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Setup
Cluster Functions
The communication with the batch system is managed via so-called cluster functions. They are created with
the constructor makeClusterFunctions which defines how jobs are submitted on your system. Furthermore,
you may provide functions to list queued/running jobs and to kill jobs.

Usually you do not have to start from scratch but can just use one of the cluster functions which ship with
the package:

• Interactive Cluster Functions (default): docs, implementation
• Multicore Cluster Functions: docs, implementation
• Socket Cluster Functions: docs, implementation
• Makeshift SSH cluster: docs, implementation
• Docker Swarm: docs, implementation
• IBM Spectrum Load Sharing Facility (LSF): docs, implementation
• OpenLava: docs, implementation
• Univa Grid Engine / Oracle Grid Engine (OGE) / Sun Grid Engine (SGE): docs, implementation
• Slurm: docs, implementation
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• TORQUE/OpenPBS: docs, implementation

To use the package with the socket cluster functions, you would call the respective constructor makeCluster-
FunctionsSocket():
reg = makeRegistry(NA)
reg$cluster.functions = makeClusterFunctionsSocket(2)

To make this selection permanent for this registry, save the Registry with saveRegistry(). To make your
cluster function selection permanent for a specific system across R sessions for all new Registries, you can set
up a configuration file (see below).

If you have trouble debugging your cluster functions, you can enable the debug mode for extra output. To do
so, install the debugme package and set the environment variable DEBUGME to batchtools before you load
the batchtools package:
Sys.setenv(DEBUGME = "batchtools")
library(batchtools)

Template Files
Many cluster functions require a template file as argument. These templates are used to communicate with
the scheduler and contain placeholders to evaluate arbitrary R expressions. Internally, the brew package is
used for this purpose. Some exemplary template files can be found here. It would be great if you would help
expand this collection to cover more exotic configurations. To do so, please send your template via mail or
open a new pull request.

Note that all variables defined in a JobCollection can be used inside the template. If you need to pass extra
variables, you can set them via the argument resources of submitJobs().

If the flexibility which comes with templating is not sufficient, you can still construct a custom cluster function
implementation yourself using the provided constructor.

Configuration File
The configuration file can be used to set system specific options. Its default location depends on the operating
system (see Registry), but for the first time setup you can put one in the current working directory (as
reported by getwd()). In order to set the cluster function implementation, you would generate a file with
the following content:
cluster.functions = makeClusterFunctionsInteractive()

The configuration file is parsed whenever you create or load a Registry. It is sourced inside of your registry
which has the advantage that you can (a) access all of the parameters which are passed to makeRegistry
and (b) you can also directly change them. Lets say you always want your working directory in your home
directory and you always want to load the checkmate package on the nodes, you can just append these lines:
work.dir = "~"
packages = union(packages, "checkmate")

See the documentation on Registry for a more complete list of supported configuration options.

Migration from BatchJobs/Batchexperiments
The development of BatchJobs and BatchExperiments is discontinued because of the following reasons:

• Maintainability: The packages BatchJobs and BatchExperiments are tightly connected which makes
maintaining difficult. Changes have to be synchronized and tested against the current CRAN versions
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for compatibility. Furthermore, BatchExperiments violates CRAN policies by calling internal functions
of BatchJobs.

• Data base issues: Although we invested weeks to mitigate issues with locks of the SQLite data base
or file system (staged queries, file system timeouts, . . . ), BatchJobs kept working unreliable on some
systems with high latency or specific file systems. This made BatchJobs unusable for many users.

BatchJobs and BatchExperiments will remain on CRAN, but new features are unlikely to be ported back.

Internal Changes
• batchtools does not use SQLite anymore. Instead, all the information is stored directly in the registry

using data.tables acting as an in-memory database. As a side effect, many operations are much faster.
• Nodes do not have to access the registry. submitJobs() stores a temporary object of type JobCollection on

the file system which holds all the information necessary to execute a chunk of jobs via doJobCollection()
on the node. This avoids file system locks because each job accesses only one file exclusively.

• ClusterFunctionsMulticore now uses the parallel package for multicore execution.
• ClusterFunctionsSSH can still be used to emulate a scheduler-like system which respects the work

load on the local machine. Setting the hostname to "localhost" just strips out ssh of the command
issued.

