5 and 1 corresponding to the probability of direction (pd). In some rare situations,
especially when using when using model averaged posteriors (see brms: :weighted_posteriors
or brms: :posterior_average), this value may be lower than 0.5.

Note

There is also a plot ()-method implemented in the see-package.

References

Makowski D, Ben-Shachar MS, Chen SHA, Liidecke D (2019) Indices of Effect Existence and
Significance in the Bayesian Framework. Frontiers in Psychology 2019;10:2767. doi: 10.3389/
fpsyg.2019.02767

See Also
pd_to_p to convert between Probability of Direction (pd) and p-value.
Examples
library(bayestestR)
Simulate a posterior distribution of mean 1 and SD 1
posterior <- rnorm(1000, mean = 1, sd = 1)

p_direction(posterior)
p_direction(posterior, method = "kernel”)

Simulate a dataframe of posterior distributions

df <- data.frame(replicate(4, rnorm(100)))
p_direction(df)
p_direction(df, method = "kernel")

Not run:
rstanarm models

if (require(”rstanarm”)) {
model <- rstanarm::stan_glm(mpg ~ wt + cyl,
data = mtcars,
chains = 2, refresh = @

https://easystats.github.io/see/articles/bayestestR.html
https://easystats.github.io/see/
https://doi.org/10.3389/fpsyg.2019.02767
https://doi.org/10.3389/fpsyg.2019.02767

p_map 67

)

p_direction(model)
p_direction(model, method = "kernel")

3
emmeans

if (require("emmeans”")) {
p_direction(emtrends(model, ~1, "wt"))

3
brms models

if (require("brms")) {
model <- brms::brm(mpg ~ wt + cyl, data = mtcars)
p_direction(model)
p_direction(model, method = "kernel")

}

BayesFactor objects

if (require("”BayesFactor”)) {
bf <- ttestBF(x = rnorm(100, 1, 1))
p_direction(bf)
p_direction(bf, method = "kernel")
3

End(Not run)

p_map Bayesian p-value based on the density at the Maximum A Posteriori
(MAP)

Description

Compute a Bayesian equivalent of the p-value, related to the odds that a parameter (described by
its posterior distribution) has against the null hypothesis (k0) using Mills’ (2014, 2017) Objective
Bayesian Hypothesis Testing framework. It corresponds to the density value at O divided by the
density at the Maximum A Posteriori (MAP).

Usage
p_map(x, precision = 2*10, method = "kernel”, ...)
p_pointnull(x, precision = 2”10, method = "kernel”, ...)

S3 method for class 'stanreg'

p_map(
X,

68 p_map

precision = 2*10,
method = "kernel”,
effects = c("fixed”, "random”, "all"),
parameters = NULL,

)
S3 method for class 'brmsfit'
p_map(
X,
precision = 2*10,
method = "kernel”,
effects = c("fixed”, "random”, "all"),
component = c("conditional”, "zi", "zero_inflated”, "all"),

parameters = NULL,

)
Arguments
X Vector representing a posterior distribution, or a data frame of such vectors. Can
also be a Bayesian model (stanreg, brmsfit, MCMCglmm, mcmc or bcplm) or a
BayesFactor model.
precision Number of points of density data. See the n parameter in density.
method Density estimation method. Can be "kernel” (default), "logspline” or "KernSmooth".
Currently not used.
effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.
parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like 1p__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.
component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.
Details

Note that this method is sensitive to the density estimation method (see the section in the examples
below).

Strengths and Limitations: Strengths: Straightforward computation. Objective property of the
posterior distribution.

Limitations: Limited information favoring the null hypothesis. Relates on density approxima-
tion. Indirect relationship between mathematical definition and interpretation. Only suitable for
weak / very diffused priors.

p_map 69

References

¢ Makowski D, Ben-Shachar MS, Chen SHA, Liidecke D (2019) Indices of Effect Existence and
Significance in the Bayesian Framework. Frontiers in Psychology 2019;10:2767. doi: 10.3389/
fpsyg.2019.02767

* Mills, J. A. (2018). Objective Bayesian Precise Hypothesis Testing. University of Cincinnati.

See Also
Jeff Mill’s talk

Examples

library(bayestestR)

p_map(rnorm(1000, 0, 1))
p_map(rnorm(1000, 10, 1))

Not run:

library(rstanarm)

model <- stan_glm(mpg ~ wt + gear, data = mtcars, chains = 2, iter = 200, refresh = 0)
p_map(model)

library(emmeans)
p_map(emtrends(model, ~1, "wt"))

library(brms)
model <- brms::brm(mpg ~ wt + cyl, data
p_map(model)

mtcars)

library(BayesFactor)
bf <- ttestBF(x = rnorm(100, 1, 1))
p_map (bf)

End(Not run)