Interface Changes
• batchtools remembers the last created or loaded Registry and sets it as default registry. This way,

you do not need to pass the registry around anymore. If you need to work with multiple registries
simultaneously on the other hand, you can still do so by explicitly passing registries to the functions.

• Most functions now return a data.table which is keyed with the job.id. This way, return values can be
joined together easily and efficient (see this help page for some examples).

• The building blocks of a problem has been renamed from static and dynamic to the more intuitive
data and fun. Thus, algorithm function should have the formal arguments job, data and instance.

• The function makeDesign has been removed. Parameters can be defined by just passing a data.frame
or data.table to addExperiments. For exhaustive designs, use data.table::CJ().

Template changes
• The scheduler should directly execute the command:

Rscript -e 'batchtools::doJobCollection(<filename>)'

There is no intermediate R source file like there was in BatchJobs. * All information stored in the object
JobCollection can be accessed while brewing the template. * Extra variables may be passed via the
argument resoures of submitJobs.

New features
• Support for Docker Swarm via ClusterFunctionsDocker.
• Jobs can now be tagged and untagged to provide an easy way to group them.
• Some resources like the number of CPUs are now optionally passed to parallelMap. This eases nested

parallelization, e.g. to use multicore parallelization on the slave by just setting a resource on the master.
See submitJobs() for an example.

• ClusterFunctions are now more flexible in general as they can define hook functions which will
be called at certain events. ClusterFunctionsDocker is an example use case which implements a
housekeeping routine. This routine is called every time before a job is about to get submitted to the
scheduler (in the case: the Docker Swarm) via the hook pre.submit and every time directly after the
registry synchronized jobs stored on the file system via the hook post.sync.

• More new features are covered in the NEWS.
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Porting to batchtools

The following table assists in porting to batchtools by mapping BatchJobs/BatchExperiments functions to
their counterparts in batchtools. The table does not cover functions which are (a) used only internally in
BatchJobs and (b) functions which have not been renamed.

BatchJobs batchtools
addRegistryPackages Set reg$packages or reg$namespaces, call

saveRegistry()
addRegistrySourceDirs -
addRegistrySourceFiles Set reg$source, call saveRegistry()
batchExpandGrid batchMap: batchMap(..., args = CJ(x = 1:3, y

= 1:10))
batchMapQuick btmapply
batchReduceResults -
batchUnexport batchExport
filterResults -
getJobIds findJobs
getJobInfo getJobStatus
getJob makeJob
getJobParamDf getJobPars
loadResults reduceResultsList
reduceResultsDataFrame reduceResultsDataTable
reduceResultsMatrix reduceResultsList + do.call(rbind, res)
reduceResultsVector reduceResultsDataTable
setJobFunction -
setJobNames -
showStatus getStatus

Example 1: Approximation of π

To get a first insight into the usage of batchtools, we start with an exemplary Monte Carlo simulation to
approximate π. For background information, see Wikipedia.

First, a so-called registry object has to be created, which defines a directory where all relevant information,
files and results of the computational jobs will be stored. There are two different types of registry objects:
First, a regular Registry which we will use in this example. Second, an ExperimentRegistry which provides
an alternative way to define computational jobs and thereby is tailored for a broad range of large scale
computer experiments (see, for example, this vignette). Here, we use a temporary registry which is stored in
the temp directory of the system and gets automatically deleted if you close the R session.
reg = makeRegistry(file.dir = NA, seed = 1)

For a permanent registry, set the file.dir to a valid path. It can then be reused later, e.g., when you login
to the system again, by calling the function loadRegistry(file.dir).

When a registry object is created or loaded, it is stored for the active R session as the default. Therefore
the argument reg will be ignored in functions calls of this example, assuming the correct registry is set as
default. To get the current default registry, getDefaultRegistry can be used. To switch to another registry,
use setDefaultRegistry().

First, we create a function which samples n points (xi, yi) whereas xi and yi are distributed uniformly,
i.e. xi, yi ∼ U(0, 1). Next, the distance to the origin (0, 0) is calculated and the fraction of points in the unit
circle (d ≤ 1) is returned.
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piApprox = function(n) {
nums = matrix(runif(2 * n), ncol = 2)
d = sqrt(nums[, 1]ˆ2 + nums[, 2]ˆ2)
4 * mean(d <= 1)

}
set.seed(42)
piApprox(1000)

## [1] 3.156

We now parallelize piApprox() with batchtools: We create 10 jobs, each doing a MC simulation with 105

jobs. We use batchMap() to define the jobs (note that this does not yet start the calculation):
batchMap(fun = piApprox, n = rep(1e5, 10))

## Adding 10 jobs ...

The length of the vector or list defines how many different jobs are created, while the elements itself are used
as arguments for the function. The function batchMap(fun, ...) works analogously to Map(f, ...) of the
base package. An overview over the jobs and their IDs can be retrieved with getJobTable() which returns a
data.frame with all relevant information:
names(getJobTable())

## [1] "job.id" "submitted" "started" "done" "error"
## [6] "mem.used" "batch.id" "log.file" "job.hash" "job.name"
## [11] "time.queued" "time.running" "job.pars" "resources" "tags"

Note that a unique job ID is assigned to each job. These IDs can be used to restrict operations to subsets
of jobs. To actually start the calculation, call submitJobs(). The registry and the selected job IDs can be
taken as arguments as well as an arbitrary list of resource requirements, which are to be handled by the
cluster back end.
submitJobs(resources = list(walltime = 3600, memory = 1024))

## Submitting 10 jobs in 10 chunks using cluster functions 'Interactive' ...

In this example, a cap for the execution time (so-called walltime) and for the maximum memory requirements
are set. The progress of the submitted jobs can be checked with getStatus().
getStatus()

## Status for 10 jobs at 2020-03-19 20:25:07:
## Submitted : 10 (100.0%)
## -- Queued : 0 ( 0.0%)
## -- Started : 10 (100.0%)
## ---- Running : 0 ( 0.0%)
## ---- Done : 10 (100.0%)
## ---- Error : 0 ( 0.0%)
## ---- Expired : 0 ( 0.0%)

The resulting output includes the number of jobs in the registry, how many have been submitted, have started
to execute on the batch system, are currently running, have successfully completed, and have terminated due
to an R exception. After jobs have successfully terminated, we can load their results on the master. This can
be done in a simple fashion by using either loadResult(), which returns a single result exactly in the form
it was calculated during mapping, or by using reduceResults(), which is a version of Reduce() from the
base package for registry objects.
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waitForJobs()

## [1] TRUE
mean(sapply(1:10, loadResult))

## [1] 3.140652
reduceResults(function(x, y) x + y) / 10

## [1] 3.140652

If you are absolutely sure that your function works, you can take a shortcut and use batchtools in an lapply
fashion using btlapply(). This function creates a temporary registry (but you may also pass one yourself),
calls batchMap(), wait for the jobs to terminate with waitForJobs() and then uses reduceResultsList()
to return the results.
res = btlapply(rep(1e5, 10), piApprox)
mean(unlist(res))

## [1] 3.14124

Example 2: Machine Learning
We stick to a rather simple, but not unrealistic example to explain some further functionalities: Applying two
classification learners to the famous iris data set (Anderson 1935), vary a few hyperparameters and evaluate
the effect on the classification performance.

First, we create a registry, the central meta-data object which records technical details and the setup of the
experiments. We use an ExperimentRegistry where the job definition is split into creating problems and
algorithms. See the paper on BatchJobs and BatchExperiments for a detailed explanation. Again, we use a
temporary registry and make it the default registry.
library(batchtools)
reg = makeExperimentRegistry(file.dir = NA, seed = 1)

Problems and Algorithms
By adding a problem to the registry, we can define the data on which certain computational jobs shall work.
This can be a matrix, data frame or array that always stays the same for all subsequent experiments. But
it can also be of a more dynamic nature, e.g., subsamples of a dataset or random numbers drawn from a
probability distribution . Therefore the function addProblem() accepts static parts in its data argument,
which is passed to the argument fun which generates a (possibly stochastic) problem instance. For data, any
R object can be used. If only data is given, the generated instance is data. The argument fun has to be a
function with the arguments data and job (and optionally other arbitrary parameters). The argument job
is an object of type Job which holds additional information about the job.