Robustness to density estimation method
set.seed(333)
data <- data.frame()
for (iteration in 1:250) {
X <= rnorm(1000, 1, 1)
result <- data.frame(
"Kernel” = p_map(x, method = "kernel”),
"KernSmooth"” = p_map(x, method = "KernSmooth"),
"logspline” = p_map(x, method = "logspline")
)
data <- rbind(data, result)
}
data$KernSmooth <- data$Kernel - data$KernSmooth
data$logspline <- data$Kernel - data$logspline

https://doi.org/10.3389/fpsyg.2019.02767
https://doi.org/10.3389/fpsyg.2019.02767
https://www.youtube.com/watch?v=Ip8Ci5KUVRc

70 p_rope

summary (data$KernSmooth)
summary (data$logspline)
boxplot(datalc("KernSmooth”, "logspline”)])

p_rope Probability of not being in ROPE

Description

Compute the proportion of the posterior distribution that doesn’t lie within a region of practical

equivalence (ROPE). It is equivalent to running rope(...,ci=1).
Usage
p_rope(x, ...)

Default S3 method:
p_rope(x, ...)

S3 method for class 'numeric'
p_rope(x, range = "default”, ...)

S3 method for class 'data.frame'
p_rope(x, range = "default”, ...)

S3 method for class 'emmGrid'
p_rope(x, range = "default”, ...)

S3 method for class 'BFBayesFactor'
p_rope(x, range = "default”, ...)

S3 method for class 'MCMCglmm'
p_rope(x, range = "default”, ...)

S3 method for class 'stanreg'

p_rope(
X,
range = "default”,
effects = c("fixed"”, "random”, "all"),

parameters = NULL,

)

S3 method for class 'brmsfit'
p_rope(

p_significance 71

X,

range = "default”,

effects = c("fixed”, "random”, "all"),

component = c("conditional”, "zi", "zero_inflated”, "all"),
parameters = NULL,

Arguments
X Vector representing a posterior distribution. Can also be a stanreg or brmsfit
model.
Currently not used.
range ROPE’s lower and higher bounds. Should be a vector of length two (e.g.,
c(-0.1,0.1)) or "default”. If "default”, the range is set to c(-0.1,0.1) if
input is a vector, and based on rope_range () if a Bayesian model is provided.
effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.
parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like 1p__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.
component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.
Examples
library(bayestestR)

p_rope(x = rnorm(1000, @, 0.01), range = c(-0.1, 0.1))
p_rope(x = mtcars, range = c(-0.1, 0.1))

p_significance Practical Significance (ps)

Description

Compute the probability of Practical Significance (ps), which can be conceptualized as a unidirec-
tional equivalence test. It returns the probability that effect is above a given threshold corresponding
to a negligible effect in the median’s direction. Mathematically, it is defined as the proportion of the
posterior distribution of the median sign above the threshold.

72

p_significance

Usage

p_significance(x, ...)

S3 method for class 'numeric'
p_significance(x, threshold = "default”, ...)

S3 method for class 'emmGrid'
p_significance(x, threshold = "default”, ...)

S3 method for class 'stanreg'
p_significance(
X)
threshold = "default”,
effects = c("fixed"”, "random”, "all"),
parameters = NULL,
verbose = TRUE,

)

S3 method for class 'brmsfit'
p_significance(

X,

threshold = "default”,

effects = c("fixed”, "random”, "all"),

component = c("conditional”, "zi", "zero_inflated”, "all"),

parameters = NULL,
verbose = TRUE,

)
Arguments

X Vector representing a posterior distribution. Can also be a stanreg or brmsfit
model.
Currently not used.

threshold The threshold value that separates significant from negligible effect. If "default”,
the range is set to @.1 if input is a vector, and based on rope_range() if a
Bayesian model is provided.

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

parameters Regular expression pattern that describes the parameters that should be returned.

Meta-parameters (like 1p__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

verbose Toggle off warnings.

p_significance 73

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

Details

p_significance() returns the proportion of a probability distribution (x) that is outside a certain
range (the negligible effect, or ROPE, see argument threshold). If there are values of the dis-
tribution both below and above the ROPE, p_significance() returns the higher probability of a
value being outside the ROPE. Typically, this value should be larger than 0.5 to indicate practical
significance. However, if the range of the negligible effect is rather large compared to the range
of the probability distribution x, p_significance() will be less than 0.5, which indicates no clear
practical significance.

Value

Values between 0 and 1 corresponding to the probability of practical significance (ps).

Note

There is also a plot ()-method implemented in the see-package.

Examples

library(bayestestR)
Simulate a posterior distribution of mean 1 and SD 1

posterior <- rnorm(1000, mean = 1, sd = 1)
p_significance(posterior)

Simulate a dataframe of posterior distributions

df <- data.frame(replicate(4, rnorm(100)))
p_significance(df)

Not run:
rstanarm models

if (require(”rstanarm”)) {
model <- rstanarm::stan_glm(mpg ~ wt + cyl,
data = mtcars,
chains = 2, refresh = 0
)
p_significance(model)

3

End(Not run)

https://easystats.github.io/see/articles/bayestestR.html
https://easystats.github.io/see/

74

rope

reshape_ci Reshape CI between wide/long formats

Description

Reshape CI between wide/long formats.