We want to split the iris data set into a training set and test set. In this example we use use subsampling
which just randomly takes a fraction of the observations as training set. We define a problem function which
returns the indices of the respective training and test set for a split with 100 * ratio% of the observations
being in the test set:
subsample = function(data, job, ratio, ...) {

n = nrow(data)
train = sample(n, floor(n * ratio))
test = setdiff(seq_len(n), train)
list(test = test, train = train)

}
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addProblem() files the problem to the file system and the problem gets recorded in the registry.
data("iris", package = "datasets")
addProblem(name = "iris", data = iris, fun = subsample, seed = 42)

## Adding problem 'iris'

The function call will be evaluated at a later stage on the workers. In this process, the data part will be
loaded and passed to the function. Note that we set a problem seed to synchronize the experiments in the
sense that the same resampled training and test sets are used for the algorithm comparison in each distinct
replication.

The algorithms for the jobs are added to the registry in a similar manner. When using addAlgorithm(),
an identifier as well as the algorithm to apply to are required arguments. The algorithm must be given as
a function with arguments job, data and instance. Further arbitrary arguments (e.g., hyperparameters
or strategy parameters) may be defined analogously as for the function in addProblem. The objects passed
to the function via job and data are here the same as above, while via instance the return value of the
evaluated problem function is passed. The algorithm can return any R object which will automatically be
stored on the file system for later retrieval. Firstly, we create an algorithm which applies a support vector
machine:
svm.wrapper = function(data, job, instance, ...) {

library("e1071")
mod = svm(Species ~ ., data = data[instance$train, ], ...)
pred = predict(mod, newdata = data[instance$test, ], type = "class")
table(data$Species[instance$test], pred)

}
addAlgorithm(name = "svm", fun = svm.wrapper)

## Adding algorithm 'svm'

Secondly, a random forest of classification trees:
forest.wrapper = function(data, job, instance, ...) {

library("ranger")
mod = ranger(Species ~ ., data = data[instance$train, ], write.forest = TRUE)
pred = predict(mod, data = data[instance$test, ])
table(data$Species[instance$test], pred$predictions)

}
addAlgorithm(name = "forest", fun = forest.wrapper)

## Adding algorithm 'forest'

Both algorithms return a confusion matrix for the predictions on the test set, which will later be used to
calculate the misclassification rate.

Note that using the ... argument in the wrapper definitions allows us to circumvent naming specific design
parameters for now. This is an advantage if we later want to extend the set of algorithm parameters in the
experiment. The algorithms get recorded in the registry and the corresponding functions are stored on the
file system.

Defined problems and algorithms can be queried with:
reg$problems

## [1] "iris"
reg$algorithms

## [1] "svm" "forest"
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The flow to define experiments is summarized in the following figure:

result

static problem part
data

dynamic problem function
fun(data, ...)

algorithm function
fun(data, instance, ...)

problem design
(addExperiments)

algorithm design
(addExperiments)

instance

... ...

Creating jobs
addExperiments() is used to parametrize the jobs and thereby define computational jobs. To do so, you
have to pass named lists of parameters to addExperiments(). The elements of the respective list (one for
problems and one for algorithms) must be named after the problem or algorithm they refer to. The data
frames contain parameter constellations for the problem or algorithm function where columns must have the
same names as the target arguments. When the problem design and the algorithm design are combined in
addExperiments(), each combination of the parameter sets of the two designs defines a distinct job. How
often each of these jobs should be computed can be determined with the argument repls.
# problem design: try two values for the ratio parameter
pdes = list(iris = data.table(ratio = c(0.67, 0.9)))

# algorithm design: try combinations of kernel and epsilon exhaustively,
# try different number of trees for the forest
ades = list(

svm = CJ(kernel = c("linear", "polynomial", "radial"), epsilon = c(0.01, 0.1)),
forest = data.table(ntree = c(100, 500, 1000))

)

addExperiments(pdes, ades, repls = 5)

## Adding 60 experiments ('iris'[2] x 'svm'[6] x repls[5]) ...

## Adding 30 experiments ('iris'[2] x 'forest'[3] x repls[5]) ...

The jobs are now available in the registry with an individual job ID for each. The function
summarizeExperiments() returns a table which gives a quick overview over all defined experiments.
summarizeExperiments()

## problem algorithm .count
## <char> <char> <int>
## 1: iris svm 60
## 2: iris forest 30
summarizeExperiments(by = c("problem", "algorithm", "ratio"))

## problem algorithm ratio .count
## <char> <char> <num> <int>
## 1: iris svm 0.67 30
## 2: iris svm 0.90 30
## 3: iris forest 0.67 15
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## 4: iris forest 0.90 15

Before Submitting
Before submitting all jobs to the batch system, we encourage you to test each algorithm individually. Or
sometimes you want to submit only a subset of experiments because the jobs vastly differ in runtime.
Another reoccurring task is the collection of results for only a subset of experiments. For all these use cases,
findExperiments() can be employed to conveniently select a particular subset of jobs. It returns the IDs of
all experiments that match the given criteria. Your selection can depend on substring matches of problem or
algorithm IDs using prob.name or algo.name, respectively. You can also pass R expressions, which will be
evaluated in your problem parameter setting (prob.pars) or algorithm parameter setting (algo.pars). The
expression is then expected to evaluate to a Boolean value. Furthermore, you can restrict the experiments to
specific replication numbers.

To illustrate findExperiments(), we will select two experiments, one with a support vector machine and the
other with a random forest and the parameter ntree = 1000. The selected experiment IDs are then passed
to testJob.
id1 = head(findExperiments(algo.name = "svm"), 1)
print(id1)

## job.id
## <int>
## 1: 1
id2 = head(findExperiments(algo.name = "forest", algo.pars = (ntree == 1000)), 1)
print(id2)

## job.id
## <int>
## 1: 71
testJob(id = id1)

## ### [bt]: Generating problem instance for problem 'iris' ...
## ### [bt]: Applying algorithm 'svm' on problem 'iris' for job 1 (seed = 2) ...

## pred
## setosa versicolor virginica
## setosa 13 0 0
## versicolor 0 17 0
## virginica 0 1 19
testJob(id = id2)

## ### [bt]: Generating problem instance for problem 'iris' ...
## ### [bt]: Applying algorithm 'forest' on problem 'iris' for job 71 (seed = 72) ...

##
## setosa versicolor virginica
## setosa 13 0 0
## versicolor 0 16 1
## virginica 0 1 19

If something goes wrong, batchtools comes with a bunch of useful debugging utilities (see separate vignette
on error handling). If everything turns out fine, we can proceed with the calculation.
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Submitting and Collecting Results
To submit the jobs, we call submitJobs() and wait for all jobs to terminate using waitForJobs().
submitJobs()

## Submitting 90 jobs in 90 chunks using cluster functions 'Interactive' ...
waitForJobs()

## [1] TRUE

After jobs are finished, the results can be collected with reduceResultsDataTable() where we directly
extract the mean misclassification error:
reduce = function(res) list(mce = (sum(res) - sum(diag(res))) / sum(res))
results = unwrap(reduceResultsDataTable(fun = reduce))
head(results)

## job.id mce
## <int> <num>
## 1: 1 0.02
## 2: 2 0.00
## 3: 3 0.04
## 4: 4 0.06
## 5: 5 0.02
## 6: 6 0.02

Next, we merge the results table with the table of job parameters using one of the join helpers provided by
batchtools (here, we use an inner join):
pars = unwrap(getJobPars())
tab = ijoin(pars, results)
head(tab)

## job.id problem algorithm ratio kernel epsilon ntree mce
## <int> <char> <char> <num> <char> <num> <num> <num>
## 1: 1 iris svm 0.67 linear 0.01 NA 0.02
## 2: 2 iris svm 0.67 linear 0.01 NA 0.00
## 3: 3 iris svm 0.67 linear 0.01 NA 0.04
## 4: 4 iris svm 0.67 linear 0.01 NA 0.06
## 5: 5 iris svm 0.67 linear 0.01 NA 0.02
## 6: 6 iris svm 0.67 linear 0.10 NA 0.02