Usage

reshape_ci(x)

Arguments

X A data.frame containing CI_low and CI_high.
Examples

library(bayestestR)

X <- data.frame(replicate(4, rnorm(100)))
X <= ci(x, ci = c(0.68, 0.89, 0.95))
reshape_ci(x)

reshape_ci(reshape_ci(x))

x <- data.frame(replicate(4, rnorm(100)))

x <- describe_posterior(x, ci = c(0.68, 0.89, 0.95))
reshape_ci(x)

reshape_ci(reshape_ci(x))

rope Region of Practical Equivalence (ROPE)

Description

Compute the proportion of the HDI (default to the 89% HDI) of a posterior distribution that lies

within a region of practical equivalence.

Usage
rope(x, ...)

Default S3 method:
rope(x, ...)

S3 method for class 'numeric'
rope(x, range = "default”, ci = 0.89, ci_method = "HDI", verbose

= TRUE, ...)

rope

S3 method for class 'data.frame'

rope(x, range = "default”, ci = 0.89, ci_method = "HDI", verbose = TRUE,
S3 method for class 'emmGrid'
rope(x, range = "default”, ci = 0.89, ci_method "HDI", verbose = TRUE,
S3 method for class 'BFBayesFactor'
rope(x, range = "default”, ci = 0.89, ci_method = "HDI", verbose = TRUE,
S3 method for class 'MCMCglmm'
rope(x, range = "default”, ci = 0.89, ci_method "HDI", verbose = TRUE,
S3 method for class 'stanreg'
rope(
X,
range = "default”,
ci = 0.89,
ci_method = "HDI",
effects = c("fixed"”, "random”, "all"),
parameters = NULL,
verbose = TRUE,
)
S3 method for class 'brmsfit'
rope(
X’
range = "default”,
ci = 0.89,
ci_method = "HDI",
effects = c("fixed”, "random”, "all"),
component = c("conditional”, "zi", "zero_inflated”, "all"),
parameters = NULL,
verbose = TRUE,
)
Arguments
X Vector representing a posterior distribution. Can also be a stanreg or brmsfit
model.
Currently not used.
range ROPE’s lower and higher bounds. Should be a vector of length two (e.g.,
c(-0.1,0.1)) or "default”. If "default”, the range is set to c(-0.1,0.1) if
input is a vector, and based on rope_range() if a Bayesian model is provided.
ci The Credible Interval (CI) probability, corresponding to the proportion of HDI,

to use for the percentage in ROPE.

75

76

rope

ci_method The type of interval to use to quantify the percentage in ROPE. Can be "HDI’
(default) or ’ETTI’. See ci.

verbose Toggle off warnings.

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

parameters Regular expression pattern that describes the parameters that should be returned.

Meta-parameters (like 1p__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

component Should results for all parameters, parameters for the conditional model or the

zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

Details

ROPE: Statistically, the probability of a posterior distribution of being different from 0 does not
make much sense (the probability of a single value null hypothesis in a continuous distribution is
0). Therefore, the idea underlining ROPE is to let the user define an area around the null value
enclosing values that are equivalent to the null value for practical purposes (Kruschke 2010, 2011,
2014).

Kruschke (2018) suggests that such null value could be set, by default, to the -0.1 to 0.1 range of
a standardized parameter (negligible effect size according to Cohen, 1988). This could be gener-
alized: For instance, for linear models, the ROPE could be set as @ +/-.1 x sd(y). This ROPE
range can be automatically computed for models using the rope_range function.

Kruschke (2010, 2011, 2014) suggests using the proportion of the 95% (or 89%, considered more
stable) HDI that falls within the ROPE as an index for "null-hypothesis" testing (as understood
under the Bayesian framework, see equivalence_test()).

Sensitivity to parameter’s scale: It is important to consider the unit (i.e., the scale) of the
predictors when using an index based on the ROPE, as the correct interpretation of the ROPE as
representing a region of practical equivalence to zero is dependent on the scale of the predictors.
Indeed, the percentage in ROPE depend on the unit of its parameter. In other words, as the ROPE
represents a fixed portion of the response’s scale, its proximity with a coefficient depends on the
scale of the coefficient itself.

Multicollinearity: Non-independent covariates: When parameters show strong correlations,
i.e. when covariates are not independent, the joint parameter distributions may shift towards or
away from the ROPE. Collinearity invalidates ROPE and hypothesis testing based on univariate
marginals, as the probabilities are conditional on independence. Most problematic are parameters
that only have partial overlap with the ROPE region. In case of collinearity, the (joint) distri-
butions of these parameters may either get an increased or decreased ROPE, which means that
inferences based on rope () are inappropriate (Kruschke 2014, 340f).

rope () performs a simple check for pairwise correlations between parameters, but as there can be
collinearity between more than two variables, a first step to check the assumptions of this hypoth-
esis testing is to look at different pair plots. An even more sophisticated check is the projection
predictive variable selection (Piironen and Vehtari 2017).

rope 77

Strengths and Limitations: Strengths: Provides information related to the practical relevance
of the effects.