We now aggregate the results group-wise. You can use data.table, base::aggregate(), or the dplyr
package for this purpose. Here, we use data.table to subset the table to jobs where the ratio is 0.67 and
group by algorithm the algorithm hyperparameters:
tab[ratio == 0.67, list(mmce = mean(mce)),

by = c("algorithm", "kernel", "epsilon", "ntree")]

## algorithm kernel epsilon ntree mmce
## <char> <char> <num> <num> <num>
## 1: svm linear 0.01 NA 0.028
## 2: svm linear 0.10 NA 0.028
## 3: svm polynomial 0.01 NA 0.096
## 4: svm polynomial 0.10 NA 0.096
## 5: svm radial 0.01 NA 0.044
## 6: svm radial 0.10 NA 0.044
## 7: forest <NA> NA 100 0.044
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## 8: forest <NA> NA 500 0.048
## 9: forest <NA> NA 1000 0.044

Example: Error Handling
In any large scale experiment many things can and will go wrong. The cluster might have an outage, jobs
may run into resource limits or crash, subtle bugs in your code could be triggered or any other error condition
might arise. In these situations it is important to quickly determine what went wrong and to recompute only
the minimal number of required jobs.

Therefore, before you submit anything you should use testJob() to catch errors that are easy to spot because
they are raised in many or all jobs. If external is set, this function runs the job without side effects in an
independent R process on your local machine via Rscript similar as on the slave, redirects the output of the
process to your R console, loads the job result and returns it. If you do not set external, the job is executed
is in the currently running R session, with the drawback that you might be unable to catch missing variable
declarations or missing package dependencies.

By way of illustration here is a small example. First, we create a temporary registry.
library(batchtools)
reg = makeRegistry(file.dir = NA, seed = 1)

Ten jobs are created, one will trow a warning and two of them will raise an exception.
flakeyFunction <- function(value) {

if (value == 5) warning("Just a simple warning")
if (value %in% c(2, 9)) stop("Ooops.")
valueˆ2

}
batchMap(flakeyFunction, 1:10)

## Adding 10 jobs ...

Now that the jobs are defined, we can test jobs independently:
testJob(id = 1)

## ### [bt]: Setting seed to 2 ...

## [1] 1

In this case, testing the job with ID = 1 provides the appropriate result but testing the job with ID = 2
leads to an error:
as.character(try(testJob(id = 2)))

## ### [bt]: Setting seed to 3 ...
## Error in (function (value) : Ooops.

## [1] "Error in (function (value) : Ooops.\n"

We ignore the error here, and just assume everything looks fine and submit all jobs.
submitJobs()

## Submitting 10 jobs in 10 chunks using cluster functions 'Interactive' ...

## Error in (function (value) : Ooops.

## Warning in (function (value) : Just a simple warning

## Error in (function (value) : Ooops.
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waitForJobs()

## [1] FALSE

After you have submitted jobs and suspect that something is going wrong, the first thing to do is to run
getStatus() to display a summary of the current state of the system.
getStatus()

## Status for 10 jobs at 2020-03-19 20:25:15:
## Submitted : 10 (100.0%)
## -- Queued : 0 ( 0.0%)
## -- Started : 10 (100.0%)
## ---- Running : 0 ( 0.0%)
## ---- Done : 8 ( 80.0%)
## ---- Error : 2 ( 20.0%)
## ---- Expired : 0 ( 0.0%)

The status message shows that two of the jobs could not be executed successfully. To get the IDs of all jobs
that failed due to an error we can use findErrors() and to retrieve the actual error message, we can use
getErrorMessages().
findErrors()

## job.id
## <int>
## 1: 2
## 2: 9
getErrorMessages()

## job.id terminated error message
## <int> <lgcl> <lgcl> <char>
## 1: 2 TRUE TRUE Error in (function (value) : Ooops.
## 2: 9 TRUE TRUE Error in (function (value) : Ooops.

If we want to peek into the R log file of a job to see more context for the error we can use showLog() which
opens a pager or use getLog() to get the log as character vector:
tail(getLog(id = 9))

## [1] "### [bt]: Memory measurement disabled"
## [2] "### [bt]: Starting job [batchtools job.id=9]"
## [3] "### [bt]: Setting seed to 10 ..."
## [4] ""
## [5] "### [bt]: Job terminated with an exception [batchtools job.id=9]"
## [6] "### [bt]: Calculation finished!"