Limitations: A ROPE range needs to be arbitrarily defined. Sensitive to the scale (the unit)
of the predictors. Not sensitive to highly significant effects.

Note

There is also a plot ()-method implemented in the see-package.

References

* Cohen, J. (1988). Statistical power analysis for the behavioural sciences.

» Kruschke, J. K. (2010). What to believe: Bayesian methods for data analysis. Trends in
cognitive sciences, 14(7), 293-300. doi: 10.1016/j.tics.2010.05.001.

» Kruschke, J. K. (2011). Bayesian assessment of null values via parameter estimation and
model comparison. Perspectives on Psychological Science, 6(3), 299-312. doi: 10.1177/
1745691611406925.

* Kruschke, J. K. (2014). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan.
Academic Press. doi: 10.1177/2515245918771304.

* Kruschke, J. K. (2018). Rejecting or accepting parameter values in Bayesian estimation.
Advances in Methods and Practices in Psychological Science, 1(2), 270-280. doi: 10.1177/
2515245918771304.

¢ Makowski D, Ben-Shachar MS, Chen SHA, Liidecke D (2019) Indices of Effect Existence and
Significance in the Bayesian Framework. Frontiers in Psychology 2019;10:2767. doi: 10.3389/
fpsyg.2019.02767

* Piironen, J., & Vehtari, A. (2017). Comparison of Bayesian predictive methods for model
selection. Statistics and Computing, 27(3), 711-735. doi: 10.1007/s112220169649y

Examples

library(bayestestR)

rope(x = rnorm(1000, @, 0.01), range = c(-0.1, 0.1))
rope(x = rnorm(1000, @, 1), range = c(-0.1, 0.1))
1
1

rope(x = rnorm(1000, 1, ©.01), range = c(-0.1, 0.1))

rope(x = rnorm(1000, 1, 1), ci = c(.90, .95))

Not run:

library(rstanarm)

model <- stan_glm(mpg ~ wt + gear, data = mtcars, chains = 2, iter = 200, refresh = 0)
rope(model)

rope(model, ci = c(.90, .95))

library(emmeans)
rope(emtrends(model, ~1, "wt"), ci = c(.90, .95))

library(brms)
model <- brms::brm(mpg ~ wt + cyl, data = mtcars)

https://easystats.github.io/see/articles/bayestestR.html
https://easystats.github.io/see/
https://doi.org/10.1016/j.tics.2010.05.001
https://doi.org/10.1177/1745691611406925
https://doi.org/10.1177/1745691611406925
https://doi.org/10.1177/2515245918771304
https://doi.org/10.1177/2515245918771304
https://doi.org/10.1177/2515245918771304
https://doi.org/10.3389/fpsyg.2019.02767
https://doi.org/10.3389/fpsyg.2019.02767
https://doi.org/10.1007/s11222-016-9649-y

78 rope_range

rope(model)
rope(model, ci = c(.90, .95))

library(BayesFactor)
bf <- ttestBF(x = rnorm(100, 1, 1))
rope(bf)

rope(bf, ci = c(.90, .95))

End(Not run)

rope_range Find Default Equivalence (ROPE) Region Bounds

Description

This function attempts at automatically finding suitable "default" values for the Region Of Practical
Equivalence (ROPE).

Usage
rope_range(x, ...)
Arguments
X A stanreg, brmsfit or BFBayesFactor object.
Currently not used.
Details

Kruschke (2018) suggests that the region of practical equivalence could be set, by default, to a range
from -0.1 to 0.1 of a standardized parameter (negligible effect size according to Cohen, 1988).

* For linear models (Im), this can be generalised to [—0.1 % SD,,0.1 * SD,].

* For logistic models, the parameters expressed in log odds ratio can be converted to standard-
ized difference through the formula 7/ V3, resulting in a range of -0.18 t0 0. 18.

* For other models with binary outcome, it is strongly recommended to manually specify the
rope argument. Currently, the same default is applied that for logistic models.

» For models from count data, the residual variance is used. This is a rather experimental
threshold and is probably often similar to -@.1,0. 1, but should be used with care!

* For t-tests, the standard deviation of the response is used, similarly to linear models (see
above).

* For correlations, -0.05,0.05 is used, i.e., half the value of a negligible correlation as sug-
gested by Cohen’s (1988) rules of thumb.

* For all other models, -@.1, 0.1 is used to determine the ROPE limits, but it is strongly advised
to specify it manually.

sensitivity_to_prior 79

References

Kruschke, J. K. (2018). Rejecting or accepting parameter values in Bayesian estimation. Advances
in Methods and Practices in Psychological Science, 1(2), 270-280. doi: 10.1177/2515245918771304.

Examples

Not run:
if (require(”"rstanarm”)) {
model <- stan_glm(
mpg ~ wt + gear,
data = mtcars,
chains = 2,
iter = 200,
refresh = @
)

rope_range (model)

model <- stan_glm(vs ~ mpg, data = mtcars, family = "binomial”)
rope_range (model)

}

if (require("brms")) {
model <- brm(mpg ~ wt + cyl, data = mtcars)
rope_range (model)

}

if (require("BayesFactor”)) {
bf <- ttestBF(x = rnorm(100, 1, 1))
rope_range(bf)

}

End(Not run)

sensitivity_to_prior Sensitivity to Prior

Description
Computes the sensitivity to priors specification. This represents the proportion of change in some
indices when the model is fitted with an antagonistic prior (a prior of same shape located on the
opposite of the effect).

Usage

sensitivity_to_prior(model, index = "Median”, magnitude = 10, ...)

https://doi.org/10.1177/2515245918771304

si

Arguments

model A Bayesian model (stanreg or brmsfit).

index The indices from which to compute the sensitivity. Can be one or multiple names
of the columns returned by describe_posterior. The case is important here
(e.g., write ’Median’ instead of *median’).

magnitude This represent the magnitude by which to shift the antagonistic prior (to test
the sensitivity). For instance, a magnitude of 10 (default) means that the mode
wil be updated with a prior located at 10 standard deviations from its original
location.

Arguments passed to or from other methods.

See Also

DescTools

Examples

Not run:
library(bayestestR)

rstanarm models

if (require(”"rstanarm”)) {
model <- rstanarm::stan_glm(mpg ~ wt, data = mtcars)
sensitivity_to_prior(model)

model <- rstanarm::stan_glm(mpg ~ wt + cyl, data = mtcars)
sensitivity_to_prior(model, index = c("Median”, "MAP"))

}

brms models

if (require("brms")) {
model <- brms::brm(mpg ~ wt + cyl, data = mtcars)
sensitivity_to_prior(model)

}

End(Not run)

si Compute Support Intervals

Description

A support interval contains only the values of the parameter that predict the observed data better
than average, by some degree k; these are values of the parameter that are associated with an updat-
ing factor greater or equal than k. From the perspective of the Savage-Dickey Bayes factor, testing

si 81

against a point null hypothesis for any value within the support interval will yield a Bayes factor
smaller than /k.

For more info, in particular on specifying correct priors for factors with more than 2 levels,
see the Bayes factors vignette.

Usage
si(posterior, prior = NULL, BF = 1, verbose = TRUE, ...)
S3 method for class 'numeric'
si(posterior, prior = NULL, BF = 1, verbose = TRUE, ...)
S3 method for class 'stanreg'
si(
posterior,
prior = NULL,
BF = 1,
verbose = TRUE,
effects = c("fixed"”, "random”, "all"),
component = c("conditional”, "zi", "zero_inflated”, "all"),
parameters = NULL,
)
S3 method for class 'brmsfit'
si(
posterior,
prior = NULL,
BF = 1,
verbose = TRUE,
effects = c("fixed”, "random”, "all"),
component = c("conditional”, "zi", "zero_inflated”, "all"),
parameters = NULL,
)
S3 method for class 'emmGrid'
si(posterior, prior = NULL, BF = 1, verbose = TRUE, ...)
S3 method for class 'data.frame'
si(posterior, prior = NULL, BF = 1, verbose = TRUE, ...)
Arguments
posterior A numerical vector, stanreg / brmsfit object, emmGrid or a data frame - rep-

resenting a posterior distribution(s) from (see ’Details’).

prior An object representing a prior distribution (see 'Details’).

https://easystats.github.io/bayestestR/articles/bayes_factors.html

82 si

BF The amount of support required to be included in the support interval.
verbose Toggle off warnings.

Arguments passed to and from other methods. (Can be used to pass arguments
to internal logspline.)

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like 1p__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

Details

This method is used to compute support intervals based on prior and posterior distributions. For
the computation of support intervals, the model priors must be proper priors (at the very least they
should be not flat, and it is preferable that they be informative - note that by default, brms: :brm()
uses flat priors for fixed-effects; see example below).

Value

A data frame containing the lower and upper bounds of the SI.
Note that if the level of requested support is higher than observed in the data, the interval will be
[NA,NAT.

Note

There is also a plot ()-method implemented in the see-package.

Setting the correct prior: Itis important to provide the correct prior for meaningful results.

e When posterior is a numerical vector, prior should also be a numerical vector.

e When posterior is a data.frame, prior should also be a data.frame, with matching
column order.

e When posterior is a stanreg or brmsfit model:

— prior can be set to NULL, in which case prior samples are drawn internally.

— prior can also be a model equvilant to posterior but with samples from the priors only.
* When posterior is an emmGrid object:

— prior should be the stanreg or brmsfit model used to create the emmGrid objects.

— prior can also be an emmGrid object equvilant to posterior but created with a model
of priors samples only.