You can also grep for messages (output suppressed in this vignette for technical reasons):
grepLogs(pattern = "simple", ignore.case = TRUE)

Workflow
On the Local System

1. Create a Registry with makeRegistry() (or makeExperimentRegistry()) or load an existing from the
file system with loadRegistry().
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2. Define computational jobs with batchMap() or batchReduce() if you used makeRegistry()
or define with addAlgorithm(), addProblem() and addExperiments() if you started with
makeExperimentRegistry(). It is advised to test some jobs with testJob() in the interactive session
and with testJob(external = TRUE) in a separate R process. Note that you can add additional jobs
if you are using an ExperimentRegistry.

3. If required, query the data base for job ids depending on their status, parameters or tags (see
findJobs()). The returned tables can easily be combined in a set-like fashion with data base verbs:
union (ojoin() for outer join), intersect (ijoin() for inner join), difference (ajoin() for anti join).

4. Submit jobs with submitJobs(). You can specify job resources here. If you have thousands of fast
terminating jobs, you want to chunk() them first. If some jobs already terminated, you can estimate
the runtimes with estimateRuntimes() and chunk jobs into heterogeneous groups with lpt() and
binpack().

5. Monitor jobs. getStatus() gives a summarizing overview. Use showLog() and grepLogs() to
investigate log file. Run jobs in the currently running session with testJob() to get a traceback().

6. Collect (partial) results. loadResult() retrieves a single result from the file system. reduceResults()
mimics Reduce() and allows to apply a function to many files in an iterative fashion.
reduceResultsList() and reduceResultsDataTable() collect results into a list or data.table,
respectively.

Regular Registry Common Experiment Registry

(1) Create Registry makeRegistry makeExperimentRegistry

(2) Define Jobs
batchMap

batchReduce
batchMapResults

addProblem

addAlgorithm

addExperiments

(3) Subset Jobs findJobs

findDone

findErrors

...

findExperiments

(4) Submit Jobs submitJobs

(5) Monitor & Debug

getStatus

testJob

showLog

grepLogs

summarizeExperiments

(6) Collect Results
loadResult

reduceResults

reduceResults[List|DataTable]

On Multiple Systems
Most users develop and prototype their experiments on a desktop box in their preferred IDE and later
deploy to a large computing cluster. This can be done by prototyping locally (testJob() or submit subsets
via submitJobs()). To deploy to the cluster, just copy the file directory (as reported by reg$file.dir)
to the remote system. Next, log in on the cluster (typically via ssh), cd to the copied directory and
call loadRegistry("<file.dir.on.remote">, "<work.dir.on.remote>", writeable = TRUE). This
function will (a) source the local configuration file so that you can talk to the cluster (verify by checking the
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output of reg$cluster.functions) and (b) adjust the paths to the new system if argument update.paths
is set. After loading the Registry, it is advised to test some jobs again with testJob() before submitting all
of them with submitJobs(resources = list()) (remember you now need to set resources!). After some
jobs are finished, the file.dir can be copied back (do not merge with the previous directory!) and loaded
again with loadRegistry().

This approach is totally viable as long as some general rules are followed:

1. Make sure you have all packages installed. Package versions can be synchronized across machines with
checkpoint or packrat.

2. Test jobs on the remote system prior to submit to ensure that paths are resolved correctly.
3. Make sure you have set the cluster functions in a configuration file, and stick to one backend as long as

jobs are running.
4. The status can only be monitored on the remote system (for obvious reasons).
5. Partial results can be inspected both on the remote system and on the local system. For the latter, you

need to copy over the complete file.dir first. Overwriting/merging directories is not advised as this
may lead to inconsistencies if you added or removed experiments on the remote. If you have to merge,
use rsync with option --delete. Load the registry locally with loadRegistry() and collect results.
Do not copy back and forth.

6. Avoid accessing the file.dir with multiple sessions simultaneously. This includes accessing the registry
via a mount! Simultaneous access may lead to inconsistencies and missing results.
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