Choosing a value of BF: The choice of BF (the level of support) depends on what we want our
interval to represent:

* A BF =1 contains values whose credibility is not decreased by observing the data.

https://easystats.github.io/see/articles/bayestestR.html
https://easystats.github.io/see/

si 83

e A BF > 1 contains values who recived more impressive support from the data.

* A BF < 1 contains values whose credibility has not been impressively decreased by observing
the data. Testing against values outside this interval will produce a Bayes factor larger than
1/BF in support of the alternative. E.g., if an SI (BF = 1/3) excludes 0, the Bayes factor against
the point-null will be larger than 3.

References

Wagenmakers, E., Gronau, Q. F., Dablander, F., & Etz, A. (2018, November 22). The Support
Interval. doi: 10.31234/0sf.io/zwnxb

Examples

library(bayestestR)

prior <- distribution_normal(1000, mean = @, sd = 1)
posterior <- distribution_normal(100@, mean = .5, sd = .3)

si(posterior, prior)
Not run:
rstanarm models

library(rstanarm)

contrasts(sleep$group) <- contr.bayes # see vingette

stan_model <- stan_lmer(extra ~ group + (1 | ID), data = sleep)
si(stan_model)

si(stan_model, BF = 3)

emmGrid objects

library(emmeans)
group_diff <- pairs(emmeans(stan_model, ~group))
si(group_diff, prior = stan_model)

brms models

library(brms)
contrasts(sleep$group) <- contr.bayes # see vingette
my_custom_priors <-
set_prior("student_t(3, 0, 1)", class = "b") +
set_prior("student_t(3, @, 1)", class = "sd", group = "ID")

brms_model <- brm(extra ~ group + (1 | ID),
data = sleep,
prior = my_custom_priors

)

si(brms_model)

End(Not run)

https://doi.org/10.31234/osf.io/zwnxb

84 simulate_correlation

simulate_correlation Data Simulation

Description

Simulate data with specific characteristics.

Usage
simulate_correlation(n = 100, r = 0.5, mean = @, sd = 1, names = NULL, ...)
simulate_ttest(n = 100, d = 0.5, names = NULL, ...)
simulate_difference(n = 100, d = 0.5, names = NULL, ...)
Arguments
n The number of observations to be generated.
r A value or vector corresponding to the desired correlation coefficients.
mean A value or vector corresponding to the mean of the variables.
sd A value or vector corresponding to the SD of the variables.
names A character vector of desired variable names.
Arguments passed to or from other methods.
d A value or vector corresponding to the desired difference between the groups.
Examples

Correlation --------------——---———-————-————
data <- simulate_correlation(r = 0.5)
plot(data$Vil, data$v2)

cor.test(data$Vvl, data$v2)

summary(1Im(V2 ~ V1, data = data))

Specify mean and SD

data <- simulate_correlation(r = 0.5, n = 50, mean = c(@, 1), sd = c(0.7, 1.7))
cor.test(data$Vvl, data$v2)

round(c(mean(data$V1l), sd(datagvi)), 1)

round(c(mean(data$v2), sd(data$v2)), 1)

summary (Im(V2 ~ V1, data = data))

Generate multiple variables
cor_matrix <- matrix(c(
1.0, 0.2, 0.4,
0.2, 1.0, 0.3
0.4, 9.3, 1.0

’

)’

simulate_prior

nrow = 3

)

data <- simulate_correlation(r = cor_matrix, names = c("y", "x1", "x2"))

cor(data)
summary(Im(y ~ x1, data = data))

t-test ---------——-"---------— -

data <- simulate_ttest(n = 30, d = 0.3)

plot(data$Vvil, data$ve)

round(c(mean(data$Vv1l), sd(data$vi)), 1)
diff(t.test(data$Vvl ~ data$ve)sestimate)

summary (Im(V1 ~ V@, data = data))

summary (glm(Ve ~ V1, data = data, family = "binomial”))

Difference —----—-=-———=———-———m——

data <- simulate_difference(n = 30, d = 0.3)
plot(data$Vil, data$ve)

round(c(mean(data$v1l), sd(data$vi)), 1)
diff(t.test(data$vl ~ data$ve)sestimate)

summary (Im(V1 ~ V@, data = data))

summary (glm(Ve ~ V1, data = data, family = "binomial"))

85

simulate_prior Returns Priors of a Model as Empirical Distributions

Description

Transforms priors information to actual distributions.

Usage
simulate_prior(model, n = 1000, ...)
Arguments
model A stanreg, stanfit, or brmsfit object.
n Size of the simulated prior distributions.
Currently not used.
Examples
Not run:
library(bayestestR)

if (require(”"rstanarm”)) {

model <- stan_glm(mpg ~ wt + am, data = mtcars, chains = 1, refresh = 0)

simulate_prior(model)

3

End(Not run)

86 update.bayestactor_models

update.bayesfactor_models
Update bayesfactor_models

Description

Update bayesfactor_models

Usage
S3 method for class 'bayesfactor_models'
update(object, subset = NULL, reference = NULL, ...)
Arguments
object A bayesfactor_models object.
subset Vector of model indices to keep or remove.
reference Index of model to rereference to, or "top” to reference to the best model, or

"bottom” to reference to the worst model.

Currently not used.

Examples

Not run:
library(1lme4)
Imer1 <- lmer(Sepal.Length ~ Petal.Length + (1 | Species), data = iris)
Imer2 <- lmer(Sepal.Length ~ Petal.Length + (Petal.Length | Species), data = iris)
Imer3 <- 1lmer(
Sepal.Length ~ Petal.Length + (Petal.Length | Species) + (1 | Petal.Width),
data = iris

)

m <- bayesfactor_models(lmer1, lmer2, lmer3, denominator = 1)
m

update(m, reference = "bottom")

End(Not run)

weighted_posteriors 87

weighted_posteriors Generate posterior distributions weighted across models

Description

Extract posterior samples of parameters, weighted across models. Weighting is done by comparing
posterior model probabilities, via bayesfactor_models.

Usage

weighted_posteriors(..., prior_odds = NULL, missing = @, verbose = TRUE)

S3 method for class 'data.frame'
weighted_posteriors(..., prior_odds = NULL, missing = @, verbose = TRUE)

S3 method for class 'stanreg'
weighted_posteriors(
prior_odds = NULL,
missing = 0,
verbose = TRUE,
effects = c("fixed"”, "random”, "all"),
component = c("conditional”, "zi", "zero_inflated”, "all"),
parameters = NULL

)

S3 method for class 'brmsfit'
weighted_posteriors(

L

prior_odds = NULL,

missing = 0,

verbose = TRUE,

effects = c("fixed"”, "random”, "all"),

component = c("conditional”, "zi", "zero_inflated”, "all"),
parameters = NULL

)

S3 method for class 'BFBayesFactor'
weighted_posteriors(

prior_odds = NULL,

missing = 0,

verbose = TRUE,

iterations = 4000

88

Arguments

prior_odds

missing

verbose

effects

component

parameters

iterations

Details

weighted_posteriors

Fitted models (see details), all fit on the same data, or a single BFBayesFactor
object (see ’Details’).

Optional vector of prior odds for the models compared to the first model (or the
denominator, for BFBayesFactor objects). For data. frames, this will be used
as the basis of weighting.

An optional numeric value to use if a model does not contain a parameter that
appears in other models. Defaults to O.

Toggle off warnings.

Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like 1p__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

For BayesFactor models, how many posterior samples to draw.

Note that across models some parameters might play different roles. For example, the parameter A
plays a different role in the model Y ~ A + B (where it is a main effect) than it does in the model Y ~ A
+B + A:B (where it is a simple effect). In many cases centering of predictors (mean subtracting for
continuous variables, and effects coding via contr.sum or orthonormal coding via contr.bayes
for factors) can reduce this issue. In any case you should be mindful of this issue.

See bayesfactor_models details for more info on passed models.

Note that for BayesFactor models, posterior samples cannot be generated from intercept only

models.

This function is similar in function to brms: :posterior_average.

Value

A data frame with posterior distributions (weighted across models) .

References

* Clyde, M., Desimone, H., & Parmigiani, G. (1996). Prediction via orthogonalized model
mixing. Journal of the American Statistical Association, 91(435), 1197-1208.

* Hinne, M., Gronau, Q. F., van den Bergh, D., and Wagenmakers, E. (2019, March 25). A
conceptual introduction to Bayesian Model Averaging. doi: 10.31234/o0sf.io/wgb64

https://doi.org/10.31234/osf.io/wgb64

weighted_posteriors 89

* Rouder, J. N., Haaf, J. M., & Vandekerckhove, J. (2018). Bayesian inference for psychology,
part I'V: Parameter estimation and Bayes factors. Psychonomic bulletin & review, 25(1), 102-
113.

* van den Bergh, D., Haaf, J. M., Ly, A., Rouder, J. N., & Wagenmakers, E. J. (2019). A
cautionary note on estimating effect size.

See Also

bayesfactor_inclusion for Bayesian model averaging.
Examples

if (require(”rstanarm”) && require("see")) {
stan_m@ <- stan_glm(extra ~ 1, data = sleep,
family = gaussian(),
refresh=0,
diagnostic_file = file.path(tempdir(), "df@.csv"))

stan_m1 <- stan_glm(extra ~ group, data = sleep,
family = gaussian(),
refresh=0,
diagnostic_file = file.path(tempdir(), "df1.csv"))

res <- weighted_posteriors(stan_mo, stan_ml)

plot(eti(res))
3

With BayesFactor
if (require("BayesFactor”)) {
extra_sleep <- ttestBF(formula = extra ~ group, data = sleep)

wp <- weighted_posteriors(extra_sleep)

describe_posterior(extra_sleep, test = NULL)
describe_posterior(wp$delta, test = NULL) # also considers the null

}

weighted prediction distributions via data.frames
if (require(”rstanarm”)) {
md <- stan_glm(
mpg ~ 1,
data = mtcars,
family = gaussian(),
diagnostic_file = file.path(tempdir(), "df@.csv"),
refresh = @

)

ml <- stan_glm(

90

mpg ~ carb,

data = mtcars,

family = gaussian(),

diagnostic_file = file.path(tempdir(), "df1.csv"),
refresh = @

)

Predictions:
pred_m@ <- data.frame(posterior_predict(m@))
pred_ml1 <- data.frame(posterior_predict(ml))

BFmods <- bayesfactor_models(m@, m1)

wp <- weighted_posteriors(pred_mo, pred_ml,
prior_odds = BFmods$BF[2])

look at first 5 prediction intervals
hdi(pred_mo[1:5])

hdi(pred_m1[1:5])

hdi(wp[1:5]) # between, but closer to pred_mil
3

weighted_posteriors

Index

TETI’, 23,55
"HDI’, 23, 55
’SI’, 23,55

area under the curve, 66
Area under the Curve (AUC), 65
area_under_curve, 3, 60
as.data.frame.density, 4
as.numeric.map_estimate, 4
as.numeric.mhdior
(as.numeric.map_estimate), 4
as.numeric.p_direction
(as.numeric.map_estimate), 4
as.numeric.p_map
(as.numeric.map_estimate), 4
as.numeric.p_significance
(as.numeric.map_estimate), 4
auc (area_under_curve), 3

bayesfactor, 5
bayesfactor_inclusion, 6, 6, 89
bayesfactor_models, 6, 7, 8, 86—-88
bayesfactor_parameters, 6, 11
bayesfactor_pointull
(bayesfactor_parameters), 11
bayesfactor_restricted, 17
bayesfactor_rope
(bayesfactor_parameters), 11
bayesian_as_frequentist
(convert_bayesian_as_frequentist),
26
bf_inclusion (bayesfactor_inclusion), 6
bf_models (bayesfactor_models), 8
bf_parameters (bayesfactor_parameters),
11
bf_pointull (bayesfactor_parameters), 11
bf_restricted (bayesfactor_restricted),
17
bf_rope (bayesfactor_parameters), 11
BFs for restricted models, 5

91

BFs for single parameters, 5

check_prior, 21

ci, 22,76

comparison between models, 5
contr.bayes, 25, 88
convert_bayesian_as_frequentist, 26
convert_p_to_pd (pd_to_p), 61
convert_pd_to_p (pd_to_p), 61

density, 51, 65
density estimation, 65, 66
density_at, 27
describe_posterior, 28
describe_prior, 32
diagnostic_posterior, 33
distribution, 35
distribution_beta (distribution), 35
distribution_binomial (distribution), 35
distribution_cauchy (distribution), 35
distribution_chisquared (distribution),
35
distribution_custom (distribution), 35
distribution_gamma (distribution), 35
distribution_mixture_normal
(distribution), 35
distribution_normal (distribution), 35
distribution_poisson (distribution), 35
distribution_student (distribution), 35
distribution_tweedie (distribution), 35
distribution_uniform (distribution), 35
Distributions, 36

effective_sample, 37
equivalence_test, 39
equivalence_test(), 76
estimate_density, 42, 51, 60
eti, 30, 44

HDI, 40, 46, 50, 57, 76

92

hdi, 30, 48
inclusion BF, 5
logspline, 14, 82

map_estimate, 51
mcse, 53
mediation, 54
mhdior, 57

overlap, 59

p_direction, 30, 64
p_map, 67

p_pointnull (p_map), 67
p_rope, 70
p_significance, 71
p_to_pd (pd_to_p), 61
pd (p_direction), 64
pd_to_p, 61, 65, 66
point_estimate, 61

reshape_ci, 74

rnorm_perfect (distribution), 35
ROPE, 40, 57

rope, 30, 74

rope_range, 76, 78
rope_range(), 40, 58,71, 72,75

sensitivity_to_prior, 79
si, 30, 80
simulate_correlation, 84
simulate_difference

(simulate_correlation), 84

simulate_prior, 85

simulate_ttest (simulate_correlation),

84
update.bayesfactor_models, 86

weighted_posteriors, 8, 64, 87

INDEX

	area_under_curve
	as.data.frame.density
	as.numeric.map_estimate
	bayesfactor
	bayesfactor_inclusion
	bayesfactor_models
	bayesfactor_parameters
	bayesfactor_restricted
	check_prior
	ci
	contr.bayes
	convert_bayesian_as_frequentist
	density_at
	describe_posterior
	describe_prior
	diagnostic_posterior
	distribution
	effective_sample
	equivalence_test
	estimate_density
	eti
	hdi
	map_estimate
	mcse
	mediation
	mhdior
	overlap
	pd_to_p
	point_estimate
	p_direction
	p_map
	p_rope
	p_significance
	reshape_ci
	rope
	rope_range
	sensitivity_to_prior
	si
	simulate_correlation
	simulate_prior
	update.bayesfactor_models
	weighted_posteriors
	Index

